时间:2023-03-22 17:30:34
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇化学职称论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
Abstract:ObjectiveTostudythechemicalconstituentsofAngelicadahurica.MethodsTheconstituentswereisolatedandpurifiedbysilicagel,RP-18,andSephadexLH-20columnchromatography.Theirstructureswereidentifiedbyphysiochemicalpropertiesandspectralanalysis.ResultsFivecompoundswereisolatedandidentifiedas7-O-β-D-Apiofuranosyl-(16)-β-D-Glucopyranosyl-Scopoletin①,aesculetin-6-O-β-D-apiofuranosyl-(16)-O-β-D-glucopyranoside②,tomenin③,isoscopolin④,OsmanthusideH⑤.ConclusionCompound1to5wereobtainedfromUmbeliferaeforthefirsttime.
Keywords:Umbeliferae;Angelicadahurica;Chemicalconstituent
白芷Angelicadahurica(Fisch.exHoffm.)Benth.EtHook.f.var.formosana(Boiss.)ShanetYuan为伞形科(Umbeliferae)当归属(Angelica)植物。白芷以根入药,始载于《神农本草经》,列为中品。《中国药典》各个版本均有收载。白芷具有散风除湿、通窍止痛、消肿排脓之功效,用于感冒头痛、鼻塞、鼻渊、牙痛、白带异常、疮疡肿痛等病症。白芷中的香豆素具有抗肿瘤、抗氧化、抗微生物、降压等多种生物活性。前人已经对白芷中脂溶性的香豆素类做了大量而深入的研究,但对其水溶性的化学成分研究甚少。本文通过对白芷水溶性部分的分离得到了6个苷类成分,通过多种理化方法及光谱学手段鉴定为①7-O-β-D-Apiofuranosyl-(16)-β-D-Glucopyranosyl-Scopoletin;②aesculetin-6-O-β-D-apiofuranosyl-(16)-O-β-D-glucopyranoside;③tomenin;④isoscopolin;⑤OsmanthusideH。化合物1~5均为首次从伞形科中分离得到。
1器材
BrukerAV-300,AV-500型核磁共振光谱仪;X4型数字显示显微熔点测定仪(温度未校正);Agilent1100LC/MSDSL;LABCONCO冷冻干燥仪;JASCOP-1020旋光测定仪半制备型高效液相色谱仪Waters600型;检测器Waters2487紫外双波长检测器;Agilent-1100高效液相色谱仪;柱色谱材料为硅胶(200-300目)、RP-C18(YMC;12nm)及SephadexLH-20(AmershamBiosciences);柱色谱试剂均为分析纯,高效液相色谱试剂均为色谱纯。
白芷根于200403采自江苏省盐城市洋马镇,经江苏省中国科学院植物研究所袁昌齐研究员鉴定,凭证标本现存放于江苏省中国科学院植物研究所标本馆内。
2提取与分离
白芷根(38kg)用95%的乙醇提取3次,合并提取液,减压浓缩至无醇味。提取液依次用石油醚、醋酸乙酯萃取,剩余部分为水部分。将水部分上样于D101大孔树脂柱,水-乙醇梯度洗脱,分为6个部分。其中50%洗脱部分分别进行硅胶柱层析,氯仿-甲醇(10∶1~7∶3)梯度洗脱,各流分采用薄层或高效液相检识,合并相类似组分,反复反相柱层析分离,凝胶纯化,得到6个化合物。
3结构鉴定
3.1化合物1
白色无定形粉末(冻干),mp170~172℃,[α]21.7D=-52.40(c=0.065甲醇:水=40:60),紫外灯365,254nm下均显示蓝绿色荧光。ESI-MSm/z:509[M+Na]+,示其分子量为486,结合1H-NMR,13C-NMR谱数据推断分子式为C21H26O13。化合物的1H-NMR,13C-NMR,HMQC及HMBC谱数据详见表1。综合各谱数据及与文献[1]对照鉴定化合物为7-O-β-D-Apiofuranosyl-(16)-β-D-Glucopyranosyl-Scopoletin(xeroboside)。表1化合物1的1H-NMR,13C-NMR,HMQC及HMBC谱数据(略)
3.2化合物2
白色无定形粉末(冻干),[α]21.7D=-55.20(c=0.065甲醇∶水=40∶60),紫外灯365nm及254nm下均显示蓝绿色荧光,ESI-MSm/z:495[M+Na]+,示其分子量为472,结合1H-NMR,13C-NMR谱数据推断分子式为C20H24O13。化合物的1H-NMR,13C-NMR,HMQC及HMBC谱数据见表2。综合以上各谱数据及与已知文献[2]对照鉴定化合物为aesculetin-6-O-β-D-apiofuranosyl-(16)-O-β-D-glucopyranoside。
3.3化合物3白色无定形粉末(氯仿-甲醇),mp207℃,[α]21.7D=+47.75(c=0.07甲醇∶水=40∶60),紫外灯365,254nm下均显示蓝色荧光。ESI-MSm/z∶407[M+Na]+示其分子量为384,结合1H-NMR,13C-NMR谱数据推断分子式为C17H20O10。化合物的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据详见表3。综合各谱数据[3]鉴定化合物为tomenin。表2化合物2的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据(略)表3化合物3的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据(略)
3.4化合物4
白色无定形粉末(冻干),mp140~141℃,[α]19.4d=-52.30(c=0.06甲醇∶水=40∶60),紫外灯365及254nm下均显示蓝色荧光,结合1H-NMR,13C-NMR谱数据推断分子式为C16H18O9。1H-NMR(Pyridine-d5500MHz)δ:6.27(1H,d,J=9.5Hz,3-H),7.56(1H,d,J=9.5Hz,4-H),7.62(1H,s,5-H),6.90(1H,s,8-H),3.70(3H,s,OCH3),5.65(1H,d,J=7.1Hz,1-H-Glc)。综合以上数据及与已知文献[4]对照鉴定化合物为isoscopolin。
3.5化合物5
白色无定形粉末(冻干),[α]21.7D=-55.20(c=0.065甲醇∶水=40∶60),ESI-MSm/z:455[M+Na]+,示其分子量为432,结合1H-NMR,13C-NMR谱数据推断分子式为C19H28O11。1H-NMR(Pyridine-d5500MHz)δ:7.07(2H,d,J=8.5Hz,3-H和5-H),7.19(2H,d,J=8.6Hz,2-H和6-H),2.96(2H,t,J=7.4Hz,β-H),4.34(1H,dd,J=7.5,11.2Hz,3''''a-α),3.88(1H,dd,J=7.4,11.2Hz,3''''a-α),4.82(1H,d,J=7.1Hz,1-H-Glc),5.75(1H,d,J=2.6Hz,1-H-Api)。13C-NMR(Pyridine-d5125MHz)δ:129.53(C-1),130.50(C-2),116.13(C-3),157.23(C-4),116.13(C-5),130.50(C-6),71.12(C-α),35.88(C-β),104.58(C-1-Glc),74.95(C-2-Glc),78.45(C-3-Glc),71.12(C-4-Glc),77.08(C-5-Glc),68.87(C-6-Glc),111.07(C-1-Api),77.74(C-2-Api),80.37(C-3-Api),75.00(C-4-Api),65.48(C-5-Api)。综合以上数据及与文献[5]对照鉴定化合物为OsmanthusideH。
4结果与讨论
前人从茜草科植物山石榴Xeromphisspinosa[1]以及Xeromphisobovata[6]中分到过此化合物1,故此次为首次从伞形科中分离得到。但化合物的熔点有文献[1]报道为238~234℃,有文献[2]报道为192~197℃,而本次实验测得的熔点为170~172℃,具体原因有待进一步确定。
前人从忍冬科植物Loniceragracilipes[3]中分得化合物2,但是只报道了1H-NMR,13C-NMR谱数据,且C-6和C-7的归属颠倒了。本文通过对其进行HSQC,HMBC等二维谱的研究,纠正了前人的错误,丰富了该化合物的波谱数据。
日本学者Hasegawa[3]最早从蔷薇科植物Prunustomentosa中分离得到化合物3,但没有报道核磁数据,以后未见此化合物的报道。本文完善了该化合物的核磁数据,并且用二维谱进行了全归属,丰富了该化合物的波谱数据,并首次报道了此化合物的旋光值。
化合物6在自然界植物中分布广泛,但在伞形科植物中此类化合物较少见。
【参考文献】
[1]S.P.Sati,D.C.Chaukiyal,O.P.Sati[J].JounalofNaturalProducts,1989,52(2):376.
[2]T.Iossifova,B.Vogler,I.Kostova.Escuside,anewcoumarin-secoiridoidfromFraxinusornusbark[J].Fitoterapia,2002,(73):386.
[3]Hasegawa,Masao.FlavonoidsofvariousPrunusspecies.X.WoodconstituentsofPrunustomentosa[J].ShokubutsugakuZasshi,1969,82(978):458.
1.1(口山)酮及(口山)酮苷孙洪发等[4]从椭圆叶花锚中得到五种(口山)酮成分,分别为1,7-二羟基-2,3,4,5-四甲氧基(口山)酮,1,5-二羟基-2,3,7-三甲氧基(口山)酮,1,2-二羟基-3,4,5-三甲氧基(口山)酮,1,5-二羟基-2,3-二甲氧基(口山)酮和1,7-二羟基-2,3-二甲氧基(口山)酮。
孙洪发等[5]又从椭圆叶花锚中得到3种(口山)酮苷成分,分别为1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖]-2,3,5,7-四甲氧基(口山)酮,1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖]-2,3,5-三甲氧基(口山)酮和1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖[-2,3,4,5-四甲氧基(口山)酮。其中1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖]-2,3,5,7-四甲氧基(口山)酮(花锚苷)和1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖[-2,3,5-三甲氧基(口山)酮(去甲氧基花锚苷)为该属植物抗肝炎的两种有效成分。
张德等[6]采用元素分析(EA)、核磁共振波谱(NMR)、质谱(MS)、红外光谱(IR)、紫外光谱(UV)、差示扫描量热(DSC)等分析方法首次从藏药花锚中分离得到两种针状结晶化合物,分别为1-羟基-3,7,8-三甲氧基(口山)酮(1-hydroxy-3,7,8-trimethoxyxanthone)和1,7-二羟基-3,8-二甲氧基((口山))酮(1,7-dihydroxy-3,8-dimethoxyxanthone)。
高洁等[7]从椭叶花锚乙醇提取物醋酸乙酯萃取部分分离得到8个(口山)酮化合物,分别为1,7-二羟基-2,3,5-三甲氧基(口山)酮,1-羟基-2,3,4,7-四甲氧基(口山)酮,1,7-二羟基-2,3,4,5-四甲氧基(口山)酮,1,7-二羟基-2,3-二甲氧基(口山)酮,1,5-二羟基-2,3-二甲氧基(口山)酮,1-羟基-2,3,5-三甲氧基(口山)酮,1-羟基-2,3,4,5-四甲氧基(口山)酮和1-羟基-2,3,5,7-四甲氧基(口山)酮。
1.2其它成分Rodrigaez等[8]从花锚中分离得到了一种的黄酮类葡萄糖苷;高光跃等[9]从椭圆叶花锚全草中测出含有獐牙菜苦苷和当药苷;Dhasmana等[10]从椭圆叶花锚全草中分离得到齐墩果酸和谷甾醇葡萄糖苷;Rodrigaez等[11]从花锚中分离得到了一种二糖酯裂环烯醚萜。
2药理活性
花锚为藏蒙药中治疗肝胆系统疾病的常用药物,其主要分布于我国的、青海、四川、甘肃等地藏民族地区,目前对花锚药理活性的研究报道较少,有待进一步深入研究。
2.1保肝降酶作用张经明等[12]采用花锚煎剂(含花锚苷)对CCl4造成的肝损伤模型的研究表明,花锚苷可明显增加核糖核酸;药理实验证明,花锚中的花锚苷和去甲氧基花锚苷具有明显的保肝作用,可增加核糖核酸,增加肝糖元,促进蛋白质的合成,促进肝细胞的再生,加速坏死组织的修复,是该植物抗肝炎的主要有效成分。周富强[13]通过不同剂量西宁花锚对CCl4实验性肝损伤后肝糖元的含量的研究,发现西宁花锚对CCl4损伤后小鼠肝糖元的储存的恢复有一定的药效,可显著提高肝糖元的含量。
马学惠等[14]在齐墩果酸防治CCl4引起的大鼠急性肝损伤作用的研究中,发现该药物能使血清GPT明显下降,肝内甘油三酯积累量减少;同时,能使肝细胞变性、坏死明显减轻,糖原蓄积增加,具有明显的保肝降酶作用。宫新江等[15]的齐墩果酸对环磷酰胺所致大鼠肝细胞损伤的保护作用的研究表明,齐墩果酸能抑制环磷酰胺所致的肝细胞上清液ALT,AST及LDH活力升高,肝细胞MTT值减小,说明齐墩果酸可抗环磷酰胺所致肝细胞损伤。
王晓峰等[16]采用原代培养的小鼠肝细胞,以3H-胸腺嘧啶和3H-亮氨酸掺入的方法,研究经齐墩果酸预处理后的小鼠的肝细胞DNA和蛋白质合成速率的变化,结果发现齐墩果酸能促进肝细胞DNA及蛋白质合成,且合成速率明显增高,具有保肝作用。另外王晓峰等[17]报道齐墩果酸在对小鼠肝内谷丙转氨酶及谷草转氨酶的直接作用时,小鼠血清样品与不同浓度的齐墩果酸分别作用后,谷丙转氨酶活性则显著降低,说明齐墩果酸对谷丙转氨酶活性具有明显抑制作用。
2.2降血糖作用苗德田等[18]研究了齐墩果酸对大鼠血糖的影响,结果显示,齐墩果酸对化学性高血糖模型大鼠有显著的降血糖作用。柳占彪等[19]用齐墩果酸对高血糖大鼠治疗,结果发现单一的齐墩果酸具有降低高血糖的作用,同时在血糖降低时肝糖原和血清胰岛素均有明显升高。
2.3抗炎作用戴岳等[20]采用多种实验性炎症模型证实齐墩果酸对二甲苯与乙酸引起的小鼠皮肤和腹腔毛细血管通透性增高及对角叉菜胶等多种致炎物引起的大量足垫肿胀都具有明显抑制作用。
2.4抗氧化活性肝细胞膜的脂质过氧化是造成肝损伤的重要原因之一,高洁等[7]在研究藏药花锚中(口山)酮类成分及其抗氧化活性时,从椭叶花锚乙醇提取物醋酸乙酯萃取部分分离得到8个(口山)酮化合物,且该类化合物在一定程度上能显著抑制Fe2+-Cys诱导大鼠肝微粒体丙二醛的生成,有效降低肝微粒体膜的氧化损伤。因此,具有一定的抗氧化活性。
2.5其他作用椭圆叶花锚的干浸膏可提高单核-巨噬细胞吞噬功能,具有调节体液免疫的作用,使降低的血清溶血素及脾细胞免疫溶血活性提高到正常水平[21]。另有报道椭圆叶花锚全草的氯仿可溶部分(富含口山酮葡萄糖苷)具有抗阿米巴作用[22]。
3人工栽培
高原野生重要植物资源的持续发展必须建立在生物资源可持续利用和生态环境保护的基础上,培育地道地产中藏药材是实现高原地区中藏药资源可持续利用的主要途径之一,也是保证中藏药产业持续发展的必然选择。
3.1人工栽培的重要意义花锚属与獐牙菜属植物等同属于藏茵陈类药物,被称为“藏药中的奇葩”,是治疗肝中毒、肝炎的最佳药物之一。但是这种药物资源一般生长在人迹罕至的高寒缺氧环境中,其再生周期较长甚至不能再生,藏茵陈供需矛盾也由此变得越来越突出。
尽管野生椭圆叶花锚在青藏高原地区分布广泛,资源较为丰富。但是近十多年来,随着我国民族医药特别是藏药事业的迅速发展,越来越多的企业开始投资藏医药领域,椭圆叶花锚的药用资源需求量快速增加。但是,藏药产业一度出现重成品生产轻药材来源、重开发轻保护的问题,造成过度的采挖及收购现象,特别是在植物生长阶段的花期大量采收导致资源量锐减,野生植物资源日益枯竭。因此,对作为原料植物药的椭圆叶花锚进行人工栽培的研究具有十分重要的意义。
3.2人工引种栽培为了解决藏茵陈类药材资源严重短缺的实际问题,中国科学院西北高原生物研究所经过3年的栽培与试验,成功地解决了以往藏茵陈种子萌发率低、出苗率低、人工栽培难以成活等关键技术问题。3种藏茵陈类药用植物——川西獐牙菜、抱茎獐牙菜和花锚人工种植成功,并通过鉴定。经过专家的监测和对比分析,这次人工栽培的3种植物,其主要有效成分齐墩果酸和芒果苷的含量基本接近于天然野生资源,川西獐牙菜的有效成分含量甚至显著高于野生资源,人工条件下栽培藏茵陈类药用植物的质量及其本身的药用价值完全可以得到保证。随着青海省产业结构的调整,椭圆叶花锚人工引种栽培技术的开发研究,青海省椭圆叶花锚人工种植规模逐渐扩大。椭圆叶花锚人工引种栽培试验在该省也初见成效。陈桂琛等[23]对椭圆叶花锚的引种栽培的研究表明,栽培的椭圆叶花锚植株在植株高度、分枝数量、单株生物量等生长状况指标明显高于野生植株,其有效化学成分接近野生状态的水平,说明野生椭圆叶花锚的人工栽培是可行的。吉文鹤等[24]运用RP-HPLC建立了花锚中青兰苷、去甲氧基花锚苷和花锚苷的含量分析方法,为栽培花锚替代野生花锚入药提供一定的科学依据。研究表明,栽培花锚中花锚苷和去甲氧基花锚苷的含量和在野生花锚中的含量相比无明显差别,可以初步证明栽培花锚可以替代野生花锚入药。纪兰菊等[25]在研究栽培花锚的品质能否代替野生花锚入药时,通过指纹图谱的相似度分析,得出结论:同一产地的野生与栽培花锚药材色谱分离图叠加比较,显示了良好的相似度。证明栽培花锚中的主要化学成分及数量符合花锚药材的指纹特征,可以代替野生花锚药材入药。
3.3组织培养随着对花锚属植物药用成分不断深入的研究,药用潜力的挖掘,该属植物的需求量大大增加,造成了该属植物野生资源的日益匮乏且面临枯竭。该属植物的人工引种栽培技术在一定程度上已经可行,但是,还需要通过多种途径来提高对其的培育效率。
药用植物的组织培养技术及应用已有多年的发展历史,但还有相当多的植物目前尚没有相应的离体培养技术。目前,花锚属植物的组织培养技术至今尚未见成功的报道,仍然是个空缺。因此,建立该属药用植物的离体快繁技术的需求日渐增加,它也是实现高原地区中藏药资源可持续利用的主要途径之一。
4最佳采集时期
从生物量的角度考虑,花期的生物量高于果期,更高于其他时期。杨慧玲等[26]在研究不同地区和生长物候期藏药花锚有效成分齐墩果酸的含量变化实验中,比较了野生状态下不同海拔、栽培条件下不同生长时期花锚的齐墩果酸含量,为确定该药材的采收时期、不同地区药材的质量以及栽培地点的选择提供理论依据。该研究发现花锚花期齐墩果酸含量最高,而幼苗期、蕾期和果期都低于花期的含量。因此,花期得到的药材最多质量也最好。
吉文鹤等[24]研究了花锚中去甲氧基花锚苷和花锚苷的含量随着不同生长期的变化趋势,为药材的合理栽培和采收提供科学依据。该研究表明,去甲氧基花锚苷和花锚苷含量在营养期含量最高,从6~9月逐渐降低,从抗肝炎活性成分的含量角度考虑,6月份(营养期)为花锚的最佳采收期。
5结语
花锚属植物是藏蒙药中治疗肝炎类疾病的常用药物,全草入药,具有重要的药用价值。该属植物的主要有效成分为(口山)酮及(口山)酮苷、裂环烯醚萜类、三萜类化合物及其它黄酮苷等,具有抗肝炎、抗氧化活性和降血糖等功效。在我国,该属植物药用历史较长,故具有很高的药理研究价值,特别是有关抗肝炎方面的研究显示出较大的市场潜力,值得进一步深入研究;其降血糖作用、抗氧化活性和调节体液免疫的药理活性研究报道较少,这些研究工作都亟待进一步的深入;另外对野生植物的过度采挖造成资源贫乏,采用人工的方法达到该药物资源的可持续利用也已成为目前及今后对该属植物重点研究的目标。
【参考文献】
[1]包保全,孙启时,包巴根那.花锚属植物化学成分及生物活性研究进展[J].中药材,2003,26(5):382.
[2]何廷农,刘尚武,吴庆如.中国植物志(第62卷)[M].北京:科学出版社,1988:291.
[3]黄燕,郁韶明.16种药用植物种子发芽的研究[J].山东中医杂志,2006,25(2):124.
[4]孙洪发,胡柏林,樊淑芬,等.花锚的三个新口山酮[J].植物学报,1983,25(5):460.
花锚属植物全球约有八十余种,分布在北半球及南美,其中已进行有关植化研究的只有4种:Haleniacorniculata,H.elliptica,H.campanulata和H.asclepiadea。我国有该属植物两种,为花锚H.corniculata和椭圆叶花锚H.ellipiticaD.Don[1,2]。椭圆叶花锚(又名黑及草;藏语称“去合斗拉果玛”;蒙名为希赫日-地格达),是一年生或两年生草本植物[2],为龙胆科Gentianaceae花锚属HaleniaBorkh植物。主要分布于我国的、青海、四川、甘肃等地,生于海拔2500~4400m的林下或草原[3]。它性味苦寒,全草入药,为藏蒙药系统中治疗肝胆系统疾病的常用药物,现代医学验证其对治疗肝炎有疗效。以花锚为主药材研制、开发的治疗肝胆系统疾病的成品藏药,具有疗效稳定,效率高等特点,市场前景广阔。随着我国藏药事业的迅速发展,椭圆叶花锚的药用资源需求量快速增加,由于过度采挖,导致其野生植物资源日益枯竭。为了扩大花锚资源的有效利用,笔者对其近年来国内外研究者分离到的化学成分、有效活性成分及其药理活性和人工引种栽培技术、组织培养等方面的研究成果作一综述,为该植物的进一步研究和合理开发利用提供参考。
1化学成分
现代医学研究表明,花锚属植物的主要化学成分为(口山)酮及(口山)酮苷类、裂环烯醚萜类、三萜类、黄酮类以及一些生物碱类化合物等。
1.1(口山)酮及(口山)酮苷孙洪发等[4]从椭圆叶花锚中得到五种(口山)酮成分,分别为1,7-二羟基-2,3,4,5-四甲氧基(口山)酮,1,5-二羟基-2,3,7-三甲氧基(口山)酮,1,2-二羟基-3,4,5-三甲氧基(口山)酮,1,5-二羟基-2,3-二甲氧基(口山)酮和1,7-二羟基-2,3-二甲氧基(口山)酮。
孙洪发等[5]又从椭圆叶花锚中得到3种(口山)酮苷成分,分别为1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖]-2,3,5,7-四甲氧基(口山)酮,1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖]-2,3,5-三甲氧基(口山)酮和1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖[-2,3,4,5-四甲氧基(口山)酮。其中1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖]-2,3,5,7-四甲氧基(口山)酮(花锚苷)和1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖[-2,3,5-三甲氧基(口山)酮(去甲氧基花锚苷)为该属植物抗肝炎的两种有效成分。
张德等[6]采用元素分析(EA)、核磁共振波谱(NMR)、质谱(MS)、红外光谱(IR)、紫外光谱(UV)、差示扫描量热(DSC)等分析方法首次从藏药花锚中分离得到两种针状结晶化合物,分别为1-羟基-3,7,8-三甲氧基(口山)酮(1-hydroxy-3,7,8-trimethoxyxanthone)和1,7-二羟基-3,8-二甲氧基((口山))酮(1,7-dihydroxy-3,8-dimethoxyxanthone)。
高洁等[7]从椭叶花锚乙醇提取物醋酸乙酯萃取部分分离得到8个(口山)酮化合物,分别为1,7-二羟基-2,3,5-三甲氧基(口山)酮,1-羟基-2,3,4,7-四甲氧基(口山)酮,1,7-二羟基-2,3,4,5-四甲氧基(口山)酮,1,7-二羟基-2,3-二甲氧基(口山)酮,1,5-二羟基-2,3-二甲氧基(口山)酮,1-羟基-2,3,5-三甲氧基(口山)酮,1-羟基-2,3,4,5-四甲氧基(口山)酮和1-羟基-2,3,5,7-四甲氧基(口山)酮。
1.2其它成分Rodrigaez等[8]从花锚中分离得到了一种的黄酮类葡萄糖苷;高光跃等[9]从椭圆叶花锚全草中测出含有獐牙菜苦苷和当药苷;Dhasmana等[10]从椭圆叶花锚全草中分离得到齐墩果酸和谷甾醇葡萄糖苷;Rodrigaez等[11]从花锚中分离得到了一种二糖酯裂环烯醚萜。
2药理活性
花锚为藏蒙药中治疗肝胆系统疾病的常用药物,其主要分布于我国的、青海、四川、甘肃等地藏民族地区,目前对花锚药理活性的研究报道较少,有待进一步深入研究。
2.1保肝降酶作用张经明等[12]采用花锚煎剂(含花锚苷)对CCl4造成的肝损伤模型的研究表明,花锚苷可明显增加核糖核酸;药理实验证明,花锚中的花锚苷和去甲氧基花锚苷具有明显的保肝作用,可增加核糖核酸,增加肝糖元,促进蛋白质的合成,促进肝细胞的再生,加速坏死组织的修复,是该植物抗肝炎的主要有效成分。周富强[13]通过不同剂量西宁花锚对CCl4实验性肝损伤后肝糖元的含量的研究,发现西宁花锚对CCl4损伤后小鼠肝糖元的储存的恢复有一定的药效,可显著提高肝糖元的含量。
马学惠等[14]在齐墩果酸防治CCl4引起的大鼠急性肝损伤作用的研究中,发现该药物能使血清GPT明显下降,肝内甘油三酯积累量减少;同时,能使肝细胞变性、坏死明显减轻,糖原蓄积增加,具有明显的保肝降酶作用。宫新江等[15]的齐墩果酸对环磷酰胺所致大鼠肝细胞损伤的保护作用的研究表明,齐墩果酸能抑制环磷酰胺所致的肝细胞上清液ALT,AST及LDH活力升高,肝细胞MTT值减小,说明齐墩果酸可抗环磷酰胺所致肝细胞损伤。
王晓峰等[16]采用原代培养的小鼠肝细胞,以3H-胸腺嘧啶和3H-亮氨酸掺入的方法,研究经齐墩果酸预处理后的小鼠的肝细胞DNA和蛋白质合成速率的变化,结果发现齐墩果酸能促进肝细胞DNA及蛋白质合成,且合成速率明显增高,具有保肝作用。另外王晓峰等[17]报道齐墩果酸在对小鼠肝内谷丙转氨酶及谷草转氨酶的直接作用时,小鼠血清样品与不同浓度的齐墩果酸分别作用后,谷丙转氨酶活性则显著降低,说明齐墩果酸对谷丙转氨酶活性具有明显抑制作用。
2.2降血糖作用苗德田等[18]研究了齐墩果酸对大鼠血糖的影响,结果显示,齐墩果酸对化学性高血糖模型大鼠有显著的降血糖作用。柳占彪等[19]用齐墩果酸对高血糖大鼠治疗,结果发现单一的齐墩果酸具有降低高血糖的作用,同时在血糖降低时肝糖原和血清胰岛素均有明显升高。
2.3抗炎作用戴岳等[20]采用多种实验性炎症模型证实齐墩果酸对二甲苯与乙酸引起的小鼠皮肤和腹腔毛细血管通透性增高及对角叉菜胶等多种致炎物引起的大量足垫肿胀都具有明显抑制作用。
2.4抗氧化活性肝细胞膜的脂质过氧化是造成肝损伤的重要原因之一,高洁等[7]在研究藏药花锚中(口山)酮类成分及其抗氧化活性时,从椭叶花锚乙醇提取物醋酸乙酯萃取部分分离得到8个(口山)酮化合物,且该类化合物在一定程度上能显著抑制Fe2+-Cys诱导大鼠肝微粒体丙二醛的生成,有效降低肝微粒体膜的氧化损伤。因此,具有一定的抗氧化活性。
2.5其他作用椭圆叶花锚的干浸膏可提高单核-巨噬细胞吞噬功能,具有调节体液免疫的作用,使降低的血清溶血素及脾细胞免疫溶血活性提高到正常水平[21]。另有报道椭圆叶花锚全草的氯仿可溶部分(富含口山酮葡萄糖苷)具有抗阿米巴作用[22]。
3人工栽培
高原野生重要植物资源的持续发展必须建立在生物资源可持续利用和生态环境保护的基础上,培育地道地产中藏药材是实现高原地区中藏药资源可持续利用的主要途径之一,也是保证中藏药产业持续发展的必然选择。
3.1人工栽培的重要意义花锚属与獐牙菜属植物等同属于藏茵陈类药物,被称为“藏药中的奇葩”,是治疗肝中毒、肝炎的最佳药物之一。但是这种药物资源一般生长在人迹罕至的高寒缺氧环境中,其再生周期较长甚至不能再生,藏茵陈供需矛盾也由此变得越来越突出。
尽管野生椭圆叶花锚在青藏高原地区分布广泛,资源较为丰富。但是近十多年来,随着我国民族医药特别是藏药事业的迅速发展,越来越多的企业开始投资藏医药领域,椭圆叶花锚的药用资源需求量快速增加。但是,藏药产业一度出现重成品生产轻药材来源、重开发轻保护的问题,造成过度的采挖及收购现象,特别是在植物生长阶段的花期大量采收导致资源量锐减,野生植物资源日益枯竭。因此,对作为原料植物药的椭圆叶花锚进行人工栽培的研究具有十分重要的意义。
3.2人工引种栽培为了解决藏茵陈类药材资源严重短缺的实际问题,中国科学院西北高原生物研究所经过3年的栽培与试验,成功地解决了以往藏茵陈种子萌发率低、出苗率低、人工栽培难以成活等关键技术问题。3种藏茵陈类药用植物——川西獐牙菜、抱茎獐牙菜和花锚人工种植成功,并通过鉴定。经过专家的监测和对比分析,这次人工栽培的3种植物,其主要有效成分齐墩果酸和芒果苷的含量基本接近于天然野生资源,川西獐牙菜的有效成分含量甚至显著高于野生资源,人工条件下栽培藏茵陈类药用植物的质量及其本身的药用价值完全可以得到保证。随着青海省产业结构的调整,椭圆叶花锚人工引种栽培技术的开发研究,青海省椭圆叶花锚人工种植规模逐渐扩大。椭圆叶花锚人工引种栽培试验在该省也初见成效。陈桂琛等[23]对椭圆叶花锚的引种栽培的研究表明,栽培的椭圆叶花锚植株在植株高度、分枝数量、单株生物量等生长状况指标明显高于野生植株,其有效化学成分接近野生状态的水平,说明野生椭圆叶花锚的人工栽培是可行的。吉文鹤等[24]运用RP-HPLC建立了花锚中青兰苷、去甲氧基花锚苷和花锚苷的含量分析方法,为栽培花锚替代野生花锚入药提供一定的科学依据。研究表明,栽培花锚中花锚苷和去甲氧基花锚苷的含量和在野生花锚中的含量相比无明显差别,可以初步证明栽培花锚可以替代野生花锚入药。纪兰菊等[25]在研究栽培花锚的品质能否代替野生花锚入药时,通过指纹图谱的相似度分析,得出结论:同一产地的野生与栽培花锚药材色谱分离图叠加比较,显示了良好的相似度。证明栽培花锚中的主要化学成分及数量符合花锚药材的指纹特征,可以代替野生花锚药材入药。
3.3组织培养随着对花锚属植物药用成分不断深入的研究,药用潜力的挖掘,该属植物的需求量大大增加,造成了该属植物野生资源的日益匮乏且面临枯竭。该属植物的人工引种栽培技术在一定程度上已经可行,但是,还需要通过多种途径来提高对其的培育效率。
药用植物的组织培养技术及应用已有多年的发展历史,但还有相当多的植物目前尚没有相应的离体培养技术。目前,花锚属植物的组织培养技术至今尚未见成功的报道,仍然是个空缺。因此,建立该属药用植物的离体快繁技术的需求日渐增加,它也是实现高原地区中藏药资源可持续利用的主要途径之一。
4最佳采集时期
从生物量的角度考虑,花期的生物量高于果期,更高于其他时期。杨慧玲等[26]在研究不同地区和生长物候期藏药花锚有效成分齐墩果酸的含量变化实验中,比较了野生状态下不同海拔、栽培条件下不同生长时期花锚的齐墩果酸含量,为确定该药材的采收时期、不同地区药材的质量以及栽培地点的选择提供理论依据。该研究发现花锚花期齐墩果酸含量最高,而幼苗期、蕾期和果期都低于花期的含量。因此,花期得到的药材最多质量也最好。
吉文鹤等[24]研究了花锚中去甲氧基花锚苷和花锚苷的含量随着不同生长期的变化趋势,为药材的合理栽培和采收提供科学依据。该研究表明,去甲氧基花锚苷和花锚苷含量在营养期含量最高,从6~9月逐渐降低,从抗肝炎活性成分的含量角度考虑,6月份(营养期)为花锚的最佳采收期。
5结语
花锚属植物是藏蒙药中治疗肝炎类疾病的常用药物,全草入药,具有重要的药用价值。该属植物的主要有效成分为(口山)酮及(口山)酮苷、裂环烯醚萜类、三萜类化合物及其它黄酮苷等,具有抗肝炎、抗氧化活性和降血糖等功效。在我国,该属植物药用历史较长,故具有很高的药理研究价值,特别是有关抗肝炎方面的研究显示出较大的市场潜力,值得进一步深入研究;其降血糖作用、抗氧化活性和调节体液免疫的药理活性研究报道较少,这些研究工作都亟待进一步的深入;另外对野生植物的过度采挖造成资源贫乏,采用人工的方法达到该药物资源的可持续利用也已成为目前及今后对该属植物重点研究的目标。
【参考文献】
[1]包保全,孙启时,包巴根那.花锚属植物化学成分及生物活性研究进展[J].中药材,2003,26(5):382.
[2]何廷农,刘尚武,吴庆如.中国植物志(第62卷)[M].北京:科学出版社,1988:291.
[3]黄燕,郁韶明.16种药用植物种子发芽的研究[J].山东中医杂志,2006,25(2):124.
[4]孙洪发,胡柏林,樊淑芬,等.花锚的三个新口山酮[J].植物学报,1983,25(5):460.
[5]孙洪发,胡柏林,等.花锚的三个新口山酮苷[J].植物学报,1987,29(4):422.
[6]张德,祝亚非,林少琨.藏药花锚中新化学成分的鉴定[J].中草药,2003,34(1):9.
[7]高洁,王素娟,方芳,等.藏药花锚中的(口山)酮类成分及其抗氧化活性[J].中国医学科学院学报,2004,August:364.
[8]SylvainRodriguez.Xanthones,secoiridoidsandflavonoidsfromHaleniacorniculata[J].Phytochemistry,1995,40(4):1265.
[9]高光跃,李鸣,冯毓秀,等.11种獐芽菜及近缘植物中有效成分的高效液相色谱测定[J].药学学报,1994,29(12):911.
[10]H.Dhasmana.XanthonesofHaleniaelliptica[J].Phytochemistry,1990,29(3):961.
[11]SylvainRodriguez,etal.Corniculoside,anewbiosidicestersecoiridoidfromHaleniacorniculata[J].HelveticaChimicaActa,1996,79:363.
[12]张经明,鲍文莲,高海平,等.花锚及其(口山)酮苷抗肝损伤和毒性的研究[J].中草药,1984,15(10):34.
[13]周富强,西宁花锚(HaleniaSibiricaBorn)对小鼠肝糖原含量的影响[J].青海师范大学学报·自然科学版,2006,(3):84.
[14]马学惠,赵元昌,尹镭,等.齐墩果酸防治实验性肝损伤作用的研究[J].药学学报,1982,17(2):96.
[15]宫新江,丁虹,邱银生,等.齐墩果酸抗环磷酰胺所致大鼠肝细胞损伤作用[J].医药导报,2006,25(11):1114.
[16]王晓峰,李继尧,于吉人.齐墩果酸对肝DNA和蛋白质合成速率的影响[J].贵阳医学院学报,1999,24(2):117.
[17]王晓峰,李继尧,于吉人.齐墩果酸对肝损伤小鼠血清及肝细胞培养液转氨酶作用的研究[J].中国药学杂志,1999,34(6):378.
[18]苗德田,吴小凤,蔡德海.齐墩果酸对大鼠血糖的影响[J].武警医学院学报,1998,7(3):149.
[19]柳占彪,王鼎,王淑珍,等.齐墩果酸的降糖作用[J].中国药学杂志,1994,29(12):726.
[20]戴岳.齐墩果酸的抗炎作用[J].中国药理学与毒理学杂志,1989,3(2):98.
[21]张杰.花锚及复方花锚免疫药理实验研究[J].青海医药杂志,1986,(3):17.
[22]H.Dhasmana.XanthonesofHaleniaelliptica[J].Phytochemistry,1990,29(3):961.
[23]陈桂琛,卢学峰.椭圆叶花锚的引种栽培[J].云南植物研究,2004,26(6):678.
1 地域音乐文化教学“生态性”概述
1.1 课堂教学的“生态性”表征
生态学,自20世纪成为一门初具理论体系的独立学科,发展至今已硕果累累,其独特的思想和观点在相近的学科领域影响深刻。随着学科融合趋势的不断加强,生态学的思想在诸多社会学科和人文学科研究领域都产生了广泛的影响。当前的教育科学领域运用生态学的观点和思想来研究教学实践,也不失为一种创新之举。课堂教学是一个有机的系统,由教师、学生、教材、教学中介、教学环境等要素组成的生态系统。系统内各要素相互作用与影响,在生态场和心理场内不断地进行信息传递、能量交换、物质循环,从而实现教育教学的全方位的目的。高校音乐专业的教学课堂也不例外,教师把教学内容以各种方式,展示、传递给学生,学生亦以各种方式主动或者被动地吸收音乐文化知识、技能、人文精神等,此过程是信息从教师传递给学生、学生吸收能量的过程。另一方面,在此过程中,教师又通过学生的学习实践,调整自己的课堂行为或教学节奏,从而让课堂教学更加有效。这又属于教师从学生因素中吸取能量、获取信息的过程,这个过程也是教师教学业务水平不断提高的过程。课堂教学环境也是学生吸收能量的生态场,经过教师精心布置的课堂环境,往往是为学生的学习成长做准备的,是一种隐形课程。学生在课堂教学中以一种间接、隐性的方式从课堂环境里获取信息,受其感染、吸收能量、取得进步。课堂环境也是教师和学生共同创造的,学生从课堂环境中吸取能量,获得进步,课堂环境也因为学生的进步不断地被优化,这是学生与课堂环境之间进行信息交换、能量交换的过程。可见,教学课堂就是一个完整的生态系统。
1.2 地域音乐文化的“生态性”表征
我国的地域音乐文化都来源于人民的集体创造,来源于生活实践、来源于地域风俗人情,这不同于西方的音乐作品,以专业的音乐家艺术创作为主。这就决定了我国的地域音乐文化的特点――生活形态的艺术。地域音乐文化会渗透到地方劳动人民生活的各个领域之中,各种节日庆典、庄严的宗教祭祀活动、上山狩猎、下地播种、驱魔祈神都要音乐艺术来渲染气氛。地域音乐文化源于生活,乡土生活是其产生的背景。人、音乐、生活融为一体,分不清是人在音乐中生活,还是在生活中享受音乐,音乐即生活。音乐从地域乡土人们的生活中吸取信息、获取能量,不断地被创作、改编、流传,乡土生活因为音乐艺术的存在更加丰富多彩,人在丰富多彩的生活中不断获取能量劳动、娱乐、成长再投入到音乐艺术的创作中去。由此,地域音乐文化形成了一个“人、生活、音乐”的生态系统。
2 地域音乐文化“生态式”教学优势
2.1 保持地域音乐文化的完整性
社会学家研究表明:地域性、乡土性人文文化一旦从它们所赖以存在的自然和人文环境中孤立出来,它们就不能够再得到发展,它们就会失去原有的生气,可见在传承地域性音乐文化的过程中,不能把它从其所依赖的环境中剥离出来。同样,也有专家指出,解读地域性人文文化必须将其放入地方人民的文化框架内,若将其从地方文化背景中分离是片面的、不科学的,不能领略其中的精髓。地域音乐文化必须放在其地方人民文化的生态系统中解读。通过记录在纸质资料、图书馆、电子产品上的方式来解读地域音乐文化,间接导致充满生气的地域音乐文化丧失了其“活性”和完整性。
地域音乐文化是一个完整的生态系统,用“生态性”的视野来对待地域音乐文化在地方高校的音乐专业的教育教学,是将民族民间音乐文化资源融入教育教学实践领域的最佳途径。学生学习地方音乐文化的时候,要以全面的角度来审视人、音乐、文化的关系。若地域音乐文化教育脱离了所依赖的人文背景来教学,将直接导致音乐文化完整性的切割,也必然阻碍学生完整性的成长。
2.2 促进学生生命的“完整性”成长
地域音乐文化生态式教学,就是要以一种“生态性”的视野来看待地域音乐文化的教育教学。地域音乐文化的生态系统中的因素有“人、音乐、生活、社会”,学生在这样的视野中学习音乐,与传统的注重知识与技能的音乐课堂有天壤之别。“生态式”教学有利于提高学生的学习积极性,在生态式教学下,学生感觉不是在枯燥地学习,而是在接触、在感受地方人民的生活方式和风土人情。学生在“音乐、生活”中感受、感知生命的价值。
音乐教育教学本质上是一种人文教育,教学过程中的感受、体悟、熏陶具有不可替代的意义。然而长期以来,受教育“科学主义”的影响,我国各级各类学校的音乐课程教学普遍显示出重“技术”,轻文化;重“知识”,轻感受的特点,这实质上是人文教育的病态表现。音乐教学必须重视人文文化的熏染,重视学生的感受和体验。音乐教育实践中,倘若学生的感受、体验缺位,实质上就偏离了音乐作为一门人文教育学科的宗旨。地域音乐文化教育,以“生态式”教学理念,把地方音乐艺术形式完整地带入学生的视野,为学生提供了丰富的体验、感受平台――“人、生活、音乐”。“生态式”地域音乐文化教学,利于促进学生生命的完整性成长。
2.3 提高“教”的效率
地域音乐文化“生态式”教学,提高了学生的学习兴趣,融洽了教师与学生之间的关系,提高了教师“教”的效率。在“生态式”教学理念下,教师可利用的教学资源得到了极大的丰富。地方人民的生活方式、风土人情、、价值态度都进入了教师课堂教学的范畴。教师的课前准备从微观的音乐“知识与技能”转向了全方位的地方文化,可利用的教学资源得到了质的飞跃。
加之学生学的方式由传统的学习音乐知识与技能的方式转变为感受音乐文化、感受生活、感受生命,学生学习的积极性与参与度都得到了极大的提高,不仅有利于课堂管理,而且间接刺激了教师的教学积极性。可见,地域音乐在地方高校音乐专业中“生态式”教学这一创新极大地促进了教师“教”的积极性。
经典的物理化学内容博大精深, “广而博”的教学思想对化学化工类重点院校来说尚且可以,但对于普通院校非化学专业来说要做到面面俱到基本不可能。我校制药工程专业的培养定位是应用型人才,导致的必然结果是理论学时的压缩,实践学时的增加。在“课时少、任务重”的情况下,“少而精”是必然选择。但“少而精”也不是随意的删减,而应紧紧结合专业需求,科学、合理地删减。
如减少热力学、电化学的内容,重点讲解相平衡、化学动力学、表面化学与胶体等与制药专业后续课程密切相关的部分。其实要做到物理化学与制药专业课程之间的完美融合并不是一件容易的事,需要化学教师通过多种渠道提高自身的药学知识储备,只有对制药专业课程有较深的认识,才有可能在教学中灵活把握,更好地有的放矢,使物理化学在后续课程中充分发挥作用。
1. 2 强化应用,弱化推导
物理化学公式推导繁琐是学生畏学的一个重要原因。对于化学专业学生来说,掌握这些理论公式的来龙去脉毋庸置疑,但对于制药专业学生来说,学习物理化学的目的不是从事理论研究,而是应用物化知识去解决药学领域中的专业问题,对结果的应用才是重中之重。因此,教学中应淡化公式推导,重点强调如何运用这些结论去解决实际中的问题。如热力学部分中,理想气体绝热可逆过程的过程方程式,熵函数( S) 、吉布斯函数( G) 和亥姆霍斯函数( A) 的定义,不同物质化学势的表达形式等都无需推导,直接给出即可。重点放在对这些公式和概念的应用上。特别像熵函数的引入是公认的教学难点,传统讲法都是从热机效率开始,由卡诺循环到卡诺定理,最后引出熵函数。对制药专业学生来说,只需给出熵函数的定义式即可,重点应放在如何计算ΔS 和应用熵判据判断变化方向。
1. 3 重视新内容,避免旧内容
在学时有限的情况下,教师要学会“做减法”,对在先行课程中学过的内容要少讲,避免重复。如适当删减无机化学中的化学平衡内容,大学物理中的热机内容。同时也要学会“做加法”,增加与专业结合紧密的物理化学内容,为后续课程做足准备。如,增加相图在药物分离及提纯中的应用介绍。利用低共熔相图原理改良药物剂型,当药物与载体以低共熔比例共存时,制成的药物具有均匀的微细分散结构,可大大改善其溶出速度,提高药物的吸收效果和生物利用度。再如,增加表面化学和胶体化学的介绍,这些内容虽然在物理化学课程体系中所占比例较小,但对制药专业至关重要,可为药物新剂型的开发提供理论指导。如微乳给药系统因其有增溶,促进吸收,提高生物利用度等优点,被广泛用于多种药物制剂的开发,因此在授课时增加有关微乳内容的介绍,使学生充分了解其形成原理和性质,以便将来在工作中去应用。
2 加强理论与生产生活的联系
制药专业学生对物理化学产生畏学的另一个原因就是不知道学习物理化学有何用途。这说明教学内容与实际应用之间的融合还不够,尤其是专业之间的融合不够。加强理论联系实际,不仅可以让学生轻松享受学习的乐趣,也可让学生明白学有所用的道理,这样才有可能将“要学生学”变为“学生要学”。
其实每一个新药的研发过程步步都离不开物理化学知识的指导。首先合成路线的选择,工艺条件的确定离不开热力学和动力学的指导; 其次药物的分离和纯化又需要相平衡的理论知识; 药物剂型的设计离不开表面和胶体知识的指导; 而药物在体内的代谢,合适的给药时间,药物的有效期等离不开动力学知识的指导,可以说药物从原料到产品到应用就是一个完美运用物理化学知识的过程。因此教学过程中,可以给出一个具体药物做合成目标,指导学生运用物理化学知识去设计合成路线,通过这些教学内容让学生切身体会到物理化学对本专业的重要性,从而摆脱物理化学对制药专业“无用”的帽子。同样,在教学过程中还可穿插一些生活中应用物理化学原理的实例,如冰上撒盐化冻,人工降雨等,通过对这些实例的介绍和分析,不仅可以强化学生对教学内容的理解,扩宽思路,提高分析解决问题的能力,还可以极大地提升学生的学习兴趣。
3 加强理论与科学前沿的联系
教学没有科研做底蕴,就是一种没有观点的教学,没有灵魂的教学。坚持教学与科研相结合,是培养学生创新能力的主要途径,也是理论联系实际的重要环节。同时,教学与科研紧密结合,教研相长,也是提高教学效果的重要举措。
( 1) 热力学部分与科学前沿的结合。讲热力学部分测定化学反应热效应时,可以向学生介绍目前常用的量热技术在药学领域的应用。量热法可测定药物、赋形剂的稳定性,药物与赋型剂之间的兼容性,分析药物中无定形态的含量等。还可以定量地研究药物与细胞间的相互作用,获得药效、抑制率等方面的信息,对于药理学,临床医学、药物的合成与筛选等方面均具有重要的理论意义与实际价值。特别是采用微量热技术可以对肿瘤细胞的生长代谢进行研究,可探讨它的生产特点并找出其代谢规律,广泛用于药物对肿瘤的抑制以及肿瘤热疗新方法的研究。
( 2) 动力学与科学前沿的结合。讲动力学部分的阿仑尼乌斯公式求活化能时,可将其与现代热分析技术相联系,前者是将反应分别设置在多个不同固定温度下进行实验来获取活化能,后者是在程序升温或降温的条件下由一条或多条不同升温速率下实验得到的热分析曲线来求取动力学三因子,即活化能、指前因子、最可几机理函数。后者获得的动力学模型适用于定温和变温条件,适用范围比前者更广。
( 3) 相平衡与科学前沿的结合。讲单组分相图临界点时,可以介绍超临界萃取技术在药物提取方面的应用。它是集萃取与分离于一体的新型提取分离方法,利用物质在临界点附近的奇妙特性,将超临界流体做萃取剂,将高压下萃取的物质经降低压力分离出来。该方法由于具有不破坏被提取成份活性的特点使其在纯天然有效组分的提取方面具有重要作用。
4 加强理论与人文科学的联系
物理化学理论深奥、晦涩难懂也是学生感觉物理化学难学的一个重要原因之一,如何才能深入浅出地讲好这门课是每一位物理化学教师都应不断思考的问题。通过多年的物理化学教学,笔者深切地感受到物理化学的许多观点都蕴含着丰富的人生哲理,教师在教学中应该把这些观点和体会引入课堂,这样不仅会营造轻松愉快的学习气氛,而且能传播人文精神,传递正能量,进而激发学生的学习兴趣。
作者:焦芳婵 许自成 卢秀萍 郑聪 肖炳光 刘朝营 单位:云南省烟草农业科学研究院 河南农业大学烟草学院
含氮类化合物(总植物碱、总氮和蛋白质)含量均以C1群体最高,分别达到了2.30%、2.09%和10.60%;总植物碱的变异系数表现为原始亲本>C0群体>C1群体,而总氮和蛋白质的变异系数在不同世代间表现为C1群体>原始亲本>C0群体;C1群体的总植物碱、总氮和蛋白质含量分别与原始亲本、C0群体的差异达到显著水平。钾、石油醚提取物和挥发碱含量均以C1群体最高,分别达到了1.94%、4.98%和0.30%,主要表现为C1群体>C0群体>原始群体;钾和石油醚提取物含量的变异系数在不同世代中均较小,而挥发碱含量的变异系数均较大,说明钾含量和石油醚提取物含量在样本间的变化较为稳定,而挥发碱含量在样本间较不稳定。C0群体和C1群体的钾含量差异不显著,但分别与原始亲本的钾含量差异显著;不同世代间的挥发酸含量差异不显著。方差分析原始群体与C0群体、C1群体化学成分之间的方差分析。挥发酸含量在不同世代间的差异未达到显著水平,而还原糖、总糖、总植物碱、总氮、钾、蛋白质、淀粉、石油醚提取物和挥发碱的含量在不同世代间的差异均达到极显著水平。不同世代群体烤烟的感官质量分析基本数量特征不同世代的感官质量评吸得分。C1群体的香气质、香气量、杂气、刺激性指标得分和评吸总分均达到了最大,在不同世代间主要表现为:C1群体>C0群体>原始群体;余味得分在不同世代间主要表现为:C0群体>C1群体>原始群体,燃烧性和灰色得分在不同世代间主要表现为:原始群体>C0群体>C1群体。
从变异系数可以看出,各项感官质量指标的变异系数均较小,说明不同世代烤烟的感官质量得分在样本间较为稳定。各个群体香气量平均得分比较表明,通过两轮的轮回选择,香气量平均得分得到提高,初步说明轮回选择方法在高香气育种中是可行的。多重比较表明:C1群体的香气质、香气量、刺激性和评吸总分均最高,并且分别与C0群体和原始群体之间的差异达到了显著水平,而C0群体和原始群体之间的差异均未能达到显著水平;C0群体的余味得分最高,C1群体的杂气得分最高,但是余味和杂气在不同世代间的差异均未能达到显著水平;原始群体的燃烧性得分最高,与C0群体的差异不显著,但是原始群体和C0群体烤烟的燃烧性得分分别与C1群体的差异达到了显著水平,不同世代烤烟的灰色得分两两间差异显著。方差分析三个群体感官质量指标之间的方差分析结果。从表中可以看出,余味和杂气两项指标的评吸得分在不同世代间的差异均未能达到显著水平,而香气质、香气量、刺激性、燃烧性、灰色和评吸总分在不同世代间的差异均达到了极显著水平。烤烟香气量得分与化学成分的相关分析不同世代烤烟的香气量得分与常规化学成分的相关分析结果(表略)表明:原始亲本的香气量得分与常规化学成分的相关性不显著,仅与总氮和蛋白质的显著负相关;C0群体的香气量得分与常规化学成分的相关性较烤烟原始亲本有所加强,其中与还原糖、总糖和钾含量的正相关达到了极显著水平,与含氮类化合物(总氮、总植物碱和蛋白质)和挥发碱的负相关达到了极显著水平;C1群体的香气量得分与糖类化合物、含氮类化合物、钾、挥发酸和挥发碱的相关性均达到了极显著水平,仅与石油醚提取物的正相关不显著。说明经过不断的回交可以加强烤烟香气量得分与常规化学成分的相关性。
烟草作为一种经济作物,其化学成分种类繁多、结构复杂,易受气候、栽培、加工等多种因素影响,各种化学成分含量和相互间比例的变化较大[14]。本研究分析了轮回选择育种过程中不同世代群体的化学成分含量变化,结果表明:经过两次轮回选择后,C1群体烤烟的糖类化合物(还原糖、总糖和淀粉)和原始亲本相比较分别降低了28.79%、12.53%和52.32%,而含氮类化合物(总植物碱、总氮和蛋白质)分别增加了26.37%、23.67%和23.11%,钾含量也提高了1.49%,除了挥发酸含量在原始群体和C1群体间的差异不显著外,其余各项化学成分指标在原始群体和C1群体间的差异均达到了显著水平。轮回选择作为群体改良技术,应用相当广泛,在作物增产[15]、抗病性[16]、提高蛋白质含量[17]等数量性状的持续改良中都取得了良好的效果。本研究分析结果表明:经过轮回选择,C1群体烤烟的香气质、香气量、杂气、刺激性和评吸总分均有明显的改善,分别比烤烟原始亲本增加了6.58%、5.02%、0.31%、0.31%、4.61%和2.66%。除了杂气和余味外,其余各项感官质量指标在烤烟原始亲本和C1群体之间的差异均达到了显著水平。说明通过轮回选择,烤烟的香气质、香气量和评吸总分均得到了明显的改善。将不同世代烤烟的香气量得分与常规化学成分进行相关分析的结果表明:烤烟原始亲本的香气量得分与常规化学成分的相关性不明显,仅与总氮和蛋白质的显著负相关,而C1群体烤烟的香气量得分与糖类化合物、含氮类化合物、钾、挥发酸和挥发碱的相关性均达到极显著,仅与石油醚提取物的正相关未能达到显著水平。说明经过不断的选择,提高了烤烟香气量得分与常规化学成分的相关性。
职业中学课程设置及学时安排不尽合理。我国发展职业教育已多年,但至今仍没走出用普通中小学课程设置的模式开展职业教育的框框。
(2)对学生产生疑问。
职业中学学生具有这样一些共同的特点:学习成绩差、思想消极、上进心弱、意志不强、情感脆弱、理解肤浅、注意力不集中等。这些初中阶段处于班上靠后位置的思想和学习的“双差生”集中到职业中学的一个班级,该班级整体素质就不言而喻了。面对这样的学生,教师在课堂教学中要花很多精力去组织教学,难以享受漫游在教育神圣殿堂的。
(3)对教学方法产生疑问。
部分教师不顾学生基础差的特点和学生中多层次的知识需要,仍习惯于应试教育的模式和方法,拘泥书本,抱住老方法不放,“教死书,死教书”,只求学生适应他,而不主动地去适应学生。还有少数教师习惯于“一支粉笔,一本书”的教学,对现今出现的更直观、更生动的现代教学手段(如电教、多媒体等)潜意识里存在强烈的抵抗情绪,不愿接受新鲜事物,只沉醉于“私塾先生”的教学方法中。
(4)对教学成就产生疑问。
在职业中学中,有些具有强烈成就感的教师当看到普通中学教师的学生考取大学,桃李满天下时,内心的失落感很强烈,觉得自己的付出不能得到应有的回报,自己的人生价值难以实现。这其实是教师的角色期望与教育现实之间发生了冲突,导致教师对学生的厌恶甚至憎恨,激化师生矛盾。
二、改变城镇化发展中职业中学教师现状对策的分析
(1)教师要保持稳定乐观的情绪。
教师一定要善于自我调节,善于把握和支配自己的情绪,善于控制自己的消极情绪、过激的情绪和冲动行为,做自己情绪的主人。在传授知识上,以情动人,有助于学生理解所学知识,增强教学效果;稳定乐观的情感能启迪思维,发展想象力;稳定乐观的情绪也是生活愉快,人际关系融洽的必备条件。
(2)教师要增强耐挫力。
一般认为,能够忍耐挫折的打击而保持自身人格完整与心理平衡,这是一个人心理健康的重要标志之一。因此,城镇化发展中职业中学教师在遭受挫折时,一定要面对现实,并且尽力克服所面临的挫折情境,不断积累克服挫折的经验,从而增强耐挫力。
(3)在教师中开展以“爱生、敬业、奉献”为主题的师德教育。
“没有诚挚的爱,就没有成功的教育”,热爱学生是塑造美好心灵的前提。教师不能因为学生基础差就对教育教学失去信心,淡化与学生的思想交流,甚至发展到厌恶、憎恨学生的地步。只有对学生充满深情的爱,才能引起学生对老师的崇敬,而这种爱又能激发教师对职业的追求和奉献。
1.2由过于重视学生智力发展转而重视学生人格发展。由于新课程从教学模式到教学内容,要特别注重学习化学与学生生活实际的联系,学习生活中的化学,留意生活中出现的化学问题,并通过课堂学习到现象背后的化学原理,塑造学生健全人格,为学生个性发展提供多种选择。
1.3由要求统一规格的发展向注重学生的个性发展转变。新课标指导下的高中化学课程应突出学生的个性发展,老师在教学过程中通过多媒体等现代教学手段和网络资源增加学生的个性选修内容,使得有不同要求的,不同能力的学生学习不同的化学,这就不再使化学教学只有共性,没有个性的倾向,真正做到因材施教,分层次教学以及张扬学生个性。
1.4由偏重理论知识学习向重理论联系生活实际转变。老师更多的将生活中的化学融入课堂,如对环境污染和环境保护问题认识,了解人体微量元素、维生素主要生物元素,化学在化工生活用品当中的应用及作用等。通过对这些素材的学习,使学生充分认识到化学已已经深入到人们日常生活的衣食住行等各个方面,树立学生应用化学来分析和解决社会、生活及工作中实际问题的信念。进而升华学生学习化学的目的,不是为了考试,不是为了考高分,真正体现化学学科本身的价值和魅力。
2. 教学观念发生了转变
老师在新课标的指导下转变了陈旧的教学观念,从重教学转向重学习。老师在化学的教学中想尽方法将学习的主动权和自交还给学生并为学生的自学提供帮助和引导,例如将一部分比较简单或是与实际生活有联系的有趣带有探究性质的化学内容交由学生备课包括组织课堂的气氛以及课程进度的控制,这项工作交给一组同学完成,有学生做一次课堂的老师,以学生备课以及预习的过程中发现的问题为蓝本而组织授课能容,能更好的实现教学效果,对于其他学生也是一种潜移默化的激励和榜样作用。进而使得教师逐渐从以知识、技能为目标、以高考为质量评价手段”的教学误区中走了出来。那种在高中教学中以被动接受、机械灌输为主要教学方式得到改革,封闭式教学在新课标的指导下收到最有力地冲击。
老师在课程设置、教学内容以及教学要求都很重视开放性教学。例如,新课程提出的探究学习有很强的主体性、开放性和实践性,学生通过大量探究课题的学习和探究,激起了探究欲望,体验了知识的形成过程,获得智能最大程度地发展。多数教师已积极进行了开发利用,打破了原来的封闭式教学的僵局,教学中能采取多种形式的开放性教学活动,以培养学生的发散思维能力、创新思维能力、动手实践能力和社会实践能力,大大提高了学生的科学素养和综合素质。同时应当注意的是避免出现把自主学习搞成了“假自主”;避免几乎是上课必讨论,白白耗用了时间;或把探究学习搞成“放羊式”。
3.教学方式和学习方式的改革
3.1传统的一堂课慢慢当当的都是老师讲的情况有所改善,一堂课的内容不再像以前那么多,知识密度不再像以前那么密,给学生更多的时间思考所学,更多温故而知新的知识升华的机会,更多融会贯通的时间和空间,对知识做一个比较完善的梳理。学生主动学习的空间比以前更大了,在更自由的环境下学习,尤其是化学这门学科,知识不是相互独立的,都有一定的前后关系,前面的知识都是后面的铺垫和基础,随着教学的推进,知识又得到升华和加深,因此更需要学生对知识的框架有较好的构建,对知识有整体把握才能掌握好化学基本知识。
3.2用问题贯穿整个课堂带着问题学习可以引起学生们的积极性来,头脑风暴式的的课堂气氛更能活跃课堂气氛。比如在讲氧气氧化铜这部分内容的时候就可以先进行演示实验,让学生们产生好奇,为什么古铜色的铜会变成像碳一样黑色物质,是空气的里的那种成分引起铜的这种变化等一系列问题,老师不要在一开始的时候就开门见山的说出结果,由学生自己经过思考而得出的结论才会深刻,即使得出错误的结果,经过更正,反而会更加加深对正确思路的印象。
3.3利用补充实验进行启发:帮助学生进一步理解“盐水解”的原理,补充一个实验:向1 mol/L 氯化铵溶液中投人钾,产生能燃烧的气体和使湿润的红色石蕊试纸变蓝的气体,可以让学生们分析是什么原因造成的?又是什么物质造成这些现象的发生。学生经过自己分析和同学间的讨论,对学过的理论有了更深刻的认识,使思维产生了质的飞跃。更多采用启发式教学,既能调动起学生的学习自觉性,积极的自主学习,更重要的是还能最大程度上激活了学生的思维,教学效果堪称甚佳。
4.重视化学实验教学
高中化学的新课改教材的实验内容大大增加,实验教学能够加深学生对实验过程,实验现象和实验结果的记忆和理解。同时单纯演示性的实验以及传统的按部就班的实验已经很难满足当代中学生求知的愿望以及对实验结果的好奇。因此,将照方抓药的实验模式改为实验设计和可行性探究,引导学生由被动接受转变为主动探究性学习,更深的意义在于从思想上最大程度上的激发学生对化学实验的兴趣,逐渐的培养学生的探究能力和科学素养,从而激发学生对化学课程的浓厚兴趣。在生动有趣的实验课堂找到学习和钻研略显枯燥和乏味的化学书本知识的动力,在学习中的困惑又可以通过自身的实验研究得到验证或是纠正,用实践检验真理,用客观验证主观推断,使得学生逐渐进行独立思考和主动实践,在化学的学习中不再依赖老师的督促,不在依靠父母的敦促,不在深陷题海中而不得自我思考的空间。
新课程理念下,教材不在对实验做硬性的区分为演示实验和学生实验,其初衷是各学校,各老师能够根据学校的教学情况,根据学生的学习和接受能力,教学进度的安排等尽量给学生营造自主探究,亲自动手的氛围和条件。
我们应当注意的是在时间新课程理念时,不能因为教材对实验部分的要求变得灵活而私自将实验教学取消,由课堂教学代替;不能因为教学的压力,为了赶课程的进度以及在高考的时候实验教学所涉及的知识比重很少或不重要而将其固有的时间任意侵占挪用。
鸡骨香Crotoncrassifolius为大戟科巴豆属植物,别名千人打、土沉香、黄牛香、鸡角香、透地龙等,主要分布于海南、广东、广西、福建等我国南部地区,越南、老挝、泰国也有分布。其根可作药用,性苦、辛、温;具有行气止痛、祛风消肿、燥湿等功效[1],国内主要用于治疗胃痛和风湿骨痛。泰国学者LaddawanBoonyarathanakornkit等[2]报道,该植物有抗癌活性。关于鸡骨香的化学成分,在20世纪80年代,LaddawanBoonyarathanakornkit等进行了初步的研究,从该植物种分离得到4个化合物,即cyperenoicacid,acetylaleuritolicacid,β-amyrin和chettaphanin-Ⅰ,在国内尚未有其化学成分的研究报道。为了补充和丰富该植物的研究内容,为该植物的药用提供理论基础,本实验进一步对鸡骨香根的化学成分进行研究,分离鉴定了7个化合物,其中有6个化合物首次从该植物中分离得到。
1仪器与材料
柱层析材料为青岛海洋化工厂生产的100-200,200-300目硅胶;薄层层析材料为青岛海洋化工厂生产的硅胶G,60H,GF254型硅;凝胶SephadexLH-20为瑞典AmershamBiosciences生产。所用试剂均为工业纯,经过重蒸后使用。
质谱由VGAutoSpec-3000质谱仪测定,电离条件为70ev;核磁共振谱由BrukerAM-400.0型核磁共振仪测定(TMS为内标),核磁共振氢谱(1HNMR)在400.13MHz下测定,核磁共振碳谱(13CNMR)在100.6MHz下测定。
鸡骨香C.crassifolius干燥根0.9kg,2005²12由海口市中药材公司提供,经海南大学海洋学院邓世明博士鉴定为大戟科巴豆属植物鸡骨香CrotoncrassifoliusGeisel。凭证标本存放于海南大学海洋学院。
2方法与结果
2.1提取和分离鸡骨香干燥根(0.9kg)粉碎后用70%的乙醇浸提3次,48h/次,乙醇提取液减压浓缩后加水使成悬浮液,依次用石油醚、醋酸乙酯萃取。
石油醚部分提取物(10.5g)经硅胶柱层析(100~200目),石油醚-醋酸乙酯(10∶1)洗脱,每份收集200ml,经TLC检测合并相同的流份,得到J1~J88个组分。其中J2(1.4g)组分经硅胶柱层析,石油醚-氯仿(1∶2)洗脱,每份收集50ml,合并11~15流份,析出晶体,得化合物Ⅱ(84mg)。J3(1.2g)浓缩液有方晶析出,溶解后过柱,分别用石油醚-氯仿(1∶15)、氯仿-醋酸乙酯(10∶1)洗脱,每份收集约20ml,3~8流份再过柱,经氯仿-石油醚(10∶1)洗脱,得化合物Ⅳ(18mg)。J5经柱层析,用氯仿洗脱,每份收集15ml,收集6~8流份,得化合物Ⅲ(45mg),该化合物硫酸显红色;11~16流份过柱,用氯仿-石油醚(10∶1)洗脱,每份收集20ml,5~8流分经石油醚-丙酮(15∶1)洗脱,得化合物Ⅵ和Ⅶ;17~22流份过柱,用石油醚-丙酮(20∶1)洗脱,得2~6流份,过凝胶SephadexLH-20,甲醇洗脱得化合物Ⅴ(0.36mg);
醋酸乙酯部分提取物用氯仿-醋酸乙酯(20∶1~4∶1)梯度洗脱,每份收集50ml,经TLC检测,合并成分相同部分。其中第二部分经过氯仿-丙酮(30∶1)洗脱,每份收集约30ml,4~18流份经石油醚-丙酮(2∶1)洗脱,得化合物Ⅰ。
2.2结构鉴定
2.2.1化合物Ⅰ无色晶体,易溶于醋酸乙酯,mp:131.5~132.5℃;分子式C24H28O9;质谱EI-MS:470,417,324,292,264,94,81;核磁共振13C-NMR(100.6MHz,CDCl3)δ:40.7(C-1),26.5C-2),32.1(C-3),57.0(C-4),136.3(C-5),70.0(C-6),32.6(C-7),35.7(C-8),53.9(C-9),130.2(C-10),18.9(C-11),72.3(C-12),125.2(C-13),107.8(C-14),144.3(C-15),139.4(C-16),16.6(C-17),170.9,171.5(C-18,C-19),176.5(C-20),170.2(21),52.4,52.8(-OCH3),21.0(-CH3);核磁共振1HNMR(400.13MHz,CDCl3)δ:2.16(2H,m,H-1),2.18(1H,m,H-2a),2.02(1H,m,H-2b),2.15(2H,m,H-3),5.46(2H,t,J=8.00,H-6,H-12),1.61(1H,s,H-7a),2.05(1H,m,H-7b),1.88(1H,m,H-8),1.73(1H,s,H-11a),1.61(1H,d,J=3.4,H-11b),6.34(1H,s,H-14),7.36(1H,s,H-15),7.45(H,s,H-16),1.00(3H,d,J=6.68,-CH3),1.88(3H,s,CH3CO-),3.72(6H,s,-OCH3)。核磁共振13C-NMR和核磁共振1HNMR数据与文献[3]中化合物MallotucinB一致,确定化合物Ⅰ为MallotucinB。其结构式见图1。
2.2.2化合物Ⅱ晶体,易溶于氯仿和石油醚,分子式C15H22O2;质谱EI-MS:234,191,178,163,133,91;核磁共振13C-NMR(100.6MHz,CDCl3)δ:68.2(C-1),25.7(C-2),36.3(C-3),123.1(C-4),173.2(C-5),31.3(C-6),48.0(C-7),26.9(C-8),27.9(C-9),36.0(C-10),41.7(C-11),26.2(C-12),19.3(C-13),18.0(C-14),171.3(C-15);核磁共振1HNMR(400.13MHz,CDCl3)δ:1.56(1H,m,H-2a),1.77(1H,ddd,H-2b),2.67-2.79(2H,m,H-3a,H-3b,H-6b),2.25(1H,m,,H-6a),1.98(1H,m,H-7),1.38(1H,ddd,H-8a),1.89(1H,dddd,H-8b),1.27(1H,dddd,H-9a),1.54(1H,m,H-9b),2.08(1H,m,H-10),0.83(3H,s,H-12),1.00(3H,s,H-13),0.87(3H,d,H-14)。核磁共振13C-NMR和核磁共振1HNMR数据与文献[2]化合物Cyperenoicacid基本一致,确定化合物Ⅱ为Cyperenoicacid。其结构式见图1。
2.2.3化合物Ⅲ无色油状物,分子式为C15H24O;EI-MS(m/z):220(M+),217,189,147,124,109,81,55;核磁共振13C-NMR(100.6MHz,CDCl3),δ:53.4(C-1),26.7(C-2),41.7(C-3),81.1(C-4),54.1(C-5),30.0(C-6),27.5(C-7),24.7(C-8),38.9(C-9),153.6(C-10),20.2(C-11),16.3(C-12),28.7(C-13),26.1(C-14),106.6(C-15);核磁共振1HNMR(400.13MHz,CDCl3)δ:0.44(1H,d,J=10.4Hz,H-6),0.66(1H,m,H-7),1.01(3H,s,H-13),1.02(3H,s,H-12),1.26(3H,s,H-14),4.62,4.65(each1H,brs,H-15)。核磁共振13C-NMR和核磁共振1HNMR数据与文献[4]中化合物Ent-spathulenol一致,确定化合物Ⅲ为Ent-spathulenol。其结构式见图1。
2.2.4化合物Ⅳ晶体,mp:94℃,分子式C15H24O,质谱EI-MS(m/z):219[M-1]+,203,189,175,133;核磁共振13C-NMR(100MHz,CDCl3),δ:65.8(C-1),26.1(C-2),37.8(C-3),131.1(C-4),146.2(C-5),28.1(C-6),48.5(C-7),27.5(C-8,C-9),35.2(C-10),41.1(C-11),26.1(C-12),19.3(C-13),17.9(C-14),60.6(C-15);核磁共振1HNMR(400.13MHz,CDCl3)δ:1.44(1H,m,H-2a),1.63(1H,d,J=13.0Hz,H-2b),2.62(1H,m,H-3a),2.40(1H,d,J=15.0Hz,H-3b),2.62(1H,m,H-6a),2.28(1H,m,H-6b),1.86(1H,m,H-7),1.25(1H,m,H-8a),1.72(1H,m,H-8b),1.07(1H,m,H-9a),1.43(1H,m,H-9b),1.96(1H,m,H-10),0.80(3H,s,H-12),0.92(3H,s,H-13),0.89(3H,s,H-14),4.15(2H,q,H-15)。核磁共振13C-NMR和核磁共振1HNMR数据与文献[2]化合物Cyperenol一致,确定化合物Ⅳ为Cyperenol。其结构式见图1。
2.2.5化合物Ⅴ无色晶体mp:223~224℃,分子式C30H50O;核磁共振13C-NMR(100.6MHz,CDCl3)δ:38.7(C-1),27.4(C-2),79.0(C-3),38.9(C-4),55.3(C-5),18.3(C-6),34.3(C-7),40.9(C-8),50.4(C-9),37.1(C-10),20.9(C-11),25.1(C-12),38.0(C-13),42.8(C-14),27.4(C-15),35.5(C-16),42.7(C-17),48.2(C-18),47.9(C-19),150.4(C-20),29.8(C-21),39.9(C-22),27.9(C-23),15.3(C-24),16.2(C-25),16.1(C-26),14.5(q,C-27),18.0(C-28),19.2(C-29),109.6(C-30);核磁共振1HNMR(400.13MHz,CDCl3)δ:3.20(1H,dd,H-3),2.29(1H,ddd,H-19),4.60(1H,bs,H-29a),5.52(1H,bs,H-29b),1.21,0.96,0.92,0.91,0.90,0.87,0.85(s,-CH3);碳谱和氢谱数据与文献[5]中化合物Lupeol基本一致,确定化合物Ⅴ为Lupeol。其结构式见图1。
图1化合物Ⅰ~Ⅴ结构(略)
2.2.6化合物Ⅵ白色针状晶体mp:135~136℃,10%硫酸显红色,分子式为C29H50O;质谱EI-MS(m/z):414(M+),396,381,329,303,255,213,145,107,85。碳谱数据(13C-NMR,CDCl3,100.6Hz)δ:37.3(C-1),31.9(C-2),71.8(C-3),42.2(C-4),140.7(C-5),121.7(C-6),31.9(C-7),31.6(C-8),50.2(C-9),36.5(C-10),21.1(C-11),39.8(C-12),42.3(C-13),56.8(C-14),24.3(C-15),28.3(C-16),56.1(C-17),11.9(C-18),19.5(C-19),36.2(C-20),18.9(C-21),33.9(C-22),26.1(C-23),45.8(C-24),29.1(C-25),19.4(C-26),19.1(C-27),23.1(C-28),12.0(C-29);核磁共振1HNMR(400.13MHz,CDCl3)δ:5.54(t,1H,J=5.3Hz,6-H),3.56(m,1H,3-H),2.31-1.04为甾核骨架和侧链氢,1.03(s,3H,19-CH3),0.95(d,3H,J=6.6Hz,21-CH3),0.88(d,3H,J=6.7Hz,28-CH3),0.85(t,3H,J=7.0Hz),0.82(d,3H,J=6.6Hz,29-CH3)。碳谱和氢谱数据与文献[6]中化合物β-谷甾醇一致,确定化合物Ⅵ为β-谷甾醇。
2.2.7化合物Ⅶ白色针状晶体mp:168~169℃,10%硫酸显红色,碳谱数据(13C-NMR,CDCl3,100.6Hz)δ:37.3(C-1),31.9(C-2),71.8(C-3),42.2(C-4),140.7(C-5),121.7(C-6),31.9(C-7),31.6(C-8),50.2(C-9),36.5(C-10),21.1(C-11),39.8(C-12),42.3(C-13),56.1(C-14),24.3(C-15),29.0(C-16),56.7(C-17),12.1(C-18),19.5(C-19),40.2(C-20),21.1(C-21),138.3(C-22),129.3(C-23),51.3(C-24),31.9(C-25),21.1(C-26),19.0(C-27),25.5(C-28),12.3(C-29);核磁共振1HNMR(400.13MHz,CDCl3)δ:5.37(t,1H,J=2.6Hz,6-H),5.17、5.02(dd,JI=8.7Hz,J2=15.2Hz,22-H,23-H),3.56(m,1H,3-H),2.31-1.04为甾核骨架和侧链氢,1.03(s,3H,19-CH3),1.04(d,3H,J=6.9Hz,26-CH3),0.82(t,3H,J=7.5Hz,28-CH3),0.87(d,3H,J=6.4Hz,22-CH3),0.82(d,3H,J=7.6Hz,29-CH3)。碳谱和氢谱数据与文献[7]中化合物豆甾醇一致,确定化合物Ⅶ为豆甾醇。
3讨论
大戟科Euphorbiaceae巴豆属CrotonL.植物多为乔木或灌木,稀亚灌木。全世界有八百余种,广布于热带、亚热带地区。我国有21种,4变种,主要分布在我国南部地区。该属多数品种能入药,少数品种有毒。该属植物主要含有萜类、生物碱、肌醇类、多酚等化合物。其中,萜类化合物最常见,二萜类化合物为该属植物的主要活性成分[8]。
本实验从大戟科巴豆属植物鸡骨香的干燥根中分离得到7个化合物,5个萜类化合物,2个甾体。从化合物的类型看,与报道的该属其他植物的化合物类型是相似的,主要是萜类化合物。
【参考文献】
[1]邓世明.海南常用中草药名录[M].北京:中国科学技术出版社,2006:19.
[2]LaddawanBoonyarathanakornkit,Chun-taoChe,HarryH.S.Fong,etal.ConstituentsofCrotoncrassifoliusRoots[J].Plantamedica,1988:61.
[3]TakeshiKawashima,TokyoTetsuoNakatsu,YoshimasaFukazawa,etal.DiterpeniclactonesofMallotusRepandus[J].Heterocycles,1976,5:227.
[4]张文,郭跃伟,MolloErnesto,等.中国南海豆荚软珊瑚中倍半萜化学成分的研究[J].天然产物研究与开发,2005,17(6):470.
[5]MochammadSholichin,KazuoYamasaki,RyojiMochammadKasai,etal.13CNuclearMagneticResonanceLupane-TypeTriterpenes,Lupeol,BetulinandBetulinicAcid[J].Chem.Pharm.Bull,1980,28(3):1006.
2常见脂肪酸结构及性质
C12-0月桂酸,CH3(CH2)10COOH,IV-0;m.p44℃C16-0软脂酸、棕榈酸,CH3(CH2)14COOH,IV-0;m.p63℃C18-0硬脂酸,碳十八酸,CH3(CH2)16COOH,IV-0;m.p70℃C18-1油酸,c-9十八碳烯酸CH3(CH2)7CH=CH(CH2)7COOHIV-90;m.p16℃C18-2亚油酸,c-9,c-12十八碳二烯酸,CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOHIV-181;m.p-5℃C18-3亚麻酸,c-9,c-12,c-15十八碳三烯酸,IV-273;m.p-11℃CH3CH2CH=CHCH2CH=CHCH2CH=CH(CH2)7COOH
3主要生产工艺--水解
脂肪与水的混合物在一定条件下(酸或碱或酶的催化下,一定温度)可以生成脂肪酸和甘油,部分水解还可生成单甘酯和二甘酯。脂肪酸生产过程由油预处理,水解,脂肪酸分馏,蒸馏和加氢等部分组成。油压水解过程中常用的是常压催化水解法,催化和非催化中压水解,非催化高压连续逆流水解三种形式。最先进的是酶催化水解,因为有些方面还不完善,例如费时,没有被广泛使用,且没有形成产业化规模。常压水解法具有设备简单,所需的压力,投资少的优点,缺点是生产周期长,占地面积大,蒸汽消耗大面积,水解率低,回收成本高和废物中甘油低。催化压力或催化水解是常用的脂肪酸的生产技术,优点是生产周期短,蒸汽消耗少,工艺用水少,生产成本低,操作简单,可生产浅色脂肪酸等,但设备投资和消费相对较大。连续非催化高压回流酸水解是当代先进的生产工艺生产,其显着优点是实现了连续化工业生产,生产周期短,热效率高,蒸汽消耗,低生产成本较低,但原料水解适应的经营范围,并且困难包括昂贵的设备的投资。在脂肪酸加氢技术,国外已经引起对环管反应器技术的积极实施,增加了气体,固体和液体相反应的质量,缩短反应时间,提高了产品产量的收益。氢化是指在催化剂(如镍)存在下,高压下,氢气和脂肪酸中的不饱和脂肪酸发生反应(加成),氢加到双键上,使饱和度提高。蒸馏是指除去高沸点和低沸点杂质以及有气味的物质。分馏是指一些特殊产品需要99%的纯度特制馏分,得到单离脂肪酸。蒸馏与分馏的方法都是在高真空,较低温度条件下,最短滞留时间内进行。脂肪醇是基础油脂化学的品种的基础上第二大产品,化工行业也推动油脂的主要品种生长。20世纪80年代后期,我国已看到脂肪醇对发展合成洗涤剂的重要性,由于种种原因,我国以石油为主要原料的脂肪醇未充分发挥装置能力。到目前为止,在洗涤产品中使用的仍然主要是天然脂肪醇脂肪醇。天然脂肪醇生产方法有:油脂直接加氢,脂肪醇加氢和脂肪酸甲酯的高压加氢制醇。油脂直接加氢是将经过脱胶,脱酸的油脂,并在310-325℃,24•5兆帕条件下加氢。期间,由于其易于脱水反应,甘油,以及聚集和对困难的缺点过滤现象,使脂肪醇生产企业目前不使用此方法。脂肪酸甲酯高压制天然脂肪醇工艺在德国Henkel公司具有的更先进的技术,它使用26兆帕,260℃-300℃制脂肪醇。宝洁公司在催化剂悬浮床加氢工艺是典型的公司,因为传统工艺仍是脂肪醇生产厂世界的主宰。甲基配合高压(25-30兆帕)和甲醇毒性问题不可避免,所以出现了国外脂肪酸直接高压加氢和低压加氢制备脂肪醇的技术。
4产品用途
4.1硬脂酸
免责声明以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。