海洋测绘论文汇总十篇

时间:2023-04-10 15:01:03

海洋测绘论文

海洋测绘论文篇(1)

主管单位:海军司令部直属工作部

主办单位:海军海洋测绘研究所

出版周期:双月刊

出版地址:天津市

种:中文

本:大16开

国际刊号:1671-3044

国内刊号:12-1343/P

邮发代号:

发行范围:国内外统一发行

创刊时间:1981

期刊收录:

Caj-cd规范获奖期刊

核心期刊:

期刊荣誉:

海洋测绘论文篇(2)

0 前言

《海洋大地与控制测量》是上海海洋大学海洋测绘专业最新成立的专业必修课程之一。近半世纪以来,人民对开发海洋和利用海洋资源的需求越来越高,海洋科学及其在相关领域的应用是世界各国重点发展的学科之一。海洋大地与控制测量》课程的开设是在我国不断重视海洋权益的背景下,其前身是《大地测量学基础》。她是在原有《大地测量学基础》课程内容的基础上,进一步侧重讲述大地测量技术在海洋测绘中的应用。《大地测量学基础》是一门古老而又活跃的学科 ,研究和确定地球的形状、大小、重力场、整体与局部运动和地球表面点的几何位置以及它们的变化的理论和技术的学科[1]。通过本学年度的《海洋大地与控制测量》本科课程教学发现,课程讲授结束后学生对教学内容的理解还不充分,特别是对本课程的重点内容――投影变换的认识仍有所欠缺。因此,为及时掌握与了解教学过程中学生对重点内容的理解程度,有必要对《海洋大地与控制测量》的教学方法进行改革。本文首先介绍了《海洋大地与控制测量》的课程内容与目标,然后探讨了今后教学过程中可采取的一些举措。

1 教学内容与目标

本课程理论总学时为48学时,其中讲授教学40学时,讨论教学8学时。相比原《大地测量学基础》课程而言,增加了讨论教学部分的学时,主要是通过小组讨论的方式加强对课程涉及的概念的了解。上海海洋大学海洋测绘专业开设的《海洋大地与控制测量》主要可分为以下5个部分:

(1)绪论:主要介绍大地测量学的定义、作用、体系和内容,以及大地测量学的发展简史及未来技术发展展望;重点介绍大地测量学技术在海洋测绘领域的应用现状与发展前景。通过该部分内容的学习,需要对大地测量学的研究内容达到更深刻的认识与理解。

(2)坐标系统与时间系统:主要介绍地球的运转规律、特点,以及大地测量应用中涉及到的时间系统和坐标系统。由于在上海海洋大学海洋测绘专业的培养方案中,《海洋大地与控制测量》与《GPS原理与应用》课程是同时讲授与学习的,因此,此部分内容可以与全球定位系统(GPS)的坐标、时间系统一同学习。特别地,坐标系统之间的转换可以通过程序的方式,让学生实际动手,加深对坐标转换等相关知识的认识。

(3)地球重力场及地球形状的基本理论。主要是了解地球重力场的基本原理、高程系统、测定垂线偏差和大地水准面差距、确定地球形状等基本概念。本章关于地球重力场内容相对来说难度较大,球谐函数等相关理论知识更是研究生的教学内容。但是,本章重力场的知识与海洋重力及相关应用息息相关。因此,对《海洋大地与控制测量》课程而言,本章学生更需要对与地球重力场相关的高程系统、垂线偏差、大地水准面差距等核心概念进行必要要掌握。

(4)地球椭球及其数学投影变换的基本理论。在《海洋大地与控制测量》课程中,本章涉及的大地主题解算、地图数学投影变换、高斯平面直角坐标换算等内容仍是重中之重的知识点,在后续海洋大地测量的成果转换与成果的全球统一中,将是不可或缺的。

(5)海洋大地测量基本技术与方法。海洋的开发与陆地一样,也需要测绘各种资料,来保障海运事业的发展。海洋大地测量除了需进行包括海洋控制点、边界测定、海底地形绘制等工作外,还需要为海洋工业、工程、航运、渔业等提供保障,并为海洋科学提供重要资料。海洋大地测量的任务是精密测定海域的各种控制点(海上和水下)的位置,研究地球潮汐与海洋潮汐的相互作用,潮汐循环、大气循环对地球自转的影响,以及海面地形、大地水准面和海底地壳的变化等[2]。

2 教学改革举措

通过前几学期开展《大地测量学基础》课程以及本学期的《海洋大地与控制测量》课程的讲授,总结出以下教学方法,以期进一步提高教学效率,促进学生对相关知识的掌握与理解。

2.1 程序编写

由于《海洋大地与控制测量》课程中设计的理论复杂,计算公式复杂,导致学生对很多重要问题的理解不够透彻,且经常容易将不同知识点的内容进行混淆。为提高学生对书本知识的熟悉程度,以及对相关参数计算方法的理解,非常有必要对需要重要了解的知识点进行程序编制。且程序编制前,需要学生以书面的形式对程序编写的思路、流程进行总结与整理。特别地,在课程第4部分内容中,坐标正反算、大地主题解算、投影换带等内容涉及的公式非常多,更有必要让学生理清思路。

2.2 PPT讲解

可以在重点章节、重点内容的讲解过程中,选定几个重点概念与知识点,让学生在课后通过查阅文献资料后制作PPT,然后在课堂上以讨论的形式将PPT的内容进行讲解,或者以小组的名义在课堂上进行交流学习,对于PPT讲解比较突出的同学,可以通过增加平时表现的分数予以奖励。

2.3 课堂测试

由于涉及的知识点比较多,很多重要的知识点在课堂上讲授后,如果不经常复习,很容易遗忘。可以要求每个同学自己看书,然后选出自己认为应该掌握的内容,以试卷的形式给出来。然后选择一到两次课的时间,将每个同学所除的试卷随机发放给其他同学进行测试。这样的方式既能让学生充分阅读书本知识,又能提高学生的积极性。同时,还可以将学生编写比较合理的题型和题目,选入最终的期末考试中进行测验。

2.4 结论

在本文中,对上海海洋大学《海洋大地与控制测量》的教学方法改革进行了探讨,通过加强教师与学生的互动,充分发挥学生的学习主动性,以期改善《海洋大地与控制测量》课程教学效果,提高教学质量。通过编程、制作PPT和出试卷互考等举措,使学生深入了解并掌握本R档睦砺壑识。在今后《海洋大地与控制测量》课程教学中,我们还需将进一步探索海洋大地测量学的教学改革方法,提高海洋测绘及相关专业学生对海洋大地测量技术的理解和认识,为我校的“海洋特色”添砖加瓦。

海洋测绘论文篇(3)

0 引言

海图是一类国际性的特殊专题地图[1]。它以描述海洋及其毗连陆地区域为主,反映了制图范围内自然对象、社会对象的空间分布、相互关系及其动态变化特征[2]。海图学是研究海图理论实质、制作技术和使用方法的综合性科学[3],是古老地图学的一个重要分支。

20世纪60年代以后,海图学在理论、生产技术和使用方式等方面出现了一次由量变到质变的飞跃[4],并随着计算机技术在海图领域的应用,出现了数字海图和电子海图等产品。与普通地图产品不同,海图的生产、、更新和应用执行由国际海道测量组织(IHO,International Hydrographic Organization)、国际海事组织(IMO,International Maritime Organization)、国际电工委员会(IEC, International Electrotechnical Commission)等制定的一系列国际规范和标准[5],如:IHO S-57海洋测绘数据传输标准(IHO S-57 Transfer Standard for Digital Hydrographic Data)、IHO S-52海图内容和显示规范(Specifications for Chart Content and Display Aspects of ECDIS, Publication S-52)等。1996年以后, 电子海图开始全面替代纸质海图。2010年初,为了统一的地理空间框架,IHO又了S-100通用海道测量数据模型(IHO S-100 Universal Hydrographic Data Model),作为下一代海道测量数据源、数字产品以及服务的标准。

依据国际惯例,海图通常由各国海道测量官方机构(海军)负责生产、和更新[6],虽然海图理论及生产技术历来是海洋测绘学科研究的核心内容之一,但是在民用领域对其研究不多。新中国成立后,中国人民海军司令部航海保证部(原海道测量部)与中国海事局(原交通部海运总局)共同承担了我国海洋测绘的管理职能,然而由于种种历史原因,海洋测绘形成了一个非常特别、独立的学科体系[7]。它横跨海洋学和测绘学二大学科,但又不从属于两者之一。60多年来,国内只有一所培养海洋测绘专门人才的院校――海军大连舰艇学院,一个科研单位――海军海洋测绘研究所,因而在我国民用海洋测绘领域留下了许多空白点。

随着建设海洋强国战略的实施,海洋测绘学科迎来了新的发展机遇。2010年,上海海洋大学开设了民用海洋测绘专业,并将《海图学》列入专业主干课程,也因此展开了相关课程的建设与实践。

1 课程建设策略

海洋测绘专业在上海海洋大学是一个新专业,《海图学》和其它主干课程一样,需要在坚持学科特色的前提下,与学校特色相结合,通过完善师资队伍、教学环境和教材体系,改革教学模式和教学方法,提高教学质量,实现“特色、创新和务实”发展。

1.1 坚持专业特色、学校特色,合理定位和规划海图学课程

海图是海洋地理空间信息的基础载体,它与海洋渔业、海洋环境、海洋科学、海洋技术等学科专业有着紧密联系。为了解决师资、教材等方面的困难,实现特色发展,需要以“聚焦、错位、合作”为原则,展开广泛的交流与合作,不断积累学术与科研成果,合理定位和规划海图学课程,形成具有特色的海图学课程体系。

1.2 提高专业教师素质和能力,保证海图学课程建设和可持续发展

树立专业教师“教书育人”、“爱岗敬业”的职业精神,采用人才引进,外出进修,解决缺少专业教师的困难;通过以老带新,个人钻研与集体讨论结合、集中备课等方法,提高海图学师资的学术水平、教学能力和科研能力,为课程建设和可持续发展打下坚实的基础。

1.3 注重教材建设,解决海图学课程建设的难点问题

高水平教材是海图学课程建设的基础,也是培育海洋测绘专业优秀人才所面临的一个难点问题。目前,国内公开出版的《海图学》书籍极少,距今最新的一本旧版教材已有20多年了。由于计算机信息技术的飞速发展,引领了海图理论、技术的巨大变革,凸显了旧版教材中“内容陈旧”、“专业面窄”、“方向单一”等问题。为此,我们参照IHO相关国际标准、国际海图制图师的培训大纲,翻译和引进部分国外教材,并融入现代海图学领域的新理论、新技术和新方法,编写一部适于我校教学大纲的《海图学》教材。

2014年,自编的《海图学讲义(试用版)》已经用于本科教学。今后将加快修订教材的体系结构,更新和完善教学内容,编写配套的实习教材,争取推出《海图学》系列教材,实现课程建设的“跨越式”发展。

1.4 改革教学模式和教学方法,提高海图学课程的教学质量

提高教学质量是《海图学》课程建设的目标和出发点,需要以理论基础、目标倾向、实现条件、操作程序和效果评价[8]等作为基本要素,来修订教学大纲、课程标准、考试大纲、教学计划等各类教学文档,改革和创新教学模式、教学方法,完善教学总结制度[9-10],充分利用集体讨论、集中备课、发表教学论文等多种形式,交流教学经验,不断积累研究成果和实践成果。在教学工作中,坚持以学生为本,重视学生的实践活动和师生互动[11-12],强化基础知识、基本技能的教育,提高学生在实践中自觉发现问题、分析问题和解决问题的能力,激发他们的创新潜能。

2 主要教学内容

《海图学》课程具有很强的理论性和技术性。依据课程特点,通过借鉴IHO国际海图制图师的培训大纲,以海图的科学性、技术性、文化性和艺术性为主线,制订了教学大纲和课程标准,内容涵盖:基本知识、海图学史、海图学理论、海图制图学、电子海图学等五大模块,并设定了“掌握”、“知道”、“了解”等三个教学层次。

2.1 基本知识模块

该模块主要以概论形式介绍海图和海图学的定义。要求学生初步了解海图和海图学理论,知道海图是海洋地理信息的基础载体,是人类现代海上活动的重要安全保障,知道海图国际化等基本特征,掌握海图的功能、分类和用途,知道海图制图的一般过程,以及对于建设“海洋强国”、发展海洋产业、海洋科学研究、构建“智慧渔业”等方面的重要意义。

2.2 海图学史模块

该模块基于现存的海(地)图实物、考古文献资料、古汉字等,从科学、技术、艺术(文化)的角度,揭示海图的起源与发展进程。通过比较古代中国人和西方人世界观的差异,介绍西方中世纪的海图、地理大发现时期海图、近代实测海图、国际海道测量机构的发展,尤其是古代中国地(海)图的起源、发展和新中国海图的成果,使学生了解世界观、方法论对于空间认知方法和结果的影响,知道海图内容、制图技术、载体形式等方面的演化特点和规律,知道空间认知是海图始终不变的基本功能。

2.3 海图学理论模块

该模块重点介绍海图学的理论基础――现代地图学理论,包括:地图信息论、地图传输论、地图模式论、地图认知理论、地图符号学和地图感受论等,是教学难点之一。

要求学生知道海图学理论与地图学理论的关系,了解信息论、控制论、系统论是现代地图学理论的重要基础,掌握现代地图学理论的主要内容,知道随着信息科学技术的发展,现代海图学作为地图学的重要组成部分,正在成为一门研究利用空间图形反映自然和社会经济现象空间分布、相互联系及其动态变化,并对空间地理环境信息进行获取、智能抽象、存储、管理、分析、利用和可视化,以及图形和数字形式传输空间地理环境信息的科学与技术[13]。

2.4 海图制图学模块

该模块以海图制图技术和方法为主,是教学的重点内容,包括:海图数学基础,海图制图综合、海图符号和海图表示方法等内容[14]。由于 “3S”技术、计算机图形学、图像处理等技术的发展与应用,改变了海图数据源及生产流程,所以合并或删除了纸质海图的设计、编制、整饰,印刷、复制等部分内容。

在海图数学基础部分,要求学生知道地球坐标系与大地控制原理,知道海图常用投影以及投影的选择和变换原理,掌握海图比例尺、海图坐标系、海图基准面等概念、海图的分幅和编号方法。在海图符号部分,要求学生知道海图符号视觉变量及其对视觉感受效果的影响,掌握海图符号、色彩和注记的设计及应用方法。在海图表示方法部分,掌握普通航海图的陆部和海部要素的表示方法。在海图制图综合部分,重点掌握海图制图综合的基本概念,以对及水系、居民地、交通线、陆地地貌、海岸、干出滩、岛屿、海底地貌、航行障碍物、助航设备等的综合原则与基本方法,了解海图自动制图综合技术的发展。

2.5 电子海图学模块

该模块主要培养学生对海图学基础知识、基本理论和基本技能的综合应用能力,是教学重点之一,包括:电子海图的总体设计、IHO国际标准海图规范和CARIS COMPOSER制图系统应用等三个部分内容。

要求学生知道数字海图、电子海图系统的基本概念;掌握海图投影、比例尺、图幅、编号、图名、图廓、图面配置的基本设计方法;知道IHO、IMO和IEC等国际性组织的主要国际海图标准与规范,掌握IHO S-57、IHO S-52、IHO S-58(电子航海图有效性检核规范)、IHO S-63(电子海图数据保护方案)的主要内容,知道海图物标分类及其编码规则,了解电子海图符号表达、数据检核与的基本知识;知道CARIS COMPOSER制图系统的基本功能、支持的主要海图格式,熟练掌握软件系统的使用方法,能够独立编辑和输出IHO S-57标准的电子海图。

3 教学实践

依据教学大纲、课程标准和教学计划,运用课堂授课、多媒体课件演示、讨论、参观、实作、第二课堂等多种教学方法和手段,达到教学内容及层次的要求。在教学中,精讲重点和难点内容;泛讲相对简单或次要的内容,并鼓励学生自学。

3.1 采用课堂授课为主,多媒体课件辅助的教学形式

课堂授课是海图学课程教学的主要形式。授课前,提出本次课的教学目的和要求,以及教学内容在课程中的地位和作用。精讲难点和重点内容,通过合理设计问题、提出问题,激发学生的兴趣性和主动性,引导学生独立思考寻求答案,由被动的“学答”到主动的“学问”,逐步提高学生自主发现问题、分析问题和解决问题的能力,从而系统地掌握教学内容。

与此同时,还要充分利用互联网、校园网资源,通过多媒体课件、视频短片、电子海图系统等把抽象的概念、变化过程等具象化,有利于解决教学的重点和难点,提高课堂教学的质量和效率。如:利用海图投影课件,能够生动地演示出各种投影变换的变化过程和结果,使学生能够直观地理解各种海图投影特征,更好地掌握和使用海图投影知识。

3.2 应用讨论式教学方式,开展专题讨论,帮助学生学会学习

讨论式教学有利于加强教学互动性,形成和谐的教学环境,是创新教学和帮助学生学会学习的一种重要方法。如:引入一些国际上的海图理论和技术最新成果,组织学生开展专题讨论,引导学生基于现有专业知识及唯物辩证法的哲学思想,分析学科前沿问题的背景和实质,认识海图学理论发展的动力及其未来方向。既开阔了学生专业视野,又促进了理论与实际的结合,同时也克服了课本知识滞后于学科前沿发展的问题。

3.3 加强实作练习,提高学生的动手应用能力

组织学生实地参观海图生产单位(上海海事局东海航海保障中心),通过现场讲解,使学生建立起感性认识,并将海图学理论知识与生产实际结合起来。加强实作训练,合理安排阅读海图、应用海图和制作海图等实作练习,提高学生综合运用知识的能力。

3.4 重视课后作业,开展第二课堂教学

合理布置课后作业,巩固课堂教学成果,拓展课堂教学内容,引导学生查阅文献资料,培养学生自主学习、自主思考和自主解决问题的能力。

开展第二课堂教学,鼓励和帮助学生与海洋渔业、海洋环境、海洋科学等其他学科专业相结合,参加教师的研究项目以及全国、上海市、学校组织的大学生科技创新活动。在实习、实践中,使他们不断开拓视野,积累科研与实际工作经验,撰写研究报告、论文等。截至目前,学生们已在全国、省市级大学生科技创新活动中多次获奖,申报了多项软件著作权,有的学生已公开发表了学术论文。

此外,为全面考察学生综合素质,检验和完善课程建设成果,依据考试大纲,合理设置了考核内容、题型、分量、权重、时间及分数等,并建立了标准化题库,严格了考试管理制度,形成了完整的量化评价机制。

4 结束语

几年来,我们秉持“特色、务实和创新”思想,以“聚焦、错位、合作”为原则,以培养海洋测绘复合型人才为目标,不断提高师资队伍的学术水平、教学能力和科研能力,相继制订了海图学教学大纲、课程标准、教学计划和考试大纲等一系列教学文档,编写了《海图学讲义》教材,进行了教学模式和教学方法的探索与实践,保证和提高了教学质量。未来将以“重点课程建设项目”为契机,坚持改革和创新,为把《海图学》课程建设成为一门精品课程而努力。

【参考文献】

[1]郭立新.海图符号语言的语法规则构建与实现技术[D].郑州:信息工程大学,2012:1-2.

[2]郭立新,翟京生,陆毅.海图语言学的历史与演变[J].海洋测绘,2009,29(2):78-81.

[3]张国坤,张洪岩,徐艳艳,等.现代地图学理论对地图学的影响[J].测绘科学,2007,32(2):26-28,20.

[4]翟京生.现代海图学的变革[J].海洋测绘,2008,28(5):73-76.

[5]郭立新,彭认灿,刘雁春.面向S-57电子海图显示与信息系统的研制开发[J].航海技术,2004(3):24-26.

[6]郭立新,沈蔚,邱振戈.海洋测绘学科体系及其专业建设的探讨[J].测绘通报,2015(4):129-132.

[7]翟京生.信息化或被信息化的海洋测绘[J].测绘科学技术学报,2013,30(4):388-391.

[8]钟志贤.大学教学模式改革的十大走向[J].中国高教研究,2007(1):88-91.

[9]赵军,武江民,赵生龙.我国地理信息技术普及教育现状与对策刍议[J].地理信息世界,2005,3(1):39-41,50.

[10]党安荣,刘钊,贾海峰.面向应用的高校GIS教学探索与实践[J].地理信息世界,2007(4):9-14.

[11]江南,吕晓华,郭延斌,等.精品课程持续性建设的策略与实践――以《地图学》部级精品课程建设为例[J].高等教育研究学报,2012,35(2):27-29.

海洋测绘论文篇(4)

前言

海洋测绘是现代测绘领域中的一部分,不管在科研、经济,还是国防建设方面,都发挥着重要的作用。如今,现代通信技术、计算机信息技术及卫星技术的迅速发展和广泛应用,逐步进入以数字化测量为主、计算机技术为基础,3S技术为代表的现代海洋测绘阶段。由此可见,GPS技术在测量控制、海洋地形及定位中的应用也就越来越广泛。

1.海洋测绘基本概况

所谓海洋测绘,就是根据海洋底层的物理场性质、变化特征进行测量,按照不同的比例绘制成海图及专题性海图,这是一项关于海洋水体及海底测量和海图测绘的工作。具体讲,有海道、海洋地、海底地形等测量和海底地形图、航行图及各类专题图的编制。

在测绘过程中,由于海洋水体丰富,给测量工作带来一定的难度,因此需要借助专业海洋考察船及专门测量设备、仪器开展连续性观测,通常是一船多用,实行系统全面性考察。最为基础的测量形式有两种:一是路线测量,也就是剖面测量,主要为了了解和掌握海洋地质构造及物理场特征;二是面积测量,根据测绘任务规定的比例要求,布设合理距离的测量网络。而在现代海洋测绘中,是以GPS技术及无线电定位技术为主。

2.现代海洋中GPS技术的应用分析

2.1关于GPS技术

GPS也称全球定位系统,其组成部分包括空间卫星、地面控制系统及用户终端设备,是一种具有全球性、全天候及高精度等特点的导航定位系统。该技术可迅速、高效、准确地为用户提供系统精确的点线面三维坐标及有关信息,在社会生产生活和科技发展中发挥着不可替代的作用。

2.2在海上定位中的应用

海上定位是现代海洋测绘中的一项基础内容,是在海上准确定位船舶位置,给舰船航行提高导航,其工作主要有海面定位及水下定位。近年来,RBN/DGPS技术在我国沿海测绘中逐步应用开来,该系统可在300km内可进行偏差在5m以下精准定位,可满足当前沿海测量的大比例绘图导航及定位要求。而对于距离相对大的海域测绘,因海洋相关工作存在特殊性,测量监控点的固定难度大,常规性大地测量技术及GPS静态定位技术很难满足其需求,而使用常规DGPS定位技术因随流动站和差分主站的距离扩大而导致定位精准度降低,作用面也受限,局限了该技术的应用。GPS-PPK技术则可弥补这些不足,可满足高精度测量要求,且在实际应用中不需要进行数据实时通讯。通常在海洋测绘中要充分考虑到经费、测量精确度及导航要求等各种因素,把RBN/DGPS技术和GPS-PPK技术的优势充分结合起来制定测绘技术方案。

2.3海洋水深测量中的应用

如今,在我国海洋水深测量工作中大多数是应用多波束水深测量系统。和以往的单波束测量系统相比,前者可根据水源深度差异直接获得深度信息,此外还可在垂直向开展测量,而这些都是后者无法满足的。

海洋水深测量,就是通过测量船配置的测量系统对海洋水深进行测量获得相关数据,该系统主要由专门水深测量软件、计算机、GPS接收器、多波束测量仪组成。海洋水深测绘流程主要是:(1)准备工作。一是进行GPS-RTK基准站架设时,需把其设在需测量区的中心位置,且要处于周边地势较高无明显遮挡物为主。二是以北54或西安80坐标作为基准换算坐标。三是根据已测数据重新加密处理,进而重设原有测量面,这就需要测量水深作业开展初步布设。(2)进行数据收集时,通过对数据参数的正确性进行检查,以免其有误导致基站定位出错,在测深设备正常连接后,需对相关测量仪、更正天线偏差、接受器数据格式、定位仪接口等进行全面校准,并在检查确认正常后才可开展测量工作。(3)在数据处理时,应用专业软件对获得的海洋水深数据实施有效处理,以得出海洋测绘专业、系统的数据分析报告,并以文档方式妥善保存。

2.4海洋水下地形测量应用

海道测量是海洋水下地形测量的基础,海底测量主要是明确海底点三维或平面坐标,而水下地形测量还需通过水声仪器来进行水深测量。海上航运、海上石油作业、海底电缆工程以及渔业开发、矿产资源勘探等工作均需要应用到水下地形图。CPS技术在海洋水下地形测量中的应用,能迅速、准确地测定水声仪所在位置,对比例尺相对大的测图,可通过差分GSP技术开展相对定位。在实际操作中,要把GPS接收器和水声仪器结合起来,前者实现定位测量,后者开展水深测量,再通过电子记录设备、应用计算机、绘图仪等构成海洋水下地形测绘自动化系统,实现断面图、水下地形模型等相关测绘。

2.5海洋测绘中GP5应用中的误差分析

海洋测绘论文篇(5)

中图分类号:P229 文献标识码:A

沿海水深的测量、近海水深的测量和海岸地形的测量在垂直方向上均设计到了基准面的问题,目前海洋测绘工作汇中所使用的基准面有2000国家大地坐标系、参考椭球面、1985国家高程基准、大地水准面、深度基准面和平均海面等。当前的海岸地带的地形测量和水深测量都采用的是不同的垂直基准面,所以所测得的数据也因为基准面的不同而不同。这就需要将测量成果的数据通过一定的转换方式达到统一基准上时,才能够将所有的测量数据成果无缝的拼接和合成,进而形成一幅完整的海洋测绘图。

1.海洋测绘中多个垂直基准之间的关系

目前我国的海洋测绘垂直基准是以CGCS2000坐标系作为垂直基准进行深度测量。海洋勘测、海洋开发都必须先建立统一的海洋测绘基准。我国的海洋测绘基准主要问题是因为陆地和海洋不是使用同一基准面所造成的。海洋测量定位手段主要为GPS定位。海洋测量工作及其成果和多个垂直基准面之间的关系如图1所示。

图1当中的H0表示GPS天线与CGCS2000参考椭球的垂直高度距离,也可以成为GPS大地高;H1表示平均海平面至CGCS2000参考椭球的垂直高度距离,也被称为海面大地高;H2表示换能器和海底的垂直距离,主要是用于测量瞬时水深;H3表示GPS天线至换能器表面的垂直高度距离;H4表示CGCS2000参考椭球与海底的垂直高度距离,也被称为海底声纳信号反射面的大地高;ξ表示为大地水准面和平均海面的垂直高度距离,也被称为海面地形;N表示大地水准面和WGS84参考椭球的垂直距离,也可以成为大地水准面差距;L表示为从平均海面作为基准面算出的理论深度基准面数值;h表示深度基准面与海底声纳信号反射面的垂直高度距离,也被称为海图水深。

由上表能够直接得出:

利用H0计算h的主要问题在于需要获取准确的平均海面大地高H1、如果已经了解大地水准面的距离N,则还需要建立大地水准面起算的海底地形高程,即N-H4。当前利用卫星进行测量,然后进行计算所得出的平均海面大地高度的精度在10cm以内。利用该图标内的数据能够利用GPS大地高H0精密的转换海图成果水深h。

2.海洋测绘垂直基准的建立和转换

目前我国普遍都是采用CGCS2000坐标系结合高斯投影的手段对海岸地形和水深进行测量,所以,海岸地形图和海图数字成果能够在以平面的形式展现在统一图表之内,但是垂直方面却具备比较大的差异。因为采用的是2000国家大地坐标,但是海图是使用的当地的标准深度作为基准,所以要想将地形图和海图进行凭借,就务必要求将海洋测绘的垂直基准转换技术熟悉掌握,建立当地深度基准和高程基准的转换模型。

CGCS2000坐标系的定义和实现,参考椭球的定义常数和导出常数以及相关的正常重力公式,坐标系的几点说明如下。图2为CGCS2000坐标系的示意图

原点在包括大气、海洋的整个地球的质量中心;长度单位为米,该尺度同地心局部框架的TCG时间坐标一致;定向在1984.0时和BIH的定向相同;定向会随着时间的演变由整个地球的水平结构运动无净旋转条件保证。由图2所示,原点:地球的质量中心;Z轴:指向IERS参考极方向;X轴:IERS参考子午面与通过原点且同z轴正交的赤道面的交线;Y轴:完成右手地心地固直角坐标系。CGCS2000的参考椭球为一等位旋转椭球。等位椭球(或水准椭球)定义为其椭球面是一等位面的椭球。CGCS2000的参考椭球的几何中心与坐标系的原点重合,旋转轴与坐标系的z轴一致。参考椭球既是几何应用的参考面,又是地球表面上及空间正常重力场的参考面。

2.1 水准联测法

利用几何水准测量方式,根据国家3、4等水准测量规定,直接联测2000国家大地坐标系的水准点至验潮站水准点的高差x,可以利用以下公式计算出验潮站的平均海面高程在该公式中,H可以利用常规的测量方法得到。

2.2 固定点比较法

这种测量法主要是通过当地平均海面作为高程基准面的海图或路地图和2000国家大地坐标系为坐标高程准面的同一个海区的现行海图上,发现共同的陆地上固定点,进而了解固定点在使用不同的高程基准面时的高程差。可以在两幅图上,选取多个固定点分别进行计算,将计算出的结果之间进行对比和校验,然后选取最可靠的平均值h,以此便可以极大程度的提高平均海面高程h的准确度和可靠度。

2.3 潮信资料法

将当地的平均海面作为高程基准,再将海图上所记载的验潮站大潮升数减去平均的海面数值,以此便可以得到当地的平均海面起算的平均大潮高潮面的高度,再利用2000国家大地坐标系的现行海图上所记载的同一验潮站的大潮升数值减去平均海面数值,便可以得到2000国家大地坐标系的高程基准起算的平均大潮高潮面的高度。利用以上的两个大潮平均高潮面的高度所得差便是h。在计算h时还需要了解海图的历史和出版年份,务必认真核对海图中所采用的高程基准是否准确;如果海图上记载了多个验潮站的潮信资料,则需要分别将所有验潮站的资料进行计算,将计算所得结果进行校验,核算,选取最可靠的平均值。

根据梁震英的“大地水准面的严密定义和我国高程基准的选择”研究证明,目前我国的平均海面高度是从北向南逐渐提升的,主要呈现3个阶梯型的变化,两个转折点分别为江苏的吕泗,福建省的山东,在每一个阶梯面上,各个海区多年来的平均海面存在微小的起伏,其中最主要的黄渤海海区的平均海面几乎与2000国家大地坐标系保持一致,最大的变化幅度在1cm±2,东海海区的变化幅度为2.3cm±3cm。

结语

海洋测绘垂直基准能够检测海岸地带的地形、沿海水深和近海水深的测量技术,这也就代表海洋测绘垂直基准是目前现代大地测量基准的一项重要“成员”。想要将2000国家大地坐标系作为海平面模型,就必须实现还按地区的垂直基准转换技术,其技术的关键在于计算不同区域的长时间的平均海平面高度h和其理论深度基准L。

综上所述,利用水准联测法、固定点比较法或者潮信法对h进行测量,通过多种测量方法的计算,能够精确地确定平均海面高度h。利用准确、完善和可拼接的高程基准给海岸经济的开发提供保障保障。

参考文献

[1]欧阳永忠.基于高精度的GPS测高的海洋深度检测技术[J].海洋测绘,2014,18(4):9-11.

[2]兰明乾.沿岸当地平均海面的高程求取与应用[J].海洋测绘,2013,35(专辑):190-192.

海洋测绘论文篇(6)

中图分类号:P2文献标识码: A

1 引言

海洋测绘是测量海洋底部的地球物理场的性质及其变化特征,以绘制成不同比例尺的海图和专题海图。海洋测绘主要包括海上定位、海洋大地测量和水下地形测量。海上定位通常是指海上确定船位的工作,主要用于舰船导航,同时又是海洋大地测量不可缺少的工作。海洋大地测量主要包括在海洋范围内布设的大地控制网,进行海洋重力测量。在此基础上进行水下的地形测量,测绘水下地形图,测定海洋大地水准面。此外海洋测绘的工作还包括海洋划、航道测量以及海洋资源勘探与开发、海底管道的铺设、近海工程、打捞、疏浚等海洋工程测量、平均海面测量、海面地形测量等。海上定位是海洋测绘中的最基本的工作。由于海域辽阔,海上定位可以根据离海岸距离的远近而采用不同的定位方法,其中就包括GPS卫星定位。

2 GPS技术的应用领域及测量原理

2.1 GPS技术的应用领域

GPS系统即全球定位系统,它的主要用途包括:

第一,陆地应用,主要包括车辆导航、应急反应、大气物理观测、地球物理资源勘探、工程测量、变形监测、地壳运动监测、市政规划控制等;

第二,海洋应用,包括远洋船最佳航程航线测定、船只实时调度与导航、海洋救援、海洋探宝、水文地质测量以及海洋平台定位、海平面升降监测等;

第三,航空航天应用,包括飞机导航、航空遥感姿态控制、低轨卫星定轨、导弹制导、航空救援和载人航天器防护探测等。

GPS技术目前广泛应用与世界上的各个领域,而且应用也十分普遍。在GPS刚投入使用的时候,只是在军事上使用,很多领域并没有GPS的使用,而现在GPS已经普遍到每个居民用户。GPS技术的应用领域主要包括:测量、交通、救援、农业、娱乐消遣、导航、临时收频、军事等领域。

GPS技术给测绘界带来了一场革命,领用GPS中的技术可以使测量的精度达到厘米级以上,而且GPS技术与传统的手工测量技术相比有着很大的优势:测量精度高;操作简便,仪器体积小,便于携带;全天候操作;观测点之间无须通视;测量结果统一在WGS84坐标下,信息自动接收、存储,减少繁琐的中间处理环节。在当前,GPS技术已经广泛应用于大地测量、资源勘查、地壳运动、地籍测量等领域。

2.2 GPS技术的测量原理

GPS(Global Positioning System)即全球定位系统,是由美国建立的一个卫星导航定位系统,利用该系统,用户可以在全球范围内实现全天候、连续、实时的三维导航定位和测速;另外,利用该系统,用户还能够进行高精度的时间传递和高精度的精密定位。GPS是美国国防部组织并开发的一个全球性、全天候、高精度的导航定位和时间传递系统, 空间部分由24颗卫星组成, 是军民两用系统, 提供两个等级的服务。美国政府为了加强其在全球导航市场的竞争力, 撤销对的干扰技术, 标准定位服务定位精度双频工作时实际可提高到20米。授时精度提高到40纳秒, 以此抑制其他国家建立与其平行的系统, 并提倡以GPS和美国政府的增强系统作为国际使用的标准。

GPS的工作原理为:24颗GPS卫星在离地面12000km的高空上,以12小时的周期环绕地球运行,使得地面上的任何一点都可以同时观测到4颗以上的卫星。由于卫星的位置精确可知,在GPS观测中,就可以得到接收机至GPS卫星之间的距离,利用三维坐标中的距离公式,用三颗卫星就可以组成三个方程,解出观测点的位置(X,Y,Z),考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和时差,因而需要引入第4颗卫星,形成四个方程式进行求解,从而得到观测点的经度、纬度和高度。

GPS卫星定位是以三角测量定位原理来进行定位的。它采用多星高轨测距体制,以接收机至GPS卫星之间的距离作为基本观测量。当地面用户的GPS接收机同时接收到3颗以上卫星的信号后,通过使用伪距测量或载波相位测量,测算出卫星信号到接收机所需要的时间、距离,再结合各卫星所处的位置信息,将卫星至用户的多个等距离球面相交后,即可确定用户的三维(经度、纬度、高度)坐标位置以及速度、时间等相关参数。

3现代GPS技术在海洋测绘领域的应用

3.1海洋测绘的特点

1)测站在船上,在动态下进行测量。2)同一空间结构网的各观测量(坐标、深度、重力等)必须同时测定,无法重复测量。3)观测受大气影响和海水物理性质影响,精度比陆地上大地测量低。

3.2 GPS在海洋测绘中的应用

3.2.1用GPS定位技术进行高精度海洋定位

为了获得较好的海上定位精度,采用GPS接收机和船上导航设备进行组合定位。如在进行GPS伪距定位时,用船上的计程仪(或多普勒声纳)、陀螺仪的观测值联合推求船位。对于近海海域,采用在岸上或岛屿上设立基准站,船上安置GPS接收机,采用差分技术或动态相

对定位技术确定船位,从而进行高精度海上定位。

3.2.2 GPS技术用于建立海洋大地控制网

建立海洋大地控制网,为海面变化和水下地形测绘、海洋资源开发、海洋工程建设、海底地壳运动的监测和船舰的导航等服务,是海洋大地测量的—项基本任务。海洋大地控制网,是由分布在岛屿、暗礁上的控制点和海底控制点组成的。海底控制点由固定标志和水声应答器构成。对于岛、礁上的控制点点位,可用GPS相对定位精度测定其在统一参考系中的坐标。我国已于1990年和1994年,在西沙和南沙群岛的岛、礁上,布设了GPS网。平均边长相对中误差为1/:387万;方位中误差为±Q06”、点位中误差为±13cm,并完成与海口、湛江、东莞等国家大地点的联测。而对于测定海底控制点的位置,则需要借助于船台或固定浮标E的GPS接收机和水声定位设备,对卫星和海底控制点进行同步观测而实现。船上GPS接收机的瞬时位置,可以通过GPS相对动态定位而精密确定。利用GPS接收机同步观测GPS卫星进行定位的同时,利用海底水声应答器同步测定船上GPS接收机与海底控制点间的距离,从而

测定海底控制点的位置。

3.2.3 GPS在水下地形测绘中的应用

水下地形图的绘制对于航运、海底资源勘探、海底电缆铺设、沿海养殖业和海上钻井平台等具有重要意义。海道测量是进行水下地形图测绘的基础,可以通过海底控制测量来测定海底控制点的空间坐标或平面坐标。除此以外,还需用水深仪器对水深进行测量。水深测线间距依比例尺不同而变化,水深仪器的定位除了在近岸区域使用传统的光学仪器采用交汇法定位外,其他较远区域多采用无线电定位。由于GPS可以快速、高精度的对目标物进行定位,可以对水深仪器进行单点定位,但其精度只有几十米,只能作为远海小比例尺海底地形测绘的控制:对于较大比例尺测图,可应用差分GPS技术进行相对定位。实际应用中常将GPS和水深仪器同时使用,前者进行定位测量,后者进行水深测量,再利用电子记录手簿,利用计算机和绘图仪组成水下地形测量自动化系统。

水下地形测量是海洋测绘的最基本的工作之一。由于海域辽阔,海上定位颗根据离海岸距离的远近而采用不同的定位方法,如光学交会定位、无线电测距、GPS卫星定位等。

水下地形测量主要是海道测量,海底控制测量是确定海底点的三维坐标或平面坐标,而水下地形测量还需要利用水深仪器测定水深。对于近海领域,采用在岸上会岛屿上设立基准站,采用动态相对位技术进行高精度海上定位。在船上安装差分GPS接收机和测深仪。测量船按预定航线利用差分GPS导航和定位,测深仪按一定距离或一定时间按照事先设定自动向海底发射超声波并接受海底的发射波,同时记录GPS的定位结果和测深数据。定位测量和水深测量的数据都有了之后,就可以利用这些电子手簿和计算机、绘图仪等组成系统,测绘水深图和水下地形图等。

4现代GPS技术在海洋测绘领域的应用中出现的问题及解决方法

4.1出现的问题

由于GPS技术是由美国军方制作并控制的,因此我们在使用GPS数据时就要考虑到数据的真实性和数据的实用性。美国军方可以随时修改我们使用的数据,如果数据不准确一切工作都没有任何用途。

另一方面,由于GPS定位系统是基于美国军方的国家战略研发的,所以其对外开放的彻底性还有所保留,加上整个系统本身研发时的局限性和民用领域的不断延伸,所以同其他测量手段一样,GPS测量误差也不可避免,因此在进行海洋测绘的时候需要注意出现的误差。

4.2 解决方法

在数据使用的问题上,我们目前还没有什么卫星定位系统可以和GPS卫星定位系统相比,不论是我国的北斗系列,还是GLONASS 全球导航卫星系统或Galileo系统总体功能现在都无法与GPS相比,因此我们要在研发新的系统的同时,还是要使用GPS的数据来解决我们目前的一些问题。

对于GPS测量时产生的误差,我们应该分析产生误差的原因,一般出现的都是系统误差。对于这些系统误差,我们不可避免,因此只能通过一些参数来进行数据结果的修正。另外,还有一部分误差是我们在进行数据转换的时候产生的。因为GPS卫星定位系统采用的是WGS-84坐标系统,而在我们国家一般使用的是北京54坐标系统,因此在使用GPS数据时就需要进行坐标系之间的转换。由于不同的地方的转换参数不同,因此坐标系之间的转换是一项浩大的工程,在转换构成中就会产生一些误差,对于这些误差我们也只能尽量避免。只有这些误差都减小了之后,我们进行海洋测绘的工作才能做的更精细,数据才能更准确。

5结论

GPS技术已经广泛应用于各个领域,在海洋测绘领域也不例外。对于海上定位,海洋的水下地形测量,GPS技术发挥了很大的作用,我们使用GPS技术让我们在海洋测绘领域的成果更进一步,建立了海洋测量平面控制网。GPS技术的引进改变了传统的测量方法,节省了很多人力物力。

目前,我国已经拥有了北斗系统,北斗二代也正在建设中,而且也与中欧签订了协议投资建设伽利略卫星系统。我国在今后海洋测绘领域中,必定朝着自主、高效的方向发展。

参考文献:

海洋测绘论文篇(7)

0.引言

1993年和1994年美国先后以总统令的形式提出建立“国家信息基础设施”(NII),即通称的信息高速公路,以及“国家空间数据基础设施”(NSDI),这是进一步推进社会信息化,抢占信息产业发展新的制高点和主动权的重大战略步骤,时隔5年,这一计划的实施初见成效,刺激了美国的经济增长,于是去年又以美国副总统演讲形式推出数字地球的概念和构想,并计划到2020年试图达到地球信息化的最终目标,亮出了美国这一近期全球信息战略的底牌。由美国政府高层出面提出的这一“数字地球”构想引起全球各方关注,并成为学术界热点话题。中国学者尤其在地学界也做出了积极的反应,不论从科学技术的角度还是从国家利益的角度,中国要准备迎接这一严峻挑战,已成共识。作为测绘学科,测绘行业反应更显强烈,数字地球概念为测绘事业发展提供了新的机遇和更高层次的发展前景。这里我们想就现代测绘学的发展从学科的观点稍为具体地探讨一下它与数字地球的关系和在构建数字地球中的作用。

1.测绘学的现展

空间技术,各类对地观测卫星使人类有了对地球整体进行观察和测绘的工具,好像可以把地球摆在实验室进行观察研究一样方便。由空间技术和其他相关技术,如由计算机、信息、通讯等技术发展起来的3S技术(GPS,RS,GIS)在测绘学中的不断出现和应用,使测绘学从理论到手段都发生了根本的变化。测绘生产任务也由传统的纸上或类似介质的地图编制、生产和更新发展到地理空间数据的采集、处理和管理。GPS的出现革新了传统的定位方式;传统的摄影测量数据采集技术已由遥感卫星或数字摄影获得的影像所代替,测绘人员在室内借助高速高容量计算机和专用配套设备对遥感影像或信号记录数据进行地表(甚至地壳浅层)几何和物理信息的提取和变换,得出数字化地理信息产品,由此制作各类可供社会使用的专用地图等测绘产品。我国960万平方公里国土的国家基本地图的成图或更新周期可望从十几年,几十年缩短到几年或更短,测绘业的体力劳动得到解放,生产力得到大的提高。

今天,光缆通讯、卫星通讯、数字化多媒体网络技术可使测绘产品从单一纸质信息转变为磁盘和光盘等电子信息,产品分发可从单一邮路转到“电路”(数字通讯和计算机网络传真),测绘产品的形式和服务社会的方式由于信息技术的支持发生了很大变化,实现了信息化的发展。

当前,随着我国经济的高速发展和经济所有制成份和运行体制的改革,需要开放民用国家测绘产品;从技术方面看,西方国家卫星测地技术可制作全球几乎任一地区1m分辨率(相当1∶1万比例尺)的地图,卫星上的GPS又可将这种地图纳入全球参考框架和转换为他们的国家坐标系,中、小比例尺国家地图的保密价值已大大降低;对于军事敏感的重力数据,卫星重力技术所发展的低阶全球重力场模型已足够用于他们的远程战略导弹发射。目前全球高阶重力场模型(如EGM96)分辨率已达50km,已接近我国现有重力数据的分辨率,其保密价值也需要重新评估。

综上所述,由于以空间技术、计算机技术、通讯技术和信息技术为支柱的测绘高新技术日新月异的迅猛发展,测绘学的理论基础、测绘工程的技术体系、其研究领域和学科目标,正在适应新形势的需要发生着深刻的变化,表现为正在以高新技术为支撑和动力,进入市场竞争求发展,测绘业已成为一项重要的信息产业。它的服务范围和对象也在不断扩大,不仅是原来的单纯从控制到测图,为国家制作基本地形图的任务,而是扩大到国民经济和国防建设中与空间数据有关的各个领域。它必将随着21世纪更加成熟的信息化社会的到来向更高层次发展,在未来数字地球的概念和技术框架中占据重要的基础性地位。

2.数字地球和现代测绘学

地球上一切事件都发生在一定的空间位置,人类社会经济活动所需要的信息绝大部分(约80%)都与地理位置相关。中国21世纪议程62个优先发展项目中,约有40个需要建立或应用地理信息系统。数字地球是利用海量地理信息(即地球空间数据)对地球所做的多分辨率、3维数字化描述的整体信息模型,便于人类最大限度地实现信息资源的共享和合理使用,为人类认识、改造和保护地球提供一种新的手段,这里在数字地球的概念中突出显示了地理坐标的框架作用,因此NSDI是数字地球的基础设施,要求提供(地球)空间数据框架,包括大地测量控制框架(国家定位网和重力控制网)、数字正射影像、数字高程模型、道路、水系、行政境界、公共地籍等基础地理数据集。在此框架上加载各类地球自然信息和人类社会经济活动等一切所需要和感兴趣的人文信息。为数字地球提供上述地球空间,海洋占全球面积的70%,海洋将是21世纪资源开发的主要竞争空间,海洋动力环境的变化(如厄尔尼诺现象)又是决定全球气候变化的主要控制“阀门”。数字地球向海洋测绘提出了挑战。从全球来说,目前海洋的精细测绘基本上还是空白,多波束测深技术的发展加速了各国领海海底地形的测绘,但要将陆地坐标参考框架以相近的精度扩展到海洋仍存在困难,海上GPS定位精度还低于5m;由于陆地高程基准不能用水准测量传递到海洋,在卫星测高技术的支持下用某种去掉潮汐影响的平均海面作深度基准,精度可达米级,和多波束测深精度相当。但广大的开阔深海的海底地形测绘不可能用船载测深仪完成,用卫星测高结合重力数据(低阶或中阶重力场模型)反演海底地形,目前试验精度可达10~100m。数字地球将要求海洋测绘技术有新的突破。

数字地球构想是推动人类大踏步跨进信息社会重大战略步骤,有挑战也有风险。测绘是数字地球的基础,测绘工作者也将是构造数字地球的“尖兵”,也要求测绘学有新的发展和突破。

3.建议

本文漫谈了测绘学的发展及其与数字地球构想的关系。为在21世纪加速建设我国空间数据基础设施,发展我国的测绘学科和测绘事业,以迎接“数字地球”的挑战,根据我国目前测绘事业发展的现状,从一个侧面(主要是大地测量方面)提出以下建议:

海洋测绘论文篇(8)

中图分类号:P229文献标识码:A文章编号:

引言:

海洋测量主要是为了精密测定和描述海洋几何场和物理场的重要参数,从而为人类开发海洋,利用海洋资源的活动服务。随着科学技术的进步,特别是卫星技术、电子技术、计算机技术及信息获取手段的改进和发展,海洋测量突破了传统单一的海道测量范围,相继出现了相对独立的海洋控制测量、海洋工程测量、海底地形测量、海洋重力测量、海洋磁力测量等。

1.海洋测量的现状

海洋测量按性质可划分为物理海洋测量和几何海洋测量两类。

1.1物理海洋测量

物理海洋测量是对海洋底部地球引力场和磁力场等物理场性质的测量。海洋测量必须以海洋物理知识作为基础,其主要测量方法有海洋地震测量、海洋重力测量、海洋磁力测量和海底热流测量4种,此外,海洋电法测量和海底放射性测量尚处于试验阶段。物理海洋测量按照原理、技术和方法及其应用划分,包括海洋重力测量、海洋磁力测量及海洋水文测量。

1.1.1海洋重力测量

海洋重力测量是对海域重力加速度进行测定。在进行重力测量时,由于海水的不断运动,会产生各种干扰加速度,受到的主要扰动影响有:水平加速度和倾斜影响、垂直加速度的影响、交叉耦合效应的影响、厄缶效应的影响。近年来,各种高新技术在海洋测量中的应用,海洋重力测量的技术水平有了较大提高:重力仪测量系统的主体技术不断改进,消除了交叉耦合效应的影响;采用硅油阻尼代替空气阻尼,提高了仪器的抗震性和抗干扰性;DGPS(Difference Global Positioning System,即差分全球定位系统)的广泛应用,提高了重力测量中的导航定位精度;光纤陀螺技术的使用,提高了平台的灵敏度、稳定性和使用寿命;卫星测高技术的不断推广,提高了重力测量资料的精度和分辨率;数字化控制重力弹簧或摆的调平、平台的调平,使仪器正在向小型、轻便和高效率的方向发展。

1.1.2海洋磁力测量

海洋磁力测量是对海上地磁要素进行测定。海洋磁力测量按照测量内容可分为海洋磁力仪和海洋磁力梯度仪。早期时,曾使用饱和式磁力仪,目前,多使用质子旋进磁力仪、光泵磁力仪及铯光泵磁力梯度仪和质子旋进式磁力梯度仪。光泵技术的使用,消除了日变和海岸效应的影响,提高了测量的灵敏度、稳定性和可靠性;DGPS、压力深度仪、超短基线定位系统、浪潮仪和ADCP (Acoustic Doppler Current Profilers, 即声学多普勒流速剖面仪)等辅助设备的采用,提高了定位精度和环境噪声改正精度。

1.1.3海洋水文测量

海洋水文测量就是对海洋水文要素进行测量,为水下地形测量、水深测量以及定位提供必要的海水物理、化学特性参数。随着海洋科学的发展,在现代的海洋水文测量中,出现了多种新的观测手段及其相应的探测仪器。走航式温盐深计可以在动态海水里获取不同水层的温度和盐度,为研究海洋温度及盐度的分布规律提供了丰富的数据资料,突破了点测量的局限。透明度仪的使用提高了观测的精确度和准确度。遥报潮位观测和GPS在航潮位测量方法的出现,在很大程度上提高了潮位观测的自动化和精确性。目前通过测站式或ADCP测定海流的流速和流向,加快了测量速度,提高了测量精度。

1.2几何海洋测量

几何海洋测量是对海洋表面、海底及其相邻海岸的几何形状的测定。主要包括海洋大地测量、海洋定位测量、水深测量、海底地形地貌测量、海洋工程测量。

1.2.1海洋大地测量

海洋大地测量是研究海洋大地控制点(网),确定地球形状,研究海平面形状的科学。海洋大地测量的主要工作是建立海洋大地控制网,为水面、水中、水底定位提供已知位置的控制点,海洋控制网包括海岸控制网、岛-陆、陆-岛控制网及海底控制网。海岸控制网的建立与常规的陆上控制网相同,可采用传统的边角网和GPS控制网。卫星定位技术的出现,实现了陆-岛和岛-陆控制网的联测,也实现了远离大陆水域的水上定位和水下地形测量,并将其测量成果纳入与大陆相同的坐标框架内。海底控制网是通过声学方法建立的,一般布设为三角形或正方形结构,水下控制点为海底中心标石,其标志采用水下答应器(或称声标),水下答应器的位置通过船载GPS接收机和水声定位系统联合测定,即双三角锥测量。

1.2.2海洋定位测量

海洋定位测量是海洋测绘和海洋工程的基础。随着电子经纬和高精度红外激光测距仪的发展,可按一方位一距离极坐标法可为近岸动态目标实现快速定位。全站仪由于自动化程度高,使用方便、灵活,当前在沿岸、港口、水上测量中使用日益增多。GPS定位系统是目前海洋测量的主要定位手段。水下定位普遍采用声学定位系统,水声定位系统的工作方式很多,最基本的有长基线定位系统、短基线定位系统和超短基线定位系统。目前我国已经研发了水下DGPS高精度定位系统用于水下定位,该设备首次利用GPS解决水下设备导航和实时三维定位问题,并提供亚米级的定位结果。

1.2.3水下地形测量

海底地形测量,首先进行海岸或海底平面、高程控制测量,然后进行海底地物、地貌的探测。随着GPS高精度定位技术在海洋测量中的应用,水下地形测量的导航和定位精度得到了进一步改善。多波束测深系统具有测量范围大、速度快、精度高、自动化等诸多优点,将测深技术进一步发展到立体测图和自动成图。随着声学、干涉技术及计算机技术的发展,出现了高精度高分辨率侧扫声纳系统,使得海底地形地貌的勘察更加详细。遥感海底地形测量具有大面积、同步连续观测及高分辨率和可重复性等优点,遥感技术的应用使海底地形测量技术取得了重大进展。

2.对海洋测量的展望

海洋是地球的一个重要部分,而我国是一个海洋大国,我国海洋测量未来主要应向以下几个方面发展:

2.1服务对象将向全方位、多层次服务转化

20世纪海洋测量的服务对象主要是保障海面航行船只的安全,今后海洋测量的服务对象将不断扩充。海洋测量的基准面也将逐步与陆地地形测量基准面统一,建立以海洋大地水准面为基准面是势在必行的,因此,未来海洋测量技术的主攻方向是:继续研制新型精密的测量仪器设备;统一陆地和海洋地形基准面;精化海洋大地水准面。随着信息化技术的高速发展,多种海洋测量数字产品、数据库和地理信息系统将集成一体,为多学科的多种使用目的提供全方位服务。

2.2信息获取和表示将向集成综合式转化

未来无论是信息获取还是信息体现都会以多系统集成为主体。在信息获取领域,一个系统多种功能的集成和多个系统的有机集成是未来海洋测量发展的必然趋势,将各种测量系统的优点集成在一起,会使海洋测量技术发生突飞猛进的发展。在信息表示领域,多源、多分辨率信息的有机集成也是发展的必然趋势,将通过各种途径获取的信息有机结合起来,从多角度、多层次、全方位地展现海洋的全貌。

2.3信息服务形式将由三维静态向四维动态转化

随着科学技术的发展,未来社会对海洋测量成果的需求将趋向动态变化和实时性。因此,研究海洋几何要素和物理要素的时变规律十分重要,尤其是对海洋潮汐现象的全面、透彻研究。电子海图显示系统的发展,使得电子海图的显示由最初的二维显示到三维显示,继而发展到迭加潮汐预报的实时四维动态显示。目前我国的电子海图还不具备迭加水文气象要素的功能,但可以预料,电子海图的功能将日趋完善。

3.总结语

近年来,我国的海洋测绘在理论研究、技术应用和人才培养机制等方面均取得重大进展,尤其是基础理论的研究逐渐深入,应用技术研究贴近生产实践,在满足国民经济建设和国防建设中的作用越来越重要。未来我国的海洋测绘必须进一步拓宽领域、加快速度、提高精度, 在现势性和时效性方面有一个重大突破, 全方位、全过程、多层次、多环节提供动态化的信息服务, 更好地为国防和国民经济建设作出贡献。

参考文献:

[1] 赵建虎,沈文周,吴永亭,等.现代海洋测绘[M].武汉:武汉大学出版社,2007.

[2] 毕永良,孙毅,黄谟涛,等.海洋测量技术研究进展与展望[J].海洋测绘,2004,24(3):65-70.

海洋测绘论文篇(9)

Abstract: 1:10000 underwater topographic surveying and the deep-water shoreline surveying pre-production project in the Ningbo City are introduced. Some viable experience in pre-production process and key technologies are summarized and discussed.

Keywords: hydrometric gage;hydrometric observation;mean sea level;theoretically lowest tide level ;bathymetric survey;GPS-RTK without tidal observation

中图分类号:P332.3文献标识码: A文章编号:2095-2104(2012)

1 引言

为加快推进省委省政府关于“发展海洋经济,建设海上浙江”重大战略部署,省政府专门就海洋测绘下发了《关于切实做好全省海洋测绘工作的通知》,明确全省海洋测绘工作是省重点专项工作,明确全省海洋测绘工作由省测绘与地理信息局统一组织实施,统筹安排全省海洋测绘的项目实施,负责编制全省海洋测绘工作方案并对全省海洋测绘工作进行了全面部署。宁波市域海洋测绘工作是全省海洋测绘工作的重要组成部分,也是建设海洋经济强市的重要保障性工作。项目年度计划经省测绘与地理信息局批准后实施。为了更好的完成宁波市域海洋测绘与调查工作,采取有效的工作方法和手段,提供可靠数据,宁波市于2011年8月

开始启动了试生产,我公司本次的试生产项目为1:1万比例尺水下地形测量和深水岸线调查。

2 数量与时间参考

本次完成1:1万的水下地形测绘面积310.6km2,测线701条,检查测线21条,总长度2376.1km;深水岸线调查24.8km。本次作业时间为年9月3日至12月18日, 实际作业时

间约105天,其中外业45天,内业60天。外业数据采集可达到8 km2/日,其中水下地形测量10km2/日,潮间带测量2.6 km2/日;内业数据编辑约5 km2/日(不含入库);海上岸线调查15天,岸线调查测2 km/日。

3 临时水位站的布设与观测

本次水域控制面积300多km2,含有内港、航道、外海,潮流复杂,海面受潮汐、气象等影响起伏较大,根据潮位站布设的密度能控制全测区的潮汐变化,相邻潮位站之间的距离满足最大潮高差小于1m,最大潮时差小于2h,潮汐性质基本相同的原则,共布设了12个临时水位站,平均相邻站之间距离约15km。临时水位站的水位观测采用自记水位仪或水尺、或同时使用两种方法进行观测,同时使用两种方法进行观测的,以自记水位仪的观测数据为准,以人工验潮作为检核修正。

本次测量区域包括金塘水道、大榭岛水域、蚂蚁岛水域和佛渡岛水道,临时水位站布设位置见图3.1。表3.1是对相近几个临时水位站的观测数据统计分析,关系中有的临时水位站在采用水位三角分带改正中并不具有一定的关联性,只是作为测绘整体区域临时水位站布设的分析。

图3.1 临时水位站位置布设图

表3.1 临时水位站数据统计分析

由表3.1可以看出,统计中最远的临时水位站之间距离约为80km(金塘大桥~三山大闸),最大潮高差相差最大的为0.72(白峰~三山大闸),最大潮时差相差最大的2h(金塘大桥~蚂蚁岛)。从对所布设的临时水位站的水位观测数据分析来看,本次用于三角分带水位改正的临时水位站布设均符合要求,从整个数据也可以看出,外海(水道)与内港、处于南北位置的潮时差变化比较大。

4 临时水位站基准面选择与理论最低潮面的确定

根据长期或短期水位站推算临时水位站的平均海平面,确定深度基准面(采用理论最低潮位面),是非常重要的一个工作。为统一各水位站的水位资料,本项目实施过程中将各水位站的水位资料(即水位观测起算基准)统一归算至1985国家高程基准。

本次收集了定海、镇海、湖头渡3个长期验潮站资料,并全部采用2年以上连续水位观测数据,采用同步观测水位平均值,计算与临时水位站同步观测时间内的平均海平面与其多年平均海面的差值,然后将此期间的短期平均海面加上改正数求得本期间的平均海平面,再根据临时验潮站与长期站同步观测的数据(本次各临时水位站同步观测时间不少于10天),采用同步传递法确定其平均海面。

根据定海站已知的理论最低潮位面,采用弗拉基尔法计算长期验潮镇海、湖头渡的理论最低潮位面,计算公式如下:

式中:表示求极小值运算符;

,为分潮相角;

负号“-”使求得的相对平均海面的深度基准垂直偏差表达为正值;

为分潮交点因子与分潮振幅的乘积;

和为、、、、、、、、、、、、等13个分潮的调和常数和节点因数;为分潮的相角,它的变化从0至360。

根据已知的3个长期水位站的理论最低潮位面,采用两点内插法确定临时水位站的理论最低潮位面,计算公式如下:

L=(DBLA+DALB)/(DA+DB)

式中:L-临时水位站深度基准面至其平均海平面的高度;

LA、LB-已知A、B两个水位站的深度基准面至其平均海平面的高度;

DA、DB-在同一比例尺图上分别量取的临时水位站到已知A、B站的垂足间距离。

5 水下地形测量

5.1定位与测深设备的选择

本项目定位利用NBCORS采用双频GPS接收机,测深全部采用单频数字测深仪,区域内最大深度达130多米,为验证单频数字测深仪对深度达到100米的测深精度,后用双频数字测深仪进行检查,其检测结果对比如下表:

由此可看,对比误差均小于0.02H,采用单频测深仪还是可行的。

双频GPS接收机在使用前进行了定位对比检查,单频数字测深仪进行了一致性检验和稳定性测试。测量时根据不同深度通过检查板对测深进行了检验。

5.2测量船只、船速的选择

为保证测量精度,增强船体平台稳定性,减少因海浪对船体产生纵、横摇,本次选择了30吨级的船舶作为测量船。

在一般的作业区船速选择在5节,在涨潮和退潮的潮流方向、深度大于30米地区,船速控制2~4节。

5.3数据处理

对采集数据的后处理是保证数据精度的一个最重要过程之一,本次项目主要进行了潮位改正、声速改正、动吃水改正、静吃水改正。初始声速改正在测量时进行了相应的改正,根据测量海水的不同深度,取其一中间值,设置为1517m/s。由于不同的海域,海水的温度、盐度、介质也不相同,所以应该在测量时根据不同的深度采用不同的声速进行改正,但此方法在实际作业过程中很难实现,因此本项目根据外业以不同深度,采集同声速进行测定改正数,按声速公式进行计算,在数据处理软件中进行水深批量改正。

依据检查线统计,本次测量在20米内的测深误差在0.2米内的占81.7%,粗差只占0.2%,在大于20米深度,深误差在0.4米内的占81.7%,84.1%,粗差占0.6%。

6 GPS-RTK无验潮水下地形测量

本项目在确定采用验潮方式进行测量时,也在采用无验潮方式进行检验,本次采用NBCORS直接记录测深点的三维坐标,高程转换采用NBCORS中心的坐标转换软件进行。

选择金塘水域、大榭水域及蚂蚁岛水域部分数据进行无验潮数据处理,数据处理时没有进行消浪处理,对测深数据进行了声速改正。高程对比精度统计如下表:

从15214个数据来看,剔除个别粗差,单从0.4米误差(水深大于20米时,对比误差与深度关系式ΔH ≤0.02H )来看,98.6%数据满足规范要求,所以采用NBCORS以无验潮方式进行水下地形测量可以满足精度要求。

7 结束语

(1)本次试验区的水位站布设合理,在采用三角分带水位控制进行水位改正的情况下,根据一些相关的验潮站比较,所布设的临时水位站还可以适当再减少,但在外海与内港或航道等衔接处、地形变化区域(山嘴等)地方,应布设临时水文站。

(2)在水下地形测量时,应该选择合适的船只,过大在转弯、航道狭窄,礁石多等情况下行驶不方便,过小又由于风浪原因会造成不稳定。

(3)在水下地形数据采集时,根据风速、涨、退潮等情况,制定合理的行驶速度,以保证水深数据采集的准确性。

(4)在进行数据处理时,进行正确的声速改正、潮位改正、动吃水、静吃水的改正。

(5)在CORS快速发展的今天,扩展应用领域,更好的发挥利用此项资源。本次采用的无验潮与有验潮测深数据的比较来看,均可以达到精度要求,从数据的比较来看,两者的差值属于偶然误差(随机误差)并不具有一定的系统误差变化趋势。根据NBCORS的大地水准面精化的情况来分析,应该随着距离陆地远近的变化而造成高程精度也随同样的趋势而变化,但在本次实验过程中,高程误差的变化并不十分明显,并没有随着远离陆地而有明显的降低,这个原因也可能是由于测区边缘距离陆地(大约15km)还不够远,所以影响不大。

采用NBCORS进行无验潮水下地形测量,精度较高,可有效降低成本,提高工作效率。

测量时部分地区数据链信号不好,时断时续,针对对信号不好的区域采用不同时间段重新测绘的方法进行解决。

参考文献:

海洋测绘论文篇(10)

1993年和1994年美国先后以总统令的形式提出建立"国家信息基础设施"(NII),即通称的信息高速公路,以及"国家空间数据基础设施"(NSDI),这是进一步推进社会信息化,抢占信息产业发展新的制高点和主动权的重大战略步骤,时隔五年,这一计划的实施初见成效,刺激了美国的经济增长,于是去年又以美国副总统演讲形式推出数字地球的概念和构想,并计划到2020年试图达到地球信息化的最终目标,亮出了美国这一近期全球信息战略的底牌。由美国政府高层出面提出的这一"数字地球"构想引起全球各方关注,并成为学术界热点话题。中国学者尤其在地学界也作出了积极的反应,不论从科学技术的角度还是从国家利益的角度,中国要准备迎接这一严峻挑战,已成共识。作为测绘学科,测绘行业反应更显强烈,数字地球概念为测绘事业发展提供了新的机遇和更高层次的发展前景。这里我们想就现代测绘学的发展从学科的观点稍为具体地探讨一下它与数字地球的关系和在构建数字地球中的作用。

一、测绘学的现展

空间技术,各类对地观测卫星使人类有了对地球整体进行观察和测绘的工具,好象可以把地球摆在实验室进行观察研究一样方便。由空间技术和其它相关技术,如由计算机、信息、通讯等技术发展起来的3S技术(GPS、RS、GIS)在测绘学中的不断出现和应用,使测绘学从理论到手段都发生了根本的变化。测绘生产任务也由传统的纸上或类似介质的地图编制、生产和更新发展到地理空间数据的采集、处理和管理。GPS的出现革新了传统的定位方式;传统的摄影测量数据采集技术已由遥感卫星或数字摄影获得的影像所代替,测绘人员在室内借助高速高容量计算机和专用配套设备对遥感影象或信号记录数据进行地表(甚至地壳浅层)几何和物理信息的提取和变换,得出数字化地理信息产品,由此制作各类可供社会使用的专用地图等测绘产品。我国960万平方公里国土的国家基本地图的成图或更新周期可望从十几年,几十年缩短到几年或更短,测绘业的体力劳动得到解放,生产力得到大的提高。今天,光缆通讯、卫星通讯、数字化多媒体网络技术可使测绘产品从单一纸质信息转变为磁盘和光盘等电子信息,产品分发可从单一邮路转到"电路"(数字通讯和计算机网络传真),测绘产品的形式和服务社会的方式由于信息技术的支持发生了很大变化,进入了信息化的发展。当前,随着我国经济的高速发展和经济所有制成份和运行体制的改革,需要开放民用国家测绘产品;从技术方面看,西方国家卫星测地技术可制作全球几乎任一地区1米分辨率(相当1∶1万比例尺)的地图,卫星上的GPS又可将这种地图纳入全球参考框架和转换为他们的国家坐标系,中、小比例尺国家地图的保密价值已大大降低;对于军事敏感的重力数据,卫星重力技术所发展的低阶全球重力场模型已足够用于他们的远程战略导弹发射。目前全球高阶重力场模型(如EGM96)分辨率已达50公里,已接近我国现有重力数据的分辨率,其保密价值也需要重新评估。这一形势使绝大部份测绘产品可以作为普通商品服务于全社会,测绘业从单一国家事业逐渐转变为社会主义市场经济的产业,这无疑为测绘学的发展注入了新的活力和扩大了发展空间,这也是一个有重要意义的历史性转变。

综上所述,由于以空间技术、计算机技术、通讯技术和信息技术为支柱的测绘高新技术日新月异的迅猛发展,测绘学的理论基础、测绘工程的技术体系、其研究领域和学科目标,正在适应新形势的需要发生着深刻的变化,表现为正在以高新技术为支撑和动力,进入市场竞争求发展,测绘业已成为一项重要的信息产业。它的服务范围和对象也在不断扩大,不仅是原来的单纯从控制到测图,为国家制作基本地形图的任务,而是扩大到国民经济和国防建设中与空间数据有关的各个领域。它必将随着21世纪更加成熟的信息化社会的到来向更高层次发展,在未来数字地球的概念和技术框架中占据重要的基础性地位。转贴于 二、数字地球和现代测绘学

地球上一切事件都发生在一定的空间位置,人类社会经济活动所需要的信息绝大部分(约80%)都与地理位置相关。中国21世纪议程62个优先发展项目中,约有40个需要建立或应用地理信息系统。数字地球是利用海量地理信息(即地球空间数据)对地球所做的多分辨率、三维的数字化描述的整体信息模型,便于人类最大限度地实现信息资源的共享和合理使用,为人类认识、改造和保护地球提供一种新的手段,这里在数字地球的概念中突出显示了地理坐标的框架作用,因此NSDI是数字地球的基础设施,要求提供(地球)空间数据框架,包括大地测量控制框架(国家定位网和重力控制网)、数字正射影像、数字高程模型、道路、水系、行政境界、公共地藉等基础地理数据集。在此框架上加载各类地球自然信息和人类社会经济活动等一切所需要和感兴趣的人文信息。为数字地球提供上述地球空间数据框架是测绘业本身的"专职",但又对测绘学提出了更高层的技术要求。

NSDI要建立在NII上,要在因特网上运行,要求开发功能强、效率高的因特网GIS软件。这表明还要大力发展测绘产品的计算机网络技术,它的技术基础是宽带、高速图形图象网络,当然其中宽带高速问题需要国家投资在NII中解决。数字地球构想的另一个高技术特点是虚拟现实模型。目前发展起来的全数字化摄影测量就能够利用功能强大的计算机系统或工作站,对数字化影象进行处理,建立立体地形或地物虚拟模型。但如何将这一技术用在因特网上对多种测绘产品和普通用户提供虚拟模型甚或虚拟现实模型,则是要进一步研究和发展的。数字地球是对真实地球及其相关现象的多分辨率、统一性的三维数字化整体表达,这里强调了统一性和整体性,要求全球多源数据无缝无边的连结和整合。从空间数据框架来说,其统一性和整体性是由大地测量来实现和给予保证的。大地测量是传统测绘的基础,对当前信息化测绘和构建未来数字地球更是基础的基础,即空间数据框架的框架。它要求全球采用统一的参考椭球模型和相应的地心坐标参考框架(如ITRF);全球统一的高程基准,即统一定义和使用的大地水准面;全球统一的重力测量基准(重力基本网);全球统一的地图投影系统。一切原有的测绘成果,特别是国家基本地图都要转换到上述全球统一的参考系中。数字地球对全球大地测量提出了更高更紧迫的要求。GPS配以少量SLR和VLBI站是各国保持和维护各自的地心参考框架的基本技术,但局部坐标到全球坐标的转换目前还难于达到优于米级的精度;全球高程系统的统一问题,大地测量学家经过几十年的研究,目前还是一个未能解决的难题,最终要通过全球重力数据,特别是新一代卫星重力计划和卫星海洋测高计划在国际大地测量协会的统筹和协调下实现。

海洋占全球面积的70%,海洋将是21世纪资源开发的主要竞争空间,海洋动力环境的变化(如厄尔尼诺现象)又是决定全球气候变化的主要控制"阀门"。数字地球向海洋测绘提出了挑战。从全球来说,目前海洋的精细测绘基本上还是空白,多波束测深技术的发展加速了各国领海海底地形的测绘,但要将陆地坐标参考框架以相近的精度扩展到海洋仍存在困难,海上GPS定位精度还低于5米;由于陆地高程基准不能用水准测量传递到海洋,在卫星测高技术的支持下用某种去掉潮汐影响的平均海面作深度基准,精度可达米级,和多波束测深精度相当。但广大的开阔深海的海底地形测绘不可能用船载测深仪完成,用卫星测高结合重力数据(低阶或中阶重力场模型)反演海底地形,目前试验精度可达10-100米。数字地球将要求海洋测绘技术有新的突破。

测绘学由于其技术的突破已日益向相关地学领域渗透。大地测量更成为研究地球动力学(包括海洋动力甚至大气动力)的重要技术手段,GPS监测已能提供全球板块运动和地壳形变精密数据,可用于研究地学灾害(地震、滑坡和火山爆发等)的预测;GPS已可以和VLBI相近的精度和频谱分辨率监测地球自转的变化,由此研究地球深部结构和动力过程及全球变化;专题GIS也成为环境灾害问题分析预测工具。数字地球最重要的功能之一是为解决21世纪人类面临的环境和灾害问题提供一个可供观察、分析、模拟和预测的全球信息系统,以期协调人与自然的关系。

我们赞成活数字地球或动态数字地球的提法,因为人类是生活在不断运动变化的地球上。现在在全球性的观测中,各种对地观测新技术已可能连续快速获取地球表面(或浅层)随时间变化的几何和物理信息,了解地球上各种现象及其变化。因此测绘学或者说测绘业则应当利用3S技术结合合成孔经雷达干涉技术(INSAR)以及其他新技术(如卫星重力探测技术等)对地进行观测,为构建活数字地球提供描述地球动态变化的地理信息产品。

数字地球构想是推动人类大踏步跨进信息社会的重大战略步骤,有挑战也有风险。测绘是数字地球的基础,测绘工作者也将是构造数字地球的"尖兵",也要求测绘学有新的发展和突破。

三、测绘学和地球空间信息学

在本文第一部分已谈及测绘学在新的技术进步推动下的现展趋势。从现代信息论的观点看,测绘学本质上就是一门关于地球空间信息的学科,传统的测绘受地面测量技术、时空尺度和精度水平以及投入的局限,其产品主要是单一的地形图和在地形图基础上编绘的专用地图。它不能反映、至少不能及时反映地球表面形态的变化,特别是大范围和全球变化。其产品制作周期长,已不能满足地区经济和全球经济高速发展的多种需要。信息技术加快了人类社会的运行速度。测绘学应该是提供人类生存空间自然环境及其变化信息的学科,它的学科内涵发生了巨大的变化,因此如何界定测绘学的含义,已是世界各国测绘工作者所关注的问题。于是从90年代开始,国际上将测绘学(Surveying and Mapping)更改为一个新词,以准确反映学科实质,Geomatics一词由此应运而生。随后,有关Geomatics的提法在我国学术界,主要是地学界成为热门话题,由于对其含义理解不同,其中文译名也是五花八门,现在将它译成"地球空间信息学",已基本得到认同。不管人们对Geomatics的含义如何理解,但根据ISO的标准定义和国际测绘联合会(IUSM)对"测绘学"的定义,两者的含义是基本类同的,只不过Geomatics所涉及的地球空间信息的范围更宽一些。Geomatics更准确地描述了测绘学在现代信息〖CD2〗通讯社会中的地位和作用,适应了现代社会对地球空间信息的极大需求的特点,因而发展和提高了测绘学的研究和工作领域,符合现代测绘学发展的实际。现代测绘工程的核心技术是空间技术,包括GPS、卫星遥感和航测,测绘的范围扩展到整个近地空间,例如近地空间航天器的导航定位,近地空间重力场的测定,大气层甚至电离层的信息;其支撑技术是信息技术,主要处理电磁波信息和影像信息,加之通讯、计算机网络等信息技术,使地球空间信息学科的理论和技术体系比传统的测绘学有了很大的发展和更新,由此,Geomatics适合于纳入数字地球的理论和技术框架。

随着数字地球构想的实施,测绘学面临一个历史性的发展新机遇,传统的或现代测绘学将以地球空间信息学的新面目立于地球科学分支学科之林,以更强的活力向前发展,前景良好。

四、建 议

本文漫谈了测绘学的发展及其与数字地球构想的关系。为在21世纪加速建设我国空间数据基础设施,发展我国的测绘学科和测绘事业,以迎接"数字地球"的挑战,根据我国目前测绘事业发展的现状,从一个侧面(主要是大地测量方面)提出以下建议:

1.尽快统一我国大地定位参考框架的建设,对近年来由各个部门独立建立的各等级GPS定位网进行必要的联测和统一整体平差,此举可望进一步加强部级的大地定位框架;

2.将沿海各部门100多个验潮站统一组织GPS联测,精密确定各验潮站水位标尺零点的大地高,填补陆海相接地带重力测量空白。此举为统一陆海大地水准面,建立海洋高程基准,研究海平面变化至关重要;

3.研究将陆地GPS定位框架向我国领海扩展的方案,着手建立我国包括海域的广域差分GPS定位系统;

上一篇: 建筑工程质量管理论文 下一篇: 法律法学论文
相关精选
相关期刊