故障树分析法汇总十篇

时间:2022-09-17 09:49:08

故障树分析法

故障树分析法篇(1)

中图分类号:U47 文献标识码:A

1南京产BRW400/31.5、BRW200/31.5液泵故障分析

1.1泵的某一吸液阀或排液阀卡住

由于长时间使用疲劳过度或锈蚀严重都可能导致弹簧断裂。吸排液阀的弹簧软或短及卸载阀坏都可以导致冲击过大使阀锥断裂。其次由于阀锥质量问题,热处理时硬度超过规定硬度也容易造成阀锥断裂。

1.2自动卸载阀主阀阀芯卡住不能动作

这一原因和人为因素有很大关系,由于没有定期更换易损件如滑套内的密封圈用的过久不更换,阀芯使用的太久磨损严重都能导致主阀阀芯卡住不动作。

1.3高压过滤器阻塞

主要原因是吸排液阀上破损的密封圈进入过滤器内。或由于长时间没有使用滤芯导致虑芯锈蚀严重,高压过滤器阻塞。

1.4自动卸载阀下部推动活塞卡住不动作

其原因是复位弹簧折断或没有复位弹簧,推力活塞磨损严重,组装不得当或导向套密封脱落导致导向套有毛刺。

1.5自动卸载阀主阀不起作用,先导阀出液小孔堵住

由于看泵人员不细心,液箱盖没有随时关闭,掉入杂物使液箱内液体变脏,堵住出液小孔。由于质量问题如开胶掉底。或没有定期更换清洗吸液过滤网,使小杂物进入先导阀堵住先导阀出液小孔。

1.6液箱内液位低

液箱内液位低泵不能吸进工作液导致不能排出高压液。由于泵箱内没有及时加入乳化液或由于泵箱开焊漏液。

1.7卸载阀未关闭

在有手动卸载阀的泵上如果手动卸载阀未关紧,导致自动卸载阀不工作,在压紧螺套未压紧的情况下卸载阀也不关闭。

1.8吸液管截止阀未打开

这一原因主要是截止阀损坏根本打不开或截止阀在打开的位置上实际是关闭的。

2乳化液泵站故障树的定性分析

对乳化液泵站进行定性分析的主要目的就是找出导致顶事件发生的所有可能的故障模式,即弄清系统(或设备)出现最不希望发生的事件(故障)有多少种可能性。

如果故障树的某几个底事件同时发生时,将引起顶事件(系统故障)的发生,把这些底事件组成一个集合的形式,这个集合称之为割集。

也就是说,一个割集代表了系统中一种故障发生的可能性,即一种失效模式。如果去掉其中任意一个底事件就不再是割集,则这个割集就叫做最小割集,最小割集发生时,顶事件必然发生。

综上所述,一棵故障树的全部最小割集的完整集合就代表了顶事件发生的所有可能性。

2.1计算此系统的最小割集

例如,该乳化液泵站的故障树中“泵的某一吸液阀或排液阀卡住”,以此树最上一级的中间事件暂做为顶事件,先将各个级的中间事件及底事件设为某些变量。

T1泵的某一吸液阀或排液阀卡住

Ga弹簧断裂

Gb 阀锥断裂

Gc 冲击过大

x1 锈蚀

x2 使用时间过长

x3 质量问题

x4 弹簧短或软

x5 卸载阀坏

处于故障树最下一级的中间事件是Gc ,对应的逻辑门为或门,所联系的底事件是x4 x5 ,因此

Gc = x4Ux5

对于上一级的中间事件Gb ,则是通过或门与底事件x3与Gc相联系,因此

Gb= x3UGc=x3Ux4Ux5

同理可知Ga= x1Ux2

最后可知顶事件T1的表达式为

T1= GaUGb = GaUx3UGc = x1Ux2U x3Ux4Ux5

2.2用最小割集表示出此系统的结构函数

在故障树中,只要任何一个最小割集发生,顶事件就会发生。

上面列举的故障树有5个最小割集K=(K1+K2+K3+K4+K5),只要任一个最小割集Kj(j=1、2…..5)发生时,顶事件必定发生。

Kj可表示为

这里将属于Kj的全部底事件用或门联结起来称作最小割或门结构。

所以该故障树的结构函数Φ(x)可以表示为:

此故障树的结构函数即为:

Φ(x)= x1Ux2Ux3Ux4Ux5

3乳化液泵站故障树的定量分析

对于给定的故障树,若已知其结构函数和底事件(即系统基本事件的发生概率),从原则上来说,应用容斥原理对事件和与事件积的概率计算公式,可以定量的评定故障树顶事件T出现的概率。

结合本故障树分析可知,底事件可定性为相容事件,设底事件x1 、x2 …xn 发生的概率各为q1、q2 …qn 则这些事件和与事件积的概率,可按下式计算:

当有n个相容事件时,积的概率

和的概率

当故障树包含两个以上同一底事件时,则必须用布尔代数整理简化后,才能使以上概率计算公式,否则会得出错误的计算结果。

用系统最小割集的表达式为K (x),系统最小割集结构函数为

式中,k是最小割集数,Kj(x)的定义为

求系统顶事件的发生概率,即是使Φ(x)=1的概率,只要对上式两端取数学期望,左端即为顶事件发生概率

如果将事件和的概率写作

继而,就可以计算该故障树顶事件的发生概率,

本故障树共有五个最小割集,以此为K1=x1 K2 =x2 K3=x3 K4=x4 K5=x5,各底事件的概率q1=q2=q3=q4=q5=0.1

利用排列组合的方式

五个底事件只有其中的一件发生时可求得

其中任意两件发生时可知共10种故障路线

=10×0.01=0.1

同理可知其中任意三件发生时也共有10种故障路线

F3=10×0.001=0.01

其中任意四件发生时共有5种故障路线

F4=0.0001×5=0.0005

其中五件底事件均发生时也是一种故障路线

F5=0.15=0.00001

则由公式

综上所算,顶事件为"泵的某一吸液阀或排液阀卡住"的故障树

顶事件发生的概率为0.41

4应用动态规划理论优化效果及结论

通过机采科液压车间全体职工的共同努力,乳化液泵站故障树的设计方案比原计划25天提前了5天,为车间班组人员以后下井维修提供了新的技术手段,同时也为以后车间的生产提供了保障。

参考文献

故障树分析法篇(2)

1 概述

1.1 故障树分析法

故障树分析是系统可靠性和安全性分析的工具之一,于1961年由美国贝尔实验室开发。它用事件符号、逻辑门符号和转移符号描述系统中各种事件之间的因果关系。故障树分析法是把所研究系统的最不希望发生的故障状态作为故障分析的目标,找出直接导致这一故障发生的全部因素,再找出导致下一级事件发生的全部直接因素,直至不需再查的因素为止。故障树分析法以故障树为根据,分析系统发生故障的各种原因和途径,在系统使用维修阶段,可帮助故障诊断、改进使用维修方案。

1.2 节段梁架桥机

某公司用于某跨海大桥的TP50/2300型节段梁架桥机,设计吊重荷载2300吨,为该项目施工的关键设备。该架桥机由主体结构(主梁、前支腿、后支腿、前后中支腿)、起升系统(起重天车、卷扬机具)、液压系统和电控系统等组成。该架桥机有前后两个中支腿。中支腿是整个架桥机的关键部件之一,其主要起着支撑和顶升整个架桥机、驱动架桥机前移过孔等作用。它由滑动支承、回转铰座、纵移机构、主桁架支撑、旋转台、横移机构、支撑梁和顶升装置等组成。中支腿纵移机构位于主桁轨道正中的带孔槽钢滑道平面内,其工作原理是通过液压站控制液压纵移油缸伸缩,利用纵移车上的两个Φ60销子在主桁槽钢滑道上来回插拔来实现整个架桥机的前进。其液压系统工作原理见图1。图中:1-油路开关,2-油泵,3-滤油器,4-溢流阀,5-单向阀,6-换向阀,7-单向阀,8-分流集流阀,9-快速接头,10-液压油缸,11-带排气测压接头。在施工过程中发现架桥机两边主梁走行不同步,由于架桥机过孔时两边主梁走行不同步会造成整机失稳,具有极大的危害性,因此必须及时解决该故障。

2 故障树的建立

建造故障树的目的是通过建树过程更好地对系统进行了解,从中找出容易发生故障的环节,以便更好地进行维修,并为故障树定性分析提供前提。

2.1 建树的方法和步骤

在建树之前,应收集并分析相关技术资料。建树的方法有很多,对文章中的故障可以采用演绎法进行人工建树。演绎法建树应从顶事件开始由上而下,循序渐进逐级进行,步骤如下:(1)分析顶事件,寻找引起顶事件发生的直接的必要和充分的原因。将顶事件作为输出事件,将所有直接原因作为输入事件,并根据这些事件实际的逻辑关系用适当的逻辑门相联系。(2)分析每一个与顶事件直接相联系的输入事件。如果该事件还能进一步分解,则将其作为下一级的输出事件,如同(1)中对顶事件那样进行处理。(2)重复上述步骤,逐级向下分解,直到所有的输入事件不能再分解或不必要再分解为止。这些输入事件即为故障树的底事件。

2.2 构建故障树

文章针对“两主梁纵移走行不同步”这一故障采用故障树分析法进行系统分析,建造故障树,以快速发现故障原因,及时解决该故障。首先做如下假设:(1)各底事件之间相互独立;(2)事件均为二值性且不存在外界干扰因素;(3)各管路和连接接头完好。在故障树中,顶事件、中间事件、底事件分别用T、M、X符号表示,树中各符号的意义分别为:(1)顶事件T:两主梁纵移走行不同步。(2)中间事件M:M1为主梁摩擦力相差过大,M2为主梁荷载不同,M3为同步阀故障,M4为纵移油缸故障,M5为同步阀失灵,M6为纵移油缸外泄,M7为纵移油缸内泄。(3)底事件X:X1为主梁摩擦系数相差过大,X2为主梁荷载相差过大,X3为同步阀误差大,X4为固定节流孔堵塞,X5为主阀芯移动受阻,X6为系统压力不足,X7为减压阀弹簧失灵,X8为密封圈破损,X9为液压缸体变形,X10为液压缸体有划痕,X11为柱塞与缸体配合磨损严重。通过分析,建立该故障的故障树见图2。

3 故障树的分析

3.1 定性分析

故障树定性分析的主要目的是:寻找导致与系统有关的不希望事件发生的原因和原因的组合,即寻找导致顶事件发生的所有故障模式,辨明潜在的故障。一个系统的最小割集代表一种故障模式,故障树定性分析的任务就是要寻找故障树的全部最小割集。计算最小割集的常用方法有上行法和下行法两种。针对本故障,文章采用“下行法”求最小割集。由于本故障树均由或门构成,因此它的最小割集为{X1}、{X2}、{X3}、{X4}、{X5}、{X6}、{X7}、{X8}、{X9}、{X10}、{X11},即这些事件中只要有1个发生就会导致顶事件的发生,在诊断过程中需要根据实际工况逐个进行分析判断。

3.2 故障排查及诊断分析

由故障树可以清楚地看出造成该故障的所有因素,可以用排除法对最小割集进行排查。步骤1:对于造成M1主梁摩擦力相差过大的所有底事件X1、X2,通过观察可以发现两主梁下部与滑板接触面均平滑且良好,两边主梁荷载基本相同,故可排除{X1、X2}。步骤2:对于M6纵移油缸外泄,通过外观检查发现液压缸无漏油现象,可排除{X8、X9}。对于M7纵移油缸内泄,将两纵移油缸不通过同步阀而通过两单动阀进行联动试验,发现两油缸离一个行程还有300mm左右时,两油缸均较架桥机滞后15mm,说明两油缸同步,无内泄现象,可排除{X10、X11}。步骤3:针对M3同步阀故障,将纵移油缸通过同步阀进行过孔联动,通过测量发现,施工方向左侧油缸在伸出500mm时,较右侧油缸滞后20mm;将左右侧纵移油缸的油管对换,并通过同步阀进行过孔联动,通过测量发现,施工方向右侧油缸在伸出500mm时,较左侧油缸滞后16mm。因此,可初步判定是同步阀故障。为避免发生误判,采用“比较法”,即把同步阀卸下,换上同型号的合格的同步阀,重复上述检查过程,发现两纵移油缸伸出速度相同,两主梁纵移走行同步,从而可确定故障的真实原因在同步阀。故障原因缩小在{X3、X4、X5、X6、X7}中。步骤4:对卸下的同步阀进行解体检查,发现主阀芯被污物卡死,无法移动,使两出口流量不同,从而导致进入两纵移油缸的液压油量不同,致使两主梁走行不同步。对主阀芯进行清洗、装配好后重新安装在油路中,运行发现两主梁纵移走行同步良好,从而确定故障原因为X5。

4 结束语

文章介绍了故障树分析法,并通过发生的故障实例介绍了故障树的分析程序。通过对故障树进行定性分析,快速有效地找出故障发生的原因,减少了不必要的工作,节省了诊断时间,取得了较好的效果。

参考文献

[1]苏凡囤.基于FTA的轮式推土机液压系统故障模式研究[J].中国工程机械学报,2012(3):21-26.

故障树分析法篇(3)

1 故障树分析法简介

故障树分析法(Fault Tree Analysis,FTA)是一种自上而下逐层展开的图形分析方法,是通过对可能造成系统故障的硬件、软件、环境、人为因素等进行分析,画出逻辑框图,也就是故障树,再对整个系统中发生的故障事件,由总体至部分地按树状逐级进行细化分析,这样能够判明基本故障、确定故障发生的原因、故障的影响和故障发生的概率等。故障树分析法的步骤常因分析对象、分析目的等地不同而略有区别。但一般可以按以下四个步骤进行,即;

(1)建立故障树;

(2)建立故障树的数学模型;

(3)故障树的定性分析和定量分析。

故障树分析法用机各系统的故障诊断,是因为它具有如下几个特点:

(1)故障树分析法可以针对某一特定的故障作层层深入的分析,用清晰的图形直观、形象地表述系统的内在联系,指出部件故障与系统故障之间的逻辑关系。

(2)故障树可以清楚地表明,系统故障与哪些部件有关系,有什么关系,以及关系的紧密程度。同时,也可以从故障树看出元部件发生故障后,对整个系统的工作有无影响,有什么影响,有多大的影响,以及通过何种途径产生影响。

(3)故障树建成以后,对于没有参与过系统设计与试制的管理与维修人员来说,是一个形象的直观的维修指南,在实际维修应用中可以大大缩短维修人员的培训时间,节约对维修人员的培训费用[1]。

2 建立故障树的方法与步骤

先选定系统中最不希望发生的故障事件作为顶事件,接下来第一步是找出直接导致该事件发生的各种可能的因素或各因素的组合,比如硬件故障、软件故障、环境因素、人为因素等等。第二步是找出导致第一步中各因素的直接原因。按照此方法向下演绎,一直追溯到引发系统故障发生的全部原因,即分析到不需要再分析的底事件为止。然后,再把各种事件用对应的符号和适用于它们的逻辑关系的逻辑门和顶端事件相连,这样就构成了一棵以顶事件为根,中间事件为节,底事件为叶的有若干级的倒置的故障树。

3 故障树分析的数学模型

故障树是由所有底事件的“并”和“交”的逻辑关系连接构成,因此可以用结构函数作为数学工具,来建立故障树的数学表达式,以便对故障事件作出定性分析和定量计算。为了简化分析起见,假设分析的零部件和系统只有两种状态,正常或故障;且假设零部件的故障是相对独立的。以由n个相互独立的底事件构成的故障树作为研究对象。

设是表示底事件的状态变量,取值0或l,设表示顶事件的状态变量,也取值0或1,则有如下定义:

=

=

因故障树顶事件是系统所不希望发生的故障状态,即=1与此状态相对应的底事件状态为零部件故障状态,即=1。显而易见,顶事件状态完全取决于底事件,即顶事件的状态必须是底事件状态的函数,则有=(X)=(,,…,),称(X)为故障树的结构函数,它表示系统状态的一种逻辑函数,其自变量为该系统各组成单元的状态。

3.1 与门结构函数

如果一与门故障树,=1,=1,…,,则其结构函数为(x)=1,表示当全部零部件都发生故障时,系统才发生故障。反之,只要其中一个=0,则(x)=0,表示只要有一个零部件不发生故障,则顶事件不发生,即系统正常。

3.2 或门结构函数

如果一个或门故障树,=1,而其它=0,则其结构函数为(x)=1,表示当一个零部件发生故障,则系统就发生故障。反之,全部=0,则(x)=0,表示所有零部件不发生故障,则顶事件不会发生,即系统正常。

4 故障树的定性分析和定量计算

4.1 定性分析

对故障树定性分析的主要目的是:寻找导致与系统有关的不希望事件发生的原因和各种原因的组合,即寻找导致顶事件发生的所有故障模式。从中确定系统的最薄弱的环节,从而采取相应的措施,予以补救。比如对关键的零部件采取故障监测与诊断的措施就可以减少排除故障的时间。

割集是导致故障树顶事件发生的若干底事件集合。一个割集代表了系统故障发生的一种可能性,即一种失效模式。若将割集中含底事件任意去掉一个就不成为割集,则称此为最小割集。路集是故障树中一些底事件的集合。若将路集中所含底事件任意去掉一个就不能称为路集,而称为最小路集。由于一个最小割集是包含有最少数量而又最必须的底事件的集合,而全部最小割集的完整集合则代表了给定系统的全部故障。因此,最小割集的意义在于它描述出处于故障状态的系统中所必须排除的故障,显示出系统中最薄弱环节。对故障树进行定性分析的主要目的是查清系统出现某种故障有多少种可能性,从而确定系统的最小割集,以便发现系统的最薄弱环节[2]。

4.2 故障树的定量计算

故障树的定量计算就是利用故障树这一逻辑图形作为模型,计算或估计顶事件发生的概率及系统的可靠性指标,从而对系统的可靠性及其故障进行定量分析。

一般情况下,故障分布假定为指数分布,根据底事件的发生概率,按照故障树的逻辑结构逐渐向上运算,即可计算出顶事件的发生概率。假设事件,,…,的发生概率为,,,由这些底事件组成的不同逻辑门结构及其顶事件发生的概率可按照下列公式进行计算:

(1) 与门结构事件发生概率

(2) 或门结构事件发生概率

(3) 顶事件发生概率

如果某故障树的全部最小割集,,…,,并假设不考虑同时发生两个或两个以上零部件故障,各最小割集中没有重复出现的底事件。在此前提下,顶事件发生概率为:

式中,为在t时刻第j个最小割集存在的概率;为t时刻第j个最小割集中第t个部件的故障概率;为最小割集数;为顶事件的发生概率,即系统的不可靠度。

5 故障树分析法分析飞机故障举例

5.1 PACK出口超温故障分析

当PACK组件出口温度传感器探测到PACK的出口温度大于 95℃时,此故障就会被激发。此故障出现时,一般只有ECAM的警告信息和ECS报告。和压气机超温故障一样,在出现此类故障时,都应该先检查CFDS上有无相关信息,如果有,直接根据CFDS上的提供的信息进行排故。当CFDS上没有信息时,也要检查ECS的报告。PACK出口超温故障会导致空调系统中区域温度控制部分出现问题,因此出现此类故障时,必须马上排除。下面就针对PACK出口超温故障进行故障树的分析[3]。

5.2 故障树的建立

(1)顶事件。在空调系统中,PACK出口超温故障会导致客舱或驾驶舱的温度不能调节,飞机客舱不能进行正常的增压,飞机驾驶舱的仪表和电子设备舱的设备得不到正常的冷却,在故障等级中属于危险性的故障,要求飞机设计时发生此类故障的概率为10-7每飞行小时。一旦发生此类故障,将极大地降低飞机的安全裕度,极大地加重了机组的负担与压力,使其无法正确完成操作,有可能引起飞机损坏或人员伤亡。建立此故障树的边界条件为:不考虑导线故障、环境因素和人为因素造成的故障,只考虑空调系统自身的故障。

(2)中间事件。参考A320ASM手册21-61-00(PACK组件温度控制)可以看出,PACK出口温度超温故障的触发要使PACK出口温度传感器感受到95℃才会激发警告。因此,除了PACK出口温度传感器本身故障以外,只有可能是从防冰活门或旁通活门出来的热引气才会使PACK出口温度出现超温。

(3)底事件。根据A320的ASM手册21-61-00可以知道,如果旁通活门位置非正常的打开,那么引起此现象的原因是旁通活门机械故障或控制它的PACK 控制器发出错误的控制信号。如果是防冰活门非正常打开造成,那么引起防冰活门不正常打开的原因一般有两个,一个是防冰活门本身故障,二是控制防冰活门的气动传感器有故障。

5.3 定性分析

通过以上的PACK出口温度传感器、防冰活门机械故障、旁通活门机械故障的分析,可以得出PACK组件出口超温的故障树如下图1所示。表1列出了故障树中各符号的具体含义。

6 结语

故障树分析法是系统可靠性研究中常用的一种分析方法。故障树分析法是在弄清基本失效模式的基础上,通过建立故障树的方法,找出系统故障原因,分析系统薄弱环节,以改进原有设备,指导维修,防止事故的发生。故障树分析法本身作为故障分析的一种行之有效的方法与飞机现有的故障监控系统相结合,可以弥补飞机内部故障监控系统无法将环境因素与人为因素计算在内的缺陷,提高维修能力,为提高航空公司的竞争力提供了强有力的技术支持。

参考文献:

故障树分析法篇(4)

关键词:供应链 故障树 最小割集

随着商业竞争的日益加剧,人们对供应链可靠性也越来越高度关注,供应链管理在企业活动中的地位日益突出,已经成为竞争优势的重要组成部分,供应链系统是一种较为复杂的系统,它的正常运行会受到许多不确定因素影响,既受到外在环境的影响又受到内在条件的制约。供应链作为一个连续的动态系统,各环节环环相扣、彼此依赖、相互影响;任何一个环节出现问题,都可能波及其他环节,影响到整个系统的可靠运行。所以分析和提高企业供应链的可靠性也变得日益迫切。本文运用故障树来对企业工业链进行研究,从中发现供应链系统中的薄弱环节,从而引起对这些薄弱环节的重视,降低供应链发生失效的概率。

故障树分析法及相关定义

故障树分析法(FTA)是将系统故障的各种原因(包括硬件、软件、环境、人为因素),由总体到部分,按树状层次结构,自上而下,逐层细化,画出故障原因的各种可能组合方式和(或)其发生概率的一种分析技术的分析方法。王少萍(2000)以及陈国华、张根宝、任显林、赵喜(2009)指出在故障树分析法中,把最不希望发生的故障状态称为顶事件,追查导致这一状态发生的直接原因称为中间事件,位于故障树底部的事件称为底事件,所讨论的是故障树中某个逻辑门的输入事件,在故障树中不进一步往下发展。顶事件、中间事件和底事件分析出来后再用逻辑门把这些事件进行连接,“逻辑或”表示的是:下端的输入事件至少有一个发生,上端输出事件就发生。“逻辑与”表示的是:下端的输入事件同时发生,其上端输出事件才发生。

供应链系统的故障树模型建立

(一)基本假定

对于供应链的结构模型不同研究有着不同的解释,有研究认为它是线状结构,有的则认为它是链状结构,还有研究认为它是网状结构。本文认为,供应链是由供应商、制造商和销售商构成的三级结构模型。在这里供应商也有自身的供应商(它有m个供应商组成),销售商同样也有自身的销售商组成(它有n个销售商),如图1所示。整个供应链出现故障,肯定是由于供应商出现失效,制造商失效或者销售商失效。本文只研究一种拉动生产即供应商只在制造商下订单的时候才准备备货(也就是制造商是没有库存的),销售商在制造商有货的时候进行销售,所以只要其中任意发生失效,整个供应链产生失效。笔者将供应商失效的直接原因归为7类:信息沟通不畅、设备不够完备、技术水平有限、资金周转不灵活、原材料质量和性能的问题、运输设备不完善和其他人为问题。制造商失效的原因有6类:设备不够完备、技术水平有限、资金周转不灵活、原材料质量和性能的问题、运输设备不完善和其他人为问题。销售商失效的直接原因有7类:信息沟通不畅、市场预测不准确、销售计划不合理、运输计划不合理、运输设备不完善、市场信息反应迟缓和其他人为过失。

(二)故障树的建立

整个供应链的失效可以作为一个顶事件,供应商、制造商、销售商作为中间事件,只要有一个失效,整个供应链失效,所以供应商失效、制造商失效、销售商失效与整个供应链失效是一个“逻辑或”的关系,供应商下面有m个供应商(i=1,2…m),只有它们全部失效,供应商才会失效,所以它们之间的关系是“逻辑与”的关系,销售商与下面的分销商(i=1,2,3…n)同样也是这种关系,导致那些分供应商与分销售商失效的直接原因可以作为底事件,与上一层是种“逻辑或”的关系,这样供应链的故障树就可以用图2表示。

(三)供应链故障树的诊断

1.对故障树进行定性分析。每个最小割集代表一种故障模式,只要把最小割集(c1,c2..省略)求出来,则顶事件T就可以由故障树的最小割集表示:

式中,D表示最小割集C中基本事件的下标集。通过下行法我们可以求出供应链故障树的最小割集,由于现在建的故障树有m个分供应商和n个分销商构成,从而形成7m+7n+6个最小割集。

2.供应链故障树的诊断。最小割集发生是导致系统故障的直接原因,把最小割集作为整体逐个进行诊断,最小割集的诊断顺序就是按着最小割集的诊断重要度来进行排序的,诊断重要度大的最小割集进行最优先的诊断,最小割集诊断重要度是指当系统发生故障时,最小割集发生的概率。最小割集诊断重要度公式为:

DIFMCSi=P(MCSi | S)(1)

根据条件概率可以计算公式(1)得到:

DIFMCSi=P(MCSi | S)=

= (2)

公式(1)中MCSi是指第i个最小割集,DIFMCSi是最小割集诊断重要度,P(MCSi | S)是指在供应链系统发生故障的情况下,第i个最小割集发生的概率。在公式(2)中如果最小割集发生故障,那么整个供应链系统肯定会发生故障,所以P(MCSi | S)=1,所以公式最小割集重要度的排序就完全依赖于最小割集发生故障概率的大小。当了解到最小割集的重要度之后,才可以知道哪个环节最能引起系统出现故障,从而加以诊断,再进行细分可以进一步确定最小割集组成单元的重要度,对优化整个故障树更有益,组成单元的诊断顺序是受其诊断重要度决定的,诊断重要度大的优先进行诊断,组成单元的诊断重要度公式:

(3)

其中,I(i)pk(t)是指第i个最小割集第k个组成单元的诊断重要度,任意一个第i个最小割集第k个组成单元故障概率是用Fk(t)表示,系统与各个组成单元部件的结构关系用其可靠性模型Fs(t)=g{Fk(t),k=1,2…7m+7n+6}表示,在(3)式中,Q(t)为除k组成单元外各个部件的故障概率。公式表示的意义是:由于第i个割集第k个组成单元变化使系统顶事件概率发生变化而变化,即第k个部件状态取1值时(部件k发生故障)和第k个部件状态取0值时顶事件的概率之差。

通过最小割集重要度和最小割集组成单元重要度的诊断,就可以完成对故障树的诊断。首先,列出供应链故障树的所有最小割集,根据其诊断重要度对最小割集从大到小排列。其次,选定诊断重要度大的最小割集假定供应链故障树的最小割集为C1,并对其重要度最大的组成单元假设为E1进行诊断。再次,把最小割集分成两部分,一部分为包含E1的,一部分是不包含E1的,如果E1诊断出现故障则选定包含E1的那部分最小割集,反之则选定不包含E1的那部分最小割集。最后再选定诊断重要度最大的最小割集E2来代替E1重复第二、三步直到整个故障树诊断完毕,使得供应链系统出现失效时,我们能够快速地对其进行维护,节约更多的人力、成本和时间。

实例分析

某一大型国营企业的供应链由两个零部件供应商、一个制造商和三个分销售商组成,经过此家企业多年的资料的分析,供应商(x1 x2)失效的原因分别是(x12 x14 x15)(x23 x25 x26),概率为(0.310、0.125、0.090)(0.150、0.233、0.070),制造商z失效的原因为(z1 z3 z4 z6),概率为(0.253、0.062、0.038、0.132);分销商(Y1 Y2 Y3)失效的原因分别是(Y14 Y17)(Y23 Y25)(Y31 Y36),概率为(0.280、0.100)(0.170、0.340)(0.120、0.210)。由此可以得到这个供应链的最小割集和相关的重要度(见表1)。

总之,从表1可以看出Z1的最小割集发生的概率是最大的,它的组成单元重要度也是最大的,所以如果系统供应链发生故障我们应该从Z1开始进行检验,然后按照本文前面所提的诊断步骤进行诊断,从而可以有效地节省时间和成本。

参考文献:

1.王少萍.工程可靠性[M].北京航天航空大学出版社,2000

2.陈国华,张根宝,任显林,赵喜.基于故障树分析法的供应链可靠性诊断方法及仿真研究[J].计算机集成制造系统,2009,15(10)

3.周经伦,孙权.一种故障树分析的新算法[J].模糊系统与数学,1997,11(3)

4.张得海,刘德文.物流服务供应链的故障树分析及优化[J].企业管理,2009,290(14)

5.LI Hui,LI Xiangyang,SUN Jie. Supply chain partnerships diagnosis management [J].Computer Integrated Manufacturing Systems,2007,13 (10)

6.刘元洪,罗明,刘仲英.供应链的可靠性管理[J].现代管理科学,2005(5)

作者简介:

故障树分析法篇(5)

1、引言

1.1研究背景及意义

随着我国经济快速的发展,工程项目建设的发展也十分迅速。我国工程项目管理水平提高的同时,工程项目建设暴露了不少的问题,急需进一步深入系统研究。工期延误会造成巨大的经济损失。除了运营收入的损失,逾期的财务、管理等费用也会导致工程直接费和间接费的增加,承包商也可能面临误期损害赔偿费风险,影响声誉和信用等。按期完工是建设工程项目成功的重要标志之一。因此,系统全面地识别工期延误的原因和影响因素,对工期出现的风险进行有效的管理,有利于帮助项目管理者预防并及时妥善地处理好工期延误问题,对提高工程项目经济效益、降低工程风险具有重要的作用。

1.2国内外研究现状

国外研究现状:El-Razek等[1](2008)对埃及工程项目工期延误的因素进行分析,分别从承包商、工程师和业主的角度对主要因素进行了分析。研究主要集中于施工阶段。Yang等[2](2010)则对工程项目计划和设计阶段导致工期延误的原因进行了研究,研究表明造成计划和设计阶段工期延误的最主要的原因是业主对项目的要求变更。

国内研究现状:国内学者对项目工期延误则侧重于采用定量分析方法。刘睿等[3](2007)对影响因素进行分类,总结了造成工期延误的重要原因。陈耀明等[4](2010)将工程项目工期延误风险因素分为与业主有关的风险、与承包商有关的风险、与设计有关的风险、与监理有关的风险、与材料有关的风险和自然条件风险六类,提出了工程项目工期延误风险分析的评价指标体系,并进行模糊优先关系法进行定量分析。

2、工期延误故障树模型

2.1模型建立

故障树定量分析法能将所有因素综合考虑,从逻辑推理出发,有效的对工程项目工期延误风险进行识别和控制。本文将延误的主要因素分为业主、设计、施工、不可抗力,按逻辑推理将工期延误的主要因素进行归纳总结,并建立工程项目工期延误故障树模型(图1),同时参考相关若干个变电站工程施工情况,编制了底事件的发生概率表(表1),通过使用模拟数据运行故障树模型,从而分析各因素的发生概率,以进行风险识别与控制。

2.2概率重要度与结构重要度计算

可以从上述数据看出,工期延误发生概率高达59.08%,可见工程项目施工按时完工存在一定的困难和阻碍。为了辨别促使高概率发生的原因,本文对概率重要度数值最大的2个中间因素,施工因素和业主因素进行了进一步重要度分析。根据进一步的概率重要度分析,本文将对工程款拖欠、设计修改、工程师错误指令和施工方案4个因素进行风险控制。

3、工期延误风险控制

3.1通过融资模式,转移资金供应的风险

建设方可以通过融资建设模式进行风险转移。工程项目的施工承包商具有施工权和一定时间范围内的经营权,在经营期内,建设方通过项目的经营利润来偿还工程款。在特许的经营期过后,施工方可以将项目无偿或是很低廉的名义价格交还给建设方。融资的方法能有效的减少建设方的投资成本,也减轻了资金的负担,转移了因资金不足导致项目无法实施下去的风险。

3.2使用设计监理工程,分散设计风险

为了分散设计阶段存在的风险,建设方可委托设计监理工程师保证设计质量。在设计工作开始之前,首先应由监理工程师审查设计单位所编制的进度计划的合理性;在进度计划实施过程中,监理工程师应定期检查设计工作的实际完成情况,并与计划进度进行比较分析,一旦发现偏差,就应在分析原因的基础上提出措施,以加快设计工作进度,同时控制设计质量,使设计错误和变更不发生或少发生,尽可能使设计图纸在保质、保量的前提下,按规定时间提供,从而使工程项目在拟定的进度目标内实现。

3.3避免工程师错误指令以降低工期延误概率

建设工程中因工程师的错误指令而延误工期的案例不在少数。工程师的错误指令不仅可能延误工程工期,并且可能导致建设工程的资源和资金遭到损失。避免工程师的错误指令可以有效降低建设工期延误的概率和其他不必要的损失。建设项目工程师应积极开展合理化建议工作,大力提倡采用新技术、新材料应用。严格审核工程技术文件,验收各类隐蔽工程、单位主体。

3.4确保施工组织设计及主要技术措施方案

施工组织设计是对施工活动实行科学管理的重要手段,内容包括工程概况、总施工进度计划、物资需求计划、质量安全标准、技术工艺等。为了保证工程按时保量的完成,施工组织设计编制应当根据工程特点进行针对性的组织设计,而不是抄袭过往的工程样本。使用WBS、CPM、PERT等方法合理地编制施工进度计划并进一步实施优化;施工措施方案也是工程施工重要依据之一。优秀的措施方案能最快的指导施工人员如何施工,如何分配资源和使用资源,提高施工的效率,降低返工和施工瓶颈发生的可能性。

4、总结

工程项目是一个复杂的系统,工期延误的影响因素之间并不是相互孤立的,一个因素的发生往往伴随着其它因素的发生,从而共同引发工期延误。系统全面地识别工期延误的原因和影响因素,对工期出现的风险进行有效的管理,有利于帮助项目管理者预防并及时妥善地处理好工期延误问题,对提高工程项目经济效益、降低工程风险具有重要的作用。

参考文献

[1]M.E.A.El-Razek.H.A.Bassioni.A.M.Mobarak.CausesofDelayinBuildingConstructionProjectsinEgypt.JournalofConstructionEngineeringandManagement[J].2008.134(11):831~841

[2]Jyh-BinYang.Pei-ReiWei.CausesofDelayinthePlanningandDesignPhasesforConstructionProjects.JournalofArchitecturalEngineering[J].2010.16(2):80~83

[3]刘睿,张宇清,赵振宇.建设项目中的工期延误影响因素研究.建筑经济[J].2007.07:114~118

[4]陈耀明.工程项目工期延误风险分析与评价.工业技术经济[J].2010,29(1):98~102

故障树分析法篇(6)

Abstract:With the rapid development of the construction industry in our country, the law on the construction industry continuously improve, in construction enterprise happened in the legal dispute also more and more frequent, how to identify the construction enterprise construction process legal risk source establish a legal risk management system and prevention law the core issue of the disputes.For the law risk source's identity, using the fault tree, the qualitative evaluation of the legal risk source with the combination of conditional expectation triggered both subjective and objective weight, the advantages of empowerment many of the target of the analysis and evaluation, and improve the accuracy of the evaluation results. Example to prove that through the fault tree method FTA qualitative and quantitative analysis, we can be more accurate evaluation, comprehensive and detailed determine the construction enterprise legal risk source analysis to identify.

Keywords: The fault tree;Architecture;The law risk

1.引言

我国的建筑市场正在不断的走向法制化、规范化、有序化的轨道,与之相伴的是各种各样的相关的法律纠纷的频繁的出现,加强建筑企业的法律风险控制并分析找出重点的源头加以排查成为了当前的热门话题。

故障树模型的分析方法FTA是1961年由美国贝尔实验室的华生(H.A.Watson)和汉塞尔(D.F.Hansl)首先提出的,并用于“民兵”导弹的发射系统控制。此后,许多人对故障树分析的理论与应用进行了研究。目前丌A是公认的对复杂系统进行安全性、可靠性分析的一种好方法,在航空、航天、核化工等领域得到了广泛的应用【1】。故障树分析评价法师系统安全分析的主要方法之一,可以定性定量的对系统进行分析,它可以被用来鉴别系统中的潜在的弱点和导致出现风险的最可能因素,是一种逐步演绎分析,也可以作为一种很有价值的设计或是诊断工具[2]。

2.风险故障树分析评价模型

2.1 故障树FTA工作流程

故障树FTA工作流程如图1所示:

2.2 故障树结构分析奇函数构造

设Xi表示底事件的状态变量,仅取0和1两种状态。

Φ表示顶事件的状态变量,也仅取0和1两种状态,则有:

故障树中各基本事件对顶上事件影响程度不同。结构重要度分析是分析基本事件对顶上事件的影响程度,它是为改进系统安全性提供信息的重要手段。结构重要度判断方法一般利用最小割集分析判断方法。

对故障树进行定量的计算可以通过底事件发生的概率直接求顶事件发生的概率,也可利用最小割集求顶事件发生的概率(分精确解法和近似解法)等。该文章用如下公式计算:

上式中:Xi―基本事件;qi ―基本事件发生概率。

得出顶端事件发生概率后,可用以下公式计算出底端事件关键重要度,底端事件关键重要度越大说明对顶端事件影响越大。

3.施工企业法律纠纷发生的形式及原因

3.1 施工企业法律纠纷发生的形式

通过对上海某施工企业进行实际调查,并通过访谈和调查问卷分析,得出已发生法律风险的风险源头,并通过专家打分评价的方法对其发生概率进行了统计,如下表1所示:

3.2 法律风险故障模型建立及定性分析

施工企业法律风险故障树模型如图2所示:

图2中字母所代表的含义如下:

X1:勘察、设计及施工等图纸问题

X2:手续(单位资质、施工许可等)齐全问题

X3:社会周边关系(拆迁、周边关系等)处理问题

X4:合同执行问题

X5:施工过程中质量问题

X6:施工过程中安全问题

X7:施工过程中不可抗力等

X8:竣工验收中质量纠纷

X9:竣工验收中工期纠纷

X10:竣工验收中费用纠纷

X11:系统风险预警机制不完善

X12:事先未考虑没有应急预案

X13:未足够的重视采取相应处理措施

X14:风险控制措施不当

定性分析计算,对施工法律风险进行FTA分析,首先运用布尔代数法简化计算:

(4)

通过以上计算分析得出该故障树的最小割集共3*4*3*4=144个,得出,该施工企业法律风险发生的潜在因素共144个。

根据式(1)、(2)、(4)可以计算出顶端事件发生的概率P(T):

根据上面公式(3)可以计算出各底事件的关键重要度,如下所示:

由上计算可以得出建立施工企业法律风险机制的关键重要度最大,想要有效的控制施工企业的法律风险最终的的关键部位是建立切实可靠的风险预警机制。

4.结语

目前,对于建筑施工企业领域的法律风险控制研究的相对较少,建筑企业发生法律纠纷,不仅对自身的企业效益影响巨大,而且带来无法估量的无形损失,该文章通过故障树FTA法分析找出企业自身关于法律风险控制存在的不足,确定引起法律纠纷风险的关键部位和重点部位加以控制和预警,并对薄弱的环节进行控制和风险规避,减少施工企业法律纠纷风险的存在和威胁,对建筑施工企业有积极的作用,值得进一步的加以推广利用。

参考文献:

[1]罗云,樊运晓,马晓春.风险分析与安全评价[M].北京:化学工业出版社,2004.

[2]雅科夫.y.海姆斯.风险建模、评估和管理[J].西安交通大学出版社,2007.

[3]史定华,王松瑞.故障树分析技术方法和理论[M].北京:北京师范大学出版社,1993:

38-181.

[4]孙红梅,高齐圣,朴营国.关于故障树分析中几种典型重要度的研究[J].电子产品可靠性与环境试验,2007,4(2):39-42.

故障树分析法篇(7)

中图分类号:U292 文献标识码:A 文章编号:1674-098X(2016)11(b)-0078-02

1 故障树分析方法概述

1.1 故障树分析法简介

故障树定性分析就是将致命性故障或灾难性危险等产生的原因由树干到树枝逐级细化,进而分析致命性故障或灾难性危险与其产生原因之间的因果关系,进而找出所有可能的风险因素。故障树定量分析是由下至上依据底层事件发生的概率以及逻辑门关系,算出系统总事故的概率,并且还能将底层事件风险依据概率大小排序,并针对性确定风险控制措施和方案。其一般流程为:选择顶事件+构造故障树+定性识别出导致顶事件发生的所有底层事件+定量分析计算顶事件发生概率及底事件的重要度+提出各种风险控制措施和方案。

在轨道车辆工程中,可运用故障树分析车辆已暴露的故障,进而获得影响车辆正常工作的关键要素,并进行针对性质量控制,也可以在车辆研制的初始阶段对其进行建树分析,进而确定设计中的薄弱环节,提出改进措施。

1.2 故障树的建立

在故障树分析中,位于故障树顶端的是故障树分析的目标和关心的结果事件,定义为“顶事件”,将所分析系统的各种故障和失效、不正常情况等定义为“故障事件”,用“成功事件”定义所分析系统各种正常状态和完好情况。将位于顶事件与底事件之间的中问结果事件定义为中间事件。常用的符号包括事件符号、逻辑门符号和转移符号等。

在建立故障树前,首先要对系统进行全面深入的了解。系统的设计、制造、安装调整、使用运行、维修保养等方面的技术文件和数据资料等都要被分析和研究。除了要考虑系统本身的因素外,还要考虑人为因素及环境因素的影响。对系统及单元的功能和失效以及人为因素及环境因素,应给予明确的定义。在故障树分析中,将由单元本身引起的事件称为“一次事件”,将由人的因素或环境条件引起的事件称为“二次事件”。建立故障树的具体步骤如下。

1.2.1 确定顶事件

通常将所分析系统最不希望发生的致命性故障或灾难性危险作为该系统故障树分析的顶事件。因此,对一个系统而言,顶事件并不唯一,可以有多个。任何需要分析的系统故障或灾难性危险,只要是可以分解且有明确定义,则都可以作为该系统故障树的顶事件。

1.2.2 确定其他层级事件

确定了系统的顶事件之后,把顶事件作为起始端向下建立故障树。先是找出导致顶事件发生的所有可能直接原因,将其作为第一级中间事件。用相应的事件符号表示第一级中间事件,再选取恰当的能表达中间事件与上一级事件逻辑关系的逻辑门符号连接中间事件与上一级事件。依此逐级向下建立故障树,直到找出所有能够引起系统故障的无法再向下追究的原因为止,将最末层事件作为底事件,至此,建树完成。

1.2.3 需注意的问题

建立故障树的过程中需要注意以下几个方面的问题。

一是通常采用以系统的功能为主线来确立故障树各层级事件进而建立完整故障树,建树过程始终按照演绎的逻辑进行。同时要注意到复杂系统通常有多个流程分支,主流程不唯一,因此在建树时要依据具体系统情况而定。

二是在建立故障树前要合理地选取和设定所分析系统及单元(部件)的边界条件。所谓边界条件是指系统和单元(部件)的若干变动参数,参数设定合理,将有助于在建故障树过程中抓住主线和明确范围。

三是故障树各层级事件的定义要精确唯一,不易造成歧义。

四是故障树各层级事件间有清楚、严谨的逻辑关系。

五是应注意逻辑多余事件的删减,尽量简化故障树,且故障树应便于定性和定量分析。

2 故障树定性分析实例

故障树定性分析某型轨道客车系统的目的是要找出该型轨道客车故障的全部可能原因,并定性地识别该型轨道客车系统设计、制造、安装调整、使用运行、维修保养等方面的薄弱环节。

在用故障树定性分析某型轨道客车系统时,最为关心的是最小割集,即导致顶事件发生的必要而充分的底事件的集合。仅当最小割集包含的底事件都同时存在时则顶事件发生,或者是只要最下割集中有任何一个事件不发生,则顶事件不发生――最小割集的性质。如果系统出现了故障事件,则必然至少有一个最小割集发生。系统的一种故障模式可以用一个最小割集表示,系统的故障谱即可以表示为全体最小割集。因此,防止所有最小割集发生是保证顶事件不发生的可靠措施。在轨道客车的设计中要采取必要的措施降低最小割集发生的概率,在轨道客车的运转中要努力确保不使最小割集发生。

3 故障树定量分析实例

故障树定量分析某型轨道客车系统的任务是,在已知底事件发生概率的条件下,利用故障树作为计算模型,求解出顶事件即某型轨道客车系统故障或失效发生的概率,从而可以评估出该轨道客车系统的可靠性、安全性及风险性。

假定故障树的顶事件及相互独立的全部底事件均只有“不发生”和“发生”,亦即“正常”和“故障”两种状态,则根据底事件发生的概率,由下往上按故障树的逻辑结构逐级运算即可求得顶事件发生的概率。

其中底事件发生概率的定量分析来源于单元或部件失效数据的收集和统计分析。失效数据是故障树定量分析的基础,直接影响系统可靠性、安全性及风险性分析的精确性和适用性。由于来源于寿命试验产生的失效数据受到财力、物力和人力等方面因素的限制,数据来源很少。而来源于生产现场的寿命试验,虽然条件现成、真实,失效数据来源多,但受限于不够重视现场失效数据的搜集,或者失效数据丢失,或者失效数据记录不完整或不正确。目前,失效数据不足已经成为影响可靠性定量分析和风险评估的一个难点问题,因此要建立失效数据库是一个长期且重要的任务,要十分重视对轨道客车系统单元或部件失效数据的收集和统计。

4 故障树分析法的注意事项

故障树分析是由一个或多个不希望发生的顶事件开始,向下逐级分析导致顶事件发生的直接原因和潜在原因的方法。在运用故障树分析轨道客车系统时,需要根据故障树分析的特点,注意以下几个方面的问题:一是无论是进行定性还是定量故障树分析,在建立故障树时,都应尽量确保故障树完整、准确,以使故障树不会影响分析结果的准确性。因此在该型轨道客车事故树分析的过程中,采用了由熟悉该型轨道车辆系统的多个工程师共同参与建树的方法,实践证明这种由多个工程师共同参与建树的方法相比于由一个人建立起来的故障树更为有效、完整和准确。二是常用故障树的定性分析法进行系统故障诊断,因此在故障树分析过程中可先求出最小割集,并按照从小到大的顺序将割集排序,进而依据最小割集的阶数进行故障诊断。三是故障树的定量分析法常用于对系统进行安全性分析。通过自上而下的指标分配,可确定对于各底事件的安全性要求指标。通过自下而上的计算,可用于对顶事件的安全性要求进行验证。因此各底事件概率的准确性将影响故障树定量分析的准确性。

参考文献

故障树分析法篇(8)

1 故障树分析方法概述

故障树是一种逻辑因果关系图,呈现出特殊的倒立树状。它通过使用各种逻辑门符号、事件符号和转移符号来描述系统中各种事件和状态之间的因果逻辑关系。通俗来说,故障树中逻辑门的输入事件是输出事件的“因”,逻辑门的输出事件是输入事件的“果”。

故障树分析自上而下,通过依次展开更为详细(或者叫更低一级)的设计层次逐步向下进行。

2 故障树方法前期准备工作

首先,设计人员应该熟悉设计说明书、原理图(包括流程图、结构图)、运行规程、维修规程和有关数据库以及其余相关资料。熟悉系统,设计人员可以从以下几个方面入手:

1)设计人员应彻底掌握系统的设计意图、结构、功能、边界(包括人机接口)和环境情况;

2)设计人员应辨明人为因素以及软件对系统的影响;

3)设计人员应辨识系统可能采取的各种状态模式以及这些模式之间的相互转换,必要时应绘制状态模式以及转画图以帮助弄清系统成功或故障与单位成功或故障之间的关系,有利于正确建树;

4)根据系统复杂程度和要求,必要时进行系统故障模式及影响分析,以帮助辨识各种故障事件以及人为失误和共因故障;

5)根据系统复杂程度,必要时应绘制系统可靠性框图以帮助正确形成故障树的顶部结构和实现故障树的早期模块化以缩小故障树的规模;

6)为彻底地熟悉系统,设计人员除了完成上述工作外,还应该随时征求有经验的设计人员和运行维修人员意见,最好有上述人员参与建树工作,方能保证故障树分析工作顺利开展,且建成的故障树的正确性,并可以达到预期的分析目的。

在充分熟悉系统后,设计人员应根据系统的任务要求和对系统的了解确定本次故障树分析的目的。在实际工业设计过程中,同一个系统或者设备,因为分析的目的不一样,系统或者设备的模型化结果也会大不相同,反映在故障树上也会不一样。

3 故障树分析方法步骤

故障树分析根据分析对象、分析目的、精细程度等的不同而不同,但一般按如下步骤进行:

1)故障树的建造;

2)故障树规范化、简化和模块分解;

3)定性分析;

4)定量分析;

5)编写故障树分析报告。

故障树的建造首先应选择恰当的顶事件。在确定顶事件时,可以通过在初步故障分析基础上,设计人员找出系统可能发生的所有故障状态,这个过程可以结合故障模式及影响分析进行,也可借鉴其它类似系统使用过程中发生过的故障事件。然后,筛选出最不希望发生的故障状态作为顶事件。

顶事件确定后,自上而下开始建树,应逐级进行。

将确定的顶事件写在顶部的框内,然后将引起顶事件的全部必要而又充分的直接原因事件写在相应事件符号中画出第二排,下一步根据实际设计中它们的逻辑关系用适当的逻辑门进行连结。遵循以上原则逐步建树,直至所有最低一排事件都为底事件。

规范化故障树是指仅含有基本事件、结果事件,以及“与”、“或”、“非”三种逻辑门的故障树。要将建好的故障树变成规范化的故障树,必须确定对特殊事件的处理规则和对特殊逻辑门进行逻辑等效的变换规则。

故障树的简化,可根据布尔代数运算规则对故障树进行简化。

对于较大规模的已经规范化和简化的故障树需要进行模块分解,这里的模块是指至少有两个底事件但同时又不是所有底事件的集合,在集合中这些底事件向上可汇集到同一个逻辑门,且又只能通过这个逻辑门才能到达顶事件。同时,故障树中所有的其它底事件向上都不能到达该逻辑门。

对故障树进行定性分析的目的在于寻找导致顶事件发生的原因及原因组合。通过识别引起顶事件发生的全部故障模式,它可以帮助判断潜在故障,达到改进设计的目地;也可以用于进行指导故障诊断,从而改进维护和使用方案。

对于正在设计中的产品,由定性分析的结果可以寻找到产品设计上的薄弱环节、重点部位、重要底事件、试验需求和改进设计应采取的方案等。对于最终设计成型的产品,通过定性分析结果可以确定产品已分析的顶事件的故障概率,检测产品的最佳配置,指导故障定位和使用维护方案的制定;还为技术支持、管理维护提供指导。

故障树定量分析是在已知底事件的发生概率的前提下得到顶事件的故障概率。这要求一开始必须拥有所有底事件的故障数据,从而才能求出故障树最小割集。

在定量分析中,应假定各个底事件的故障是相互独立的。若某些底事件互相不独立,则按照统计独立的假设进行计算时将出现工程上难以接受的误差,此时应参考其它专门文献进行不独立所需的修正。

在故障树分析结束时,应将分析结果写成报告,故障树分析报告应包括下列主要内容:分析任务;分析假设;分析方法;数据源说明;系统的可靠性框图;不希望事件(顶事件)及其发生概率;最小割集及其发生概率和重要度;基本事件和条件事件的重要度;可靠性关键项目及其不能从设计中消除的原因。

4 结论

故障树分析是一种对复杂系统常用的安全性、可靠性分析方法。它通过演绎的故障分析法研究系统特定的顶事件,自上向下严格按事件的层次进行逻辑分析和因果判断,找出故障事件的必要而充分的各类原因,画出逻辑关系图(故障树),最终找出导致顶事件发生的所有原因和原因组合。由分析结果可以确定被分析系统的薄弱环节、关键部位、应采取的措施、对可靠性试验的要求等。这些都显示出其在工业设计过程中的重要性和必要性。广大设计人员只有不断在其设计过程中深刻融合安全性设计理念,让安全可靠成为产品一大亮点,设计出的产品才能真正被业界所肯定,被市场所接受。

参考文献

故障树分析法篇(9)

中图分类号:O434 文献标识码: A

一、前言

燃气管道是现在城市中常见的管道,燃气管道如果出现问题会发生令人不可估量的事故,因此对于燃气管道的安全必须要严格要求。燃气管道安全评价在判定管道安全性能方面有着重要的作用。

二、燃气管道安全评价方法的分类

目前,城镇燃气管道安全评价方法分为定性安全评价和定量安全评价,近年来,有些学者赞同分3类,即定性分析、定量风险分析和半定量风险分析。

定性分析主要是将系统中所存在的危险因素以及诱导事故发生的因素都找出来,根据这些因素在何种程度导致管道失效的情况,制定出相应的预防措施。这种方法是利用科学的决策和统计理论,对于所存在的风险进行感性的分析评价,然后根据相关专家所提出的观点将风险分为低、中、中高以及高风险四个评价等级。这种风险分析的方法简单快速也比较直观,可是却不能够量化事故的发生频率和后果。常用的定性分析方法包括有故障树分析法以及故障类型及影响分析法。

定量风险分析主要是利用随机变量以及随机过程对于引起管道事故发生的因素进行处理,先是约定一个具有明确物理意义的单位对于事故发生的概率以及损失的后果进行量化,计算出管道的风险值,然后才是对于结果进行分析,虽然这个过程比较复杂,可是得出的结果是比较严密的,准确度也高。进行定量风险分析,一定要先建立起完备的资料库,要能够掌握裂纹扩展以及管材腐蚀等方面的机理,建立起数据模型,计算出结果。整个风险评估结果的准确性将取决于原始数据的完整性、模型的精准性以及分析方法的合理性。得到的评价结果能够用于安全成本以及效益方面的分析,这是定性风险分析以及半定量分析法所不能够做到的,目前常用的定量风险分析方法主要是模拟仿真和概率法、结构可靠性评估等分析法。

半定量风险分析。管道风险半定量分析法主要是将风险的数量指标作为进行分析的基础,对于管道事故发生的后果以及事故发生的概率都有一个指标,这是按照这些因素的权重值来分配的,然后运用算术法将事故的概率以及后果的严重程度指标两者结合在一起,这样就能够计算出一个相对的风险值,对于定量评价法中缺少数据的问题是一个比较好的补充。常用的半定量风险分析法中有W・K・Muhlbauer 的专家评分指标法和现在引入模糊数学的综合评价法。

三、故障树分析法简介

故障树分析法(FaultTreeAnalysis,FTA)是对于一些不易形成逻辑图的复杂系统进行风险识别和评价的一种有效的方法。它用事件符号、逻辑门符号和转移符号来描述系统中各种事件之间的因果关系。

故障树是一种逻辑树,树枝代表系统、子系统或元件的事故事件,而节点代表事故事件之间的逻辑关系。故障树的形成是从顶事件的根出发逐级向下发展绘制,直到事件概率已知的基本事件为止,在故障树中表示事件之间最常用的逻辑关系是“与”和“或”的关系。故障树中所用的图形符号有很多,表1列出几种常用的符号。

故障树分析在生产阶段能帮助诊断事件是否失效,进而改进相关技术管理,产生更好的维修方案。故障树分析法同时适用于定性评价和定量评价,使用过程简洁明了,而且不失可靠性,充分体现了以系统工程方法为基础来研究安全问题的系统性、准确性和预测性。

四、故障树分析原则

故障树分析是系统可靠性和安全性分析的工具之一[2]。采用故障树分析法建立故障树一般步骤如下:

(1)熟悉系统。尽可能详细地收集系统相关资料,了解系统状态及各种参数,熟悉研究对象的特征。

(2)确定顶事件。对所调查的事故进行全面分析,从中找出后果严重且较易发生的事故作为顶事件。

(3)建立故障树。将引起顶事件发生的直接原因找出来,根据实际情况用适当的逻辑符号把顶事件和各直接原因事件(中间事件)相连接,然后找出中间事件的原因事件,并用适当的符号连接,直到不需要分解为止。

(4)故障树的规范化和简化。

(5)根据已经建立好的故障树,进行定性分析和定量分析。

五、城市燃气输配管网故障树的建立

引起城市燃气管网发生事故的原因很多,发生事故的原因是多方面的,而且造成管道事故是多种原因的综合结果。从大量事故分析报告的统计结果来看,导致城市燃气管网事故的主要因素有:第三方损坏、管道腐蚀及设备老化、设计及误操作、管道原始缺陷。管网泄漏事故原因主要包括管道腐蚀严重、第三方损害严重、误操作、存在设计缺陷等;导致管道破裂事故的原因主要包括操作失误、违章作业、维护不周、设计安装不合理、材料缺陷等。根据选择顶事件的原则,选取“燃气输配管网失效”作为顶事件,管道失效和附属设备失效为二次事件,任何一个二次事件的失效,都会造成整个管线的失效。继续深入分析,逐层列出中间时间和底事件,建立城市燃气输配管网故障树,如图1所示。

六、故障树的分析

1、故障树分析法基本概念

顶事件通常是由故障假设、危险与可操作性研究法等危险分析方法识别出来的。故障树模型是原因事件(即故障)的组合(称为故障模式或失效模式),这种组合导致顶事件。这些故障模式称为割集,最小的割集是原因事件的最小组合。要使顶事件发生,最小割集中的所有事件必须全部发生。根据底事件的组合个数,最小割集分为一阶最小割集、二阶最小割集等。故障树分析包括定性分析和定量分析。

故障树的定性分析仅按照故障树的结构和事故的因果关系进行,分析过程中不考虑各事件的发生概率,或认为各事件的发生概率相等。内容包括求底事件的最小割集、最小径集及其结构重要度,求取方法有质数代入法、矩阵法、行列法、布尔代数法简法等。定量分析是确定所有原因的发生概率,标在故障树上,进而求出顶事件(事故)发生概率,一般包括对顶事件发生概率的计算及对底事件重要度分析。

故障树分析的基本步骤:确定顶事件;确定底事件;调查事故原因;确定目标值;构造故障树;定性评价;定量评价;制定预防事故(改进系统)的措施。故障树分析流程。

故障树分析法形象、清晰、逻辑性强,能对各种系统的危险性进行识别评价,体现了以系统工程方法研究安全问题的系统性、准确性和预测性。该法应用比较广,非常适合于重复性大的系统。不仅能分析出事故的直接原因,而且能深入提示事故的潜在原因,因此在工程设计阶段、事故查询或编制新的操作方法时,都可以使用这个方法对它们的安全性做出评价。

2、故障树底事件发生概率确定

常规基于布尔代数和概率论的系统故障树分析的理论研究已取得了较大成功,工程应用也取得了一定成果。但是,现有的理论和方法需要将故障树顶事件和底事件发生的概率视为精确值,在实际中由于顶事件和底事件发生概率存在随机性和模糊性,因而针对这些不确定性问题,应该选择更合适的高等数学分析理论和方法来解决。底事件重要度分析是故障树定量分析中的重要部分,重要度表现为系统中某底事件发生时对顶事件发生概率的贡献,概率重要度是顶事件发生概率对某底事件发生概率的偏导数。此外,模糊性是故障树分析的客观特性,采用数学模糊集理论结合专家调查方法来确定事件的发生概率,可以克服传统故障树分析中把底事件的发生概率当作精确值时带来的误差。为了保证确定的故障率和模糊故障率之间的一致性,需把模糊可能性值转化为模糊故障率。

七、结束语

燃气管道的安全也是城市安全中重要的一项安全内容,判定燃气管道的安全性能的方法有很多,故障树分析法能够找出安全隐患的原因,从而提出更加完善的措施,保障燃气管道的安全。

故障树分析法篇(10)

1 故障树分析法及其特点、流程

FTA即故障树分析法,最早由美国贝尔电话研究所H.A.Watson于1961年提出,借助于分析可能造成系统故障的各个因素,将其对应的故障树画出来,继而对系统失效原因及组合方式进行确定,得出其具体的发生概率,在此基础上,将系统故障概率计算出来,实施针对性纠正,促使对应机械系统的可靠性得以提高,即为故障树分析法[1]。

从其特点看来,主要表现为以下方面[2]:

①对单因素和多因素故障都可分析,且可对故障实施定量、抑或是定性分析;

②从整体各系统到零件,从大系统到小系统,都可进行分析;

③可借助计算机实现,因为是基于逻辑门构成的逻辑图,具备了诊断高效、简单直观及、易更新知识库的特点。

就其运用的流程来看,首要的是对边界条件初始条件的定义,在此基础上,对顶事件进行定义,并结合此进行故障树构建,完善后,即可实施针对性的定性分析,最终的步骤是输出诊断结果,结合此实施对应维修等。

2 故障树基本事件和符号、定性分析

基本事件及对应意义,见表1。

对应的故障树基本符号及意义方面,见表2。

3 定性分析

综合看来,当同时发生几个底事件的前提下,方能引发顶事件发生,对应的,定义这几个底事件构成的集合为的割集,基于此定义,每个割集对应的一种故障情况。

上述情况外,存在某一个割集去掉任意一个底事件的基础上,将不再是割集的情况,需针对性定义此割集为最小割集。基于此,可看出系统故障树包含的所有最小割集,皆为系统发生故障所有模式或种类的代表。

基于此,寻找系统的全部最小割集,显然是故障树定性分析的目标,借此来完善工程机械故障诊断[3]。

与割集和最小割集相反,还可进行路集和最小路集的定义。顶事件会因为几个底事件集合均不发生而不发生,这样可设定多个底事件的集合即为路集,与上述相似,去掉某路集中一个底事件,将会出现该路集不再是路集的路集的情况,则称其为最小路集,类似于上述的最小割集,系统保证顶事件正常工作时的全部可能途径,即为其意义,是研究的重点。

4 故障树分析法的数学表达

结合分析需要,设n个底事件构成一个系统,y 为顶事件的状态变量,并定义底事件的状态变量为Xi(i=1,2,...n),这样,当事件发生时,取值对应的状态变量为0,由此可得出,y是底事件状态变量Xi的函数,表示为:

y=f(X1,X2,...Xi,...Xn)。

根据上述内容,若某底事件集合X中,Xi即其状态变量均等于1的情况下y也等于1,这样,可得X为一个割集,从而当无法找到一个割集Xi完全属于X,则可以得出其X为最小割集,并按照下式进行顶事件状态变量y值取值:

对于工程机械故障诊断而言,寻找系统的全部最小割集显然是实施定性分析的目标,所以笔者只讨论了和说明了割集和最小割集的数学表达。

5 实例应用分析

新时期基础设施建设中,作为现代工程机械的重要动力来源,柴油机运用范围较广,占据着工程机械维修总量的较大份额,本文涉及到的案例为Caterpillar C6.6 ACERT 型柴油发动机,将对其工程机械维修中运用故障树分析法进行分析。

设定发动机不转动为该柴油机故障的具体表现,继而将顶事件设立为“发动机不转动”,这样,即可建立故障树,如图1所示。

结合上图可得,共有17个顶事件对应的底事件。依次是X17,基于此,结合故障树逻辑关系,我们可得出共有16个最小割集,依次为:

上一篇: 帮扶单位扶贫工作汇报 下一篇: 重性精神病工作计划
相关精选
相关期刊