集成电路与应用汇总十篇

时间:2023-05-26 16:02:50

集成电路与应用

集成电路与应用篇(1)

中图分类号: TN386.5?34 文献标识码: A 文章编号: 1004?373X(2015)06?0145?04

Design and application of highly?integrated circuit in photoelectric detection

SUN Zhen?ya, LIU Dong?bin

(Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

Abstract: Because of the large?scale and high?integration development for the space camera, and the limitation of space, the circuit has to be optimized, even some special technologies have to be used to reduce the area of the circuit board. In consideration of the complexity of driver circuit of CCD detector, the driver circuit was integrated in a module by the thick film technology. There are many advantages in thick film technology such as high reliability, flexible design, low cost and short cycle. The integrated area through the thick film technology was reduced to the 1/3 area as the original circuit board before integration. The output signal of the thick film integrated module is perfect for the demand of CCD detector. At the same time, the design provides a certain reference for the large?scale integrated circuit design in the space missions.

Keywords: thick film; CCD; drive circuit; integrated circuit

0 引 言

随着人类对太空的探索,空间相机的发展越来越迅速。在许多空间光电探测的电路系统中多使用CCD (电荷耦合器件,Charge?Couple Device)来进行光电转换。CCD是将入射光在所有光敏单元激发的光信号转换成模拟电信号的光电转换器件。该器件具有小体积、轻重量、低功耗、高精度、长寿命等优点,被广泛应用在空间光电探测、航天遥感观测、载荷对地观测等领域[1?3]。

CCD工作时需要适当的时序驱动信号,并且产生的电信号需要进行后续处理后才能给控制系统识别。CCD产生的电信号是模拟信号需要进行相应的视频处理电路,视频处理电路系统包AFE(,Analog Front End,模拟前端),FPGA和数字信号处理模块。

空间相机的发展越发趋向于大规模化高集成的设计,空间相机中的硬件电路的高度集成化变得越来越让人们关注与研究。目前,关于空间光电探测电路系统的高集成度的技术发展主要体现在厚膜电路和半导体级的ASIC(Application Specific Integrated Circuits,专用集成电路)两个领域。厚膜电路是将电阻、电容、电感、芯片的管芯通过互连的铜线在印制板上制成的,其优势在于性能可靠,设计灵活,投资小,成本低,周期短。ASIC是按照用户的需求,在一个芯片上专门设计具有某些特定功能的集成电路,其性能高(可以比厚膜电路做的更高)、可靠性高。但是由于用户的需求量少,对于用户来说其成本相对较高,且难度高[4?5]。

为实现空间相机电子学的大规模化、高集成的要求,本文将比较通用的一款TDI CCD探测器的时序驱动电路模块设计成厚膜集成电路,并且根据实际PCB版优化厚膜电路设计和性能指标,得到了较好的结果。

1 TDI CCD探测器

该TDI(Time Delayed and integration,时间延迟积分)CCD探测器可以探测到两类光谱区。这两类光谱区分别是彩色B区和全色P区。由于实际情况需要,将该CCD探测器的时钟工作频率设定在20 MHz,行频设置在1 kHz。由于该CCD探测器的光谱区多,所以它的驱动时序也是很复杂的,一共有89个驱动信号,将可以共用的信号合并后仍然有61个驱动信号。由于该探测器实际需求的驱动信号过多,本文中仅以CIxP为例讲述驱动电路的设计以及实验结果。表1中给出了该CCD探测器的CIxP驱动信号的电压幅值范围。该CCD探测器的驱动信号需要FPGA产生相应的时序的驱动信号,并通过相应的时序驱动电路变为所需要的电压幅值范围。

表1 CI和TCK时钟驱动信号

图1中的CIx和TCK的上升沿时间记为tr,典型值50 ns;CIx和TCK的下降沿时间记为tf,典型值50 ns;转移时间记为ttran,典型值3.6 μs,根据实际工作需要改为1 ms;TCKB的信号周期记为TTCKB,根据行频而定;TCKP的信号周期记为TTCKP,根据行频而定;CI2的下降沿到CI1的上升沿的时间差记为t1,典型值0.5 μs;CI1的上升沿到CI3的下降沿的时间差记为t2,典型值0.5 μs;CI3的下降沿到CI2的上升沿的时间差记为t3,典型值0.5 μs;CI2的上升沿到CI4的下降沿的时间差记为t4,典型值0.5 μs;CI5的下降沿到CI3的上升沿的时间差记为t5,典型值0.5 μs;CI3的上升沿到TCK的下降沿的时间差记为t6,典型值0.5 μs;CI1的下降沿到CI4的上升沿的时间差记为t7,典型值0.5 μs;CI1和TCK的高电平时间记为tcla,典型值2.5 μs;CI2、CI3和CI4的低电平时间记为tclb,典型值1.5 μs。

2 驱动电路设计

本文针对该CCD探测器的驱动电路设计分为两个步骤:

(1) 通过现在市面上的芯片选择适合该驱动电路芯片设计而成。

(2) 对通过芯片设计的驱动电路做实验得到与该CCD探测器相需求的时序结果,进行整合通过厚膜技术来实现最终电路。

最终的驱动电路分为左右两个模块(两个模块设计的完全相同)分别针对该CCD探测器左右驱动时序,并且把驱动电路中用到的LDO等电压转换模块通过厚膜技术集成到一个模块[6?7]。

<E:\王芳\现代电子技术201506\现代电子技术15年38卷第6期\Image\43T1.tif>

图1 P和B区的垂直转移时序图

图2给出了驱动模块的管脚示意图,该模块可以产生一般的水平驱动信号(20 MHz)以及大部分的垂直驱动信号,51号脚是针对模块内部的测温度的热敏电阻预留的。图中的左侧的上面两组是输入信号,右侧的上面两组是输出信号。其他的为电源和地信号。

<E:\王芳\现代电子技术201506\现代电子技术15年38卷第6期\Image\43T2.tif>

图2 驱动模块的管脚图

图3给出驱动模块的版图,速度较快的水平驱动信号(20 MHz)均放在版图的最,内部放置的是垂直转移信号。该厚膜模块最后的面积为37 mm×37 mm,约为原来没有厚膜集成的[13]。

<E:\王芳\现代电子技术201506\现代电子技术15年38卷第6期\Image\43T3.tif>

图3 驱动模块的厚膜版图

该模块中集成的大部分芯片是EL7457,EL7457是一款高速度,同相位,四通道的CMOS驱动器。该驱动器可以驱动40 MHz的信号,并且输出电流值可以达到2 A。

以CI1P,CI2P,CI3P,CI4P这4个信号为例,这4个信号的幅值范围是-5~5 V,但是从图2的时序图中可以知道,CI1P的信号大部分的时间内都是低的,而CI2P,CI3P,CI4P的信号大部分的时间内都是高的。所以电路设计时将区别对待,由图4知EL7457的供电电压设置为10 V可以让CIxP的信号幅值达到10 V,通过0.22 μF的电容隔直后,再通过二极管与电阻并联接偏置电压的设计将其拉到正常工作的范围,出来的信号在工作电压范围方面就达到CCD手册的要求。CI1P的偏置电压设置为-5 V,当10 V的方波信号过来后由于二极管的正向钳位作用使得CI1P的最小电压是-5 V,所以得到了-5~5 V的信号,且无信号时为低(-5 V)。CI2P,CI3P,CI4P的的偏置电压设置为5 V,当10 V的方波信号过来后由于二极管的正向钳位作用使得CI2P,CI3P,CI4P的最大电压是5 V,所以得到了-5~5 V的信号,且无信号时为高(5 V)。

OFFSET偏置电压通过电阻分压外接运放负反馈驱动的形式产生的,见图5,采用这种电路结构优势在于可以减少电路中线性稳压器的数量,由于该探测器需求的驱动信号数量多,电压值多,若所有电压值都采用线性稳压器,不但会导致电路板尺寸会大很多,而且更加引入散热的问题。同时偏置电压信号所需要的电流相当的小根本不需要线性稳压器[8?9]。

3 驱动信号的实验结果

针对CIxP的测试,在实验测试中以驱动模块的输入信号(FPGA的输出信号)TCKP_FPGA为基准信号,对CIxP以及其对于的OFFSET偏置电压进行单组测量。

<E:\王芳\现代电子技术201506\现代电子技术15年38卷第6期\Image\43T4.tif>

图4 CIxP原理图

<E:\王芳\现代电子技术201506\现代电子技术15年38卷第6期\Image\43T5.tif>

图5 OFFSET偏置电压原理图

图6中的三组信号分别是:TCKP_FPGA(幅值范围0~3.3 V)、CI1P(与TCKP_FPGA有相同的相位,幅值范围-5~4 V)、以及CI1P信号对应二极管上的嵌位电压OFFSET-5 V。

<E:\王芳\现代电子技术201506\现代电子技术15年38卷第6期\Image\43T6.tif>

图6 CI1P的信号

图7中的三组信号分别是:TCKP_FPGA(幅值范围0~3.3 V)、CI2P(超前于TCKP_FPGA约0.5 μs,幅值范围-4~5 V)、以及CI2P信号对应二极管上的嵌位电压OFFSET+5 V(在TCKP_FPGA的下降沿末端有波动)。

<E:\王芳\现代电子技术201506\现代电子技术15年38卷第6期\Image\43T7.tif>

图7 CI2P的信号

图8中的三组信号分别是:TCKP_FPGA(幅值范围0~3.3 V),CI3P(反向于TCKP_FPGA,且下降沿到TCKP_FPGA的上升沿的时间约延后0.5 μs,幅值范围-4~5 V)、以及CI3P信号对应二极管上的嵌位电压OFFSET+5 V(在TCKP_FPGA的下降沿末端有波动)。

<E:\王芳\现代电子技术201506\现代电子技术15年38卷第6期\Image\43T8.tif>

图8 CI3P的信号

图9中的三组信号分别是:TCKP_FPGA(幅值范围0~3.3 V)、CI4P(反向于TCKP_FPGA,且下降沿到TCKP_FPGA的上升沿的时间约延后1.5 μs,幅值范围-4~5 V)、以及CI3P信号对应二极管上的嵌位电压OFFSET+5 V(在TCKP_FPGA的下降沿末端有波动)。

<E:\王芳\现代电子技术201506\现代电子技术15年38卷第6期\Image\43T9.tif>

图9 CI4P的信号

CIxP的四组信号由于实际电路图中的电容分压导致最终幅值没有达到10 V,但是仍然在CCD的手册要求范围内。OFFSET电压在信号变化较多的点会有串扰导致波动,但是对实际的CIxP影响甚微[10?11]。

4 结 语

通过厚膜技术对驱动电路集成后的面积减少到[13],虽然该模块需要添加散热,但是面积的减少使得在同样面积的PCB上集成更多的模块,实现更多的CCD阵列。对所有驱动信号用示波器进行测量,均满足要求。本文中仅给出CIxP的信号波形进行事例。实验结果表明驱动电路的厚膜技术可以满足在光电探测中的集成应用。本设计中的驱动电路的厚膜集成也对其他航天任务中大规模电路的集成提供了一定的参考借鉴作用。

参考文献

[1] 叶培军,刘福安,曹海翔.线阵探测器KLI?2113线阵CCD器件主要性能参数及测试方法[J].中国空间科学技术,1997,17(3):44?51.

[2] BOYLE W S, SMITH G E. Charge coupled semiconductor devices [J]. The Bell System Technical Journal, 1970, 49(1): 587?593.

[3] 孙大维,赵样.CCD组件参数测试系统的设计[J].舰船电子工程,2013,33(7):92?94.

[4] 孙景旭,刘则洵.CCD成像电子学单元光电参量测试系统[J].应用光学,2013,34(2):289?294.

[5] 张航,刘栋斌.线阵探测器KLI?2113总剂量辐照性能试验分析[J].发光学报,2013,34(5):611?616.

[6] HU Liao?lin, WANG Bin, XUE Rui?yang. Signal recovery of noise introduced after compressed sensing [J]. Editorial Office of Optics and Precision Engineering, 2014, 22(10): 2840?2846.

[7] 胡辽林,王斌,薛瑞洋.压缩感知后引入噪声的信号恢复[J].光学精密工程,2014,22(10):2840?2846.

[8] JIA Hua?yu, LIU Li, ZHANG Jian?guo. Wide band current?mode amplifier for pipelined ADC [J]. Editorial Office of Optics and Precision Engineering, 2014, 22(10): 2855?2860.

集成电路与应用篇(2)

中图分类号:TN702文献标识码:A

文章编号:1004-373X(2009)19-199-02

Research and Application of IC Test Instrument Power Circuit Simulation Design

SUN Chengting,ZHU Chunjiang

(Lianyungang Technical College,Lianyungang,222006,China)

Abstract:According to the problems of certain lab IC test instrument not being perfect on power circuit design and the system halted or restoration not being unusual on lower load capacity,the power circuit design and current-amplification circuit are being improved based on the original circuit,the contrastive verificafion is used for improving circuit with EDA simulation technique,and the problem in practical application is also solved.

Keywords:EDA simulation;load capacity;current-amplification design;simulation contrast verification

0 引 言

集成电路测试仪可用来测量集成电路的好坏,在电子实验室中应用广泛。在实际使用中,发现部分厂家生产的测试仪存在一些问题,如电网电压波动或负载加重后容易出现死机或复位不正常现象,这对实验进程和实验室管理有很大影响,也是困扰实验指导老师的常见问题,必须予以解决。本文通过某一种测试仪电源电路的改进的试验,会给实验室管理者以借鉴。

在电路设计中用到EDA(Electronics Design Automation,电子设计自动化)技术。在进行电路改进前,从电路参数设计,电路功能仿真验证等都在计算机上先用EDA软件完成,不但缩短了电路设计时间,而且大大地节约了成本。

EDA 技术是随着集成电路和计算机技术的飞速发展应运而生的一种高级、快速、有效的电子设计自动化工具。它经历了计算机辅助设计(Computer Assist Design,CAD)、计算机辅助工程设计(Computer Assist Engineering Design,CAE)和电子设计自动化(Electronic Design Automation,EDA)三个发展阶段[1]。利用EDA技术进行电子系统的设计,具有以下几个特点[2]:用软件的方式设计硬件;用软件方式设计的系统到硬件系统的转换是由有关的开发软件自动完成的;对设计电路功能是否正确可进行仿真分析。

目前流行的EDA软件有Protel 99 SE,EWB,Multisim,PSpice等几种[3]。本文运用Protell 99 SE 中的Advanced SIM 99仿真功能对所改进的电路进行仿真和应用。

1 EDA仿真在测试仪电源电路设计中的应用

学校电工电子实验室有多台LM-800C数字集成电路测试仪,在使用中有时会出现死机,复位不正常现象。通过研究,发现电源电路存在问题:电源扩展能力差,带负载能力弱。笔者根据其PCB(Printed Circuit Board,印制电路板)绘制出其电源电路原理图,如图1所示。

图1 LM-800C数字集成电路测试仪电源电路图

图1中,78M05为5 V三端稳压器[4],RL为测试仪负载,实际上是待测集成电路。

限于篇幅,只绘制主要部分,电源线路滤波器在图中未画出。通过研究,发现电源电路存在问题:电源扩展能力差,带负载能力不强,有时会出现死机、无法复位现象。通过对其电源电路的改进,增加了扩流电路,从而解决了实际使用中存在的问题。

1.1测试仪电源电路的扩流设计

为了节约成本,不能对原来电路进行全新设计,只能在原来电源电路基础上,通过增加部分电路来增强其带负载能力。

改进中需要考虑的问题[5]:

(1) 选择合适的滤波电容。电源输出直流电压要稳定,纹波小。

(2) 增加了扩流电路,当电源电压不稳定或测试系统负载增大时,电源带负载能力强,输出电压稳定。

图2为经过改进的带扩流功能的电路,带负载能力较强,能扩大电路的输出电流。Q1为外接扩流功率三极管,R1为Q1的偏置电阻。该电路带负载能力与Q1的参数有关。C1,C4为滤波电容,C2为0.33 μF,可抵消输入接线的电感效应,C3可防止高频自激,消除高频噪声,改善负载的瞬态响应[6,7]。

图2 带扩流功能的电路

电源电路扩展输出电流的工作原理:

二极管D1用于消除三极管Q1的发射结Ube对输出电压的影响(相当于发射结的导通电压0.7 V),并提供电容C4的放电回路。设三端稳压器78M05的最大输出电流为Imax,则晶体管的最大基极电流Ib=Imax-IRL,因而负载RL上电流的最大值I可表示为:

I=(1+β)(Imax- IRL)

一般三极管的基极电流Ib很小,与Imax相比可忽略不计,I比Imax大许多,可见输出电流提高了,从而可提高电源的带负载能力。

1.2 两种电路带负载能力的仿真对比验证

可用Protell 99 Advanced SIM 99[6,7]对原电路(图1)和改进后的电路(图2)进行仿真分析,以验证二者的带负载能力。

(1) 仿真参数设置

首先进行仿真参数设置,进行瞬态分析与傅里叶分析[8,9],仿真参数设置对话框如图3所示。

图3 仿真参数设置对话框

为了突出显示,显示器上只显示两个波形,其中in为输入端,out为输出端。

(2) 仿真波形对比分析

用Protell 99 Advanced SIM 99对图1所示电路进行仿真,发现当负载变重,超过78M05最大输出电流(0.7 A)时[10],将使输出电压的纹波增大,输出电压(out)下降且不稳定,out波形有明显的波动,5 V下降为4 V左右,且输出(out)波形不平滑,纹波大。负载变重后的仿真波形如图4所示。

图4 负载变重后的波形

为了增大电源的带负载能力,在原电路的基础上加扩展电流三极管Q1后,带同样的负载,输出电压很稳定(5 V),仿真波形如图5所示。

图5 加扩流三极管后仿真波形

从输出波形(out)可以看出,电压很稳定,没有纹波。

1.3 设计电路的应用效果

经改进后的电源电路,在实验室的实际使用中,再未发现死机或不能正常复位现象,证明通过EDA仿真所设计的电路在使用中获得成功。

2 结 语

用EDA仿真技术能方便电路设计,并可验证电路

设计的正确性。通过对两种电路的仿真对比,说明改进后电源电路带负载能力强,这在实际使用中得到验证。

参考文献

[1]王涛.数字集成电路的故障诊断和故障仿真技术的研究 [D].成都:电子科技大学,2005.

[2]National Instruments.The Measurement and Automation Catalog 2004[Z].2004.

[3]伏家才.EDA原理与应用 [M].北京:化学工业出版社,2006.

[4]周绍庆.模拟电子技术基础[M].北京:北京交通大学出版社,2007.

[5]罗敏.专用集成电路逻辑测试仪系统总体实现[D].西安:西北工业大学,2006.

[6]Cheng K T,Jou J Y.Functional Test Generation for Finite State Machines [A].Proc. ITC[C].2006:160-168.

[7]陈松.电子设计自动化[M].南京:东南大学出版社,2005.

集成电路与应用篇(3)

引言

液压传感器是工业液压监测中最为常用的一种传感器,能将液体压力信号转换为直流4~20mA或直流0~10V电信号输出,在工业自动控制中通常配合专用模拟量输入模块应用于可编程序控制系统(PLC)。然而模拟量信号在传输过程中容易受到数字量信号、交流输入信号、外部强干扰源等的干扰,模拟量受干扰已经成为了自动控制系统的一个难题。基于此笔者提出了一种基于LM331集成电路的液压监测系统,将液压传感器输出电压信号转换为高速脉冲的数字量信号输出到PLC,既能够实现液压的实时检测,同时有效地解决模拟量抗干扰问题。

1 LM331集成电路简介

LM331是美国NS公司生产的性价比较高的集成芯片,是一种非常理想的精密电压/频率转换器,可用于制作简洁、低成本的模数转换器。当作为压/频转换器使用时,LM331输出脉冲链的频率精确度与输入端施加的电压成比例变化,体现了压/频转换器的特有的优势,可轻松应用于所有的标准压/频转换场合。LM331为双列直插式8引脚的芯片,结构框图如图1所示。

LM331各引脚功能如下:管脚1是脉冲电流输出端,内部相当于脉冲恒流源;管脚2是用于调节输出端脉冲电流幅度;管脚3是脉冲电压输出端OC门结构,输出脉冲宽度Tw;管脚7是提供给比较器的基准电压;管脚8是工作电压范围为4~40V的电源Vcc。LM331集成电路线性度好、外接电路简单、非线性失真小、变换精度高,数字分辨率可达12位,并且容易保证转换精度。

2 液压监测系统架构

为了提高模拟量的抗干扰能力和节约成本,本液压监测系统使用基于LM331的V/F变换电路作为模拟量采集电路。液压传感器将接受到的压力信号转换为0~10V的直流电压信号,直流电压信号再通过V/F变换电路变换为脉冲信号,PLC接受到脉冲信号后,经过运算处理可采集到液压的实时数据,系统架构框图如图2所示,考虑到所选用的PLC有6组高速计数器,系统最大可同时采集6组液压数据,每一组数据都是脉冲信号,可以远距离传输而不受干扰。

3 液压监测系统硬件设计

液压监测系统需使用电压/频率转换器进行采样,为了节约成本,在不牺牲采样精度的条件下,本系统使用了V/F转换器LM331集成电路芯片组成的A/D转换电路.V/F转换器LM331芯片能够把电压信号转换为频率信号,而且线性度好,经过PLC处理,把频率信号转换为数字信号,可以完成A/D转换。它具有接线简单,价格低廉,转换精度高、使用方便等特点。

3.1 模拟量采集电路设计

系统模拟量采集电路设计为压频转换电路,如图3所示,LM331采用单电源供电,电源电压Vcc为15V,模拟信号Vin的输入范围为0V~10V,模拟信号Vin通过LM331芯片进行V/F转换后,变成与电压成正比的频率信号fout=(VIN/20.9V)×(RS/RL)×1/RtCt,fout端输出的频率信号送到PLC的计数端口,PLC对频率信号进行采集、处理、存储。从而实现模拟信号到数字信号的转换。

在电源与第7脚之间连接有电阻RIN为100k?赘,因此第7脚的偏置电流将抵消第6脚失调电流所起的作用,用于减少频率偏移。连接在第2脚的电阻RS由12k?赘的固定电阻和5k?赘电位器组成,用于调整LM331的增益偏差及Rt、RL和Ct的偏差。电容CIN作为VIN的滤波器取值为0.1uF,连接在第7脚和地之间,输出比较器较高的线性度取决于电路中47k?赘的电阻和1uF的电容CL产生的

差效果。电路所有的元器件都选用温度系数低,参数稳定的元器件,如金属膜电阻和陶瓷NPO电容等,能使模拟信号采集得到最佳效果。

3.2 PLC信号采集电路设计

本系统选择的PLC是西门子S7-200系列PLC中的典型产品CPU226,其集成24输入/16输出共40个数字量I/O点。可连接7个扩展模块,最大扩展至256路数字量I/O点或64路模拟量I/O点。24K字节程序和数据存储空间。6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。

液压传感器模拟量信号通过V/F变换电路处理后输出脉冲信号是数字量,本系统设计利用西门子CPU226高速计数器的输入点I0.0~I0.5直接采集V/F变换电路的输出脉冲信号,进而用CPU226程序对信号进行处理,信号采集电路如图4所示,能较好地解决模拟量在电磁环境下易受干扰的问题。

4 系统程序设计

本系统选用的可编程序控制器CPU226有HSC0-HSC5共6个高速计数器,本系统设计将V/F变换电路的输出脉冲信号送入高速计数器HSC1的输入端,用于累计脉冲数,,控制高速计数器累计脉冲的时间通过设置定时中断的间隔时间来实现,根据累计脉冲数与预置的间隔时间,计算出被测模拟量值。

以液位测量为例子,首先把液位设定在100mm,读取每100MS的脉冲数H1,再把液位设定在200mm,读取每100MS的脉冲数H2,通过公式计算可以求得每mm对应的脉冲数X=主程序在第一个扫描周期调用初始化子程序SBR0,仅在第一个扫描周期标志位SM01=1。由子程序SBR0实现初始化。

要使高速计数器能正常工作,设置正确的参数是关键。首先要激活HSC1,设置正方向计数,可更新预置值(PV),可更新当前值(CV),把高速计数器HSC1的控制字节MB47置为16进制数FC。采集信号的高速计数器不需复位或启邮淙耄也没有外部的方向选择,因此用定义指令HDEF设置成工作模式0。然后将定时中断0间隔时间SMB34置为100ms,中断程序0分配给定时中断0,并允许中断,当前值SMD48复位为0,预置值SMD52置为FFFF(16进制)。最后用指令HSC1启动高速计数器,每100ms调用一次中断程序0,读出高速计数器的数值后,将其置零,通过HSC1计数值及变换关系来求被测的液位值。

5 结束语

基于LM331集成电路的液压监测系统运用LM331实现A/D转换,具有电路简单、测量精度高、抗干扰性强,运行可靠并且转换位数可调的特点,能够实现对液压进行实时检测,可以节省大量的成本, 因此在液压监测中具有广泛的应用前景。当然, 基于LM331集成电路的液压监测系统只是液压监测系统的一种, 使用者可以根据现场环境、精度的要求和成本的控制来选择合适的液压监测系统。

参考文献

[1]廖常初.S7-200 PLC编程及应用[M].机械工业出版社,2014.

集成电路与应用篇(4)

1引言

谷氨酸(Glutamate,Glu)是神经内关键的兴奋性神经递质之一,其代谢与大神经认知、记忆、运动、神经元可塑性等功能相关[1]。神经信息传导具有神经电生理和神经递质两种方式。对神经内谷氨酸和神经电生理并行检测有利于全面研究神经系统功能。目前,针对谷氨酸和电生理信号的文献报道都是利用单模手段,而在体双模检测报道很少。如2015年Kanamori结合EEG电极和微透析的双模检测法,在体研究大鼠神经内谷氨酸浓度增加的现象[2]。2014年Tani等[3]在神经片中分离出海马CA3区和皮层的谷氨酸能神经突触,通过的功能特别依赖于谷氨酸信号转运,因此熟悉海马生理结构,并从神经电生理、谷氨酸递质传导等方面分析海马区的神经传导通路,是海马区相关神经疾病研究的重要方法。他们采用膜片钳记录电刺激后的离子通道信号,并使用荧光共振能量转移技术测量谷氨酸释放。不论基于神经调控进行病理、药理研究,还是研究某特定神经区神经回路的作用机制,在体实时获得相关神经区电生理和谷氨酸化学递质信号的双模并行变化具有重要意义[4]。谷氨酸与相关化合物通过延长兴奋性突触传递作用导致神经元破坏,引发兴奋性毒性,从而引发癫痫、神经创伤、神经缺血等急性神经元损伤。通常情况下,释放到突触间隙的谷氨酸浓度可达1mmol/L,时间维持10

3s,在突触间隙的谷氨酸长期累积,引起谷氨酸受体受到过分刺激,从而导致神经元损害甚至死亡。海马(Hippocampus)是脊椎动物(包括人类)大脑神经的重要组成,在记忆形成和空间感知中具有非常关键的地位。海马区结构和功能的改变与癫痫、阿尔茨海默病、精神分裂症等神经疾病关系密切,是病理研究的重要神经区之一[5]。长期增强效应作为神经可塑性重要形式即在海马区被第一次发现[6]。海马区神经电信号分类和特征分析在神经疾病研究中具有重要意义,而海马区的功能特别依赖于谷氨酸信号转运,因此熟悉海马生理结构,并从神经电生理、谷氨酸递质传导等方面分析海马区的神经传导通路,是海马区相关神经疾病研究的重要方法。

本研究运用纳米材料修饰技术、微纳加工制造技术、酶生物传感技术、神经调控技术,设计了一款双模(电生理电位与谷氨酸化学递质)并行检测的植入式、8通道神经信息检测器件,并进行在体测试研究。同时,神经器件检测的动作电压信号被后续后端电路进行放大、滤波、去噪、模拟到数字信号转换、功耗优化、并且电路模块高度集成,图1为本研究设计的神经信号处理传感芯片系统整体,并且该微型可穿戴系统[7]可以移植到手机及其它便携生物信号检测终端。

2SOIMEMS谷氨酸检测神经植入传感器和信号处理集成单芯片制备

2.1MEMS植入神经探针制备

本实验采用SOI自停止技术形成硅基底,SOI硅片中间二氧化硅氧化层可作为背面基底湿法腐蚀的自停止层。MEMS神经信息传感探针基于三层光刻工艺,利用了3块掩膜版,如图2所示,探针关键制备流程:(1)为了使硅基底与微电极阵列之间完全绝缘,热氧化制备硅底绝缘层(图2A);(2)利用第一块掩膜版光刻显影将图形转移到光刻胶上,在其上溅射Ti层后溅射Pt薄膜层,增强粘附性,再剥离光刻胶层与多余的Ti/Pt薄膜层,留下记录位点、导线和焊盘的金属导电层图形,以形成金属导电层(图2B);(3)采用等离子化学气相沉积(PECVD)方法沉积氮化硅(Si3N4)绝缘层,利用第二块掩膜版进行光刻显影,对氮化硅进行等离子刻蚀,暴露出电极及焊盘,保留引线表面覆盖的绝缘层,以形成氮化硅绝缘层(图2C);(4)利用第三块掩膜版进行光刻显影,通过深刻蚀形成硅针基底外形;通过湿法腐蚀去除SOI底层硅,使硅针以外的二氧化硅薄层下脱落,形成微电极阵列针体(图2D)。电极针体通过压焊工艺与尾端接口电路进行焊接封装,形成完整的微电极阵列芯片。MEMS传感探针整体,后端正方形焊盘通过压焊连接到外部接口电路,与斩波放大接口电路进行匹配集成(图3A为传感探针的后端尾端焊盘),而尖端则修饰纳米材料酶敏感膜为传感探针的尖端检测位点部分(图3B为2个同样的Pt铂探针),以形成特异选择性的生物识别点。该MEMS探针芯片在硅针基底上集成了电化学微电极阵列、电生理微电极阵列、引线、焊盘以及氮化硅绝缘层。其中,硅探针1(以棱形分布着通道1,2,3和4,为电生理信号检测通道)淀积铂黑纳米材料,用于电生理信号检测;而硅探针2(以棱形排部着通道1,2,3和4,为电化学信号检测通道)则修饰PtmPDGluOx固定敏感复膜,用于神经化学递质信号检测。电生理和电化学位点距离尽量近,便于检测微米范围内同一脑区微h境的电生理/电化学信息。为了防止互相干扰,电极之间距离不能太近。探针前端可植入部分长8mm,探针体宽90μm,相邻探针1与2的间隔是180μm,4个圆形检测位点为一组,分布在每个硅探针尖端,圆形位点直径12μm,形成具有高时空分辨率、生理与化学递质信息互不干扰的微米级检测精度的神经信息检测双探针。

2.2神经电生理检测位点铂纳米颗粒

为了提高微弱神经信号的检测灵敏度,在MEMS探针表面修饰纳米材料,其纳米结构能够有效增大比表面积[8],以加快表面的电子转运,提高电流响应灵敏度。电化学铂沉积使用阴极沉积机制,在基体电极上直接外延生长纳米铂颗粒层,铂黑的电沉积镀液使用H2PtCl4,再加少量硝酸铅、醋酸铅,铅离子均匀化铂镀层晶粒,同时减少析出的氢的数量,提高了沉积电流效率。通过改变沉积电压及时间,可以形成多种不同形貌的电极表面。沉积电位电位过小不会发生氧化还原反应,电位过大则会引起颗粒簇集问题;沉积时间会影响铂黑层的致密均匀性与厚度,沉积具体操作为:将45mmol/L氯铂酸和4.0mmol/L醋酸铅溶液按体积比1〖KG-3∶〖KG-51配制成电解液,取15mL备用。实验采用两电极体系,将需要电镀的4个位点与电化学工作站工作电极相连,电生理检测的铂丝电极与工作站的对电极(与参比电极短接)相连。将铂丝电极和电极尖端浸入电解液中,在

.1V恒电位下沉积1min,电镀结束后,用去离子水洗掉电极表面的残留离子,即得到疏松的铂黑颗粒薄层。在1kHz处,对修饰后的微电极表面进行电化学阻抗扫描,修饰后的电极阻抗约为34.0kΩ,比未修饰纳米材料的裸电极阻抗下降了一个数量级。图4A为探针修饰铂黑纳米后的表面扫描电子显微镜(Scanningelectronmicroscope,SEM)照片,图4B为化学递质探针尖端表面的铂黑形貌,显示出明显的黑色颗粒层。

2.3电化学检测位点选择性酶膜修饰

制备的MEMS铂探针电极表面固定的谷氨酸氧化酶(LGlutamateoxidase,GluOx)可氧化为谷氨酸,生成氨、H2O2和α酮戊二酸,通过间接测量H2O2发生氧化还原反应的产生电流,再进行电流与谷氨酸浓度的换算,即可得到谷氨酸浓度变化曲线。如图5所示,本研究使用交联法酶固定技术,并加入牛血清蛋白BSA惰性蛋白质作为基质,以防止酶分子交联过程中因密度过大可能导致酶活性中心不能接近底物问题。

在谷氨酸检测位点上固定PtmPDGluOx复膜结构,其中沉积的间苯二胺(1,3Phenylenediamine,mPD)层可与酶层形成有效大分子过滤抗干扰层,阻止尺寸比较大的分子(抗坏血酸AA、多巴胺DA、3/4二羟基苯乙酸DOPAC)通过,而小分子(H2O2等)则可以穿过,膜层接触电极表面发生反应,生成牢固的复膜结构,即形成有效的谷氨酸神经化学递质识别位点。修饰好的电极在室温固化后,形成的酶层稳固性极佳,用水进行冲洗不会脱落。通过对3个电化学位点进行谷氨酸标准溶液标定,在PBS缓冲液中,+0.7V电位作用下,神经化学递质检测电极mPDGluOx微电极对6~35μmol/L不同浓度谷氨酸进行标定,结果显示线性度为0.98,单位面积灵敏度为0.0069pA/μmol,电流响应误差低于3.0pA,线性相关系数(R)为0.97;如图6A所示,mPDGluOx微电极响应电流随谷氨酸浓度的增加而增大;如图6B所示,谷氨酸在电极表面氧化电流与浓度呈线性关系,灵敏度为24.6pA/(μmol/L)。证明设计的电化学检测探针可以实现特异性选择功能。实验结果表明,微电极位点一致性良好、电化学性能可靠,化学递质检测硅针2上以棱形分布着通道5,6,7和8,可用于化学递质谷氨酸的检测。

2.4MEMS传感后端信号处理集成单芯片制备

如图7所示,神经电生理传感后端信号处理集成单芯片包括:带宽/增益可调的低噪声神经电(动作/局部场电位)微弱信号斩波稳定放大器、SARADC与ASK/FSK调制的射频发射器。传感后端的小信号放大器进行前端传感器感知的微弱神经电生理信号的放大与直流失调/低频闪烁噪声的抑制,然后送到低功耗中速SARADC模块进行模拟到数字信号的转换,最终SARADC输出的数字信号被数字编码器模块进行无线信道传输编码并打包成帧,然后帧码流对射频电路物理层进行基于ISM(Industrialscientificmedical)2.4GHz波段的射频上频谱调制,最终经过天线辐射到远处接收基站。芯片能耗进行了降低优化,以提高设备续航时间。本研究设计的传感后端数模混合信号调理单芯片,具有神经电传感后端处理的普适应用价值,构建了可穿戴场合应用的微型神经信号采集与无线传输设备。该模块可以集成到生物智能检测手持终端设备,以构建智慧神经电传感检测设备。

2.4.1神经电生理信号的斩波稳定放大使用调制/解调斩波去噪技术[9],开发了具有普适应用价值的神经电生理电压信号斩波小信号放大电路。斩波稳定电路利用纹波抑制环路消除位于单级放大器输出端的纹波电压,以避免纹波电压导致后续电路的饱和问题[10]。斩波电路使用正反馈环路技术以提高输入阻抗,提高后端斩波放大器与传感器的分压比,并且负反馈环路用于稳定中频增益。斩波放大器主体核后级联的基于采样/保持原理的部分用于消除由于非理想的MOS开关引起的毛刺噪声,并且斩波放大系统的增益/带宽可以用数字方式进行调整。斩波放大电路基于功耗节省效率提高的电流复用单级放大主体核,并且放大主体单级核增益足够大,有利于抑制后续电路噪声[11]。设计的斩波放大电路,配合双模并行SOIMEMS神经信息检测器件,进行了放大电路关键指标的测试:等效输入噪声电压≤0.7μVrms(rootmeansquare)、数字可调增益范围71~82dB(4200~11200倍)、功耗是8.0μW/单通道、共模抑制比>110dB、电源抑制比>100dB等。

2.4.2SARADC模/数转换SARADC电路采用多级放大器级联自动归零去噪声、锁存去回踢噪声、最高位MSB电容拆分、电容阵列失配消除等技术,研发了一款转换速度适中的SARADC核,其关键参数是:等效量化位数(Effectivenumberofbits,ENOB)为12bits,当最大转换速度为1Msps时,芯片功耗为1.2mW,最大转换速度为1Msps,信噪比SNR为60.9dB、无杂散动态范围(Spuriousnoisefreedynamicrange,SFDR)73.7dB。SARADC使用了深N阱工艺,并且SAR数字控制部分进行单独隔离,防止数字抖动对模拟部分的干扰。最后,对流片后的ADC模块进行测试。结果表明,SARADC可完成放大后模拟神经电压的数字转换。

2.4.3ASK/FSK调制的射频发射利用直接上变频的ASK/FSK调制的射频电路结构,主要模块包括基于锁相环的频率综合器(Phaselockedloopfrequencysynthesizer,PLLFS)与E类的功率放大器(Etypepoweramplifier,PA)。设计的神经电可穿戴设备的感知节点需要布置在人体头部表面,需要使用电池供电;考虑系统复杂度与硬件成本,低功耗、高速率、高集成度是射频电路设计的目标。VCO(Voltagecontroloscillator)通过频率控制字进行频带的选择;此外,分频字进行分频器分频比的控制。PAE的输出功率通过功率控制字进行PAE输出幅度的控制,具有频谱纯净、易于集成、功耗低等特点。FSK调制通过关断锁相环内的开环VCO电容阵列,VCO的变容管电容随着控制电压改变而改变,进而改变输出信号的频率与相位。VCO通过增加电容阵列的数目来扩大VCO的调频范围,从而避免控制电压控制变容器引起的非线性问题。

2.4.4集成后的传感芯片系统、与商用设备&旧系统的对比本研究研发的神经电生理(动作/场电位)信号采集传感后端IC芯片与前端神经电生理探针匹配后集成,具有很小的体积,可以构建微型可穿戴神经检测设备[12]。与商用的Cerebus公司多通道神经电生理信号记录系统进行比较,此多通道神经电检测仪器对电生理信号检测的准确度为95%。由于本电路模块高度集成化,可用于构建神经信息可穿戴微型终端,并且芯片内部对数字逻辑部分进行基于单独隔离环的保护,以及利用深N阱工艺,以降低电路内部噪声。此传感芯片系统体积大大减小,具有便携可穿戴实际应用价值。

3实验部分

3.1实验动物、仪器与试剂

实验动物:健康野生型小鼠;实验试剂:0.9%生理盐水(石家庄四药公司),0.7%趵坦(国药集团化学试剂有限公司);实验仪器:脑立体定位仪,液压微推进器,BSA124S型电子天平(德国赛多利斯公司);MWD20型超纯水器(美诚公司,中国);数据分析软件:OfflineSorter动作电位分类软件(PlexonInC.美国)、NeuroExplorer神经信息分析软件(NexTechnologies,美国)。

3.2实验方法

对麻醉小鼠进行0.75%戊巴比妥钠腹腔注射,去掉头皮后在小鼠颅骨上开1.5mm×1.5mm窗口,并挑破电极进入处的硬神经膜。电极植入时通过大神经皮层进入海马区域,水平定位是(ML:2.01mm,AP:2.04mm)。将微电极阵列垂直固定在微推进器上,通过液压推进器以1.1μm/s的速度缓慢匀速推进微电极,分别到达3个植入深度后暂停120s,等待电流稳定后继续匀速推进。整个实验过程中电极尖端垂直行程为2.2mm,并停留记录在4个不同深度处,包含皮层到海马区不同深度的神经区结构。采用Ag|AgCl丝植入到小鼠神经皮层作为电化学参比电极(AP:2.0mm,ML:

2.01mm,DV:

.01mm)。MEA上的一个电化学位点连接Gamry电化学工作站,采用计时电流法检测神经内化学递质谷氨酸,施加恒电位+0.70V,采样频率为2Hz(采样间隔为0.50s)。

4结果与讨论

4.1皮层至海马区谷氨酸浓度变化

本实验电极覆盖皮层到海马区不同脑区深度的4个停留记录位置如图8所示。电极由皮层植入海马区过程中,使用计时电流法实时记录电流变化[13],并从立体定位仪上读取植入深度Z(图8)。

在植入初期,电极在皮层表面Z=0.20mm处停留足够长时间(90s),直至电流稳定在约15.19pA。图9A显示400s内电极由皮层(Z=0.70mm)植入到海马区(Z=1.80mm)过程中的电流变化,电极在每个标定深度处停留约40s,并在下降过程中保持匀速。植入过程中电流曲线出现两个明显的浓度台阶,说明谷氨酸在不同神经区分布的自然浓度差异。图9B显示4个不同深度神经区对应的谷氨酸浓度

变化趋势。为了减小计时电流法中非法拉第电流的影响,取Z=0.20mm处最后10s的扫描电流均值为神经颅内‘0′谷氨酸浓度对应的基底电流,电极稳定在某一具体深度后,计算氧化电流均值与该基底电流的差值,通过标定曲线灵敏度换算为该深度神经区的谷氨酸浓度。深度1对应神经区位于视觉皮层,谷氨酸浓度分别为(35.50±0.03)μmol/L、(37.80±0.27)μmol/L。深度3对应神经区位于海马CA1区,谷氨酸浓度分别为(84.50±0.31)μmol/L。深度4处的浓度谷值分别对应皮层与CA1区、CA1区与齿状回交接处的神经区。

4.2皮层至海马区电生理信号分析

利用OfflineSorter软件聚类分析记录到的神经动作电位(Spikes),得到单神经元的放电序列。图10A显示了神经皮层区和海马区典型通道1和3记录到的电生理信号。4个通道在皮层区记录到5种典型Spike,第3通道同时检测到两种不同类型的动作电位;而4个通道在海马区记录到3种典型Spike,其中第4通道同时检测到两种不同的动作电位。记录到的皮层区动作电位发放频率均值为2.10~10.67spikes/s,远大于海马区动作电位发放频率均值0.03~0.15spikes/s。目前,传统微透析法检测的海马区谷氨酸浓度为110~200μmol/L,略高于此微探针电极测量结果。神经电生理实验表明,该微电极上的多测量点可同时记录神经元不同层次的场电位[14],并很好地记录单个神经元的胞外神经动作Spike电位。微电极记录的皮层动作电位波形种类、发放频率均大于海马区细胞发放水平,说明皮层细胞活跃性和通讯复杂度大于海马区。对海马区的神经电生理记录中,现有文献报道采用膜片钳记录到的海马神经元自发放电主要分为5种类型,分别为不规则发放型、单波规则发放型、紧张发放型、阵发排放型及周期排放型[15],图10B为通道1记录到的同一种放电波形具有锥体细胞的簇状放电特性。

5结论

针对在体神经信息检测的实际需求,使用SOI衬底的MEMS技术制备了一种双通道植入式神经信息检测8通道微电极阵列芯片。此芯片在硅针基底上集成了铂金电化学微电极、电生理微电极、焊盘与引线等。采用纳米修饰、酶固定技术分别进行电生理位点、谷氨酸检测位点定向修饰。铂黑修饰后电生理检测位点阻抗比裸电极下降了一个数量级;谷氨酸位点在标准谷氨酸溶液内的线性度与单位面积灵敏度、反应时间、选择性均满足要求。基于研发的微电极阵列芯片对皮层至海马区的神经电生理与谷氨酸在体双模检测,实时测量到从皮层至海马区的谷氨酸动态释放和神经动作Spike发放,验证了植入式微电极阵列可实现谷氨酸递质、动作电位和场电位的并行在体检测,可为皮层到海马区神经通路的研究提供有效的MEMS植入神经传感探针。此外,基于传感后端处理芯片(斩波稳定神经电生理小信号放大、SARADC模数转换、编码器与射频发射)构建了一款低噪声低功耗的微型神经电生理信息可穿戴设备。

References

1MichaelAC,BorlandLM.UniversityofPittsburgh,Pennsylvania:CRCPress,2007

2KanamoriK.EpilepsyRes,2015,(11):32-46

3TaniH,DullaCG,FarzampourZ,TaylorWeinerA,HuguenardJR,ReimerRJ.Neuron,2014,81(4):888-900

4WEIWenJing,SONGYiLin,FANXinYi,ZHANGSong,WANGLi,XUShengWei,CAIXinXia.ChineseJ.Anal.Chem.,2015,43(7):983-988

蔚文静,宋轶琳,范心怡,张松,王力,徐声伟,蔡新霞.分析化学,2015,43(7):983-988

5AndersenP.OxfordUniversityPress,USA,2007

6BlissTVP,LmoT.J.Physiol.,1973,232(2):331-356

7LINNanSen,WANGLi,WANGMiXia,XUShengWei,YUWeiDong,CAIXinXia.ChineseJ.Anal.Chem.,2015,43(1):93-97

林楠森,王力,王蜜霞,徐声伟,禹卫东,蔡新霞.分析化学,2015,43(1):93-97

8WeiWJ,SongYL,ShiWT,LinNS,JiangTJ,CaiXX.Biosens.Bioelectron.,2014,(55):66-71

9VanHN,KimS,KimH,KimJP,VanHC.IEEET.Biomed.Circ.Sys.,2012,6(6):552-561

10YooJ,YanL,ElDamakD,AltafMAB.IEEEJ.SolidStateCirc.,2013,48(1):S1214-228

11XuJW,FanQW,HuijsingJH,HoofCV.IEEEJ.SolidStateCirc.,2013,48(7):S11575-1584

12BonfantiA,CeravoloM,ZambraG,GusmeroliR,BorghiT,SpinelliAS,LacaitaAL.IEEEEuropeanSolidStateCircuitsConf.(ESSCIRC),2010:330-333

13JIANGTingJun,LIUChunXiu,SONGYiLin,XUShengWei,WEIWenJing,CAIXinXia.ChineseJ.Anal.Chem.,2014,42(8):1071-1076

Y庭君,刘春秀,宋轶琳,徐声伟,蔚文静,蔡新霞.分析化学,2014,42(8):1071-1076

14MahmudM,TravalinD,BertoldoA,GirardiS,MaschiettoM,VassanelliS.J.Med.Biol.Engineer.,2012,32(6):397-404

15YANGRunSheng,PANShengWu,FANGYing,YANGShengChang.Biomed.Engineer.Res.,2009,(1):25-27

杨润生,潘盛武,方颖,杨盛昌.生物医学工程研究,2009,(1):25-27

AbstractA8channelneuralsignal′ssimultaneoustransducerdetectionmicrosystemwasdevelopedtoresearchtheneurallooplocatedatthebrainhippocampuszone.ThecomponentsofthesystemcontainedtheneuralprobemanufacturedwiththeMicroelectromechanicalsystems(MEMS)techniquebasedonsilicononinsulator(SOI)substrate,biologicallownoisechopperstabilizationamplifier,lownoiseandintermediatespeedSARADCconverter,reducedandlowpowerASK/FSKmodulationradiotransmitter.Themicrosystemwasapplicablewiththecharactersofsmallvolume,interferencesfree,neuralelectrophysiologyandneurotransmittersimultaneousdetection,highsensitivity,highlinearity,etc.Theelectroderesistancewasoptimizedto35.0kΩafterdepositingnanometerplatinumblackonthe4electrophysiologicalsitesonthePtelectrode.Withthemodificationenzymetechnique,nanomaterialenzymemembrane(PtmPDGluOx)wasdirectlyfixedontheglutamatedetectionlocusforselectivelydetectingspecialneuralneurotransmittermatter.Inaddition,theelectrochemistrymeasurementresultsindicatedthatthelinearrangeofglutamatewas6-35μmol/Lwithcorrelationcoefficientof0.97,thesensitivitywas0.0069pA/(μmol/L).Thecurrentresponseerrorwaslessthan3.0pA,whichshowedthattheneuralneedlesatisfieddifferentialselection.Also,thelogic/analogmixedsignal180nmApplicationspecificintegratedcircuit(ASIC)technique(SmicRF180nm1Poly6M)wasusedtomanufacturethetransducerbackenddisposingICchip,andthetestresultsprovidedsomekeyparameterssuchaschopperstabilizationamplifier(equivalentinputtingnoisevoltage≤0.7μVrms@1kHz,gainof71-82dB,CMRR/PSRR>100dB),SARADC(ENOBis12bits,powerconsumptionis1.2mWwhenmaxmiumconversionspeedis1Msps,signalnoiseratiois60.9dB,etc),andASK/FSKmodulationradiotransmitter(thePA′soutputtingpowerof4-5dBm,theradiationrangeof10meters).Themicroneuraltransducerintegratedsystemwasconvenientandwirelesswearablefortheresearchofbrainhippocampusregion.

集成电路与应用篇(5)

一、引言

当今社会是数字化的社会,数字集成电路具有可靠性高、静态功耗小、工作速度高、寿命长和低成本等优点,因此它在通信、电力、自动化设备和家用电器等诸多方面得到了广泛应用。目前数字集成电路种类繁多,不同类型的集成电路在连接时,如果逻辑电平不匹配,且考虑到负载能力的限制,那么中间就需要串入接口电路,否则将引起逻辑混乱,甚至损坏集成芯片。因此,为了更好地使用数字集成电路,就有必要对其具体使用方法和接口技术要有一定的认识。

二、数字集成电路的分类

按照电路结构的不同,数字集成电路可分为两大类:一类是双极型集成电路,采用晶体管作为开关元件,管内有电子和空穴两种极性的载流子参与导电;另一类采用绝缘栅场效应晶体管作开关元件,称为MOS(Metal Oxide Semiconductor)集成电路。这种管子内部只有一种载流子,即电子或空穴参与导电,故又称单极型集成电路。下面我对这两种类型的数字集成电路予以简要说明。

(一)双极型集成电路

TTL电路(Transistor-Transistor Logic即晶体管――晶体管逻辑电路)也称为TL,是目前双极型数字集成电路中应用得最多的一种。它具有较快的开关速度、较强的抗干扰能力,以及足够大的输出幅度,且带负载能力也比较强,所以得到了最为广泛的应用[1]。

在双极型数字集成电路中,除了TTL电路以外,还有高阈值逻辑(High Threshold Logic,简称HTL)、二极管―三极管逻辑(Diode-Transistor Logic,简称DTL)、发射极耦合逻辑(Emitter Coupled Logic,简称ECL)和集成注入逻辑(Integrated Injection Logic,简称IL)等几种逻辑电路。其中较为常用是ECL电路,其电路中的三极管工作在非饱和状态,是一种非饱和电路,有极高的工作速度。此外它还具有输出阻抗低、带负载能力强、电路内部开关噪声低、使用方便灵活等优点。它的主要缺点是:噪声容限低,电路功耗大,输出电平的稳定性较差。目前ECL电路主要用于高速、超高速数字系统中。

(二)MOS集成电路

MOS数字集成电路是指只有一种载流子参与导电的电路,其中只有电子参与导电的称为NMOS电路;只有空穴参与导电的称为PMOS电路;如果是用NMOS及PMOS复合起来构成的互补(Complementary)MOS集成电路,则称为CMOS电路。PMOS和NMOS组件中各只含有一种MOS管,习惯上称它们为MOS集成电路,以与CMOS集成电路相区别。

PMOS集成电路问世较早,但由于其速度低,现已很少使用;NMOS集成电路速度稍高,且直流电源电压较低,在工艺上可以制造出开启电压较低的器件,故NMOS集成电路仍在使用中。CMOS数字集成电路与TTL数字集成电路相比,有许多优点,如工作电源电压范围宽,静态功耗低,抗干扰能力强,输入阻抗高,成本低,等等。因而,CMOS数字集成电路得到了广泛的应用。

三、CMOS电路和TTL电路的使用注意事项

由于CMOS与TTL数字集成电路有其各自的工作特点,因此在应用数字集成电路时对其要有正确的使用方法。下面我就对CMOS与TTL相应使用事项作以简要说明。

(一)CMOS电路的使用知识

1.输入电路的静电保护

CMOS电路的输入端设置了保护电路,给使用者带来很大方便。但是,这种保护还是有限的。CMOS电路的输入阻抗高,极易产生感应较高的静电电压,从而击穿MOS管栅极极薄的绝缘层,造成器件的永久损坏。为避免静电损坏,应注意以下几点。

(1)所有与CMOS电路直接接触的工具、仪表等必须可靠接地。

(2)存储和运输CMOS电路,最好采用金属屏蔽层做包装材料。

2.多余的输入端不能悬空

输入端悬空极易产生感应较高的静电电压,造成器件的永久损坏。对多余的输入端,可以按功能要求接电源或接地,或者与其他输入端并联使用。

(二)TTL电路的使用知识

1.多余输入端处理方法

(1)与其他输入端并联使用。

(2)将不用的输入端按照电路功能要求接电源或接地。比如将与门、与非门的多余输入端接电源,将或门、或非门的多余输入端接地。

2.电路的抗干扰处理

(1)在每一块插板的电源线上,并接几十μF的低频去耦电容和0.01―0.047μF的高频去耦电容,以防止TTL电路的动态尖峰电流产生的干扰。

(2)整机装置应有良好的接地系统[2]。

四、常用数字集成电路接口技术

在数字系统设计中,往往由于工作速度或者功耗指标的要求,需要采用多种逻辑器件混合使用,而由于每种器件的电压和电流参数各不相同,因此需要采用接口电路来连接不同类型的集成电路。如TTL和CMOS电路需要采用接口电路一般要考虑两个问题:一是要求电平匹配,即驱动门要为负载门提供符合标准的输出高电平和低电平;二是要求电流匹配,即驱动门要为负载门提供足够大的驱动电流。下面我就CMOS电路和TTL电路之间的接口问题加以分析[3]。

(一)TTL门驱动CMOS门

1.电平不匹配2.电流匹配

因为CMOS输入电流几乎为零,所以TTL驱动CMOS在电流的兼容性上不存在问题。

3.解决电平不匹配问题的方法

(1)外接上拉电阻在TTL门电路的输出端外接一个上拉电阻R5V。(如图1所示)

图1 TTL驱动CMOS接口电路

(2)选用电平转换电路(如CC40109)

若电源电压不一致时可选用电平转换电路。CMOS电路的电源电压可选3―18V;而TTL电路的电源电压只能为5V。

(3)采用TTL的OC门实现电平转换。

若电源电压不一致时也可选用OC门实现电平转换。

(二)CMOS门驱动TTL门

1.电平匹配

CMOS门电路作为驱动门,U.8V。电平匹配是符合要求的。

2.电流不匹配

由于TTL门电路的低电平输入电,而CMOS门电路的低电平输出电流远小于1.6mA,因此电流不匹配,需要加接口电路。

3.解决电流匹配问题的方法

(1)选用CMOS缓冲器:比如,CC4049的驱动电流可达4mA,完全可以满足TTL输入电流的要求。(如图2所示)

图2 CMOS驱动TTL接口电路

(2)选用高速CMOS系列产品:如选用CMOS的54HC/74HC系列产品可就以直接驱动TTL电路。

(3)CMOS电路并联驱动TTL,这种方法只允许在CMOS为同一集成芯片时使用。

五、结语

在数字电路或数字系统的设计中,常常需要根据设计指标对工作速度或功耗的要求选用不同类型的数字集成电路。因此不同类型的集成电路在混合使用时,要根据其相应引脚的逻辑电平和带负载能力采用相应的接口电路,这样才能确保电路逻辑准确、性能可靠。

参考文献:

[1]阎石.数字电子技术基础(第五版)[M].北京:高等教育出版社,2006.5.

集成电路与应用篇(6)

在自动测试系统的开发设计中,为保证开发设计的测试系统在实际中的应用实现,需要结合系统测试的相关要求与标准,同时采用开放式的系统结构进行开发设计。本文在进行基于电路板自动测试系统的开发设计中,主要结合电路板测试系统的功能结构需求,通过测试程序集的开发设计环境和实际应用条件,进行测试系统的开发设计实现,使得开发设计的电路板自动测试系统不仅具有较为突出的通用性,并且具有开放式软件结构,再加上测试方法库以及简洁的测试树开发界面的开发设计应用,很大程度上也提高了测试程序集的开发效率,同时由于测试系统中的多媒体信息查询功能,使系统的故障检测与隔离处理也相对比较方便,在实际应用中具有较为突出的优势。

1 电路板自动测试系统及其功能需求分析

在实际应用中,电路板自动测试系统主要是进行电子设备中各类型电路板故障问题的检测与隔离应用的系统,通常情况下,电路板自动测试系统进行测试的电路板类型主要有模拟电路、混合电路、数字电路和射频电路等,其在电子设备的生产调试中也有应用实现。结合电路板自动测试系统在实际中的应用,主要有专用的电路板自动测试系统和通用电路板自动测试系统,其中,通用电路板自动测试系统已经成为当前电路板测试开发应用与设计的主要方向。通用的电路板自动测试系统主要由硬件系统以及软件系统两个部分组成,其中软件系统包括测试程序集的开发与执行两个部分构成,测试程序集开发环境主要是进行各种电路板自动测试系统的开发调试,而测试程序集执行环境则是用于测试程序集的执行,以进行电路板故障检测与隔离实现。

结合上述对于电路板自动测试系统的功能结构分析,在进行电路板自动测试系统的功能需求分析中,主要是对于电路板自动测试系统中的软件系统两个结构部分的功能需求进行分析,根据上述可知电路板自动测试系统软件系统主要包括测试程序集开发环境与测试程序集执行环境两个部分。结合电路板自动测试系统在实际中的开发应用,其软件系统中的测试程序集开发环境在开发设计过程中,通常需要满足以下功能和作用。首先,测试程序集的开发环境需要适应不同电路板的测试程序集开发,包括数字电路以及混合电路、模拟电路等;其次,测试程序集开发环境还需要满足测试程序集能够独立于测试程序集执行环境进行开发设计;再次,测试程序集开发环境在系统开发设计中还需要满足符合相关要求标准以及具有集成开发环境的功能作用等,以满足电路板自动测试系统的开发设计与应用需求;此外,测试程序集开发环境在电路板自动测试系统的开发设计中,还需要进行基于模板的测试程序集的开发向导功能满足和提供,并进行通用测试方法库的满足提供,并且测试程序集的集成开发环境能够对于电路板自动测试系统中的不同硬件配置进行适应满足,还能够实现测试报告的生成实现,同时具有用户管理功能等,以满足电路板自动测试系统在实际开发设计与应用中的功能需求。

此外,进行电路板自动测试系统的开发设计中,还需要对于系统软件结构中的测试程序集执行环境的功能需求进行分析。通常情况下,电路板自动测试系统的测试程序集执行环境需要具备以下功能作用。首先,测试程序集执行环境对于不同电路板的测试程序集的开发设计具有通用性,同时测试程序集执行环境还能够实现系统的故障检测与隔离;其次,电路板自动测试系统中的测试程序集执行环境还需要具备多媒体和硬件资源管理功能,并且能够实现测试程序集的管理以及测试报告生成,最后测试程序集执行环境还具备与开发环境相同的用户管理功能。

2 电路板自动测试系统的软件结构分析

结合上述对于电路板自动测试系统结构组成的分析,其中系统的软件结构主要由测试程序集开发环境和执行环境两个部分组成,其中,电路板自动测试系统软件测试程序集开发环境结构,主要由测试程序集开发环境主控模块以及测试树开发环境、测试程序集方法库、测试程序集数据生成模块、故障隔离与多媒体等结构模块组成,其中,测试程序集开发环境的主控模块主要是进行测试程序集工程创建以及管理、模块调用、系统硬件资源管等,而测试树开发环境则是一个图形界面的开发环境,能够实现系统测试与故障检测的编辑以及调试、编译等功能;此外,测试程序集方法库是进行各种测试功能的动态连接的数据库。

其次,电路板自动测试系统的软件测试程序集执行环境主要由测试程序集执行环境主控模块和测试树执行环境两个结构部分组成,它主要是进行测试程序集执行应用,以实现对于电路板故障问题的检测和隔离。

在开发设计中,为满足开发设计系统在实际中的通用性,需要将测试程序集的测试程序与执行环境进行分离实现,并将分离出来的测试程序设置成动态程序进行调节应用实现。

3 结束语

总之,进行基于电路板自动测试系统的开发模式内容与思路分析,有利于促进电路板自动测试系统在实际中的开发设计与应用实现,具有积极作用和价值意义。

参考文献

[1]高晓燕,丁国君.基于LabVIEW的制动控制单元自动测试系统的开发[J].电子技术应用,2013(10).

[2]郭甲阵,谢华,兰京川.基于虚拟仪器的雷达电路板自动测试系统[J].仪表技术与传感器,2011(02).

[3]刘涛,姜文志,张丽萍.基于LASAR仿真的数字电路板故障诊断[J].弹箭与制导学报,2010(02).

作者简介

集成电路与应用篇(7)

中图分类号:G642.0 文献标志码: A 文章编号:1002-0845(2012)09-0102-02

集成电路产业是关系到国家经济建设、社会发展和国家安全的新战略性产业,是国家核心竞争力的重要体现。《国民经济和社会发展第十二个五年规划纲要》明确将集成电路作为新一代信息技术产业的重点发展方向之一。

信息技术产业的特点决定了集成电路专业的毕业生应该具有很高的工程素质和实践能力。然而,目前很多应届毕业生实践技能较弱,走出校园后普遍还不具备直接参与集成电路设计的能力。其主要原因是一些高校对集成电路专业实践教学的重视程度不够,技能培养目标和内容不明确,导致培养学生实践技能的效果欠佳。因此,研究探索如何加强集成电路专业对学生实践技能的培养具有非常重要的现实意义。

一、集成电路专业实践技能培养的目标

集成电路专业是一门多学科交叉、高技术密集的学科,工程性和实践性非常强。其人才培养的目标是培养熟悉模拟电路、数字电路、信号处理和计算机等相关基础知识,以及集成电路制造的整个工艺流程,掌握集成电路设计基本理论和基本设计方法,掌握常用集成电路设计软件工具,具有集成电路设计、验证、测试及电子系统开发能力,能够从事相关领域前沿技术工作的应用型高级技术人才。

根据集成电路专业人才的培养目标,我们明确了集成电路专业的核心专业能力为:模拟集成电路设计、数字集成电路设计、射频集成电路设计以及嵌入式系统开发四个方面。围绕这四个方面的核心能力,集成电路专业人才实践技能培养的主要目标应确定为:掌握常用集成电路设计软件工具,具备模拟集成电路设计能力、数字集成电路设计能力、射频集成电路设计能力、集成电路版图设计能力以及嵌入式系统开发能力。

二、集成电路专业实践技能培养的内容

1.电子线路应用模块。主要培养学生具有模拟电路、数字电路和信号处理等方面的应用能力。其课程主要包含模拟电路、数字电路、电路分析、模拟电路实验、数字电路实验以及电路分析实验等。

2.嵌入式系统设计模块。主要培养学生掌握嵌入式软件、嵌入式硬件、SOPC和嵌入式应用领域的前沿知识,具备能够从事面向应用的嵌入式系统设计能力。其课程主要有C语言程序设计、单片机原理、单片机实训、传感器原理、传感器接口电路设计、FPGA原理与应用及SOPC系统设计等。

3.集成电路制造工艺模块。主要培养学生熟悉半导体集成电路制造工艺流程,掌握集成电路制造各工序工艺原理和操作方法,具备一定的集成电路版图设计能力。其课程主要包含半导体物理、半导体材料、集成电路专业实验、集成电路工艺实验和集成电路版图设计等。

4.模拟集成电路设计模块。主要培养学生掌握CMOS模拟集成电路设计原理与设计方法,熟悉模拟集成电路设计流程,熟练使用Cadence、Synopsis、Mentor等EDA工具,具备运用常用的集成电路EDA软件工具从事模拟集成电路设计的能力。其课程主要包含模拟电路、半导体物理、CMOS模拟集成电路设计、集成电路CAD设计、集成电路工艺原理、VLSI集成电路设计方法和混合集成电路设计等。此外,还包括Synopsis认证培训相关课程。

5.数字集成电路设计模块。主要培养学生掌握数字集成电路设计原理与设计方法,具备运用常用的集成电路EDA软件工具从事数字集成电路设计的能力。其课程主要包含数字电路、数字集成电路设计、硬件描述语言、VLSI测试技术、ASIC设计综合和时序分析等。

6.射频集成电路设计模块。主要培养学生掌握射频集成电路设计原理与设计方法,具备运用常用的集成电路EDA软件工具从事射频集成电路设计的能力。其课程主要包含CMOS射频集成电路设计、电磁场技术、电磁场与

天线和通讯原理等。

在实践教学内容的设置、安排上要符合认识规律,由易到难,由浅入深,充分考虑学生的理论知识基础与基本技能的训练,既要有利于启发学生的创新思维与意识,有利于培养学生创新进取的科学精神,有利于激发学生的学习兴趣,又要保证基础,注重发挥学生主观能动性,强化综合和创新。因此,在集成电路专业的实验教学安排上,应减少紧随理论课开设的验证性实验内容比例,增加综合设计型和研究创新型实验的内容,使学有余力的学生能发挥潜能,有利于因材施教。

三、集成电路专业实践技能培养的策略

1.改善实验教学条件,提高实验教学效果。学校应抓住教育部本科教学水平评估的机会,加大对实验室建设的经费投入,加大实验室软、硬件建设力度。同时加强实验室制度建设,制订修改实验教学文件,修订完善实验教学大纲,加强对实验教学的管理和指导。

2.改进实验教学方法,丰富实验教学手段。应以学生为主体,以教师为主导,积极改进实验教学方法,科学安排课程实验,合理设计实验内容,给学生充分的自由空间,引导学生独立思考应该怎样做,使实验成为可以激发学生理论联系实际的结合点,为学生创新提供条件。应注重利用多媒体技术来丰富和优化实验教学手段,如借助实验辅助教学平台,利用仿真技术,加强新技术在实验中的应用,使学生增加对实验的兴趣。

3.加强师资队伍建设,确保实验教学质量。高水平的实验师资队伍,是确保实验教学质量、培养创新人才的关键。应制定完善的有利于实验师资队伍建设的制度,对实验师资队伍的人员数量编制、年龄结构、学历结构和职称结构进行规划,从职称、待遇等方面对实验师资队伍予以倾斜,保证实验师资队伍的稳定和发展。

4.保障实习基地建设,增加就业竞争能力。开展校内外实习是提高学生实践技能的重要手段。

实习基地是学生获取科学知识、提高实践技能的重要场所,对集成电路专业人才培养起着重要作用。学校应积极联系那些具有一定实力并且在行业中有一定知名度的企业,给能够提供实习场所并愿意支持学校完成实习任务的单位挂实习基地牌匾。另外,可以把企业请进来,联合构建集成电路专业校内实践基地,把企业和高校的资源最大限度地整合起来,实现在校教育与产业需求的无缝联接。

5.重视毕业设计,全面提升学生的综合应用能力。毕业设计是集成电路专业教学中最重要的一个综合性实践教学环节。由于毕业设计工作一般都被安排在最后一个学期,此时学生面临找工作和准备考研复试的问题,毕业设计的时间和质量有时很难保证。为了进一步加强实践环节的教学,应让学生从大学四年级上半学期就开始毕业设计,因为那时学生已经完成基础课程和专业基础课程的学习,部分完成专业课程的学习,而专业课教师往往就是学生毕业设计的指导教师,在此时进行毕业设计,一方面可以和专业课学习紧密结合起来,另一方面便于指导教师加强对学生的教育和督促。

选题是毕业设计中非常关键的环节,通过选题来确定毕业设计的方向和主要内容,是做好毕业设计的基础,决定着毕业设计的效果。因此教师对毕业设计的指导应从帮助学生选好设计题目开始。集成电路专业毕业设计的选题要符合本学科研究和发展的方向,在选题过程中要注重培养学生综合分析和解决问题的能力。在毕业设计的过程中,可以让学生们适当地参与教师的科研活动,以激发其专业课学习的热情,在科研实践中发挥和巩固专业知识,提高实践能力。

6.全面考核评价,科学检验技能培养的效果。实践技能考核是检验实践培训效果的重要手段。相比理论教学的考核,实践教学的考核标准不易把握,操作困难,因此各高校普遍缺乏对实践教学的考核,影响了实践技能培养的效果。集成电路专业学生的实践技能培养贯穿于大学四年,每个培养环节都应进行科学的考核,既要加强实验教学的考核,也要加强毕业设计等环节的考核。

对实验教学考核可以分为事中考核和事后考核。事中考核是指在实验教学进行过程中进行的质量监控,教师要对学生在实验过程中的操作表现、学术态度以及参与程度等进行评价;事后考核是指实验结束后要对学生提交的实验报告进行评价。这两部分构成实验课考核成绩,并于期末计入课程总成绩。这样做使得学生对实验课的重视程度大大提高,能够有效地提高实验课效果。此外,还可将学生结合教师的科研开展实验的情况计入实验考核。

7.借助学科竞赛,培养团队协作意识和创新能力。集成电路专业的学科竞赛是通过针对基本理论知识以及解决实际问题的能力设计的、以学生为参赛主体的比赛。学科竞赛能够在紧密结合课堂教学或新技术应用的基础上,以竞赛的方式培养学生的综合能力,引导学生通过完成竞赛任务来发现问题、解决问题,并增强学生的学习兴趣及研究的主动性,培养学生的团队协作意识和创新精神。

在参加竞赛的整个过程中,学生不仅需要对学习过的若干门专业课程进行回顾,灵活运用,还要查阅资料、搜集信息,自主提出设计思想和解决问题的办法,既检验了学生的专业知识,又促使学生主动地学习,最终使学生的动手能力、自学能力、科学思维能力和创业创新能力都得到不断的提高。而教师通过考察学生在参赛过程中运用所学知识的能力,认真总结参赛经验,分析由此暴露出的相关教学环节的问题和不足,能够相应地改进教学方法与内容,有利于提高技能教学的有效性。

此外,还应鼓励学生积极申报校内的创新实验室项目和实验室开放基金项目,通过这些项目的研究可以极大地提高学生的实践动手能力和创新能力。

参考文献:

[1]袁颖,等.依托专业特色,培养创新人才[J]. 电子世界,2012(1).

[2]袁颖,等.集成电路设计实践教学课程体系的研究[J]. 实验技术与管理,2009(6).

[3]李山,等.以新理念完善工程应用型人才培养的创新模式[J]. 高教研究与实践,2011(1).

集成电路与应用篇(8)

当今世界电子技术飞速发展,集成电路正在逐步取代某些具有特定功能的分立元件电路。在目前使用的电子技术教材中,集成运算放大器的应用电路所占的分量也越来越大,由它们主要构成了信号运算电路、信号处理电路和信号发生器等。

1 集成运放应用的特点及其判断

集成运放的应用分为线性应用和非线性应用,

(1)当集成运放工作在线性区时,集成运放的输入输出成一定的比例关系,即闭环电压放大倍数Auf;(2)当集成运放工作在非线性区,其内部的输出级三极管进入饱和区工作,输出电压与集成运放的输入信号不再呈线型关系,其值近似等于电源电压Uom。

运放工作在哪个区域的判断标准是看集成运放应用电路中是否引入负反馈:如果集成运放的应用电路引入的负反馈,即在单元运放的输出端与反相输入端之间跨接负反馈网络,只要电路中有负反馈网络,则电路工作在线性区,即电压传输特性的斜线区域;如果运放应用电路中没有负反馈网络,即处于开环或具有正反馈,则集成运放工作在非线性区,该单元电路就属于非线性应用。

2 集成运放应用电路基本分析方法

运放的基本分析方法实际是指两个概念——“虚短”、“虚断”,它们是集成运放十分重要的特性。“虚短”、“虚断”是指集成运放的同相输入端和反相输入端即好像是短路,又像是断路的。

由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB 以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于 “短路”。开环电压放大倍数越大,两输入端的电位越接近相等。把这种两输入端视为等电位的特性称为虚假短路,简称“虚短”,显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ 以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。把这种两输入端视为等效开路的特性称为虚假开路,简称“虚断”,显然不能将两输入端真正断路。

集成运放两输入端的输入电流近似为0,相当于断路一样,但它们和内部电路又不是真正的断开,所以称为“虚断”。

我们利用“虚短”“虚断”的概念来分析电路,可以大大简化集成运放应用电路的分析过程。但集成运放工作在不同区域时,分析方法不尽相同。集成运放的线性应用电路可以使用“虚短”、“虚断”两个概念进行分析,而集成运放的非线性应用中,“虚短” 不再成立,仅能用“虚断”的概念进行分析。

3 两种应用的实例及分析

3.1 集成运放线性应用电路

以同相比例运算电路为例,电路结构如图1,具体说明分析步骤:

(1)判断电路中含有负反馈网络,以确定集成运放工作在线性区;此电路含有电压串联负反馈网络;

(2)使用“虚短”、“虚断”和“虚地”的概念分析输入信号与输出之间的比例关系;

集成电路与应用篇(9)

一、引言

集成电路技术作为微电子技术的一个重要门类和组成部分,其技术发展遵循着著名的摩尔定律,仅仅需要1.5年的时间就能够将相同性能的电路压缩到原有体积的一半,而进40年来,集成电路的体积几乎缩小了30000倍。当前,顶尖的集成电路研发技术掌握在少数几个发达国家的研究机构手中,而与集成电路息息相关的IC产业已经被高度整合,从设计,到制造,到封装再到测试,已经形成了一条完整的产业链,集成电路的广泛应用不断地推动着科技的进步,也不断地改变着人类的生活。本文将讨论集成电路的原理,分析集成电路的发展,最后讨论集成电路的应用。

二、集成电路概述

微电子学是一种结合了电子学以及材料物理学的综合学科,该学科的主要研究认为是将半导体材料进行适当处理,制造出微型电子电路、微型电子系统以满足各种应用需要。基于微电子技术发展起来的集成电路技术主要囊括了材料技术、电路技术、集成封装技术等几个门类,主要通过将晶体管器件、电阻器件、电容器件等按照电路原理高度集成在一起,从而实现电路的某种功能,从集成电路输入输出关系来看,集成电路一般可以分为模拟集成电路和数字集成电路两种。

三、常见集成电路举例

1.74LS138译码器

74LS139集成电路是常见的两个2线-4线译码器,共有54/74S139和54/74LS139两种线路结构型式,当选通端(G1)为高电平,可将地址端(A、B)的二进制编码在一个对应的输出端以低电平译出。若将选通端(G1)作为数据输入端时,74LS139还可作数据分配器。A、B译码地址输入端,高电平触发;芯片的G1、G2为选通端,低电平触发有效;Y0~Y3为译码输出端。

2.74ls244缓冲器

74LS244是一种3态8位缓冲器,一般用作总线驱动器。74LS244芯片没有锁存的功能,地址锁存器就是一个暂存器,74LS244根据控制信号的状态,将总线上地址代码暂存起来。8086/8088数据和地址总线采用分时复用操作方法,即用同一总线既传输数据又传输地址。

当微处理器与存储器交换信号时,首先由CPU发出存储器地址,同时发出允许锁存信号ALE给锁存器,当锁存器接到该信号后将地址/数据总线上的地址锁存在总线上,随后才能传输数据。

3.555定时器

555定时器是一种模拟和数字功能相结合的中规模集成器件,是最常见的定时器集成电路。一般用双极性工艺制作的称为555,用CMOS工艺制作的称为7555,除单定时器外,还有对应的双定时器556/7556。555定时器的电源电压范围宽,可在4.5V~16V工作,7555可在3~18V工作,输出驱动电流约为200mA,因而其输出可与TTL、CMOS或者模拟电路电平兼容。一般来说,555定时器的功能实现由比较器决定。两个比较器的输出电压控制RS触发器和放电管的状态。在电源与地之间加上电压,当5脚悬空时,则电压比较器C1的同相输入端的电压为2VCC/3,C2的反相输入端的电压为VCC/3。若触发输入端TR的电压小于VCC/3,则比较器C2的输出为0,可使RS触发器置1,使输出端OUT=1。如果阈值输入端TH的电压大于2VCC/3,同时TR端的电压大于VCC/3,则C1的输出为0,C2的输出为1,可将RS触发器置0,使输出为0电平。

555的应用:

(1)构成施密特触发器,用于TTL系统的接口,整形电路等;

(2)构成多谐振荡器,组成信号产生电路,振荡周期:T=0.7(R1+2R2)C;

(3)构成单稳态触发器,用于定时延时整形及一些定时开关中。

555应用电路采用以上三种方式中的1种或多种组合起来可以组成各种实用的电子电路,如定时器、分频器、脉冲信号发生器、元件参数和电路检测电路、玩具游戏机电路、音响告警电路、电源交换电路、频率变换电路、自动控制电路等。

四、集成电路发展

电路工艺是集成电路技术中最为基础的部分,主要涉及到扩散技术、氧化技术、光刻腐蚀技术以及薄膜再生技术等方面。上世纪六十年代末,微电子研究人员充分研究了氧化二硅系统的电性质,完成了界面物理研究的理论储备,紧接着科学家通过控制钠离子玷污的手法,配合使用高纯度的材料,成功实现了MOS集成电路的生产,由于MOS电路在工艺上易于控制、功耗很低、集成度高、可裁剪性强等优点,当前半导体工业中,绝大多数的集成电路有使用MOS或者CMOS结构。

制版技术方面的关键技术的光刻技术,光刻技术最初被使用在照相术上面,上世纪五十年代末被应用到半导体技术中,仙童公司巧妙地使用光刻技术实现了集成电路的图形结构。使用光刻技术制造的器件相互连接时可以不使用手工焊接技术,而是采用真空金属蒸发技术,使用光刻技术实现电路的绘制。近年来,随着光刻技术的发展,光刻技术的加工精度已经达到超深亚微米数量级。

电路设计方面。1971年,Intel公司第一台微处理器的发明是集成电路技术对人类做出的最大贡献之一,微处理器的发明开辟了计算机时代的新纪元。微处理器的发明带动了以CMOS为基础的超大规模集成电路系统的发展,也带动了智能化电子产品的飞速发展,是信息技术的基础原件和实物载体。近年来,随着集成电路技术的发展,科学家将量子隧穿效应技术应用到集成电路领域,推动了信息化社会的进程。

工艺材料方面。随着材料科学的不断发展,很多新材料技术和新物力技术不断地被应用到集成电路领域当中,铁电存储器和磁阻随机存储器就是其中的代表。当前集成电路技术的发展突显出一些新的特征,主要表现在从一维向多维发展,向材料技术、微电子技术、器件技术以及物理技术提出了更高的要求,集成电路的发展也正因为如此遭遇瓶颈,物理规律的限制、材料科学的限制、技术手法的限制。不过与此同时,宽禁带的SiC、GaN以及AIN等材料击穿电压值高、禁带值高、抗辐射性能好,应经被广泛应用,所制造器件在高频工作状态、高温状态以及大功率状态下性能优异,是集成电路的发展方向。

五、结语

集成电路是上世纪人类社会最伟大的发明之一,集成电路的广泛应用不断地推动着科技的进步,也不断地改变着人类的生活。本文系统分析了集成电路的原理,列举了几种常见集成电路,并对集成电路的发展进行了讨论和研究。

参考文献

[1]张允炆.半导体技术[M].哈尔滨工业大学出版社,2004.

[2]李祁镇.集成电路概述[M].北京:清华大学出版社,2003.

[3]韩周子.数字集成电路概述[M].西安:西安电子科技大学出版社,2004.

集成电路与应用篇(10)

作者简介:陈丽茹(1962-),女,辽宁开原人,哈尔滨电力职业技术学院信息工程系,副教授;刘莲秋(1964-),女,辽宁盖州人,哈尔滨电力职业技术学院信息工程系,副教授。(黑龙江哈尔滨150030)

中图分类号:G712     文献标识码:A     文章编号:1007-0079(2012)12-0093-02

随着我国科技和经济的迅猛发展,社会对人才的需求正在发生着深刻的变化,教育行业受到各方面的重视。在教育部和财政部实施的国家示范性院校建设政策鼓舞下,高等职业技术学院以服务为宗旨,以就业为导向,以培养高级应用型、技艺型人才为目标。这类人才主要是在不同行业、企业的工作和生产过程中负责管理、监督、检测、分析、技术服务等几项工作。因此,高等职业技术学院正进行较大规模的专业建设和课程改革,要求高职专业的学生除了具备必要的基础理论、专业技术知识外,还必须具有解决工作生产中实际问题的能力,以适应今后的工作。

“电子技术”分为模拟电子和数字电子两大部分,在教学中从职业岗位工作任务分析着手以掌握知识和技能为根本、以工作方向为培养目标、以工作过程为导向,强调把完整的工作过程及其操作要求作为课程内容。当工作过程导向课程运用项目载体设计学习情境时,这一工作过程实际上就成了完成具体项目的自始至终的步骤。通过课程分析和知识、能力、素质分析,打破传统的教学模式,构建了“以工作任务为中心、以课程项目为主体的教学方法”。在教学中掌握课程技术原理及应用方面知识体系的完整性是非常重要的,使学生在完整的工作过程中培养应对复杂技术情境的能力。在教学中以典型电子电路制作的工作任务为中心,以多模块应用为切入点,引入对学生创新能力的培养,让学生在具体应用电路的制作过程中开发创新思维,完成相应工作任务,并构建相关的理论知识,发展职业能力。

一、模拟电子技术教学导航

模拟电子技术是研究对仿真信号进行处理的模拟电路的学科。它以半导体二极管、半导体三极管和场效应管为关键电子器件,包括功率放大电路、运算放大电路、反馈放大电路、信号运算与处理电路、信号产生电路、电源稳压电路等研究方向。

理论知识:基本半导体知识、放大电路、集成运算放大电路、直流稳压电源。

技能训练:常用元件的识别与测量、放大电路性能分析、集成运算放大电路基本应用。

1.模块1:半导体器件

(1)知识重点:半导体基础知识;半导体二极管外部特性;晶体三极管外部特性。(2)知识难点:半导体PN结。(3)教学方式:从半导体PN结入手,简单介绍半导体的基本结构与工作原理。结合实践教学,重点掌握半导体的外部特性。(4)技能要求:二极管与三极管的简易测试。

2.模块2:放大电路

(1)知识重点:放大电路的基本组成;放大电路的分析;多级放大电路的极间耦合;负反馈对放大电路的性能的影响。(2)知识难点:放大电路的分析;放大电路的负反馈。(3)教学方式:从基本放大电路入手,介绍放大电路的静态与动态分析、多级放大、电路反馈;结合实践教学,重点掌握放大器的外部特性。(4)技能要求:放大电路静态工作点的调整与动态参数测试。

3.模块3:集成运算放大器

(1)知识重点:集成运放的结构和特点;基本运算电路;集成运放的线性应用电路。(2)知识难点:集成运放的线性应用电路。(3)教学方式:从理论集成运放条件入手,掌握各基本运算电路和电压比较器的功能;结合实践教学,重点掌握集成运放的外部特性。(4)技能要求:电路的调整与测试。

4.模块4:直流稳压电源

(1)知识重点:整流与滤波电路;稳压电路;开关电源。(2)知识难点:开关电源。(3)教学方式:从二极管整流特性、电容器充放电入手,讲解整流、滤波电路;稳压电源重点讲授集成稳压电路和开关电源。(4)技能要求:电路的调整与测试。

二、数字电子技术教学导航

数字电子技术主要研究各种逻辑门电路、集成器件的功能及其应用,逻辑门电路组合和时序电路的分析和设计、集成芯片各脚功能。随着计算机科学与技术突飞猛进地发展,用数字电路进行信号处理的优势也更加突出。为了充分发挥和利用数字电路在信号处理上的强大功能,可以先将模拟信号按比例转换成数字信号,然后送到数字电路进行处理,最后再将处理结果根据需要转换为相应的模拟信号输出。

理论知识:集成门电路与组合逻辑电路、时序逻辑电路、波形产生与整形电路、中规模集成电路应用。

技能训练:组合逻辑电路应用、时序逻辑电路应用、逻辑电路限定符号识图。

1.模块1:数字电路基础

(1)知识重点:数字脉冲信号;二进制与8421BCD码;基本函数与逻辑运算;逻辑函数的化简和变换。(2)知识难点:逻辑函数的化简和变换。(3)教学方式:从二进制与逻辑函数基本规则入手,学习逻辑运算规则、逻辑函数化简与变换。(4)技能要求:逻辑函数的化简和变换。

2.模块2:组合逻辑电路

(1)知识重点:基本逻辑符号及意义;门电路的逻辑功能和基本特性;组合逻辑电路的分析常用组合逻辑电路的逻辑功能。(2)知识难点:基本逻辑符号及意义;组合逻辑电路。(3)教学方式:从基本原理与逻辑符号读解入手,重点介绍电路的逻辑功能与外部特性。(4)技能要求:基本逻辑符号读图;门电路和组合逻辑电路。

3.模块3:触发器

(1)知识重点:各类触发器的逻辑功能;触发器限定符号及其意义。(2)知识难点:触发器之间的转换关系。(3)教学方式:借助限定符号意义读解,帮助理解各种触发器的逻辑功能与控制方式;结合实践教学,重点掌握电路的外特性。(4)技能要求:触发器的逻辑功能测试。

4.模块4:时序逻辑电路

(1)知识重点:时序逻辑电路的特点;时序逻辑电路的限定符号及其意义;寄存器;集成计数器应用。(2)知识难点:集成计数器应用;限定符号及其意义。(3)教学方式:从触发器入手,由D触发器构成寄存器;由T和T触发器分别构成同步和异步二进制计数器。借助限定符号的意义来理解时序逻辑电路的逻辑功能。结合实践教学,重点掌握电路的外特性。(4)技能要求:常用的相关集成电路的应用。

5.模块5:波形产生与整形电路

(1)知识重点:555定时器;多谐振荡器与单稳态电路;施密特触发器;石英晶体振荡器。(2)知识难点:555定时器;多谐振荡器。(3)教学方式:以555定时器为重点,介绍多谐振荡器、单稳态电路和施密特触发器的功能。重点掌握电路的外特性。石英晶体振荡器从阻抗频率特性入手。(4)技能要求:常用的相关电路的应用入手。

三、电路组装、测量与调试教学导航

电子电路组装、测量与调试在电子工程技术中占有重要的地位,任何一个电子产品都是由设计焊接组装调试形成的,焊接是保证电子产品质量和可靠性最基本环节,调试是保证电子产品正常工作的最关键环节。

理论知识:常用电子仪表、电路的装配、调试与测量知识。

技能训练:常用电子测量仪表的使用、常用电路元件与数字集成电路测量、电路的装配与调试。

1.模块1:常用电子仪器知识重点

(1)知识重点:双踪示波器;半导体管特性图示仪;毫伏表;信号发生器;集成电路测试仪。(2)知识难点:双踪示波器;半导体管特性图示仪。(3)教学方式:重点讲授电子仪器的操作和使用方法。(4)技能要求:仪器的基本操作方法;半导体特性测量。

2.模块2:电子元器件的识别与简易测量

(1)知识重点:电子无源元器件;电子有源元器件;表面安装元器件。(2)知识难点:表面安装元器件。(3)教学方式:重点讲授各种电子元器件的识别与选用方法。(4)技能要求:元器件的识别与选用方法、常用数字集成电路测试。

3.模块3:电路的装配、调试与测量

(1)知识重点:装配、焊接工艺;电路测试与测量。(2)知识难点:电路测试。(3)教学方式:介绍电路装配工艺,分析电路测试与测量基本方法,结合实训进行教学。(4)技能要求:电路装配、测试与测量。

四、电子电路仿真教学导航

电路仿真技术是近十年来在电子技术研究领域的一场革命。设计人员利用计算机及其软件的强大功能,在电路模型上进行电路的性能分析和模拟实验,从而得到准确的结果,然后再付诸生产,极大地减少了实验周期和试制成本,提高了生产效率和经济效益,受到了电子生产厂家的一致欢迎。现在,电子仿真技术已成为电子工业领域不可缺少的先进技术,因此为了确保电路设计的成功,消除代价昂贵并且存在潜在危险的设计缺陷,就必须在设计流程的每个阶段进行周密地计划与评价。电路仿真给出了一个成本低、效率高的方法,能够在进入更为昂贵费时的原型开发阶段之前,找出问题所在。

理论知识:EWB与Multisim平台基本知识,Multisim在电子仿真实验中的应用。

技能训练:模拟电路电子仿真和数字电路电子仿真。

模块:电子电路仿真。

(1)知识重点:Multisim平台的使用;Multisim在电子仿真实验中的应用。(2)知识难点:Multisim软件的使用。(3)教学方式:从电子实验实例入手,学习Multisim软件的使用,在学会使用的基础上,结合电子知识,完成电子实验的仿真。(4)技能要求:用Multisim进行电子仿真的方法。

五、综合实训项目――有源多媒体音箱的设计与制作

1.知识要求

掌握模拟电子技术和数字电子技术的综合应用思路;掌握电子产品综合设计的基本思路。

2.技能要求

能进行电子电路的综合制作调试;能有条理地撰写设计说明书;能对设计项目进行总结展示。

3.教学任务

通过有源多媒体音箱的设计、制作及测试,掌握电子产品的设计流程及注意事项,学会元器件的特性测试和电路组装、测试,熟悉电子产品组装的工艺要求及生产过程。

4.教学活动设计

(1)通过让学生利用图书馆、上网等手段查阅相关资料,在教师指导下对有源多媒体音箱进行设计,掌握电子产品的设计流程及注意事项。

(2)在校内生产线的工作岗位上,根据所设计电路选择元器件,进行元器件的性能、参数测试。规划电路板,进行元器件的布局和印制电路板的制作。完成各部分电路的焊接、组装,对已经组装的电子产品进行参数测试及调试,使其达到设计要求。

(3)要求学生撰写实践报告及产品说明书。

5.相关知识

(1)理论知识。元器件的识别、测试方法;印制电路板的制作,元器件的布局;焊接工艺、电路调试方法;产品说明书的撰写。

(2)实践知识。元器件的选择、测试;印制电路板的规划和制作;元器件的焊接、组装;电路的调试及参数测试;实践测试报告的编写。

“电子技术”课程的教学改革就是以职业为导向,以提高学生就业竞争能力为目的,以市场需求为运作平台。因此应将该课程实训的内容和电子元器件及电路的研发实验、生产流程与企业结合到一起,通过校企合作,学生以一个普通职业人的身份,真正达到工学结合的课程改革。

参考文献:

[1]教育部关于加强高职教育人才培养工作的意见[Z].教高[2000]2号.

上一篇: 档案管理措施 下一篇: 乡镇小学教师
相关精选
相关期刊