集成电路的特点汇总十篇

时间:2023-11-23 10:05:38

集成电路的特点

集成电路的特点篇(1)

在《中国集成电路产业地图白皮书(2011年)》中,赛迪顾问在总结国际集成电路产业分布特点、发展成功模式,分析国内集成电路产业分布特征及资源特征的基础上,对中国集成电路产业未来的空间发展趋势进行了分析,为国家和地方的集成电路产业空间布局与宏观决策提供参考。

这里,我们将《中国集成电路产业地图白皮书(2011年)》中的部分内容予以刊登,以飨读者。

产业整体将呈现“有聚有分,东进西移”的演变趋势

综合国内集成电路产业的自身行业特点与未来发展趋势,以及国内各区域资源条件与经济发展的总体趋势,未来5到10年,中国集成电路产业的整体空间布局,将呈现“有聚有分,东进西移”的演变趋势,即产业的区域分布将更加集聚,企业区域投资则趋于分散;设计业将向东部汇聚,制造业将向西部转移。

具体而言,随着中心区域与中心城市集成电路产业集聚效应的日益凸显,未来国内集成电路产业的区域分布将进一步向这些地区集聚。相对应,随着国内各集成电路企业实力的不断增强,它们走出各自区域,进行全国乃至全球布局的趋势将日益明显,各企业的区域投资相应将趋于分散。同时,集成电路设计业将向东部的智力密集区域汇聚,而集成电路封装测试业则将向西部的低成本地区转移。

集成电路设计业将继续向产学结合紧密的区域汇聚

集成电路设计业作为集成电路产业的龙头,其发展不仅需要人才、技术等智力资源的牵引,同样也需要芯片制造与封装测试等制造业基础的支撑。目前长三角地区集成电路设计业的加速发展已经印证了这一点。未来国内集成电路设计业将进一步向产学结合紧密的区域汇聚。以上海为中心的长三角地区,以及以北京为中心的京津地区在集成电路设计领域的优势地位将更加突出。

芯片制造业将向资本充裕的地区延展

芯片制造业的发展一方面需要大的资本投入,另一方面也需要相对低廉的成本。目前美国芯片制造生产线的建设正在向硅谷以外的地区拓展正说明了这一点。

未来国内芯片制造业也将向资本充裕的地区延展。而大连、无锡、苏州等具备高投入条件与低成本优势的沿海二线城市,将是芯片制造生产线项目建设的重点地区。

封装测试业将加速向低成本地区转移

随着市场竞争的日益激烈,封装测试业将更加注重低成本。目前国内主要封装测试企业已开始迁出上海等中心城市。未来国内封装测试业将加速向低成本地区转移。武汉、合肥等交通便利的中部地区中心城市将是未来承接封装测试行业转移的重点地区。

中国集成电路产业区域分布特征

已形成三大区域集聚发展的总体分布格局

从2010年中国各省集成电路产值分布图可以看出,目前,中国集成电路产业集群化分布进一步显现,已初步形成以长三角、环渤海、珠三角三大核心区域聚集发展的产业空间格局。2010年三大区域集成电路产业销售收入占了全国整体产业规模的近95%。

集成电路设计业分布:目前国内IC设计业主要集中在京津环渤海、长三角以及珠三角地区,2010年国内TOP40IC设计企业均分布在这三大区域。其中,京津环渤海地区拥有17家,长三角地区拥有18家,珠三角地区拥有5家。

芯片制造业分布:截至2010年底,国内4英寸以上芯片生产线总计为55条,其中12英寸生产线5条,8英寸生产线15条。目前国内芯片制造业主要分布在长三角地区。该地区8英寸和12英寸芯片生产线数量为13条,占了国内整体数量的65%。

封装测试业分布:目前国内封装测试业集中分布在长三角地区,特别是江苏省内。2010年国内封装测试业前20大企业中,江苏省的企业就达到了11家。

中国集成电路产业格局策略

进行科学规划,统筹区域发展

在国家层面进行科学规划。建议由国家集成电路产业主管部门、行业协会、龙头企业,共同制定全国集成电路产业区域布局规划,从多个方面对全国主要区域、省区市、重点园区进行分析评价,了解把握集成电路产业发展情况,科学引导集成电路产业的区域布局。

同时,统筹区域的发展。加强区域、省域集成电路产业发展的宏观的衔接,由国家或省主管部门牵头,科学编制集成电路产业规划,设立准入标准,协调产业布局与区域分工,避免重复建设与恶性竞争。

推进优势资源集聚,探索不同产业发展模式

推进优势资源集聚。加强人才、技术、资本等资源向集成电路园区集中,推进科研院所、风险投资与金融机构、企业研发中心、孵化器、中介公司等优势资源向重点区域集聚。

在明确各地区产业发展定位与目标的基础上,结合本地区产业特色,借鉴国际先进经验,发挥区域比较优势,探索不同的产业发展模式。通过走特色化的发展道路,建立各地特色鲜明、优势突出、竞争力强的集成电路产业集群。

提升园区软硬环境,引导企业集群发展

提升园区软硬环境。加强知识产权、研究开发、中试中测、应用转化等一系列公共平台的建设,建立完善的产学研合作体系、产业联盟,从专业服务和集群发展角度提高园区的竞争力。围绕龙头企业和技术输出重点机构,组织企业提供配套和转化服务,形成一批专业化、高成长企业。

集成电路的特点篇(2)

作者简介:陈丽茹(1962-),女,辽宁开原人,哈尔滨电力职业技术学院信息工程系,副教授;刘莲秋(1964-),女,辽宁盖州人,哈尔滨电力职业技术学院信息工程系,副教授。(黑龙江哈尔滨150030)

中图分类号:G712     文献标识码:A     文章编号:1007-0079(2012)12-0093-02

随着我国科技和经济的迅猛发展,社会对人才的需求正在发生着深刻的变化,教育行业受到各方面的重视。在教育部和财政部实施的国家示范性院校建设政策鼓舞下,高等职业技术学院以服务为宗旨,以就业为导向,以培养高级应用型、技艺型人才为目标。这类人才主要是在不同行业、企业的工作和生产过程中负责管理、监督、检测、分析、技术服务等几项工作。因此,高等职业技术学院正进行较大规模的专业建设和课程改革,要求高职专业的学生除了具备必要的基础理论、专业技术知识外,还必须具有解决工作生产中实际问题的能力,以适应今后的工作。

“电子技术”分为模拟电子和数字电子两大部分,在教学中从职业岗位工作任务分析着手以掌握知识和技能为根本、以工作方向为培养目标、以工作过程为导向,强调把完整的工作过程及其操作要求作为课程内容。当工作过程导向课程运用项目载体设计学习情境时,这一工作过程实际上就成了完成具体项目的自始至终的步骤。通过课程分析和知识、能力、素质分析,打破传统的教学模式,构建了“以工作任务为中心、以课程项目为主体的教学方法”。在教学中掌握课程技术原理及应用方面知识体系的完整性是非常重要的,使学生在完整的工作过程中培养应对复杂技术情境的能力。在教学中以典型电子电路制作的工作任务为中心,以多模块应用为切入点,引入对学生创新能力的培养,让学生在具体应用电路的制作过程中开发创新思维,完成相应工作任务,并构建相关的理论知识,发展职业能力。

一、模拟电子技术教学导航

模拟电子技术是研究对仿真信号进行处理的模拟电路的学科。它以半导体二极管、半导体三极管和场效应管为关键电子器件,包括功率放大电路、运算放大电路、反馈放大电路、信号运算与处理电路、信号产生电路、电源稳压电路等研究方向。

理论知识:基本半导体知识、放大电路、集成运算放大电路、直流稳压电源。

技能训练:常用元件的识别与测量、放大电路性能分析、集成运算放大电路基本应用。

1.模块1:半导体器件

(1)知识重点:半导体基础知识;半导体二极管外部特性;晶体三极管外部特性。(2)知识难点:半导体PN结。(3)教学方式:从半导体PN结入手,简单介绍半导体的基本结构与工作原理。结合实践教学,重点掌握半导体的外部特性。(4)技能要求:二极管与三极管的简易测试。

2.模块2:放大电路

(1)知识重点:放大电路的基本组成;放大电路的分析;多级放大电路的极间耦合;负反馈对放大电路的性能的影响。(2)知识难点:放大电路的分析;放大电路的负反馈。(3)教学方式:从基本放大电路入手,介绍放大电路的静态与动态分析、多级放大、电路反馈;结合实践教学,重点掌握放大器的外部特性。(4)技能要求:放大电路静态工作点的调整与动态参数测试。

3.模块3:集成运算放大器

(1)知识重点:集成运放的结构和特点;基本运算电路;集成运放的线性应用电路。(2)知识难点:集成运放的线性应用电路。(3)教学方式:从理论集成运放条件入手,掌握各基本运算电路和电压比较器的功能;结合实践教学,重点掌握集成运放的外部特性。(4)技能要求:电路的调整与测试。

4.模块4:直流稳压电源

(1)知识重点:整流与滤波电路;稳压电路;开关电源。(2)知识难点:开关电源。(3)教学方式:从二极管整流特性、电容器充放电入手,讲解整流、滤波电路;稳压电源重点讲授集成稳压电路和开关电源。(4)技能要求:电路的调整与测试。

二、数字电子技术教学导航

数字电子技术主要研究各种逻辑门电路、集成器件的功能及其应用,逻辑门电路组合和时序电路的分析和设计、集成芯片各脚功能。随着计算机科学与技术突飞猛进地发展,用数字电路进行信号处理的优势也更加突出。为了充分发挥和利用数字电路在信号处理上的强大功能,可以先将模拟信号按比例转换成数字信号,然后送到数字电路进行处理,最后再将处理结果根据需要转换为相应的模拟信号输出。

理论知识:集成门电路与组合逻辑电路、时序逻辑电路、波形产生与整形电路、中规模集成电路应用。

技能训练:组合逻辑电路应用、时序逻辑电路应用、逻辑电路限定符号识图。

1.模块1:数字电路基础

(1)知识重点:数字脉冲信号;二进制与8421BCD码;基本函数与逻辑运算;逻辑函数的化简和变换。(2)知识难点:逻辑函数的化简和变换。(3)教学方式:从二进制与逻辑函数基本规则入手,学习逻辑运算规则、逻辑函数化简与变换。(4)技能要求:逻辑函数的化简和变换。

2.模块2:组合逻辑电路

(1)知识重点:基本逻辑符号及意义;门电路的逻辑功能和基本特性;组合逻辑电路的分析常用组合逻辑电路的逻辑功能。(2)知识难点:基本逻辑符号及意义;组合逻辑电路。(3)教学方式:从基本原理与逻辑符号读解入手,重点介绍电路的逻辑功能与外部特性。(4)技能要求:基本逻辑符号读图;门电路和组合逻辑电路。

3.模块3:触发器

(1)知识重点:各类触发器的逻辑功能;触发器限定符号及其意义。(2)知识难点:触发器之间的转换关系。(3)教学方式:借助限定符号意义读解,帮助理解各种触发器的逻辑功能与控制方式;结合实践教学,重点掌握电路的外特性。(4)技能要求:触发器的逻辑功能测试。

4.模块4:时序逻辑电路

(1)知识重点:时序逻辑电路的特点;时序逻辑电路的限定符号及其意义;寄存器;集成计数器应用。(2)知识难点:集成计数器应用;限定符号及其意义。(3)教学方式:从触发器入手,由D触发器构成寄存器;由T和T触发器分别构成同步和异步二进制计数器。借助限定符号的意义来理解时序逻辑电路的逻辑功能。结合实践教学,重点掌握电路的外特性。(4)技能要求:常用的相关集成电路的应用。

5.模块5:波形产生与整形电路

(1)知识重点:555定时器;多谐振荡器与单稳态电路;施密特触发器;石英晶体振荡器。(2)知识难点:555定时器;多谐振荡器。(3)教学方式:以555定时器为重点,介绍多谐振荡器、单稳态电路和施密特触发器的功能。重点掌握电路的外特性。石英晶体振荡器从阻抗频率特性入手。(4)技能要求:常用的相关电路的应用入手。

三、电路组装、测量与调试教学导航

电子电路组装、测量与调试在电子工程技术中占有重要的地位,任何一个电子产品都是由设计焊接组装调试形成的,焊接是保证电子产品质量和可靠性最基本环节,调试是保证电子产品正常工作的最关键环节。

理论知识:常用电子仪表、电路的装配、调试与测量知识。

技能训练:常用电子测量仪表的使用、常用电路元件与数字集成电路测量、电路的装配与调试。

1.模块1:常用电子仪器知识重点

(1)知识重点:双踪示波器;半导体管特性图示仪;毫伏表;信号发生器;集成电路测试仪。(2)知识难点:双踪示波器;半导体管特性图示仪。(3)教学方式:重点讲授电子仪器的操作和使用方法。(4)技能要求:仪器的基本操作方法;半导体特性测量。

2.模块2:电子元器件的识别与简易测量

(1)知识重点:电子无源元器件;电子有源元器件;表面安装元器件。(2)知识难点:表面安装元器件。(3)教学方式:重点讲授各种电子元器件的识别与选用方法。(4)技能要求:元器件的识别与选用方法、常用数字集成电路测试。

3.模块3:电路的装配、调试与测量

(1)知识重点:装配、焊接工艺;电路测试与测量。(2)知识难点:电路测试。(3)教学方式:介绍电路装配工艺,分析电路测试与测量基本方法,结合实训进行教学。(4)技能要求:电路装配、测试与测量。

四、电子电路仿真教学导航

电路仿真技术是近十年来在电子技术研究领域的一场革命。设计人员利用计算机及其软件的强大功能,在电路模型上进行电路的性能分析和模拟实验,从而得到准确的结果,然后再付诸生产,极大地减少了实验周期和试制成本,提高了生产效率和经济效益,受到了电子生产厂家的一致欢迎。现在,电子仿真技术已成为电子工业领域不可缺少的先进技术,因此为了确保电路设计的成功,消除代价昂贵并且存在潜在危险的设计缺陷,就必须在设计流程的每个阶段进行周密地计划与评价。电路仿真给出了一个成本低、效率高的方法,能够在进入更为昂贵费时的原型开发阶段之前,找出问题所在。

理论知识:EWB与Multisim平台基本知识,Multisim在电子仿真实验中的应用。

技能训练:模拟电路电子仿真和数字电路电子仿真。

模块:电子电路仿真。

(1)知识重点:Multisim平台的使用;Multisim在电子仿真实验中的应用。(2)知识难点:Multisim软件的使用。(3)教学方式:从电子实验实例入手,学习Multisim软件的使用,在学会使用的基础上,结合电子知识,完成电子实验的仿真。(4)技能要求:用Multisim进行电子仿真的方法。

五、综合实训项目――有源多媒体音箱的设计与制作

1.知识要求

掌握模拟电子技术和数字电子技术的综合应用思路;掌握电子产品综合设计的基本思路。

2.技能要求

能进行电子电路的综合制作调试;能有条理地撰写设计说明书;能对设计项目进行总结展示。

3.教学任务

通过有源多媒体音箱的设计、制作及测试,掌握电子产品的设计流程及注意事项,学会元器件的特性测试和电路组装、测试,熟悉电子产品组装的工艺要求及生产过程。

4.教学活动设计

(1)通过让学生利用图书馆、上网等手段查阅相关资料,在教师指导下对有源多媒体音箱进行设计,掌握电子产品的设计流程及注意事项。

(2)在校内生产线的工作岗位上,根据所设计电路选择元器件,进行元器件的性能、参数测试。规划电路板,进行元器件的布局和印制电路板的制作。完成各部分电路的焊接、组装,对已经组装的电子产品进行参数测试及调试,使其达到设计要求。

(3)要求学生撰写实践报告及产品说明书。

5.相关知识

(1)理论知识。元器件的识别、测试方法;印制电路板的制作,元器件的布局;焊接工艺、电路调试方法;产品说明书的撰写。

(2)实践知识。元器件的选择、测试;印制电路板的规划和制作;元器件的焊接、组装;电路的调试及参数测试;实践测试报告的编写。

“电子技术”课程的教学改革就是以职业为导向,以提高学生就业竞争能力为目的,以市场需求为运作平台。因此应将该课程实训的内容和电子元器件及电路的研发实验、生产流程与企业结合到一起,通过校企合作,学生以一个普通职业人的身份,真正达到工学结合的课程改革。

参考文献:

[1]教育部关于加强高职教育人才培养工作的意见[Z].教高[2000]2号.

集成电路的特点篇(3)

从目前微电子科学技术和集成电路产业发展基础条件来说,我国成为世界上经济发展和进步最快的国家之一,加上现阶段我国集成电路产业的核心发展水平得到了不断提升和优化,能够进一步为我国微电子科学技术和集成电路产业的发展提供了良好环境。

一、微电子与集成电路技术特点

(一)集成电路特点

集成电路技术又被稱为微电路系统、微芯片系统以及芯片系统等,并且在电子技术应用过程中,主要将电路结构,比如:半导体装置等小型设备化装置,所以该电子元件一般应用和制造在半导体元件的表面结构上。电路集成板在生产和制造过程中,其半导体芯片表面结构上的电路模式又被称为薄膜集成电路。而另外结构板的厚膜将混合成为集成电路结构,进而由相对独立的半导体结构设备以及被动生产元件共同构成,最终集合成小型化电路模式。其中集成电路设备和系统自身具备体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等相关优势,除此之外,由于集成电路自身经济支出成本相对较低,有利于大面积生产,所以其设备不仅在工业生产、民用电子设备等,比如:收录机、电视机、计算机等相关设备的到了广泛的应用和技术操作。

(二)微电子技术特点

与传统电子生产技术相比较,微电子技术自身具有显著特点,其主要特点表现为以下几个方面。

第一,现代化微电子技术主要利用自身设备固态结构体内部的微电子设备运作,进而实现信息处理和系统加工。其中信号在实际传输过程中,能够在绩效尺寸内开展一系列设备生产[1]。第二,微电子技术在实际应用过程中,能够将子系统以及电子零部件集成为统一芯片内部结构中,所以其设备普遍具备较高的集成性和功能性特点。

二、微电子与集成电路发展现状

现阶段我国微电子科学技术和集成电路产业发展起步相对较晚,并且经过长时间的技术研究和发展,我国电子科学技术行业已经从初级自主创业环节转变为系统化、规模化的环境建设。同时随着科学技术的不断发展和优化,我国在集成电路生产行业中始终保持优质的的发展趋势和方向,同时从销售经济角度来看,自动进入90年代后,集成化电路生产产业的始终保证在经济前端,其中集成电路生产产业的基础集中程度同样的到了有效提升,但是由于我国经济得到了不断提升,企业在集成电路生产过程中,同样无法有效满足市场的基础要求,逐渐出现了产业与经济无法平衡现状。

根据现阶段我国经营实际情况进行综合分析,无论是国家发展还是社会进步,始终重视集成电路以及微电子经营发展,因此在国家的大力发展和支持条件下,我国在集成电路研究和探索领域中开始培养和引进高精尖技术人才,许多高校同样开设相关的课程内容和技术培训,进而为我国微电子以及集成电力培养大量人才。然而与发达国家相比较,我国微电子和集成电路产业上仍然存在着较大的技术和经济差距。

第一,我国微电子以及集成电路行业起步相对较晚,最终导致市场技术拓展能力较差,致使整体行业出现了记性问题[2]。除此之外,我国在集成电路产业以及微电子科学技术方面上,极少能够进入世界范围内的平台中,因此大多数电子产品属于自产自销,严重缺少国际方面的竞争能力,第二,现阶段我国大多数集成电路在研究过程中普遍属于初级阶段,但是由于集成电路以及微电子产品生产过程中明显缺少基础技术,最终造成集成电路产业明显缺少核心竞争能力,致使研究技术人员以及技术水平明显落后,一定程度上限制和约束了我国集成电路产业的创新和进步,最终无法构成一定良性循环。

三、微电子与集成电路优化途径

(一)优化产品方案设计

在微电子科学技术和集成电路产业发展过程中,应该不断优化和完善产品方案设计,进而将高经济收益、高生产效率作为产品发展和生产的主要方向目标。而在产品方案设计过程中,需要以芯片设计方案作为重点内容,进而有效符合经济生产的核心需求。加上现阶段集成化产品芯片在方案设计上,还需要具备较大得技术创新空间,并且在其他产品的投入上,由于产品芯片自身属于高收入、低投入的产品,所以从产品生产市场的总体需求量方面来看,集成芯片在行业应用过程中的基础需求不断增加,进而成为我国集成电路发展的主要优势和机遇。所以在产品方案设计上,还需要不断进行产业优化,进而成为微电子与集成电路的核心技术优势。近几年,我国产品在方案设计方面上,其发展力度和趋势已经远远超出了产品生产方案的预期水平,甚至部分公司已经具有较高的发展实力。但是及时我国集成电路技术发展不断提升,我国在行业内部工作核心效率以及质量水平仍然达到标准要求,致使我国的集成电路产业面临的巨大的压力。

(二)完善集成产业发展重点

在微电子科学技术和集成电路产业在实际发展和运转过程中,其外部环境因素同样成为重要环境因素之一,因此只有构建出优质的发展环境和条件,才能有利于我国集成电力产业的核心发展和技术进步[3]。

1.优惠政策

在我国集成产业以及微电子科学技术应用过程中,为了进一步推动集成电路行业的全面进步,我国相继出台了集成电路行业以及微电流技术发展文件,进而保证集成电路生产行业水平,其中政府在行业政策的优惠和支持对于整体产业发展来说,起到了激励作用和现实意义,从根本上强化了集成生产和制造企业技术水平,尤其是在生产以及应用方向,能够得到最大限度的优惠。比如:政府在行业发展政策中,对于税收方向的规定中,企业实际产生的税收一旦超过百分之六,就可以有效实现了即征即退发展目标,但是在实际操作过程中,对于芯片生产和制造厂家来说,企业实际产生的增值税最高已经达到60%左右,远远高于国际上其他国家的增值税收,因此实际操作过程中,其效果无法达到标准要求。

2.审批流程

集成电路的特点篇(4)

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)35-0049-03

一、引言

集成电路产业是信息产业的基础和核心,是推动信息产业发展的源泉和动力。国务院于2000年6月25日颁发了《鼓励软件产业和集成电路产业发展的若干政策(18号)》,大力支持和鼓励我国集成电路产业的发展。在国家政策的扶持下,我国集成电路设计业发展迅猛,伴随着国内集成电路的发展,对集成电路设计相关人员的需求也日益增加。教育部于2003年开始批准设置“集成电路设计与集成系统”目录外本科专业,2012年普通高等学校本科专业目录中调整为特设专业,以适应国内对集成电路设计与应用人才的迫切需求,截止2014年,全国已有28所高校设置“集成电路设计与集成系统”本科专业。国务院于2011年1月28日颁发了《进一步鼓励软件产业和集成电路产业发展的若干政策(新18号)》,要求高校要进一步深化改革,加强集成电路设计相关专业建设,紧密结合产业发展需求及时调整课程设置、教学计划和教学方式,加强专业师资队伍、教学实验室和实习实训基地建设,努力培养国际化、复合型、实用型人才。

“集成电路设计与集成系统”专业涉及的新概念、新技术、新方法不断涌现,是一个工程性和实践性很强的本科专业。集成电路领域技术和管理人才严重不足、人才质量普遍不高已成为制约我国集成电路产业健康、快速发展的瓶颈。国家集成电路产业“十二五”发展规划提出加强人才培养,着力发展芯片设计业,2014年6月,国务院印发《国家集成电路产业发展推进纲要》进一步指出,要着力发展集成电路设计业,加大人才培养力度。因此,研究适合本专业的理论与实践并重融合的课程体系,培养创新型集成电路设计人才具有十分重要的现实意义和历史意义。

二、集成电路设计与集成系统专业人才培养的特点

集成电路是推动当前经济发展的重要技术,由于集成电路设计与集成系统领域发展迅速且新知识、新技术层出不穷,多学科交叉融合,毕业生就业具有国际性,要求教学体系和实践平台建设必须跟上最新的产业需求,才能培养出适合社会和企业需要的集成电路设计与集成系统创新型人才。在进行集成电路设计与集成系统领域创新型人才培养时我们需要紧紧抓住以下几点。

1.集成电路设计与集成系统专业是新兴专业,国内还没有形成该专业的人才培养规范,目前国内各高校该专业的教学计划是从国外或者相关专业延伸来的,系统性、完备性差,还没有形成完整的知识体系。

2.集成电路设计与集成系统专业是一个涵盖通信、计算机、集成电路等多领域的交叉学科,因此要利用综合性学科知识为该类人才的素质培养服务,从注重单一知识和能力的培养,要转变到注重综合知识和能力的培养。

3.集成电路设计与集成系统是国家特设专业,根据高校自身办学特色和市场需求设置的专业,需要针对企业对该类人才的需求,将企业需求融入课程体系,与企业联合制定培养方案,建立核心课程体系,实时调整专业课程教学内容。

4.集成电路设计与集成系统专业具有较强的工程性和实践性,不仅要具有较强理论知识基础,而且要具有较好的工程实践能力以及一定的创新能力,需要建立一种基于项目驱动的多层次的实践教学体系,保障四年工程实践训练不断线,逐步提升学生的工程实践能力和创新能力。

三、集成电路设计与集成系统专业课程体系的构建

根据集成电路设计与集成系统专业人才培养特点,按照通信、计算机和集成电路融合发展的科学规律,结合我校学科专业优势特色,确立了本专业人才培养的课程体系。

(一)人才培养目标

2006年全国科技大会上提出,到2020年,我国将建成创新型国家,使科技发展成为经济社会发展的有力支撑。具有较强的自主创新能力是创新型国家的主要特征之一,只有培养具创新精神和创新能力的人才,才能提升自主创新能力。集成电路产业是关系国民经济和社会发展全局的基础性、先导性和战略性产业,是最能体现科技进步对创新型国家贡献率的行业。

因此,本专业旨在培养德、智、体、美全面发展,适应社会主义现代化建设和信息领域发展需要,掌握宽广的人文知识、坚实的自然科学知识以及扎实的专业知识,具备工程实践能力和创新能力,具有自主学习集成电路与集成系统领域前沿理论和技术的能力,能在集成电路与集成系统领域从事研究、设计、实现、应用的高素质创新型人才,为全面实现创新型国家提供强有力的支撑。

(二)人才培养规格

集成电路设计与集成系统专业是一个涵盖通信、计算机、集成电路等多领域的交叉学科,如图1所示。其中,图1中①就是通信算法(应用)的直接IC(实现)化的ASIC、FPGA电路或者可重构电路;②就是算法(应用)的指令集合(体系结构)化的目标程序;③就是指令集合(体系结构)的IC(实现)化的处理器;④就是集成电路技术发展推动的先进处理器。

根据多学科融合发展和人才培养目标定位,确定了本专业知识、能力、素质的人才培养规格如下。

1.知识结构要求。(1)具有坚实的自然科学理论基础知识、电路与系统的学科专业知识、必要的人文社会科学知识和良好的外语基础。(2)具有通信系统、计算机系统结构、信号处理等相关学科领域的基础知识。(3)掌握集成电路与集成系统领域的基础知识和工程理论。(4)掌握集成电路与集成系统电子设计自动化(EDA)技术。

2.能力结构要求。(1)具有使用电子设计自动化(EDA)工具进行集成电路与集成系统设计的能力。(2)具有较强的科学研究、工程实践及综合运用所学知识解决实际问题的能力。(3)具有了解本专业领域的理论前沿、发展动态和独立获取知识的能力。(4)具有自主学习能力、创新能力、协同工作与组织能力。

3.素质结构要求。(1)具有良好的思想道德修养、职业素养、身心素质。(2)具有奉献精神、人际交往意识和团结协作精神。(3)具有一定的文学艺术修养、科学的工程实践方法。(4)具有一定的国际化视野、求实创新意识。

(三)课程体系

集成电路系统设计涵盖“系统设计、逻辑设计、电路设计、版图设计”四个设计层次,课程体系应覆盖四个设计层次需要的所有知识点,各知识点之间要具有连贯性、系统性和完备性。集成电路设计与集成系统专业具有很强的工程性和实践性,通过计算机应用能力、电子技术应用能力、嵌入式系统设计能力、集成电路设计能力以及工程创新能力的培养,强化学生的工程实践能力和创新能力。集成电路设计与集成系统专业是一个多学科的交叉新兴专业,课程体系中应该包含通信、计算机和集成电路的相关知识点,各知识点之间要具有交叉融合性。集成电路系统设计是一个高速发展的学科领域,知识和技术更新速度非常快,课程体系应该体现先进性,使得学生能够接近先进的技术前沿,同时课程体系中也应该包含一些面向企业的工程设计与实践的实用性课程,进一步提高学生的就业竞争力和工程创新能力。

因此,根据人才培养规格和特点以及课程体系的连贯性、系统性、完备性、融合性、先进性和实用性,结合我校自身优势特色,构建了如下页图2所示的知识、能力、素质协调统一的理论与实践并重融合的课程体系。课程体系以能力培养为导向,集中实践环节为支撑,核心课程为基础,一组集中实践环节和核心课程培养一种能力。同时,设置综合素质教育模块和课外科技创新活动模块,提升学生的工程素质和创新能力。

课程体系主要突出计算机应用能力、电子技术应用能力、嵌入式系统设计能力、集成电路设计能力以及工程创新能力的培养,进行分学年重点培养。第一学年主要培养学生的计算机应用能力,第二学年主要培养学生的电子技术应用能力,第三学年主要培养学生的嵌入式系统设计能力和集成电路设计能力,第四学年主要培养学生的工程创新能力,通过设置“数字集成电路”、“混合信号集成电路”、“嵌入式系统”三个方向课程模块,实现人才的个性化培养。

通过嵌入式系统设计能力、集成电路设计能力和工程创新能力培养过程中的集中实践环节和核心课程设置,将集成电路设计与通信/计算机相结合,体现课程体系的交叉融合性。将集成电路系统设计层次中的“系统设计”贯穿于工程创新能力、嵌入式系统设计能力培养,“逻辑设计”体现在电子技术应用能力培养中,通过“电路设计”与“版图设计”实现集成电路设计能力的培养,实现了课程体系的系统性和完备性,通过教学内容的组织实现知识的连贯性。

课程体系设置了一系列集中实践环节和独立设课实验(集成电路EDA技术实验、微处理器设计实践)以及课内实验,在教学内容的组织上将软件无线电(SDR)系统(包括算法、体系结构、集成电路)设计与实现的科研成果融入教学过程,实现四年工程实践训练不断线,体现课程体系的工程性和实践性。同时通过下一代无线通信系统的核心器件――SDR系统处理芯片设计为牵引,设置通信集成电路系统工程设计与实践相关课程,采用世界主流EDA厂家先进EDA工具完成集成电路EDA技术实验以及集成电路系统设计,实现课程体系的先进性和实用性。

(四)教学内容组织思路

以“高级语言程序汇编语言程序机器指令序列计算机组成(CPU、存储器、输入输出、数据通路与控制单元)计算机部件设计计算机部件(FPGA和专用集成电路)实现整机(FPGA或专用集成电路)实现面向通信、信号处理领域系统(嵌入式系统、数字集成电路、模拟集成电路)设计与应用”为主线组织教学内容,体现知识的连贯性,培养学生的计算机应用能力、电子技术应用能力、嵌入式系统设计能力、集成电路设计能力。通过通信集成电路系统工程设计与实践(包括数字集成电路工程设计与实践、嵌入式SoC工程设计与实践、模拟集成电路工程设计与实践等),将软件无线电(SDR)系统的设计与实现的科研项目成果融入课堂教学,贯彻我校“教研统一”办学理念,突显我校信息通信行业优势特色,培养学生的工程创新能力。

四、结论

课程体系设置是专业建设中的关键核心问题,对人才的培养质量起决定性的作用。本文充分考虑了集成电路设计与集成系统专业多学科交叉融合、工程实践性强等特点,结合我校本专业在通信专用集成电路设计、专用处理系统设计方面的优势特色,形成了通信、计算机与集成电路设计相结合、理论教学与项目实践相结合的课程体系。以能力培养为导向,以集成电路设计和嵌入式系统设计融合为主线组织教学内容,培养学生的集成电路设计与嵌入式系统设计(计算机应用、电子技术应用、微系统设计)能力,通过面向通信领域的集成电路与嵌入式系统工程设计与实践,提高学生的工程创新能力。

参考文献:

集成电路的特点篇(5)

中图分类号:G64 文献标识码:A 文章编号:1002—7661(2012)21—0006—01

在当今信息时代,微电子学的应用已经渗透到国民经济的各个领域。集成电路( Integrated Circuit, IC)作为微电子技术的核心,是整个信息产业和信息社会最根本的技术基础。发展IC产业对提高技术的创新基础和竞争能力具有非常重要的作用,对国民经济发展、国防建设和人民文化生活等各方面都发挥着巨大的作用,也是一个国家参与国际化政治、经济竞争的战略产业。模拟集成电路是现实世界和数字化系统之间的桥梁,是现代信息化系统的关键技术之一。发展电子信息化,必须发展模拟IC技术。为了提高我国模拟IC电路的水平,不但要在产业化方面做出巨大的努力,还需培养出更多的高质量人才。事实上,模拟集成电路设计是一个实践性较强、实践内容多的微电子学专业的专业方向,因而在教学课程设置时不仅要努力加强理论教学,还需加强实践教学,提高学生的实践动手能力。《模拟集成电路CAD》课程作为模拟集成电路设计方向的核心基础课程,其教学的好坏关系到学生在模拟集成电路设计方面的发展前景。在此背景下,根据重庆邮电大学光电工程学院微电子学专业的实际情况,结合笔者多年集成电路实际工程经验以及多年教学实践,拟从以下几个方面对《模拟集成电路CAD》课程的教学改革进行探索。

一、理论教学,以培养学生分析设计能力为目标

《模拟集成电路CAD》是模拟集成电路设计方向的一门核心基础课,与其他电路基础课一样,具有承上启下的作用。而模拟集成电路具有概念细节多、理论较抽象、工程特征突出、电路结构多样等特点,在学习中学生普遍反映较难学习。在设置授课内容时,不仅要夯实专业基础和培养学生的分析与设计能力,还要尽量避免与《模拟CMOS集成电路》等课程的知识重复的问题。

根据教学大纲以及课程内容设置原则,《模拟集成电路CAD》理论教学定为32学时,并将讲授内容分为以下几部分:第一部分,MOS仿真模型及CMOS模拟集成电路CAD;第二部分,单元电路设计、仿真及分析;第三部分,偏置电路设计、仿真及分析;第四部,跨导放大器设计。在授课过程中,以简单CMOS模拟集成电路基本单元分析为主,复杂CMOS模拟集成电路分析为辅;以分析能力培养为主,设计能力培养为辅;激励学生CMOS模拟集成电路设计的兴趣。

二、实验教学,以培养学生实践动手能力为目标

实验教学的目的在于培养学生建立起CMOS模拟集成电路设计流程的概念、熟练掌握各个环境的工具使用,能解决模拟集成电路设计仿真过程出现的问题,促使理论知识的理解和深化,因而设置合理的实验体系具有重要意义。同时,Cadence、Synopsys、Mentor等最主流集成电路设计工具厂商提供的EDA工具是目前集成电路设计公司最广泛使用的工具。为了使学生在毕业后能很快适应岗位、能尽快进入角色,有必要使学生学习使用这类先进的EDA工具,从而真正帮助学生掌握CMOS模拟集成电路设计技术。根据这一原则,《模拟集成电路CAD》实验教学定为32学时,并开设如下几个实验:实验一,IC设计工具—Cadence的ADE与版图大师等的使用;实验二,CMOS两级运算放大器的设计、版图绘制与验证;实验三,CMOS带隙基准参考的设计、版图绘制与验证。在实验过程中,一人为一组,有利于培养学生的独立思考问题、解决问题的能力。

三、改革教学方法,丰富教学手段

教学内容体系确定后,采用什么样的教学方法与教学手段是非常重要的。采用有效的教学方法并结合先进的教学手段,不仅有利于培养学生获取知识的能动性,而且有利于培养学生独立发现问题、分析问题以及解决问题的能力,实现以教为中心到以学为中心的转换,突出学生在学习过程中的主动性,从而获得好的教学成果。

针对CMOS模拟集成电路具有概念细节多、理论较抽象、工程特征突出、电路结构多样等特点,在(下转第10页)(上接第6页)教学手段上以多媒体教学为主,传统黑板板书为辅,同时在课堂上以动画的形式展现当前CMOS模拟集成电路设计趋势及其技术特点,从而达到提高课堂教学质量的目的。

四、考核方式的改革

考核是对学习的结果做出评估,是反映教学效果的手段。而课程开设能否达到既定的教学目标,课程的考核方式有着比较重要的作用。传统的考核方式为试卷笔试与平时成绩结合的方式。针对《模拟CMOS集成电路》课程特点,考核方式作如下尝试:结合课程的专业特点,采用提交论文和现场答辩相结合的考核方式。针对课程的重点知识点,设计几个课外小题目,让学生通过查阅相关文献资料,完成电路设计并撰写小论文,从而增强学生独立思考与实践动手能力。在每个题目完成后,教师要求学生在提交论文时做好答辩ppt,并利用专门时间进行5分钟左右的答辩,并接受教师和同学的提问。这样可以引导学生更加重视实践性环节,强化技能水平的提高。

教学过程是一个不断探索、总结与创新的过程。要实现《模拟集成电路CAD》这门课的全面深入的改革,还有待与同仁一道共同努力。在今后的教学实践中,笔者将加强与同行交流学习,进一步完善教学内容、教学实践、教学方法、教学手段以及考核方式等,以期改善教学效果。

参考文献:

集成电路的特点篇(6)

中图分类号:TP183文献标识码:A

文章编号:1004 373X(2009)02 142 03

Research of Analog Circuit Fault Diagnosis Based on BP Neural Network

HAO Junshou,DING Yanhui

(Inner Mongolia Electronic Information Vocational Technology College,Huhhot,010011,China)

Abstract:Based on the application of BP neural network in analog circuit fault diagnosis and the fault features extraction are discussed in detail.The fault sample set is established by using the multi-frequency combination method.Academic foundation is modern test technology,signal processing,information fusion and testability analysis,etc.The analog circuit soft fault diagnosis is realized to select test electric circuit by using BP neural network under the components existence tolerance condition.

Keywords:fault diagnosis;analog circuit;BP neural network;fault features extraction

0 引 言

随着电子工业的发展,电子设备越来越复杂,其中的模拟器件和电路不可缺少。理论分析和实际应用表明,这些设备中的模拟电路比数字电路更容易发生故障。对这种设备的维护和保养十分复杂,需耗费大量的精力和财力。另外,随着超大规模模拟电路的发展和电子器件复杂性的提高,传统的人工故障诊断方法已经无法满足要求,这就迫使科技人员进一步探索新的测试理论和方法,研制新的测试设备以适应社会的需求。

1 BP网络简介

1.1 BP网络模型

图1为一个三层前馈网络模型,由输入层、输出层和隐层3部分组成。根据需要,可以有多个隐层。每一层的每个神经元(结点)的输出经连接权值加权求和作为下一层每个神经元的输入,层与层之间没有反馈。

1.2 BP网络用于故障诊断的基本思想

BP网络用于模拟电路故障诊断的基本思想为:确定了电路的待测状态集后,求电路处于其中一种状态时的响应(通常是测试点的电压)必要的预处理,作为对应状态类的一个特征。对状态集中的每一类状态,都按上述方法获取大量特征,并从中筛选出具有代表性的特征构造训练样本集。然后,用这些样本训练与所求问题相对应规模的BP网络。BP网络的输入节点数应与特征向量的维数相同。输出节点的维数等于待测故障状态的类别数。在训练时,把状态特征输入到BP网络的输入节点,要求网络的输出能正确指出电路状态所属类别。在做实际电路诊断时,对被测电路施加与产生样本时相同的激励和工作条件,取得相应特征,将此特征输入到已训练好的BP网络。由BP网络的输出判断电路中是否有故障;如有,则定位故障。

图1 BP网络结构

为了从最大程度上隔离和识别故障,采用多频测试的方法。这时,从哪些频率点提取故障特征成为首要问题,测试频率选择的好坏直接影响到对故障的分辨能力和诊断效果及样本选择。

1.3 BP故障特征提取

提取故障特征是模拟电路故障诊断的关键,也是构造样本集的基础。

基于神经网络的模拟电路故障诊断系统,主要包括两个过程:学习(训练)过程,诊断(测试)过程。其中每个过程都包括数据预处理和特征提取2部分。整个故障诊断系统的过程如图2所示。

图2 故障诊断过程原理图

如何有效提取优质的模拟电路故障特征,是进行电路故障诊断和测试的难点所在。在设计模拟电路故障诊断系统时,能够快速、有效地提取反映电路的故障信息的特征是进行故障诊断的关键所在。

通常,从待测模拟电路响应的波形曲线获得原始数据。通过对原始数据进行采样,可将原始数据映射成样本空间的点。模拟电路故障诊断的过程是把症状空间的向量映射到故障空间,即实现故障特征空间X到分类(识别)空间Y的映射F,F:XY。一般,首先要对映射到样本空间的输入数据进行预处理,通过删除数据中的无用信息得到一类故障模式,即由样本空间映射到数据空间。

在数据空间的基础上,通过特定的变换处理,提取数据中的不变特征,形成不变故障模式空间。在提取了故障模式的不变特征之后,根据诊断的需要和问题的特性,往往还需要对所选择的模式特征矢量进行量化压缩变换,在尽可能保持信息量基本不丢失的前提下,在降维空间内选择有用的特征,以利于高效实现模拟电路的故障诊断。并且由所获得的降维空间,提取原始样本集的特征信息以形成特征空间。一般的特征提取过程可用图3表示。

图3 特征提取示意图

1.4 BP网络的输入层、隐层和输出层节点个数的确定

这里设所选的测试节点数为m,测试频率数为l,则:

(1) BP网络的输入节点数为n1=ml;

(2) 确定最佳隐节点数的一个常用方法被称为“试凑法”,可先设置较少的隐节点训练网络,然后逐步增加隐节点数,用同一样本集进行训练,从中确定网络误差最小时对应的隐节点数;

(3) 将故障状态进行二进制编码,二进制码值最大的那个数据的位数m就是输出层神经元节点的个数。

1.5 多频组合法

多频测试是用不同频率(测试频率点集)的正弦信号激励待测电路,通过观测预先选定测试节点的输出信号幅值,亦即故障电路与正常电路、不同故障电路之间的输出幅值差异,实现模拟电路的故障诊断。多频测试矢量即为测试频率点的集合。

对给定的可及点,测试频率的选取原理仍按电路的对数幅频特性来划分特征空间。

频率选取原则:如果某些幅频特性曲线在一个频率点上密集,落入同一模糊集,则应在这些特性曲线较为分散的频率上选择其他测试频率。

1.6 仿真实例

1.6.1 待测电路

待测电路如图4所示。

图4 待测电路

1.6.2 故障类别假定

以图4中容差为±5%的电阻R1=10 kΩ为例,阐明故障诊断的思路。

(1) 当电阻在R1∈[9.5,10.5]时,电阻是正常的容差变化范围;

(2) 当电阻R1<9.5 kΩ时,发生软故障,用员硎菊庵旨跣∏榭觯其极限情况为R1=0此时转化为硬故障,即短路故障。

(3) 当电阻R1>10.5 kΩ时,发生软故障,用驯硎菊庵衷龃笄榭觯极限情况为R1=∞,此时转化为硬故障,即开路故障。

由此可见软故障是一个连续变化的值,要实现其故障诊断非常复杂,目前,国际上对软故障诊断比较热衷,但通常都是对某一定点的软故障进行诊断,如郧榭觯R1=5 kΩ,或者亚榭觯R1=15 kΩ。

1.6.3 故障特征提取

考虑到当电路发生故障时,各测试点电压会有所变化,这种变化表征了此故障的特征。基于这一想法,利用各元件故障时在各测试点上施加不同频率的正弦信号产生的电压作为原始数据。

对图4电路,在电路输入端施加3 V的正弦激励,测试频率分别取10 kHz,16 kHz,20 kHz,32 kHz,取Vc为测试点。从测试点提取输出波形的电压值,作为故障特征信息。将一个测试点4个频率的故障信息进行融合,形成对应故障模式的4维故障特征向量:X=[x1,x2,…,x4]T其中xi为第i个测试频率下获得的测量值。

1.6.4 样本集构造

为了验证测试向量对故障元件的实际诊断效果,在电路输入端施加3 V 的正弦激励,测试频率分别取10kHz,16 kHz,20 kHz,32 kHz(被测电路截止频率是15.9 kHz,四种频率优选是应用Multisim2001进行灵敏度分析得到的),取Vc为测试点,各待测元件的故障值:Ri(i=1,2,…,6)为±50%;Cj(j=1,2)为±50%。将故障分为两类:Ri,Ri裕Cj眩Cj裕共计有19种故障模式(设定实验电路存在故障)。故障模式用二进制编码法来表征,如:00001表示R1怨收,00010表示R1压收稀@用PSpice 4.02程序对电路在标称值及各元件在故障情况下进行仿真。所得数据见表1(这里只列出1组部分代表性数据)。

为了加快神经网络的收敛速度,需要对数据进行尺度变化,这里采用均方根方法对数据预处理。

从图4可以看到,电路中共有9个元件,所以其软故障加正常状态共有19种。使用蒙特卡罗分析,电阻在5%的容差下和电容在10%的容差下,对每一个故障模式进行100次Monte-Carlo分析,其中70次为训练样本,构成训练样本集;30次为测试样本,构成测试样本集。对其进行预处理,所得数据见表1,这里仅列出其中1组部分数据。

2 诊断结果

应用BP神经网络对实验电路进行故障诊断,整个设计与训练过程在Matlab 6.5仿真环境下进行。

将训练样本集序列输入神经网络,均方误差设定为0.02,经多次调整网络结构选为4-11-5,学习速度为0.3,动量因子0.3,网络经过179 163次训练调整后达到期望的均方误差。误差变化曲线图如图5所示。

为检验经过训练的神经网络的故障诊断能力,分别使用训练样本集和测试样本集对网络进行训练和测试,对应测试样本的神经网络的输出如表1所示。

对被测电路采用蒙特卡罗分析得到100组数据,其中70组数据作为训练样本集,30组数据作为测试样本集。从表1可知,其测试结果正确率达100%。故障诊断正确率较高。证明所选择的测试矢量对电路故障诊断是行之有效。

表1 测试样本的神经网络的诊断结果

故障类别神经网络输出近似后的二进制码

正常0.002 70.003 30.000 00.000 00.000 000000

R1偏小0.000 00.006 40.000 00.018 30.999 900001

R1偏大0.008 20.000 10.000 00.985 10.011 800010

R2偏小0.000 10.012 70.023 60.985 20.987 000011

R2偏大0.012 10.000 00.991 90.001 10.000 300100

R3偏小0.009 00.014 80.993 40.000 01.000 000101

R3偏大0.036 80.000 90.950 80.967 60.008 300110

R4偏小0.000 50.000 00.983 40.999 81.000 000111

R4偏大0.012 10.979 40.000 00.013 00.000 001000

R5偏小0.000 01.000 00.010 30.012 50.985 401001

R5偏大0.000 00.999 90.006 00.987 70.000 101010

R6偏小0.005 90.997 50.023 40.999 90.964 301011

R6偏大0.000 01.000 00.981 80.002 00.025 001100

R7偏小0.000 01.000 01.000 00.000 60.979 501101

R7偏大0.000 01.000 00.981 21.000 00.032 001110

C1偏小0.000 00.984 11.000 00.990 31.000 001111

C1偏大0.961 70.000 10.048 20.031 00.003 010000

C2偏小0.986 10.000 00.007 00.013 00.997 310001

C2偏大0.984 20.017 40.000 00.998 30.015 210010

图5 误差变化曲线图

3 结 语

讨论了BP神经网络在模拟电路故障诊断中的应用和故障特征提取方法;采用多频组合法建立了故障样本集;并且在Matlab下仿真验证了结果的可行性。

参考文献

[1]何怡刚,梁戈超.模拟电路故障诊断的BP神经网络方法[J].湖南大学学报:自然科学版,2003,30(5):35-39.

[2]尉乃红,杨士元,童诗白.基于BP网络的线性电路故障诊断[J].计算机学报,1997,20(4):360-366.

[3]张聚伟.基于BP算法的模拟电路故障诊断系统的DSP实现[D].呼和浩特:内蒙古工业大学,2005.

[4]刘玉萍,赵健.神经网络在模拟系统故障定位中的应用[J].南昌航空工业学院学报,2000,14(2):19-21.

[5]和晓锋,刘桥.采用BP网络建立模拟电路故障诊断交流字典方法[J].贵州大学学报,2003,20(3):287-290.

[6]朱大奇,于盛林.电子电路故障诊断的神经网络数据融合算法[J].东南大学学报:自然科学版,2001,31(6):87-90.

[7]袁慧梅,李锦萍.模拟电路故障诊断新方法[J].航空精密制造技术,2002,38(2):20-23.

[8]马野,李楠.模拟电路的一种故障智能诊断方法与仿真[J].自动化技术与应用,2001,3(2):12-15.

集成电路的特点篇(7)

本课程是电气信息类专业的主要技术基础课。其目的与任务是使学生掌握常用半导体器件和典型集成运放的特性与参数,掌握基本放大、负反馈放大、集成运放应用等低频电子线路的组成、工作原理、性能特点、基本分析方法和工程计算方法;使学生具有一定的实践技能和应用能力;培养学生分析问题和解决问题的能力,为后续课程和深入学习这方面的内容打好基础。

2、本课程教学要求:

1.掌握半导体器件的工作原理、外部特性、主要参数、等效电路、分析方法及应用原理。

2.掌握共射、共集、共基、差分、电流源、互补输出级六种基本电路的组成、工作原理、特点及分析,熟悉改进放大电路,理解多级放大电路的耦合方式及分析方法,理解场效应管放大电路的工作原理及分析方法,理解放大电路的频率特性概念及分析。

3.掌握反馈的基本概念和反馈类型的判断方法,理解负反馈对放大电路性能的影响,熟练掌握深度负反馈条件下闭环增益的近似估算,了解负反馈放大电路产生自激振荡的条件及其消除原则。

4.了解集成运算放大器的组成和典型电路,理解理想运放的概念,熟练掌握集成运放的线性和非线性应用原理及典型电路;掌握一般直流电源的组成,理解整流、滤波、稳压的工作原理,了解电路主要指标的估算。

3、使用的教材:

杨栓科编,《模拟电子技术基础》,高教出版社

主要参考书目:

康华光编,《电子技术基础》(模拟部分)第四版,高教出版社

童诗白编,《模拟电子技术基础》,高等教育出版社,

张凤言编,《电子电路基础》第二版,高教出版社,

谢嘉奎编,《电子线路》(线性部分)第四版,高教出版社,

陈大钦编,《模拟电子技术基础

问答、例题、试题》,华中理工大学出版社,

唐竞新编,《模拟电子技术基础解题指南》,清华大学出版社,

孙肖子编,《电子线路辅导》,西安电子科技大学出版社,

谢自美编,《电子线路

设计、实验、测试》(二),华中理工大学出版社,

绪论

本章的教学目标和要求:

要求学生了解放大电路的基本知识;要求了解放大电路的分类及主要性能指标。

本章总体教学内容和学时安排:(采用多媒体教学)

§1-1 电子系统与信号

0.5

§1-2

放大电路的基本知识

0.5

本章重点:

放大电路的基本认识;放大电路的分类及主要性能指标。

本章教学方式:

课堂讲授

本章课时安排:

1

本章的具体内容:

1节

介绍本课程目的,教学参考书,本课程的特点以及在学习中应该注意的事项和学习方法;

介绍放大电路的基本认识;放大电路的分类及主要性能指标。

重点:

放大电路的分类及主要性能指标。

第1章

半导体二极管及其基本电路

本章的教学目标和要求:

要求学生了解半导体基础知识;理解PN结的结构与形成;熟练掌握普通二极管和稳压管的V-I特性曲线及其主要参数,熟练掌握普通二极管正向V-I特性的四种建模。

本章总体教学内容和学时安排:(采用多媒体教学)

§1-1 PN结

§1-2

半导体二极管

§1-3 半导体二极管的应用

§1-4 特殊二极管

本章重点:

PN结内部载流子的运动,PN结的特性,二极管的单向导电性、二极管的特性、参数、应用电路分析及稳压管的特性、参数及其特点。

本章难点:

PN结的形成原理,二极管的非线性伏安特性方程和曲线及其电路分析。

本章主要的切入点:

“管为路用”

从PN结是半导体器件的基础结构,PN结的形成原理入手,通过对器件的非线性伏安特性的描述,在分析电路时说明存在的问题,引出非线性问题线性化的必要性和可行性。

本章教学方式:

课堂讲授

本章课时安排:3

本章习题:

P26

1.1、1.2、1.7、1.9、1.12、1.13。

本章的具体内容:

2、3节

1、介绍本课程目的,教学参考书,本课程的特点以及在学习中应该注意的事项和学习方法;

2、讲解半导体基础知识,半导体,杂质半导体;

3、讲解PN结的特点,PN结的几个特性:单向导电性、伏安特性、温度特性、电容特性。

重点:

PN结的形成过程、PN结的单向导电性、伏安特性曲线的意义,伏安方程的应用。

4节

1、讲解半导体二极管结构和电路符号,基本特点,等效电路;

2、讲解稳压二极管工作原理,电路符号和特点,等效电路;

3、讲解典型限幅电路和稳压电路的分析。

重点:两种管子的电路符号和特点。

讲解课后习题,让学生更好地了解二极管基本电路及其分析方法。

【例1】电路如图(a)所示,已知,二极管导通电压。试画出uI与uO的波形,并标出幅值。

图(a)

【相关知识】

二极管的伏安特性及其工作状态的判定。

【解题思路】

首先根据电路中直流电源与交流信号的幅值关系判断二极管工作状态;当二极管的截止时,uO=uI;当二极管的导通时,。

【解题过程】

由已知条件可知二极管的伏安特性如图所示,即开启电压Uon和导通电压均为0.7V。

由于二极管D1的阴极电位为+3V,而输入动态电压uI作用于D1的阳极,故只有当uI高于+3.7V时

D1才导通,且一旦D1导通,其阳极电位为3.7V,输出电压uO=+3.7V。由于D2的阳极电位为-3V,

而uI作用于二极管D2的阴极,故只有当uI低于-3.7V时D2才导通,且一旦D2导通,其阴极电位即为-3.7V,输出电压uO=-3.7V。当uI在-3.7V到+3.7V之间时,两只管子均截止,故uO=uI。

uI和uO的波形如图(b)所示。

图(b)

【例1-8】

设本题图所示各电路中的二极管性能均为理想。试判断各电路中的二极管是导通还是截止,并求出A、B两点之间的电压UAB值。

【相关知识】

二极管的工作状态的判断方法。

【解题思路】

(1)首先分析二极管开路时,管子两端的电位差,从而判断二极管两端加的是正向电压还是反向电压。若是反向电压,则说明二极管处于截止状态;若是正向电压,但正向电压小于二极管的死区电压,则说明二极管仍然处于截止状态;只有当正向电压大于死区电压时,二极管才能导通。

(2)在用上述方法判断的过程中,若出现两个以上二极管承受大小不等的正向电压,则应判定承受正向电压较大者优先导通,其两端电压为正向导通电压,然后再用上述方法判断其它二极管的工作状态。

【解题过程】

在图电路中,当二极管开路时,由图可知二极管D1、D2两端的正向电压分别为

10V和25V。二极管D2两端的正向电压高于D1两端的正向电压,二极管D2优先导通。当二极管D2导通后,UAB=-15V,二极管

D1两端又为反向电压。故D1截止、D2导通。U

AB

=

-15V。

【例1-9】

硅稳压管稳压电路如图所示。其中硅稳压管DZ的稳定电压UZ=8V、动态电阻rZ可以忽略,UI=20V。试求:

(1)

UO、IO、I及IZ的值;

(2)

当UI降低为15V时的UO、IO、I及IZ值。

【相关知识】

稳压管稳压电路。

【解题思路】

根据题目给定条件判断稳压管的工作状态,计算输出电压及各支路电流值。

【解题过程】

(1)

由于

>UZ

稳压管工作于反向电击穿状态,电路具有稳压功能。故

UO

=

UZ

=

8V

IZ=

I-IO=6-4=2

mA

(2)

由于这时的

<UZ

稳压管没有被击穿,稳压管处于截止状态。故

IZ

=

【例1-10】电路如图(a)所示。其中未经稳定的直流输入电压UI值可变,稳压管DZ采用2CW58型硅稳压二极管,在管子的稳压范围内,当IZ为5mA时,其端电压UZ为10V、为20Ω,且该管的IZM为26mA。

(1)

试求当该稳压管用图(b)所示模型等效时的UZ0值;

(2)

当UO

=10V时,UI

应为多大?

(3)

若UI在上面求得的数值基础上变化±10%,即从0.9UI变到1.1UI,问UO

将从多少变化到多少?相对于原来的10V,输出电压变化了百分之几?在这种条件下,IZ变化范围为多大?

(4)

若UI值上升到使IZ=IZM,而rZ值始终为20Ω,这时的UI和UO分别为多少?

(5)

若UI值在6~9V间可调,UO将怎样变化?

(a)

(b)

【相关知识】

稳压管的工作原理、参数及等效模型。

【解题思路】

根据稳压管的等效模型,画出等效电路,即可对电路进行分析。

【解题过程】

(1)

由稳压管等效电路知,

(2)

(3)

设不变。当时

当时

(4)

(5)

由于U

I<UZ0,稳压管DZ没有被击穿,处于截止状态

故UO将随U

I在6~9

V之间变化

第2章

半导体三极管及放大电路基础

本章的教学目标和要求:

要求学生正确理解放大器的一些基本概念,掌握BJT的简化模型及其模型参数的求解方法,掌握BJT的偏置电路,及静态工作点的估算方法;掌握BJT的三种基本组态放大电路的组成,指标,特点及分析方法;理解放大器的频率响应的概念和描述,掌握放大器的低频、高频截止频率的估算,单管放大器的频率响应的分析,波特图的折线画法。

本章总体教学内容和学时安排:(采用多媒体与板书相结合的教学方式)

§2-1

半导体BJT

§2-2

共射极放大电路

§2-3

图解分析法

§2-4

小信号模型分析法

§2-5

放大电路的工作点稳定问题

§2-6

共集电极电路和共基极电路

§2-7

多级放大电路

§2-8

放大电路的频率响应

习题课

本章重点:

以共射极放大电路为例介绍基本放大电路的组成、工作原理、静态工作点的计算、性能指标计算。

频率响应的概述,波特图的定义;BJT的简化混合高频等效模型,单管共射放大器中频段、低频段、高频段的频率响应的分析和波特图的画法。

本章难点:

对放大概念的理解;等效模型的应用;对电路近似分析的把握。

本章主要的切入点:

通过易于理解的物理概念、作图的方法理解放大的概念;通过数学推导与物理意义的结合,加强对器件等效模型的理解;通过CB、CC、CS等基本电路的分析,强化工程分析的意识和分析问题的能力。

本章教学方式:

课堂讲授+仿真分析演示

本章课时安排:

14

本章习题:

P84

2.3、2.4、2.7、2.8、2.11、2.12、2.13、2.14、2.15、2.16、2.18、2.19、2.20。

本章的具体内容:

5、6、7节:

介绍半导体BJT的结构、工作原理、特性曲线和主要参数。

重点:BJT内部载流子的移动、电流的分配关系和特性曲线。

8、9、10节:

介绍共射放大器组成原则,电路各元件的作用,介绍Q点定义及其合理设置的重要性,放大电路的工作原理,信号在放大电路各点的传输波形变化;放大电路组成原则。

重点:

强调对于各个基本概念的理解和掌握。

11、12、13、14节:

对放大电路进行分析,介绍直流、交流通路的画法原则,并例举几个电路示范;

采用图解法对放大电路的Q点、电压放大倍数和失真情况进行分析,强调交、直流负载线的区别。

再对一个典型共射放大电路进行完整的动态参数分析,并对其分析结果进行详细分析和讨论,从而作为此部分的一个小结。

重点:

直流、交流通路的画法原则,典型共射放大电路进行完整的动态参数分析。

15、16节:

介绍三极管的小信号等效模型、并用小信号模型法分析基本放大电路的主要性能指标Av,Ri,Ro。

重点:建立小信号电路模型,将非线性问题线性化。

讲解课后习题,使学生熟悉用图解法和小信号模型法分析放大电路的方式方法。

讨论放大电路Q点的稳定性。从影响Q点稳定的因素入手,在固定偏流电路的基础上介绍分压偏置电路,并对其稳定静态工作点的原理进行详细分析。

对典型分压偏置共射放大器进行直流分析,强调直流分析中VCC的分割,工程近似法计算Q点;

重点:

对典型分压偏置共射放大器进行交直流分析。

17、18节:

简要介绍有稳Q能力的其它电路结构形式,

介绍共集放大器(CC)的原理图、直流通路、交流通路、交直流分析,介绍其特点和典型应用;给出一个典型CC放大器和其分析结论由学生课外完成分析;

介绍共基放大器(CB),原理图,直流通路,交流通路,交直流分析,介绍其特点和典型应用;

给出一个典型CB放大器和其分析结论由学生课外完成分析。

结合一个简单综合性例题小结三组态的特点。

给出一个CE,CC,CB放大器比较对照表由学生课外完成分析。

重点:

共集放大器(CC)的交直流分析,共基放大器(CB)的交直流分析。

频率响应的概述,基本概念,三个频段的划分,引入RC高通电路模拟低频响应,RC低通电路模拟高频响应,它们的幅频响应,相频响应;的频率响应;波特图的定义;BJT的完整混合模型,简化高频等效模型,主要参数的推导;单管共射放大器中频段、低频段、高频段的频率响应的分析和波特图的画法。放大器增益带宽积的概念,影响因素,多级放大器的频率响应。以一个单管共射放大电路的分析为例题对以上内容做一个小结。

重点:

频率响应的基本概念,简化高频等效模型,主要参数的推导;单管共射放大器频率响应的分析。

讲解课后习题,并对本章内容作个简单的小结。

【例2-1】电路如图所示,晶体管的β=100,UBE=0.7

V,饱和管压降UCES=0.4

V;稳压管的稳定电压UZ=4V,正向导通电压UD=0.7

V,稳定电流IZ=5

mA,最大稳定电流IZM=25

mA。试问:

(1)当uI为0

V、1.5

V、25

V时uO各为多少?

(2)若Rc短路,将产生什么现象?

【相关知识】

晶体管工作状态的判断,稳压管是否工作在稳压状态的判断以及限流电阻的作用。

【解题思路】

(1)

根据uI的值判断晶体管的工作状态。

(2)

根据稳压管的工作状态判断uO的值。

【解题过程】

(1)当uI=0时,晶体管截止;稳压管的电流

在IZ和IZM之间,故uO=UZ=4

V。

当uI=15V时,晶体管导通,基极电流

假设晶体管工作在放大状态,则集电极电流

由于uO>UCES=0.4

V,说明假设成立,即晶体管工作在放大状态。

值得指出的是,虽然当uI为0

V和1.5

V时uO均为4

V,但是原因不同;前者因晶体管截止、稳压管工作在稳压区,且稳定电压为4

V,使uO=4

V;后者因晶体管工作在放大区使uO=4

V,此时稳压管因电流为零而截止。

当uI=2.5

V时,晶体管导通,基极电流

假设晶体管工作在放大状态,则集电极电流

在正电源供电的情况下,uO不可能小于零,故假设不成立,说明晶体管工作在饱和状态。

实际上,也可以假设晶体管工作在饱和状态,求出临界饱和时的基极电流为

IB=0.18

mA>IBS,说明假设成立,即晶体管工作在饱和状态。

(2)若Rc短路,电源电压将加在稳压管两端,使稳压管损坏。若稳压管烧断,则uO=VCC=12

V。

若稳压管烧成短路,则将电源短路;如果电源没有短路保护措施,则也将因输出电流过大而损坏。

【方法总结】

(1)

晶体管工作状态的判断:对于NPN型管,若uBE>Uon(开启电压),则处于导通状态;若同时满足UC≥UB>UE,则处于放大状态,IC=βIB;若此时基极电流

则处于饱和状态,式中ICS为集电极饱和电流,IBS是使管子临界饱和时的基极电流。 (2)稳压管是否工作在稳压状态的判断:稳压管所流过的反向电流大于稳定电流IZ才工作在稳压区,反向电流小于最大稳定电流IZM才不会因功耗过大而损坏,因而在稳压管电路中限流电阻必不可少。图示电路中Rc既是晶体管的集电极电阻,又是稳压管的限流电阻。

【例2-2】电路如图所示,晶体管导通时UBE=0.7V,β=50。试分析uI为0V、1V、1.5V三种情况下T的工作状态及输出电压uO的值。

【相关知识】

晶体管的伏安特性。

【解题思路】

根据晶体管的管压降与,以及基极电流和集电极电流的特点,直接可以判别出管子的

工作状态,算出输出电压。

【解题过程】

(1)当VBB=0时,T截止,uO=12V。

(2)当VBB=1V时,因为

μA

所以T处于放大状态。

(3)当VBB=3V时,因为

μA

所以T处于饱和状态。

【例2-3】试问图示各电路能否实现电压放大?若不能,请指出电路中的错误。图中各电容对交流可视为短路。

图(a)

图(b)

图(c)

图(d)

【相关知识】

放大电路的组成原理。

【解题思路】

放大电路的作用是把微弱的电信号不失真地放大到负载所需要的数值。即要求放大电路既要有一定的放大能力,又要不产生失真。因此,首先要检查电路中的晶体管(非线性器件)是否有合适的直流偏置,是否工作在放大状态(线性状态),其次检查信号源、放大器和负载之间的信号传递通道是否畅通,并具有电压放大的能力。

【解题过程】

图(a)电路不能实现电压放大。电路缺少集电极电阻,动态时电源相当于短路,输出端没有交流电压信号。

图(b)电路不能实现电压放大。电路中缺少基极偏置电阻,动态时电源相当于短路,输入交流电压信号也被短路。

图(c)

电路也不能实现电压放大。电路中晶体管发射结没有直流偏置电压,静态电流,放大电路工作在截止状态。

图(d)电路能实现小信号电压放大。为了保证输出信号不失真(截止、饱和),当输入信号为正时,应不足以使三极管饱和;当输入信号为负时,应不会使三极管截止。

【例2-4】单级放大电路如图所示,已知Vcc=15V,,,,

此时调到,,,,,,晶体管饱和压降UCES为1V,晶体管的结电容可以忽略。试求:

(1)静态工作点,:

(2)中频电压放大倍数、输出电阻、输入电阻;

(3)估计上限截止频率和下限截止频率;

(4)动态范围=?输入电压最大值Ui

p=?

(5)当输入电压的最大值大于Ui

p时将首先出现什么失真?

【相关知识】

(1)共射极放大电路。

(2)放大电路的频率特性。

【解题思路】

(1)根据直流通路可求得放大电路的静态工作点。

(2)根据交流通路可求得放大电路的、、。

(3)根据高频区、低频区的等效电路可分别求出和。

(4)根据静态工作点及交流负载线的斜率可求得动态范围

,同时可判断电路出现失真的状况。

(5)根据电压放大倍数和动态范围可求出Ui

p。

【解题过程】

(1)采用估算法求解静态工作点。由图可知

(2)利用微变等效电路法,求解放大电路的动态指标。

(3)当电路中只有一个惯性环节时,电路的截止频率可以表示为,其中

为电容

所在回路的等效电阻。

在高频区,根据题意,晶体管的结电容可以忽略,影响电路上限截止频率的电容只有负载等效电容。故电路的上限截止频率为

在低频区,影响下限截止频率的电容有、和。可以分别考虑输入回路电容(、)和输出回路电容()的影响,再综合考虑它们共同作用时对电路下限截止频率的影响。

只考虑输出回路电容时

只考虑输入回路电容和时,为了简化计算,忽略偏置电阻及射极电阻的影响,把射极旁路电容折算到基极回路,则有

由于,所以电路的下限截止频率为

(4)

由于,即电路的最大不失真输出电压受截止失真的限制,故电路的动态范围

输入电压最大值

(5)

由上述分析可知,当输入电压的最大值大于U

ip时,电路将首先出现截止失真。

【例2-5】

图示放大电路为自举式射极输出器。在电路中,设,,,,晶体管的,,各电容的容量足够大。试求:

(1)断开电容,求放大电路的输入电阻和输出电阻。

(2)接上电容,写出的表达式,并求出具体数值,再与(1)中的数值比较。

(3)接上电容,若通过增大来提高,那么的极限值等于多少?

图(a)

【解相关知识】

射极输出器、自举原理、密勒定理。

【解题思路】

根据放大电路的微变等效电路求放大电路的输入电阻。

【解题过程】

在分析电路的指标之前,先对自举式射极输出器的工作原理作一简要说明。在静态时,电容相

当于开路;在动态时,大电容相当于短路,点

E和点A的交流电位相等。由于点E的交流电位跟随输入信号(点B的交流电位)变化,所以两端的交流电位接近相等,流过的交流电流接近

于零。对交流信号来说,相当于一个很大的电阻,从而减小了、对电路输入电阻的影响。由于大电容C的存在,点A的交流电位会随着输入信号而自行举起,所以叫自举式射极输出器。

这种自举作用能够减小直流偏置电阻对电路输入电阻的影响,可以进一步提高射极输出器的输入电阻。

(1)在断开电容C后,电路的微变等效电路如图

(b)所示。图中

图(b)

由图可以求出

可见,射极输出器的原来是很大的,但由于直流偏置电阻的并联,使减小了很多。

(2)接上自举电容后,用密勒定理把等效为两个电阻,一个是接在B点和地之间的

,另一个是接在A(E)点和地之间的,其中是考虑了与、以及并联后的,如图(c)所示。

图(c)

由于,但小于1,所以是一个比大得多的负电阻,它与、、并联后,总的电阻仍为正。由于很大,它的并联效应可以忽略,从而使

此时

所以,自举式射极输出器的输入电阻

由于对的并联影响小得多,所以比没有自举电容时增大了。

(3)

通过增大以增大的极限情况为,即用自举电阻提高的结果,使

只取绝于从管子基极看进去的电阻,与偏置电阻几乎无关。

【例2-6】试判断图示各电路属于何种组态的放大电路,并说明输出电压相对输入电压的相位关系。

(a)

(b)

(c)                                         (d)

【相关知识】

共集-共射,共射-共集,共集-共基组合放大电路。

【解题思路】

根据信号流向分析各个晶体管放大电路的组态及输出电压与输入电压的相位关系。

【解题过程】

图(a)所示电路第一级是共集电极放大电路,输出电压与输入电压同相;第二级是共射极放大电路,输出电压与输入电压反相。因此,整个电路是共集-共射组合电路,输出电压与输入电压反相。

图(b)所示电路第一级是共射极放大电路,输出电压与输入电压反相;第二级是共基极放大电路,输出电压与输入电压同相。因此,整个电路是共射-共基组合电路,输出电压与输入电压反相。

图(c)所示电路第一级是共集电极放大电路,输出电压与输入电压同相;第二级是共基极放大电

路,输出电压与输入电压同相。因此整个电路是共集-共基组合电路,输出电压与输入电压同相。

图(d)所示电路由于T1管集电极具有恒流特性,因而T1管是T2管的有源负载,所以T2管组成了有源负载的共射放大器,输出电压与输入电压反相。

【例2-7】

晶体管组成的共集-共射、共射-共集、共射-共基等几种组合放大电路各有其独特的优点,请你选择合适的组合放大电路,以满足如下所述不同应用场合的需求。

(1)电压测量放大器的输入级电路。

(2)输出电压受负载变化影响小的放大电路。

(3)负载为0.2kΩ,要求电压增益大于60dB的放大电路。

(4)输入信号频率较高的放大电路。

【相关知识】

共集-共射,共射-共集,共射-共基组合放大电路。

【解题思路】

根据三种组合放大电路的特点,选择满足应用需求的组合放大电路。三种组合放大电路的特点如下:

(1)共集-共射组合放大电路,不仅具有共集电极电路输入电阻大的特点,而且具有共射电路电压放大倍数大的特点;

(2)共射-共集组合放大电路,不仅具有共射电路电压放大倍数大的特点,而且具有共集电极电路输出电阻小的特点;

(3)共射-共基组合放大电路,共基极电路本身就有较好的高频特性,同时将输入电阻很小的共基极电路接在共射极电路之后,减小了共射极电路的电压放大倍数,使共射极接法的管子集电结电容效应减小,改善了放大电路的频率特性。因此,共射-共基组合放大电路在高频电路中获得了广泛的应用。该组合电路的电压放大倍数近似等于一般共射电路的电压放大倍数。

【解题过程】

(1)电压测量放大器的输入级既要有较大的输入电阻,又要有一定的电压放大能力,应采用共集-共射组合放大电路。

(2)输出电压受负载变化影响小的放大电路应具有较小的输出电阻,也要有一定的电压放大能力,应采用共射-共集组合放大电路。

(3)负载为0.2kΩ,电压增益大于60dB的放大电路应采用电压放大倍数大、输出电阻小的共射-共集组合电路,最好在输入级再增加一级具有高输入电阻的共集电极电路。

(4)输入信号频率较高时,应采用频率特性好的共射-共基组合放大电路。

第3章

场效应管放大电路

本章的教学目标和要求:

要求学生了解JFET、MOSFET的结构特点,理解其工作原理;掌握JFET、MOSFET的特性曲线及其主要参数,掌握BJT、JFET、MOSFET三者之间的差别;掌握FET的偏置电路,工作点估算方法,掌握FET的小信号跨导模型,掌握FET的共源和共漏电路的分析和特点。

本章总体教学内容和学时安排:(采用多媒体教学方式)

§3-1

结型场效应管

§3-2

金属-氧化物-半导体场效应管

§3-3

场效应管放大电路

习题课

本章重点:

各种场效应管的外特性及参数,场效应管放大电路的偏置电路及特点。

本章难点:

场效应管的工作原理以及静态工作点的计算。

本章教学方式:课堂讲授

本章课时安排:8

本章的具体内容:

19、20节:

介绍结型场效应管的工作原理、结型场效应管的特性曲线以及主要参数。

重点:对结型场效应管的特性曲线的理解。

21、22、23节:

介绍MOS效应管的工作原理、MOS效应管的特性曲线以及主要参数。

重点:对MOS效应管的特性曲线的理解。

24、25、26节:

FET放大电路的分类,Q点设置方法,两种偏置方法的特点,以及用图解法、计算法对电路进行分析。FET的小信号模型,并用它对共源、共漏放大器分析;加一习题课讲解习题并对本章作一小结。

重点:强调分析方法的掌握,以及电路结构、分析过程与BJT放大器的对比。

【例3-1】在图示电路中,已知场效应管的;问在下列三种情况,管子分别工作在那个区?

(1),

(2),

(3),

【相关知识】

场效应管的伏安特性。

【解题思路】

根据管子工作在不同区域的特点,判断管子的工作状态。

【解题过程】

(1)

因为

管子工作在截止区。

(2)

因为

管子工作在放大区。

(3)

因为

管子工作在可变电阻区。

【例3-2】

电路如图(a)示。其中,,,,场效应管的输出特性如图(b)

所示。试求电路的静态工作点、和之值。

图(a)

图(b)

【相关知识】

结型场效应管及其外特性,自给偏压电路,放大电路的直流通路、解析法、图解法。

【解题思路】

根据放大电路的直流通路,利用解析法或图解法可求得电路的静态工作点。

【解题过程】

由场效应管的输出特性可知管子的,

由式

与双极型晶体管放大电路类似,分析场效应管放大电路的静态工作点,也有两种方法,解析法和图解法

【另一种解法】

(1)在输出特性曲线上,根据输出回路直流负载线方程

作直流负载线MN,如图(d)所示。MN与不同

的输出特性曲线有不同的交点。Q点应该在MN上。

图(c)

图(d)

(2)由交点对应的、值在~坐标上作曲线,称为~控制特性,如图

(c)所示。

(3)在控制特性上,根据输入回路直流负载线方程

代入,可作出输入回路直流负载线。该负载线过原点,其斜率为,与控制特性曲线的

交点即为静态工作点。由此可得,

(4)根据,在输出回路直流负载线上可求得工作点,再由点可得

【例3-3】

两个场效应管的转移特性曲线分别如图

(a)、(b)所示,分别确定这两个场效应管的类型,并求其主要参数(开启电压或夹断电压,低频跨导)。测试时电流iD的参考方向为从漏极D到源极S。

(a)

(b)

【相关知识】

(1)场效应管的转移特性。

(2)场效应管的电参数。

【解题思路】

根据场效应管的转移特性确定其开启电压或夹断电压,及在某一工作点处的跨导。

【解题过程】

(a)图曲线所示的是P沟道增强型MOS管的转移特性曲线。其开启电压UGS(th)=-2V,IDQ=

-1mA

在工作点(UGS=-5V,

ID=-2.25mA)处,跨导

(b)图曲线所示的是N沟道耗尽型MOSFET的转移特性曲线,其夹断电压,

在工作点(UGS=-2V,

ID=1mA)处,跨导

第4章

集成运算放大器

本章的教学目标和要求:

要求学生了解差分式放大低电路的基本概念,简单差分式放大电路的组成、工作原理,差分放大电路静态工作点与主要性能指标的计算;了解集成运放电路的组成及特点;了解集成运放的主要参数和性能指标;理解理想运放的概念,掌握理想运放的线性工作区的特点,运放在线性工作区的典型应用;掌握理想运放的非线性工作区的特点,运放在非线性工作区的典型应用。

本章总体教学内容和学时安排:(采用多媒体教学)

§4-1

集成运放概述

§4-2

集成运放中的基本单元电路

§4-3 通用集成运放

§4-4 运放的主要参数几简化低频等效电路

本章重点:

差分式放大电路的组成、工作原理,差分放大电路静态工作点与主要性能指标的计算;零点漂移现象;差动放大器对差模信号的放大作用和对共模信号的抑制作用;半电路分析方法。

电流源电路的结构和工作原理、特点;

直接耦合互补输出级电路的结构原理、特点,交越失真的概念;

本章难点:

对差模信号共模信号的理解,对任意信号单端输入、单端输出差动放大器的分析;多级放大器前后级之间的相互影响。

本章教学方式:课堂讲授

本章课时安排:6

本章习题:

P144

4.1、4.2、4.3、4.5、4.6、4.10、4.11、4.12、4.13、4.19、4.20。

本章的具体内容:

27、28、29节:

介绍集成电路运算放大器中的几种电流源形式;介绍引入直接耦合放大电路的产生零点漂移的原因,零点漂移的抑制方法;直接耦合放大电路的直流分析。任意信号的差模共模分解,典型差分放大器的结构,对共模差模信号的不同响应。

重点:

产生零点漂移的原因,零点漂移的抑制方法;典型差分放大器的原理。

30、31、32节:

差分放大器对差模信号的放大作用的详细分析,共模抑制比的概念。差放的四种典型接法,并对几种结构的交流特性做分析。简要介绍改进型差放的改进原理。

介绍集成电路运算放大器的内部结构、工作原理、主要参数和性能指标。

重点:共模抑制比,差放的四种典型接法和集成运放的工作原理。

【例4-1】三个两级放大电路如下图所示,已知图中所有晶体管的β均为100,rbe均为1

kΩ,所有电容均为10

μF,VCC均相同。

填空:

(1)填入共射放大电路、共基放大电路等电路名称。

图(a)的第一级为_________,第二级为_________;

图(b)的第一级为_________,第二级为_________;

图(c)的第一级为_________,第二级为_________。

(2)三个电路中输入电阻最大的电路是_________,最小的电路是_________;输出电阻最大的电路是_________,最小的电路是_________;电压放大倍数数值最大的电路是_________;低频特性最好的电路是_________;若能调节Q点,则最大不失真输出电压最大的电路是_________;输出电压与输入电压同相的电路是_________。

【相关知识】

晶体管放大电路三种接法的性能特点,多级放大电路不同耦合方式及其特点,多级放大电路动态参数与组成它的各级电路的关系。

【解题思路】

(1)通过信号的流通方向,观察输入信号作用于晶体管和场效应管的哪一极以及从哪一极输出的信号作用于负载,判断多级放大电路中各级电路属于哪种基本放大电路。

(2)根据各种晶体管基本放大电路的参数特点,以及单级放大电路连接成多级后相互间参数的影响,分析各多级放大电路参数的特点。

【解题过程】

(1)在电路(a)中,T1为第一级的放大管,信号作用于其发射极,又从集电极输出,作用于负载(即第二级电路),故第一级是共基放大电路;T2和T3组成的复合管为第二级的放大管,第一级的输出信号作用于T2的基极,又从复合管的发射极输出,故第二级是共集放大电路。

在电路(b)中,T1和T2为第一级的放大管,构成差分放大电路,信号作用于T1和T2的基极,又从T2的集电极输出,作用于负载(即第二级电路),是双端输入单端输出形式,故第一级是(共射)差分放大电路;T3为第二级的放大管,第一级的输出信号作用于T3的基极,又从其发射极输出,故第二级是共集放大电路。

在电路(c)中,第一级是典型的Q点稳定电路,信号作用于T1的基极,又从集电极输出,作用于负载(即第二级电路),故为共射放大电路;T2为第二级的放大管,第一级的输出信号作用于T

2的基极,又从其集电极输出,故第二级是共射放大电路。

应当特别指出,电路(c)中T3和三个电阻(8.2

kΩ、1.8

kΩ、1

kΩ)组成的电路构成电流源,等效成T2的集电极负载,理想情况下等效电阻趋于无穷大。电流源的特征是其输入回路没有动态信号的作用。要特别注意电路(c)的第二级电路与互补输出级的区别。

(2)比较三个电路的输入回路,电路(a)的输入级为共基电路,它的e−b间等效电阻为rbe/(1+β),Ri小于rbe/(1+β);电路(b)的输入级为差分电路,Ri大于2rbe;电路(c)输入级为共射电路,Ri是rbe与10

kΩ、3.3

kΩ电阻并联,Ri不可能小于rbe/(1+β);因此,输入电阻最小的电路为(a),最大的电路为(b)。

电路(c)的输出端接T2和T3的集电极,对于具有理想输出特性的晶体管,它们对“地”看进去的等效电阻均为无穷大,故电路(c)的输出电阻最大。比较电路(a)和电路(b),虽然它们的输出级均为射极输出器,但前者的信号源内阻为3.3

kΩ,后者的信号源内阻为10

kΩ;且由于前者采用复合管作放大管,从射极回路看进去的等效电阻表达式中有1/(1+β)2,而后者从射极回路看进去的等效电阻表达式中仅为有1/(1+β),故电路(a)的输出电阻最小。

由于电路(c)采用两级共射放大电路,且第二级的电压放大倍数数值趋于无穷大,而电路(a)和(b)均只有第一级有电压放大作用,故电压放大倍数数值最大的电路是(c)。

由于只有电路(b)采用直接耦合方式,故其低频特性最好。

由于只有电路(b)采用±VCC两路电源供电,若Q点可调节,则其最大不失真输出电压的峰值可接近VCC,故最大不失真输出电压最大的电路是(b)。

由于共射电路的输出电压与输入电压反相,共集和共基电路的输出电压与输入电压同相,可以逐级判断相位关系,从而得出各电路输出电压与输入电压的相位关系。电路(a)和(b)中两级电路的输出电压与输入电压均同相,故两个电路的输出电压与输入电压均同相。电路(c)中两级电路的输出电压与输入电压均反相,故整个电路的输出电压与输入电压也同相。

综上所述,答案为(1)共基放大电路,共集放大电路;差分放大电路,共集放大电路;共射放大电路,共射放大电路;(2)(b),(a);(c),(a);(c);(b);(b);(a),(b),(c)。

【例4-2】电路如图所示。已知,,,,,。时,。

(1)试说明和、和、以及分别组成什么电路?

(2)若要求上电压的极性为上正下负,则输入电压的极性如何?

(3)写出差模电压放大倍数的表达式,并求其值。

【相关知识】

(1)差分放大电路。

(2)多级放大电路。

(3)电流源电路。

【解题过程】

根据差分放大电路、多级放大电路的分析方法分析电路。

【解题过程】

(1)、管组成恒流源电路,作和管的漏极有源电阻,、管组成差分放大电路,并且恒流源作源极有源电阻。管组成共射极放大电路,并起到电平转化作用,使整个放大

电路能达到零输入时零输出。管组成射极输出器,降低电路的输出电阻,提高带载能力,这

里恒流源作为管的射极有源电阻。

(2)为了获得题目所要求的输出电压的极性,则必须使基极电压极性为正,基极电压极性为负,也就是管的栅极电压极性应为正,而管的栅极电压极性应为负。

(3)整个放大电路可分输入级(差分放大电路)、中间级(共射放大电路)和输出级(射极输出器)。

对于输入级(差分放大电路),由于恒流源作漏极负载电阻,使单端输出具有与双端输出相同的放大倍数。所以

式中,漏极负载电阻,而

为管的等效电阻。为管组成的共射放大电路的输入电阻。

由于恒流源的。所以:

管组成的共射放大电路的电压放大倍数

由于管组成的射极输出器的输入电阻,所以:

管组成的射极输出器的电压放大倍数

则总的差模电压放大倍数的表达式为

其值为

【例4-3】下图所示为简化的集成运放电路,输入级具有理想对称性。选择正确答案填入空内。

(1)该电路输入级采用了__________。

A.共集−共射接法

B.

共集−共基接法

C.

共射−共基接法

(2)输入级采用上述接法是为了__________。

A.

展宽频带

B.

增大输入电阻

C.

增大电流放大系数

(3)T5和T6作为T3和T4的有源负载是为了__________。

A.

增大输入电阻

B.

抑制温漂

C.

增大差模放大倍数

(4)该电路的中间级采用__________。

A.

共射电路

B.

共基电路

C.

共集电路

(5)中间级的放大管为__________。

A.

T7

B.

T8

C.

T7和T8组成的复合管

(6)该电路的输出级采用__________。

A.

共射电路

B.

共基电路

C.

互补输出级

(7)D1和D2的作用是为了消除输出级的__________。

A.

交越失真

B.

饱和失真

C.

截止失真

(8)输出电压uO与uI1的相位关系为__________。

A.

反相

B.

同相

C.

不可知

【相关知识】

集成运放电路(输入级,中间级,互补输出级),基本放大电路的接法及性能指标,有源负载,差模放大倍数,复合管。

【解题思路】

(1)用基本的读图方法对放大电路进行分块,分析出输入级、中间级和输出级电路。

(2)分析各级电路的基本接法及性能特点。

【解题过程】

(1)输入信号作用于T1和T2管的基极,并从它们的发射极输出分别作用于T3和T4管的发射极,又从T3和T4管的集电极输出作用于第二级,故为共集−共基接法。

(2)上述接法可以展宽频带。

为什么不是增大输入电阻呢?因为共基接法的输入电阻很小,即T1和T2管等效的发射极电阻很小,所以输入电阻的增大很受限。因为共基接法不放大电流,所以不能增大电流放大系数。

(3)T5和T6作为T3和T4的有源负载是为了增大差模放大倍数。利用镜像电流源作有源负载,可使单端输出差分放大电路的差模放大倍数增大到近似等于双端输出时的差模放大倍数。

(4)为了完成“主放大器”的功能,中间级采用共射放大电路。

(5)由于第一级的输出信号作用于T7的基极以及T7和T8的连接方式,说明T7和T8组成的复合管为中间级的放大管。

(6)T9和T10的基极相连作为输入端,发射极相连作为输出端,故输出级为互补输出级。

(7)D1和D2的作用是为了消除输出级的交越失真。

(8)若在输入端uI1加“+”、uI2加“-”的差模信号,则T2的共集接法使其发射极(即T4的发射极)电位为“-”,T4的共基接法使其集电极(即T7的基极)电位也为“-”;以T7、T8构成的复合管为放大管的共射放大电路输出与输入反相,它们的集电极电位为“+”;互补输出级的输出与输入同相,输出电压为“+”;故uI1一端为同相输入端,uI2一端为反相输入端。

综上所述,答案为(1)B,(2)A,(3)C,(4)A,(5)C,(6)C,(7)A,(8)B。

第5章

反馈和负反馈放大电路

本章的教学目标和要求:

要求学生理解反馈的基本概念,掌握四种反馈类型;掌握实际反馈放大器的类型和极性的判断;掌握负反馈对放大电路的影响;掌握在深度负反馈条件下的计算;了解负反馈放大器的稳定性。

本章总体教学内容和学时安排:(采用多媒体教学)

§5-1

反馈的基本概念及类型

§5-2

负反馈对放大电路性能的影响

§5-3 负反馈放大电路的分析及近似计算

§5-4 负反馈放大电路的自激振荡几消除

本章重点:

反馈的基本概念;反馈类型的判断;负反馈对放大器性能的影响;在深度负反馈条件下放大器增益的估算。

本章难点:

反馈的基本概念;反馈类型的判断;自给振荡条件及消除振荡的措施

本章主要的切入点:为改善放大器的性能,引入负反馈的概念,通过方块图理解负反馈放大器的组成;通过方框图理解负反馈放大器的四种组态;定性理解负反馈对放大器的性能的理解;根据深度负反馈条件,估算放大器的增益。

本章教学方式:课堂讲授

本章课时安排:12

本章习题:

P183

5.3、5.4、5.5、5.8、5.9、5.10、5.11、5.13。

本章的具体内容:

33、34、35、36节:

反馈的基本概念,反馈放大器的组成,工作原理,反馈的判断(有无、正负、交流直流),结合对运放和分离元件放大器反馈电路的分析介绍。

四种基本反馈方式的划分,典型结构的分析,结合例题判断反馈组态。

重点:

反馈的基本概念,反馈组态判断。

37、38、39、40、41节:

反馈的引入对放大电路性能的影响,增益带宽积,负反馈引入的原则;

负反馈放大器的结构,特点,一般表达式的分析和推导。

在深度负反馈条件,在深度负反馈条件下负反馈放大器的性能分析,例题2个;

四种基本反馈在深度负反馈条件下放大器不同增益的表达式;

重点:

反馈的引入对放大电路性能的影响,负反馈引入的原则;一般表达式的分析和理解。

42、43、44节:

负反馈放大器的稳定性分析:负反馈放大器自激振荡产生的原因和条件,负反馈放大器的稳定性的定性分析和判断,负反馈放大器自激振荡的消除方法。

重点:

负反馈放大器自激振荡产生的原因和条件,负反馈放大器的稳定性的判断,负反馈放大器自激振荡的消除方法。

【例5-1】在括号内填入“√”或“×”,表明下列说法是否正确。

(1)若从放大电路的输出回路有通路引回其输入回路,则说明电路引入了反馈。

(2)若放大电路的放大倍数为“+”,则引入的反馈一定是正反馈,若放大电路的放大倍数为“−”,则引入的反馈一定是负反馈。

(3)直接耦合放大电路引入的反馈为直流反馈,阻容耦合放大电路引入的反馈为交流反馈。

(4)既然电压负反馈可以稳定输出电压,即负载上的电压,那么它也就稳定了负载电流。

(5)放大电路的净输入电压等于输入电压与反馈电压之差,说明电路引入了串联负反馈;净输入电流等于输入电流与反馈电流之差,说明电路引入了并联负反馈。

(6)将负反馈放大电路的反馈断开,就得到电路方框图中的基本放大电路。

(7)反馈网络是由影响反馈系数的所有的元件组成的网络。

(8)阻容耦合放大电路的耦合电容、旁路电容越多,引入负反馈后,越容易产生低频振荡。

【相关知识】

反馈的有关概念,包括什么是反馈、直流反馈和交流反馈、电压负反馈和电流负反馈、串联负反馈和并联负反馈、负反馈放大电路的方框图、放大电路的稳定性

【解题思路】

正确理解反馈的相关概念,根据这些概念判断各题的正误。

【解题过程】

(1)通常,称将输出量引回并影响净输入量的电流通路为反馈通路。反馈是指输出量通过一定的方式“回授”,影响净输入量。因而只要输出回路与输入回路之间有反馈通路,就说明电路引入了反馈,而反馈通路不一定将放大电路的输出端和输入端相连接。例如,在下图所示反馈放大电路中,R2构成反馈通路,但它并没有把输出端和输入端连接起来。故本题说法正确。

(2)正、负反馈决定于反馈的结果是使放大电路的净输入量或输出量的变化增大了还是减小了,若增大则为正反馈,否则为负反馈;与放大电路放大倍数的极性无关。换言之,无论放大倍数的符号是“+”还是“−”,放大电路均可引入正反馈,也可引入负反馈。故本题说法错误。

(3)直流反馈是放大电路直流通路中的反馈,交流反馈是放大电路交流通路中的反馈,与放大电路的耦合方式无直接关系。本题说法错误。

(4)电压负反馈稳定输出电压,是指在输出端负载变化时输出电压变化很小,因而若负载变化则其电流会随之变化。故本题说法错误。

(5)根据串联负反馈和并联负反馈的定义,本题说法正确。

(6)本题说法错误。负反馈放大电路方框图中的基本放大电路需满足两个条件,一是断开反馈,二是考虑反馈网络对放大电路的负载效应。虽然本课程并不要求利用方框图求解负反馈放大电路,但是应正确理解方框图的组成。

(7)反馈网络包含所有影响反馈系数的元件组成反馈网络。例如,在上图所示电路中,反馈网络由R1、R2和R4组成,而不仅仅是R2。故本题说法正确。

(8)在低频段,阻容耦合负反馈放大电路由于耦合电容、旁路电容的存在而产生附加相移,若满足了自激振荡的条件,则产生低频振荡。根据自激振荡的相位条件,在放大电路中有三个或三个以上耦合电容、旁路电容,引入负反馈后就有可能产生低频振荡,而且电容数量越多越容易产生自激振荡。故本题说法正确。

综上所述,答案为:(1)√,(2)×,(3)×,(4)×,(5)√,(6)×,(7)√,(8)√

【例5-2】

电路如图所示,图中耦合电容器和射极旁路电容器的容量足够大,在中频范围内,它们的容抗近似为零。试判断电路中反馈的极性和类型(说明各电路中的反馈是正、负、直流、交流、电压、电流、串联、并联反馈)。

【相关知识】

反馈放大电路。

【解题思路】

根据反馈的判断方法判断电路中反馈的极性和类型。

【解题过程】

图示放大电路输出与输入之间没有反馈,第一级也没有反馈,第二级放大电路有两条反馈支路。一条反馈支路是,另一条反馈支路是和串联支路。支路有旁路电容,所以它是本级直流反馈,可以稳定第二级电路的静态工作点。和串联支路接在第二级放大电路的输出(集电极)和输入之间(

基极),由于的“隔直”作用,该反馈是交流反馈。

和串联支路交流反馈极性的判断:

当给第二级放大电路加上对地极性为♁的信号时,输出电压极性为㊀,由于电容对交流信号可认为短路,所以反馈信号极性也为㊀,因而反馈信号削弱输入信号的作用,该反馈为负反馈。判断过程如图所示。

负反馈组态的判断:

若令输出电压信号等于零,从输出端返送到输入电路的信号等于零,即反馈信号与输出电压信号成正比,那么该反馈是电压反馈;反馈信号与输入信号以电流的形式在基极叠加,所以它是并联反馈。

总结上述判别可知,图示电路中和串联支路构成交流电压并联负反馈。

【例5-3】试判断图示各电路中是否引入了反馈;若引入了反馈,则判断是正反馈还是负反馈,是直流反馈还是交流反馈;若引入了交流负反馈,则判断是哪种组态的负反馈。设图中所有电容对交流信号均可视为短路。

【相关知识】

分立元件放大电路(双极型管放大电路和单极型管放大电路)各种接法的极性判断,反馈的判断方法,包括判断是否引入了反馈、判断反馈的正负、判断直流反馈和交流反馈、判断交流负反馈的四种组态。

【解题思路】

(1)根据反馈的定义,判断电路中是否存在反馈通路,从而判断是否引入了反馈。

(2)若引入了反馈,利用瞬时极性法判断反馈的正负。

(3)根据直流反馈和交流反馈的定义,判断引入的反馈属于哪种反馈。

(4)根据交流反馈四种组态的判断方法,判断引入的反馈属于哪种组态。

【解题过程】

在图(a)电路中,Rf将输出回路与输入回路连接起来,故电路引入了反馈;且反馈既存在于直流通路又存在于交流通路,故电路引入了直流反馈和交流反馈。利用瞬时极性法,在规定输入电压瞬时极性时,可得到放大管基极、集电极电位的瞬时极性以及输入电流、反馈电流的方向,如图(e)所示。晶体管的基极电流等于输入电流与反馈电流之差,故电路引入了负反馈,且为并联负反馈。当输出电压为零(即输出端短路)时,Rf将并联在T的b−e之间,如图(e)中虚线所示;此时尽管Rf中有电流,但这个电流是uI作用的结果,输出电压作用所得的反馈电流为零,故电路引入了电压负反馈。综上所述,电路引入了直流负反馈和交流电压并联负反馈。

在图(b)电路中,R1将输出回路与输入回路连接起来,故电路引入了反馈;且反馈既存在于直流通路又存在于交流通路,故电路引入了直流反馈和交流反馈。利用瞬时极性法,在规定输入电压瞬时极性时,可得到放大管各极电位的瞬时极性以及输入电流、反馈电流方向,如图(f)所示。由于反馈减小了T1管的射极电流,故电路引入了并联负反馈。令输出电压为零,由于T2管的集电极电流(为输出电流)仅受控于它的基极电流,且R1、R2对其分流关系没变,反馈电流依然存在,故电路引入了电流负反馈。综上所述,该电路引入了直流负反馈和交流电流并联负反馈。

在图(c)电路中,R4在直流通路和交流通路中均将输出回路与输入回路连接起来,故电路引入了直流反馈和交流反馈。按u

I的假设方向,可得电路中各点的瞬时极性,如图(g)所示。输出电压uO作用于R4、R1,在R1上产生的电压就是反馈电压uF,它使得差分管的净输入电压减小,故电路引入了串联负反馈。由于uF取自于uO,电路引入了电压负反馈。综上所述,电路引入了直流负反馈和交流电压串联负反馈。

根据上述分析方法,图(d)电路的瞬时极性如图(h)所示。电路引入了直流负反馈和交流电流串联负反馈。

从图(c)和(d)电路可知,它们的输出电流均为输出级放大管的集电极电流,而不是负载电流。

【方法总结】

分立元件放大电路反馈的判断与集成运放负反馈放大电路相比有其特殊性。电路的净输入电压往往指输入级放大管输入回路所加的电压(如晶体管的b−e或e−b间的电压、场效应管的g−s或s−g间的电压),净输入电流往往指输入级放大管的基极电流或射极电流。在电流负反馈放大电路中,输出电流往往指输出级晶体管的集电极电流、发射极电流或场效应管的漏极电流、源极电流。

【常见错误】

在分立元件电流负反馈放大电路中,认为输出电流是负载RL上的电流。

【例5-4】某一负反馈放大电路的开环电压放大倍数,反馈系数。试问:

(1)闭环电压放大倍数为多少?

(2)如果发生20%的变化,则的相对变化为多少?

【相关知识】

(1)相对变化率

(2)闭环增益的一般表示式

【解题思路】

当已知的相对变化率来计算的相对变化率时,应根据的相对变化率的大小采用不同的方法。当的相对变化率较小时,可对求导推出与的关系式后再计算。当的相对变化率较大时,应通过计算出后再计算。

【解题过程】

(1)闭环电压放大倍数

(2)当变化20%,那么,

则的相对变化为

当变化-20%,那么

则的相对变化为

【常见错误】

本例中已有20%的变化,

的相对变化率较大,应通过计算出后再计算。

【例5-5】电路如图所示,试合理连线,引入合适组态的反馈,分别满足下列要求。

(1)减小放大电路从信号源索取的电流,并增强带负载能力;

(2)减小放大电路从信号源索取的电流,稳定输出电流。

【相关知识】

双极型管放大电路和单极型管放大电路各种接法的分析及其极性分析,反馈的基本概念,负反馈对放大电路性能的影响,放大电路中引入负反馈的一般原则。

【解题思路】

(1)分析图中两个放大电路的基本接法。

(2)设定两个放大电路输入端的极性为正,分别判断两个放大电路其它输入端和输出端的极性。

(3)根据要求引入合适的负反馈。

【解题过程】

图示电路的第一级为差分放大电路,输入电压uI对“地”为“+”时差分管T1的集电极(即④)电位为“−”,T2的集电极(即⑤)电位为“+”。第二级为共射放大电路,若T3管基极(即⑥)的瞬时极性为“+”,则其集电极(即⑧)电位为“−”,发射极(即⑦)电位为“+”;若反之,则⑧的电位为“+”,⑦的电位为“−”。

(1)减小放大电路从信号源索取的电流,即增大输入电阻;增强带负载能力,即减小输出电阻;故应引入电压串联负反馈。

因为要引入电压负反馈,所以应从⑧引出反馈;因为要引入串联负反馈,以减小差分管的净输入电压,所以应将反馈引回到③,故而应把电阻Rf接在③、⑧之间。Rb2上获得的电压为反馈电压,极性应为上“+”下“−”,即③的电位为“+”。因而要求在输入电压对“地”为“+”时⑧的电位为“+”,由此可推导出⑥的电位为“−”,需将⑥接到④。

结论是,需将③接⑨、⑩接⑧、⑥接④。

(2)减小放大电路从信号源索取的电流,即增大输入电阻;稳定输出电流,即增大输出电阻;故应引入电流串联负反馈。

根据上述分析,Rf的一端应接在③上;由于需引入电流负反馈,Rf的另一端应接在⑦上。为了引入负反馈,要求⑦的电位为“+”,由此可推导出⑥的电位为“+”,需将⑥接到⑤。

结论是,需将③接⑨、⑩接⑦、⑥接⑤。

【方法总结】

(1)减小放大电路从信号源索取的电流,即增大输入电阻,应引入串联负反馈。

(2)增强带负载能力,即减小输出电阻,应引入电压负反馈;稳定输出电压,即减小输出电阻,应引入电压负反馈。

(3)稳定输出电流,即增大输出电阻,应引入电流负反馈。

【常见错误】

在引入反馈时只注意保证引入的反馈组态正确,但没有保证引入的反馈为负反馈。

第6、7章

信号的运算与处理电路

本章的教学目标和要求:

要求学生理解掌握理想运放的虚短与虚断的特点,熟练掌握比例、加法、减法、微分、积分等几种基本理想运算电路的工作原理及应用;掌握实际运放的误差分析;理解对数和反对数运算电路以及模拟乘法器的基本概念及应用,有源滤波器的基本概念及一阶、二阶有源滤波器电路分析,单门限、双门限电压比较器电路分析。

本章的总体教学内容:(采用多媒体教学)

§6-1

基本运算电路

§6-2

对数和反对数运算电路

§6-3

模拟乘法器及其应用

§6-4

集成运放使用中的几个问题

§7-1

电子系统概述

§7-2

信号检测系统中的放大电路

§7-3

有源滤波电路

§7-4

电压比较器

习题课

本章重点:

理想运放线性应用的规律分析、基本运算电路分析、模拟乘法器的基本概念及应用、有源滤波器、电压比较器的基本概念、双门限电压比较器电路分析。

本章难点:

正确判断运放的工作区,并灵活运用所在区的特点分析电路的功能。

本章主要的切入点:

通过引入理想运放的概念,建立虚短与虚断的概念和零子模型电路;围绕理想运放的两个工作区各自的特点,分析比例、求和、,从而掌握运放应用电路的一般分析方法。

本章教学方式:课堂讲授

本章课时安排:8

本章习题:P203

P233

6.1、6.9、6.10、6.11、6.13、6.14、6.16、7.3、7.13、7.20、7.21、7.22。

45、46节:

运用虚短与虚断概念分析反相比例、同相比例、加法、减法、积分和微分运算电路的工作原理;对实际运算电路的误差进行分析。

重点:基本运算电路的工作原理。

47、48、49节:

运用虚短与虚断概念分析对数和反对数运算电路的工作原理。介绍模拟乘法器的工作原理及应用。

重点:

模拟乘法器的工作原理。

习题课:应用基本运算放大电路进行电路分析及计算。

50、51、52节:

滤波器的概念,分类,频带特性,对用运放构成的简单高通、低通滤波器电路进行分析。电压比较器的概念,分类,应用

重点:

有源高通、低通滤波器电路的分析;电压比较器的分析方法、原理及应用。

【例6-1】如图所示的理想运放电路,可输出对“地”对称的输出电压和。设,。

(1)试求/。

(2)若电源电压用15V,,电路能否正常工作?

【相关知识】

(1)运放特性。

(2)反相输入比例运算电路。

【解题思路】

分析各运放组成哪种单元电路,根据各单元电路输出与输入关系,推导出总的输出电压的关系式。

【解题过程】

(1)由图可知,运放A1和A2分别组成反相输入比例运算电路。故

(2)

若电源电压用15V,那么,运放的最大输出电压,当时,,。运放A1和A2的输出电压均小于电源电压,这说明两个运放都工作在线性区,故电路能正常工作。

【例6-2】电路如图所示,设运放均有理想的特性,写出输出电压与输入电压、的关系式。

【相关知识】

运放组成的运算电路。

【解题思路】

分析各运放组成哪种单元电路,根据各单元电路输出与输入关系,推导出总的输出电压的关系式。

【解题过程】

由图可知,运放A1、A2组成电压跟随器。

运放A4组成反相输入比例运算电路

运放A3组成差分比例运算电路

运放A3组成差分比例运算电路

以上各式联立求解得:

【例6-3】理想运放电路如图所示,试求输出电压与输入电压的关系式。

【相关知识】

加法器、减法器。

【解题思路】

由图可知,本电路为多输入的减法运算电路,利用叠加原理求解比较方便。

【解题过程】

当时

当时

利用叠加原理可求得上式中,运放同相输入端电压

于是得输出电压

【例7-1】现有有源滤波电路如下:

A、高通滤波器

B、低通滤波器

C、带通滤波器

D、带阻滤波器

选择合适答案填入空内。

(1)为避免50Hz电网电压的干扰进入放大器,应选用。

(2)已知输入信号的频率为1~2kHz,为了防止干扰信号的混入,应选用。

(3)为获得输入电压中的低频信号,应选用。

(4)为获得输入电压中的低频信号,应选用。

(5)输入信号频率趋于零时输出电压幅值趋于零的电路为。

(6)输入信号频率趋于无穷大时输出电压幅值趋于零的电路为。

(7)输入信号频率趋于零和无穷大时输出电压幅值趋于零的电路为。

(8)输入信号频率趋于零和无穷大时电压放大倍数为通带放大倍数的电路为。

【相关知识】

四种有源滤波电路的基本特性及其用途。

【解题思路】

根据四种有源滤波电路的基本特性及其用途来选择填入。

【解题过程】

根据表7.1.3可知

答案为(1)D,(2)C,(3)B,(4)A,(5)A、C,(6)B、C,(7)C,(8)D。

【例7-2】已知由理想运放组成的三个电路的电压传输特性及它们的输入电压uI的波形如图所示。

(1)分别说明三个电路的名称;

(2)画出uO1~uO3的波形。

【相关知识】

单限比较器、滞回比较器和窗口比较器电压传输特性的特征。

【解题思路】

(1)根据电压传输特性判断所对应的电压比较器的类型。

(2)电压传输特性及电压比较器的类型画出输出电压的波形。

【解题过程】

(1)图(a)说明电路只有一个阈值电压UT(=2

V),且uI<UT时uO1

=

UOL

=-0.7

V,uI>UT时uO1

=UOH=6

V;故该电路为单限比较器。

图(b)所示电压传输特性的两个阈值电压UT1=2

V、UT2=4

V,有回差。uI<UT1时uO2=

UOH

=+6

V,

uI>UT2时uO2=

UOL

=-6

V,

UT1<uI<UT2时uO决定于uI从哪儿变化而来;说明电路为滞回比较器。

图(c)所示电压传输特性的两个阈值电压UT1=1

V、UT2=3

V,由于uI<UT1和uI>UT2时uO3=

UOL=-6

V,UT1<uI<UT2时uO1=

UOH

=+6

V,故该电路为窗口比较器。

答案是具有如图(a)、(b)、(c)所示电压传输特性的三个电路分别为单限比较器、滞回比较器和窗口比较器。

(2)根据题目给出的电压传输特性和上述分析,可画出uO1~uO3的波形,如图(e)所示。

应当特别提醒的是,在uI<4

V之前的任何变化,滞回比较器的输出电压uO2

都保持不变,且在uI=4

V时uO2从高电平跃变为低电平,直至uI=2

V时uO2才从低电平跃变为高电平。

【方法总结】

根据滞回比较器电压传输特性画输出电压波形时,当输入电压单方向变化(即从小逐渐变大,或从大逐渐变小)经过两个阈值时,输出电压只跳变一次。例如本题中,当uI从小逐渐变大时,只有经过阈值电压UT2=4

V时输出电压才跳变;而当uI从大逐渐变小时,只有经过阈值电压UT1=2

V时输出电压才跳变。

【常见错误】

认为只要uI变化经过阈值电压UT1=2

V或UT2=4

V时输出电压就跳变。

图(e)

第8章

信号发生器

本章的教学目标和要求:

要求学生理解掌握正弦波信号产生电路的基本概念,RC串联、LC并联正弦信号产生电路的组成、振荡条件判断、振荡频率计算;掌握理想运放非线性应用的分析规律,方波产生电路组成及工作原理。

本章的总体教学内容:(采用多媒体教学)

§8-1

正弦波信号发生器

§8-2

非正弦波信号发生器

本章重点:

正弦波振荡电路的振荡条件及比较器的基本原理。

本章难点:

振荡条件的判别

本章教学方式:课堂讲授

本章课时安排:4

本章习题:

P259

8.1、8.2、9.2.3、8.4、8.5、8.7、8.8、8.9、8.10、8.12

53、54节:

介绍正弦波发生器的工作原理,组成结构,产生正弦波振荡的条件;

重点:

正弦波发生器的工作原理。

55、56节:

典型的RC桥式电路的结构及其工作原理;电容三点式、电感三点式振荡电路的结构及工作原理,振荡条件的判别;石英晶体振荡电路的工作原来。

重点:

RC、LC振荡电路的工作原理。

方波、锯齿波产生电路的工作原理。

【例8-1】图(a)所示电路是没有画完整的正弦波振荡器。

(1)完成各节点的连接;

(2)选择电阻的阻值;

(3)计算电路的振荡频率;

(4)若用热敏电阻(的特性如图(b)所示)代替反馈电阻,当(有效值)多大时该电路出现稳定的正弦波振荡?此时输出电压有多大?

图(a)

图(b)

【相关知识】

RC正弦波振荡器。

【解题思路】

根据RC正弦波振荡器的组成和工作原理对题目分析、求解。

【解题过程】

(1)在本题图中,当时,RC串—并联选频网络的相移为零,为了满足相位条件,放大器的相移也应为零,所以结点应与相连接;为了减少非线性失真,放大电路引入负反馈,结点

应与相连接。

(2)为了满足电路自行起振的条件,由于正反馈网络(选频网络)的反馈系数等于1/3(时),所以电路放大倍数应大于等于3,即。故应选则大于的电阻。

(3)电路的振荡频率

(4)由图(b)可知,当,即当电路出现稳定的正弦波振荡时,,此时输出电压的有效值

【例8-2】试判断图(a)所示电路是否有可能产生振荡。若不可能产生振荡,请指出电路中的错误,画出一种正确的电路,写出电路振荡频率表达式。

【相关知识】

LC型正弦波振荡器。

【解题思路】

(1)

从相位平衡条件分析电路能否产生振荡。

(2)

LC电路的振荡频率,L、C分别为谐振电路的等效电感和电容。

【解题过程】

图(a)电路中的选频网络由电容C和电感L(变压器的等效电感)组成;晶体管T及其直流偏置电路构成基本放大电路;变压器副边电压反馈到晶体管的基极,构成闭环系统统;本电路利用晶体管的非线性特性稳幅。静态时,电容开路、电感短路,从电路结构来看,本电路可使晶体管工作在放大状态,若参数选择合理,可使本电路有合适的静态工作点。动态时,射极旁路电容和基极耦合电容短路,集电极的LC并联网络谐振,其等效阻抗呈阻性,构成共射极放大电路。利用瞬时极性法判断相位条件:首先断开反馈信号(变压器副边与晶体管基极之间),给晶体管基极接入对地极性为的输入信号,则集电极对地的输出信号极性为㊀,即变压器同名端极性为㊀,反馈信号对地极性也为㊀。反馈信号输入信号极性相反,不可能产生振荡。若要电路满足相位平衡条件,只要对调变压器副边绕组接线,使反馈信号对地极性为即可。改正后的电路如图(c)所示。本电路振荡频率的表达式为

图(c)

(d)

图(b)电路中的选频网络由电容C1、C2和电感L组成;晶体管T是放大元件,但直流偏置不合适;电容C1两端电压可作为反馈信号,但放大电路的输出信号(晶体管集电极信号)没有传递到选频网络。本电路不可能产生振荡。首先修改放大电路的直流偏置电路:为了设置合理的偏置电路,选频网络与晶体管的基极连接时要加隔直电容,晶体管的偏置电路有两种选择,一种是固定基极偏置电阻的共射电路,另一种是分压式偏置的共射电路。选用静态工作点比较稳定的电路(分压式偏置电路)比较合理。修改交流信号通路:把选频网络的接地点移到C1和C2之间,并把原电路图中的节点2连接到晶体管T的集电极。修改后的电路如图(d)所示。然后再判断相位条件:在图(d)电路中,断开反馈信号(选频网络与晶体管基极之间),给晶体管基极接入对地极性为的输入信号,集电极输出信号对地极性为㊀(共射放大电路),当LC选频网络发生并联谐振时,LC网络的等效阻抗呈阻性,反馈信号(电容C1两端电压)对地极性为。反馈信号与输入信号极性相同,表明,修改后的电路能满足相位平衡条件,电路有可能产生振荡。本电路振荡频率的表达式为

第9章

功率放大电路

本章的教学目标和要求:

要求学生了解功率放大电路的基本概念和特点;掌握乙类双电源互补对称功率放大电路的组成、工作原理及性能指标的计算;掌握甲乙类互补对称功率放大电路OCL和OTL的组成、工作原理及性能指标的计算。

本章总体教学内容和学时安排:(采用多媒体教学方式)

§9-1

功率放大电路的特点及分类

§9-2

互补推挽功率放大电路

本章重点:

乙类、甲乙类互补对称功率放大电路的输出功率和效率的计算。

本章难点:

功率放大电路的工作原理及计算分析。

本章教学方式:课堂讲授

本章课时安排:4

本章的具体内容:

57、58节:

介绍结型场效应管的工作原理、结型场效应管的特性曲线以及主要参数。

重点:对结型场效应管的特性曲线的理解。

59、60节:

介绍MOS效应管的工作原理、MOS效应管的特性曲线以及主要参数。

重点:对MOS效应管的特性曲线的理解。

FET放大电路的分类,Q点设置方法,两种偏置方法的特点,以及用图解法、计算法对电路进行分析。FET的小信号模型,并用它对共源、共漏放大器分析;加一习题课讲解习题并对本章作一小结。

重点:强调分析方法的掌握,以及电路结构、分析过程与BJT放大器的对比。

【例9-1】单电源互补功率放大电路如图所示。设功率管、的特性完全对称,

管子的饱和压降,发射结正向压降,,,,并且电容器和的容量足够大。

(1)静态时,A点的电位、电容器C两端压降和输入端信号中的直流分量分别为多大?

(2)动态时,若输出电压仍有交越失真,应该增大还是减小?

(3)试确定电路的最大输出功率

、能量转换效率,及此时需要的输入激励电流的值;

(4)如果二极管D开路,将会出现什么后果?

【相关知识】

甲乙类互补推挽功放电路的工作原理。

【解题思路】

(1)为了使单电源互补推挽功放电路输出信号正负两个半周的幅值对称,静态时,A点的电位应等于电源电压的一半,由此可推算电容器C两端压降和输入端信号中的直流分量的大小。

(2)分析产生交越失真的原因,讨论的作用。

(3)确定输出电压最大值,求解最大输出功率、能量转换效率及此时需要的输入激励电流的值。

(4)断开二极管,分析电路可能出现的状况。

【解题过程】

(1)

静态时,调整电阻、和,保证功率管和处于微导通状态,使A点电位等于电源电压的一半,即。此时耦合电容C被充电,电容C两端的电压;输入信号中的直流分量的大小,应保证输入信号接通后不影响放大电路的直流工作点,即。

(2)

电路中设置电位器和二极管D的目的是为功率管提供合适的静态偏置,从而减小互补推挽电路的交越失真。若接通交流信号后输出电压仍有交越失真,说明偏置电压不够大,适当增大电位器的值之后,交越失真将会减小。

(3)

功率管饱和时,输出电压的幅值达到最大值,则电路的最大输出功率

此功放电路的能量转换效率最大

当输出电压的幅值达最大值时,功率管基极电流的瞬时值应为

(4)当D开路时,原电路中由电位器和二极管D给功率管和提供微导通的作用消失。、、和的发射结及将构成直流通路,有可能使和管完全导通。若和的值较小时,将会出现,从而使功放管烧坏。

【例9-2】在图示的电路中,已知运放性能理想,其最大的输出电流、电压幅值分别为15mA和15V。设晶体管和的性能完全相同,=60,

。试问:

(1)该电路采用什么方法来减小交越失真?请简述理由。

(2)如负载分别为20、10时,其最大不失真输出功率分别为多大?

【相关知识】

(1)乙类互补推挽功放。

(2)运算放大器。

(3)电压并联负反馈。

【解题思路】

(1)推导晶体管和即将导通时,管子发射结两端电压与输入电压关系,并由此分析电路减小交越失真的措施。

(2)根据运放输出电流和输出电压的最大值,确定功放电路输出电流和输出电压的最大值。在不同负载条件下,分析电路最大不失真输出功率是受输出电流的限制还是受输出电压的限制,从而可求出其最大不失真输出功率。

【解题过程】

(1)当输入信号小到还不足以使晶体管和导通时,电路中还没有形成负反馈。此时由电路图可列出以下关系式

和死区电压的关系为

当时,和未导通;

当时,

和导通。

由于运放的

很大,即使非常小时,

或也会导通,与未加运放的乙类推挽功放电路相比,输入电压的不灵敏区减小了,从而减小了电路的交越失真。

(2)由图可知,功放电路最大的输出电流幅值为

最大的输出电压幅值为

当时,因为,那么,受输出电压的限制,电路的最大输出功率为

当时,因为,受输出电流的限制,电路的最大输出功率为

【例9-3】图示为三种功率放大电路。已知图中所有晶体管的电流放大系数、饱和管压降的数值等参数完全相同,导通时b-e间电压可忽略不计;电源电压VCC和负载电阻RL均相等。填空:

(1)分别将各电路的名称(OCL、OTL或BTL)填入空内,图(a)所示为_______电路,图(b)所示为_______电路,图(c)所示为_______电路。

(2)静态时,晶体管发射极电位uE为零的电路为有_______。

(3)在输入正弦波信号的正半周,图(a)中导通的晶体管是_______,图(b)中导通的晶体管是_______,图(c)中导通的晶体管是_______。

(4)负载电阻RL获得的最大输出功率最大的电路为_______。

(5)效率最低的电路为_______。

【相关知识】

常用功率放大电路(OCL、OTL或BTL)。

【解题思路】

(1)根据三种功率放大电路(OCL、OTL或BTL)的结构特点来选择相应的电路填空。

(2)功率放大电路采用双电源供电时,其晶体管发射极电位uE为零。

(3)根据三种功率放大电路(OCL、OTL或BTL)的基本工作原理来选择相应的晶体管填空。

(4)分析三种功率放大电路的最大不失真输出电压,从而选出输出功率最大的电路。

(5)根据三种功率放大电路的最大输出功率以及功放管消耗的能量大小来确定效率最低的电路。

【解题过程】

(1)答案为OTL、OCL、BTL。

(2)由于图(a)和(c)所示电路是单电源供电,为使电路的最大不失真输出电压最大,静态应设置晶体管发射极电位为VCC/2。因此,只有图(b)所示的OCL电路在静态时晶体管发射极电位为零。因此答案为OCL。

(3)根据电路的工作原理,图(a)和(b)所示电路中的两只管子在输入为正弦波信号时应交替导通,图(c)所示电路中的四只管子在输入为正弦波信号时应两对管子(T1和T4、T2和T3)交替导通。

因此答案为T1,T1,T1和T4。

(4)在三个电路中,哪个电路的最大不失真输出电压最大,哪个电路的负载电阻RL获得的最大输出功率就最大。三个电路最大不失真输出电压的峰值分别为

,,

(5)根据(3)、(4)中的分析可知,三个电路中只有BTL电路在正弦波信号的正、负半周均有两只功放管的消耗能量,损耗最大,故转换效率最低。因而答案为(c)。

第10章

直流稳压电源

本章的教学目标和要求:

要求学生掌握直流电源的组成,各部分的作用,了解稳压电源的发展趋势和典型的元件。

本章总体教学内容和学时安排:(采用多媒体教学)

§10-1 概述

§10-2 单相整流及电容滤波电路

§10-3 串联反馈型线性稳压电路

习题课,复习

本章重点:

直流电源的组成及各部分的作用;单相桥式整流电路、电容滤波、稳压管稳压的工作原理。

本章难点:

滤波电路的定量计算。

本章主要的切入点:

从前几章电子电路对直流电源的要求,简略说明直流电源的任务,进而说明直流电源的组成。

本章教学方式:课堂讲授

本章课时安排:4

本章习题:

P299

10.1、10.3、10.6、10.13、10.10、10.17

61、62节:

直流电源的组成框图,各个部分的作用,主要参数,对器件的选择的要求。介绍半波整流电路,分析典型的单相桥式整流电路。介绍滤波、稳压部分的典型结构。重点:

单相桥式整流电路的工作原理。

63、64节

典型稳压电源电路的工作原理:简介串联反馈式稳压电路和串联开关式稳压电路的工作原理;介绍常用的三端集成稳压器件78XX和79XX系列。

重点:

串联反馈式稳压电路的工作原理。

习题课,讲解本章节的重难点习题,传授解题技巧;对本课程做总结性回顾。

【例10-1】在某一具有电容滤波的桥式整流电路中,设交流电源的频率为1000HZ,整流二极管正向压降为0.7V,变压器的内阻为2。要求直流输出电流IO=100mA,输出直流电压UO=12V,试计算:

(1)估算变压器副边电压有效值U2。

(2)选择整流二极管的参数值。

(3)选择滤波电容器的电容值。

【相关知识】

电容滤波的桥式整流电路。

【解题思路】

(1)根据估算变压器副边电压有效值U2。

(2)根据电路中流过二极管的电流及二极管承受的最高反压电压选择整流二极管。

(3)根据及电容器的耐压选择滤波电容器。

【解题过程】

(1)

由可得

(2)

流过二极管的电流

二极管承受的反压为

选2CP33型二极管,其参数为URM=25V,IDM=500mA。

(3)

由,,可得

取,那么

选C=22μF,耐压25V的电解电容。

【例10-2】串联型稳压电路如图所示。已知稳压管的稳定电压,负载。

(1)

标出运算放大器A的同相和反相输入端。

(2)

试求输出电压的调整范围。

(3)

为了使调整管的,试求输入电压的值。

【相关知识】

串联型稳压电路。

【解题思路】

(1)

运算放大器的同相和反相输入端的连接要保证电路引入电压负反馈。

(2)

根据确定输出电压的调整范围。

(3)

由,并考虑到电网电压有波动,确定输入电压的值。

【解题过程】

(1)

由于串联型稳压电路实际上是电压串联负反馈电路。为了实现负反馈,取样网络(反馈网络)应接到运放的反相输入端,基准电压应接到运放的同相输入端。所以,运放A的上端为反相输入端(–),下端为同相端(+)。

(2)

根据串联型稳压电路的稳压原理,由图可知

式中,为可变电阻滑动触头以下部分的电阻,。

当时,最小

当时,最大

因此,输出电压的可调范围为。

(3)由于

当时,为保证,输入电压

若考虑到电网电压有波动时,也能保证,那么,实际应用中,输入电压应取。

【常见的错误】

容易忽视电网电压有波动。

【例10-3】图中画出了两个用三端集成稳压器组成的电路,已知静态电流IQ=2mA。

(1)写出图(a)中电流IO的表达式,并算出其具体数值;

(2)写出图(b)中电压UO的表达式,并算出当R2=0.51k时的具体数值;

(3)说明这两个电路分别具有什么功能?

图(a)

图(b)

【相关知识】

三端集成稳压器。

【解题思路】

(4)

写出图(a)电路输出电流与稳压器输出电压的表达式。

(5)写出图(b)电路输出电压与稳压器输出电压的表达式。

(6)由表达式分析各电路的功能。

【解题过程】

集成电路的特点篇(8)

【abstract】 Integrated operational amplifier is widely used in various fields of electronic technology, according to the characteristics of integrated operational amplifier of integrated operational amplifier principle and circuit form makes a brief analysis and application in radio transmitters are discussed.

【Key word】 Integration operation amplifier Circuit

随着电子技术的不断发展,集成运算放大器广泛应用于电子技术的各个领域。随着西新工程任务的完成,一批高科技的现代化的大功率广播发射机已投入运行,集成运算放大器在新型发射机中广泛应用。本文对集成运放的基本原理和常用的电路形式作简要分析,以及在广播发射机中的应用进行研究。

一、集成运放的简介

1.1集成运放的基本性能

集成运放本身就是一个完整的高增益放大器,一般由三级直接耦合放大器组成。输入级多为差动放大,中间级一般为单管共射放大,输出级多为互补推挽功放电路。通常具有十万倍以上的开环电压增益,兆欧级以上的差模输入电阻,如图(1)所示:它有两个输入端和一个输出端。图中标以“+”为同相输入端, “-”为反相输入端。同相与反相是指输出信号与输入信号的相位而言。当自同相输入端加入相对反向端为正的信号时,输出信号一定为正值,反之则为负值。集成运放通常需要正负对称的双电源供电,其工作电源范围比较宽,一般在±2~±15V范围均可正常供电,单电源供电时电源工作范围一般为3~30V 。集成运算内部除放大级外,还有保护补偿电路等电路,不必掌握其电路结构,根据其特性和外部电路形式对具体电路作出分析和判断。

1.2显著特点

1.2.1虚短

虚短是指集成运放工作在线性放大状态时,需要的输入信号相当弱,致使个信号输入端可视为等电位,好像两个输入端内部短路。如图(2):通过计算输出电压V0最大时,需要输入电压Vi的数值来说明这一特点。图2中所标,运算放大器的电源为±15V减去运放内部输出级互补管的饱和压降1~2V,运放输出电压VO最高为±13~±14V。放大倍数按十万倍计算,运放输入电压Vi最高±13~±14V/105=±(130~140)μV,此时的Vi用一般的电压表是测量不出的,所以可以将两个输入端视为等电位。我们称运放的两个输入端点位接近 “相等”,这种现象为 “虚短”。

1.2.2“虚断”

“虚断”是因为运放的两个输入端之间的阻抗极高106~1012Ω,几乎不吸收信号源的电流,对电流回路好像两个输入端内部断路,所以称这种想象为虚断。在分析计算集成运放电路时,可充分应用虚断和虚短两个特点,使电路分析大为简化,但切不可将电路短路或断路,真的断路和短路电路将不能工作。

二、集成运放的基本应用

集成运算放大电路可实现交直流信号的放大模拟运算(求和积商积分微分等)有源滤波震荡电压比较和AD/DA转换等许多功能,下面仅对由运放构成的基本的放大器做简单的介绍。

集成运算放大器在电子设备中实际需要的放大器的增益均比较低,而且要求较高的稳定性,所以集成运放用作线性放大时明显的特点就是:在输出端和反向输入端之间必定有深度的负反馈网络,从而构成所需增益的高稳定放大电路。

2.1反向放大器

反向放大器如图(3)所示:此放大电路在PSM150KW发射机中应用较多,特点是电压放大倍数AV仅由外接电阻RF和RI决定。根据虚短和虚断的概念则有:VIN-=VIN+=0,II=IF;根据欧姆定律有:Ii=ViRi, If=-V0Rf所以有ViRi=-V0Rf,放大器的闭环电压增益Av=V0Vi=-RfRi,V0=-RfRiVi,由此可知,改变电阻Rf则可改变电压增益。该放大电路的输入电阻R=ViIi=Ri。一般情况是先根据信号源内阻选取Ri,在根据要求的增益确定Rf。电路中R的作用是使差动输入级左右两边对称,以提高放大器的温漂和精度指标,R值越接近Rf与RI的并联值,温漂越小,精度越高。

2.2同相放大器

同相放大器电路如图(4)所示:同相放大器的特点是:输入阻抗Ri=R,而且R可以做的很大甚至不接。同相放大器适合要求输入阻抗高的场合。根据虚短的概念有:Vin+=Vin-=Vi,根据虚断有:Ii=If,而Ii=ViRi,If=V0-VinRf=V0-ViRf,所以有ViRi=V0-ViRf,从上式算出同相放大器闭环电压增益Av=V0Vi=1+RfR1,V0=(1+RfR1)Vi由此可知,其电压增益Av仅由外接电阻Rf和Ri决定。

三、集成运算放大器在广播发射机中的应用

3.1电压比较器

集成运放作为电压比较器使用时,工作在非线性区,其输出端不是高电平,就是低电平。当同相输入端电压高于反向输入端的电压时,运发输出高电平;同相输入端电压低于反向输入端电压时,运放输出低电平,如图所示:是用两个运放组成的窗口电压比较器,电阻R1R2为运放A1的设置的门限电压V1;电阻R3R4为运放A2的设置门限电压V2。当Vi>V1时,运放A1输出高电平VOH, Vi

当输入信号Vi在[V2,V1]区间以外时,V0输出高电平。窗口电压比较器电路,加上适当的取样电路,便可以进行风量,流量温度压力等多种物理量的双限检测,进而实现保护和报警等自动控制。

3.2电压检测及自动调整电路

电压检测放大器如图所示:A1采用反相输入方式。输入信号∑U包括两部分:一是工作电源,由稳压管DZ,限流电阻R1分压取得,并通过R2加至A1反相输入端。二是由A1输出的反馈信号Uf,通过电阻R3送至反相输入端,检测放大器输入信号为上述两者的叠加。

为了使电压检测放大器的输出满足自动调整要求,电源电压要大于反馈电压。放大器输出电压UK随输入信号∑U的变化而变化,由于采用反相输入方式,所以UK随着UF的增大而减小。当放大器A1输入电压变化或负载变化引起输出电压U0变化时,将引起反馈电压UF按比例变化,于是引起检测放大器输入信号∑U的变化,导致输出电压UK发生变化。

放大器A2通过Uk的变化,控制调制器脉宽的变化,从而为自动稳压或稳流提供条件。脉宽调制器采用A2运算放大器构成电压比较器,它的反相输入端输入给定的锯齿波电压Ui,同相输入端输入控制电压信号Uk,A2输出脉冲由Uk控制:当Uk>Uf时 ,A2 输出高电平,Uk越大,输出脉宽越大,反之,Uk越小,输出脉宽越窄。

当A1输出电压变化时,引起反馈电压Uf的变化,A1的输入和输出信号变化,导致A2的输出脉宽变化,通过一系列的自动调整使放大器的输出电压趋于稳定。当电网电压升高或负载减小,使放大器输出电压升高时,将发生下列调整:U0Uf∑UUkU0。放大器输出电压在调整前升高的基础上下降,故输出电压趋于稳定。检测放大器的电压放大倍数Av=R5R3,放大倍数越大时,系统调整过程稳压精度越高。

结束语

随着科学技术的不断发展,大规模和超大规模的集成电路功能越来越强大,广播发射机发展也朝着数字化、固态化、集成化方向发展。这就要求我们要掌握基本的分析方法,以适应新形势的需要。

集成电路的特点篇(9)

中图分类号TN752 文献标识码A 文章编号 1674-6708(2010)30-0263-01

随着电子器件复杂性的提高,模拟电路的故障诊断也越来越复杂。传统的诊断方法已经不能满足要求,人工智能理论的出现使得模拟电路故障诊断成为了一项新的研究领域。

1 基于神经网络的故障诊断原理

基于神经网络的故障诊断可以看作模式识别问题,通过对一系列的过程参量的测量,应用神经网络将测量空间映射到故障空间,从而实现故障诊断。

BP神经网络一般指基于误差反向传播算法的多层前馈型神经网络,采用Sigmoid型可微函数,能够实现输入和输出间的任意非线性映射。BP网络用于模拟电路故障诊断首先要确定电路的待测状态集,然后求电路处于其中一种状态时的响应必要的预处理,作为对应状态类的一个特征。对状态集中的每一类状态,都按照同样的方法获取大量的特征,从这些特征中选择有代表性的特征,构成训练样本集。然后,用这些样本训练与所求问题相对应规模的BP网络。训练时,把状态特征输入到BP网络的输入节点,要求网络的输出能正确的指出电路状态所属类别。实际电路诊断时,将与样本相同的激励施加给被测电路,得到相应的特征并输入到已经训练好的BP网络,BP网络判断出电路中的故障并进行定位。诊断流程:1)提取故障样本:通过电路仿真软件对给定的模拟电路进行仿真,得出各种状态数据;2)特征参数提取:对状态数据进行特征参数分析;3)网络结构优化:根据输入数据的特点和系统需要的结果显示形式分别确定输入层和输出层的节点数;4)训练与识别;训练已知样本,训练成功后,输入待识别的故障信号,即可得到识别结果。

2 诊断实例

本例应用BP神经网络对模拟电路的部分元件进行诊断,图1为待测电路。电路发生故障时,测试点电压的变化情况能表征出故障特征,表1为建立的模拟电路故障字典。

根据表1所示的故障字典,可将其转化为前馈神经网络的输入节点(见表2)和输出节点(见表3)。其中,前馈网络的输入节点等于电路的测点数4,并根据测点实际意义确定其取值范围为[0V,5V],测点的高低水平按正常情况分别设为[2.4V,5V]和[0V,0.7V]。网络的输出节点根据故障类型确定为3个,分别用(0 0 0),(0 1 1),(1 1 0),(0 0 1)和(1 0 0)表示各故障类型,相邻两故障差为3(十进制)。根据输入、输出节点情况,以蒙特卡罗分析方法可构造出相应的训练样本集和测试样本集,分别包括输入数据P和输出数据T。

依据训练和测试样本集,首先确定BP神经网络的输入层节点数n=4和输出节点数l=3。按照有关设计策略,分别在不同隐层节点m=9,10,11,12,13下设置对应的BP结构,并在相同的训练样本集和测试样本集条件下进行训练和测试。由于训练方法的随机性,在每种结构状态下分别训练5次,然后取各个BP诊断模型的正确识别率的平均值,相应的运算结果如下表(表4)所示。

集成电路的特点篇(10)

 

1.关于新型专用移相器件和触发器件的研发

即使目前有些科研单位及厂家研制出专用移相集成电路,使得三相桥式触发电路更简单,可靠性高大为提高。

如20多年前,西安交通大学自动化教研室曾经使用过的KJ系列专用触发集成电路是陕西航空部一间分公司在出品的,由KJ系列专用触发移相集成电路和六路双脉冲形成电路组成的三相桥式触发电路,使原来由普通公立元件组成的六块触发电路板比较来说已显得简单很多了,这种电路在脉冲输出端加功率扩展可以触发较大功率的可控硅。

这种由KJ004及KJ041组成的触发电路仍需要三块KJ004移相集成电路和三套电压过零采样变压器及其相关电路组成,这样必需存在三套电压过零采样变压器及其相关电路和三套移相电路。移相电路均由RC元件组成,每个移相电路由一个电阻和一个电容器组成RC时间常数电路,存在三个移相电路,即起码有六个RC元件及三块KJ004移相集成块,这样难免由六个RC元件参数变化及多块集成电路参数不一致性而引起三个移相电路存在不同的相位的差异,也同样会造成三相电压波头不平;采用三套电压过零采样变压器及其相关电路组成,其中一套电压过零采样变压器及其相关电路出故障,造成更大的输出电压波头不平,出现上面已讲过的故障原因。

2.国内企业应用经验

在20年前,己有行家想到这一问题,为了避免采用三套电压过零采样变压器及其相关电路和三套移相电路,曾经使用KC05组成的单一套电压过零采样变压器及其相关电路和单一移相电路。

例如以A相作为电压过零采样基准,KC05便得到+A、-A两脉冲,采用以A相作为同步电压作基准,通过延时电路得到其他两相的脉冲,根据相序关系,-C滞后+A 60度,+B滞后+A 120度,+C滞后-A 60度,-B滞后-A120度,则60度相当于3.33ms,而120度相当于6.67ms,通过延时3.33ms及6.67ms得到B相和C相的脉冲,作为移相触发电路,可见此办法可行,但是要存在四套延时电路,这四套延时电路偏偏与B相和C相的移相有关,由于延时元件参数存在物理的差异及使用时间长了所产生的变值,也同样会造成三相电压波头不平,又可见没有真正解决存在问题。

3.本文采用单电压过零采样及单个移相电路的构思与实现

本文主要介绍如何实现及克服前面所述各种电路结构存在的问题,这里一举改变传统的做法,将前面陈述过的使用三组移相电路组成的三相桥式SCR触发电路的传统模式去掉,试图只采用A相作为单电压过零采样作基准、一块专用的可控硅移相KJ004集成电路、一块KJ041六路双脉冲电路及模拟集成电路和数字集成电路组成的三相桥式的一种新型的可控硅触发电路。

3.1电路组成见图1。

图1

电路结构将由一块而不再是三块KJ004移相集成电路和一块KJ041六路双脉冲集成电路及四块数字逻辑电路的CD4013双D触发器、二块CD4023三输入三与非门逻辑电路、一块带缓冲器的六反相CD4069集成电路、一块CD4070二输四异或门电路、一块双运放LM741线性集成电路、一块CD4029可预置十进制/十六进制可逆计算器和由九个线性电阻所组成的D/A转换电路由一块CD4029可预置十进制/十六进制可逆计算器和线性电阻所组成的D/A转换电路及一块VCO压控振荡等组成新的三相桥式SCR触发电路,这种电路几乎全数字化。各集成电路的详细的工作原理在这里不作介绍。

3.2这种电路的特点及优点

(1)本电路特点是只用单个电压过零采样变压器及其相关元件,并以A相电压过零采样作为基准,B相和C相脉冲通过逻辑电路分配而获得,在电路原理说明中再表述。避免了传统的采用三个电压过零采样变压器及其相关元件所组成的电压过零采样电路,传统的采用三个电压过零采样变压器及其相关元件中一个电压过零采样变压器及其相关元件的参数差异和变化所造成输出电压波头不平的缺点。

(2)本电路又一特点是用一块专用的可控硅移相KJ004集成电路,与由三块KJ004组成的移相电路相比,电路显待简单得多及可靠得多,并解决了传统、典型的三相桥式触发电路由六个RC元件参数变化及多块集成电路参数不一致性而引起三个移相电路存在不同的相位的差异所造成三相电压波头不平;移相电路只采用一块而不再是三块移相集成电路,故影响相位变化的元件只有两个RC元件及只有一块移相集成的变化,当它们发生参数变时,则三相电压波头都同时变化,不会出现波头不平的现象。

(3)用数字集成电路、模拟集成电路等组成A相、B相和C相的可控硅元件的触发脉冲,A相、B相、C相脉冲通过逻辑电路分配而获得,也是这一电路特点之一,其原理在电路原理说明中再表述。

(4)本电路再一特点是用一块KJ041六路双脉冲电路,这种电路做在一块电路板上,由于使用的是集成电路,分立元件少,外接线口十分少,故事故发生率也少,特别与分立元件所组成的触发电路比较来说,电路显得更简单可靠。

由于这里使用的集成电路都是采用插座式连接,更换集成电路很方便,如果集成电路发生故障更换很容易(比较分立元件来说),如果分立元件发生故障,只要将IC全部拔出,那么电路板所集成的分立元件很少,很容易查找问题,一般的电气技工也很容易处理故障等。论文大全。

(5)做多几块整体电路,当故障出现时,整块更换,能使故障停台时间为零。

3.3这种新型的可控硅触发电路的组成及工作原理

(1)只用单个电压过零采样变压器与移相集成电路KJ004内部部分电路组成电压过零采样电路,并以A相作为电压过零采样基准。

(2)同步电路与普通的触发电路相同。

(3)移相电路由专用移相集成电路KJ004组成,KJ004是国内生产的,移相相位起点取决于移相输入电压,实际上是一个压控移相电路。脉冲输出由输出端输出正、负两路方波:输出口OUT1及OUT2,即得到+A、-A两脉冲,但+A、-A两脉冲并不直接控制+A、-A两个可控硅,而是只将+A取出作为KJ041六路双脉冲电路的基准时钟,送到紧接连的内同步电路。

(4)这里设置了一个内同步电路,电路组成见2,其原理简介如下。

图2

该电路的主要作用是使高稳定度的压控振荡器的振荡频率通过扭环形计数器后取出六分之一即A1的作频率及相位反馈,并与外部基准频率Fref作精确地同步。

压控振荡器的振荡频率CP=3*A1=3x100=300Hz/s,A1=Fref。

电路由可预置可逆计数器CD4029、双D触发器CD4013、四异或门CD4070和运算放大器LM741等组成为快速同步压控振荡器。其中IC1:CD4013将外部基准频率Fref进行4分频,产生相位差为90度的二个信号分别送入IC3:CD4070的门1和门2,IC2:CD4013也将压控振荡器输出的频率Fout进行4分频后送入IC3:CD4070的门1和门2,门1和门2两个输出端输出信号之间的相位关系取决于压控振荡器的频率高于还是低于外部基准频率Fref,而频率取决于压控振荡器的频率与基准频率之差。

IC4、IC5:LM741组成施密特触发器为IC6:CD4029提供时钟CP及控制信号V/D。如果压控振荡器的频率低于外部基准频率,则IC4输出高电平“1” 状态,IC6按照与频率差成正比的速率进行加计数,虫IC6和2R-R梯形电阻网络组成的数/模转换器把增加的电压供给压控振荡器,从而提高振荡器的频率。如果压控振荡器的频率高于外部基准频率时其作用恰好相反。论文大全。

该D/A转换电路将由九个电阻及CD4029可预置十进制/十六进制可逆计算器四位输出端组成,由电阻组成的D/A转换电路价格较便宜,即简单的数模转换。该电路可用DAC0808,8位数/模电路代替。进行D/A转换后控制压控振荡器(VCO),由VCO发出脉冲,送给扭环形计数器构成的顺序脉冲发生器。论文大全。压控振荡器(VCO)的振荡频率fout=3fin=3x100=300Hz/s。

(5)扭环形计数器构成的顺序脉冲发生器。

由3个D触发器(实际上由两块二D触发器的CD4013集成电路)和两块三入三与非门的CD4023集成电路及一块带缓冲器的六反相器CD4049集成电路所组成;采用扭环形计数器构成的顺序脉冲发生器是不存在数字脉冲竟争冒险现象。

电路采用了上升沿触发,触发信号是由VCO发出的脉冲串作扭环形计数器的时钟,由于交流电每一个周期采样有两次过零,50个周期共有100次过零采样脉冲,即fin=100Hz/s,所以fout=3fin,fin是已经实施了相位移动的+A相的触发脉冲,并以此作为内快速同步器的基准时钟。

使得VCO每两次同步后就发出六个时钟信号去控制扭环形计数器,使扭环形计数器所发出的六路脉冲间隔相等而发生时间不同的脉冲信号,再送到KJ041C 实行双脉冲发生,以触发六个可控硅。

该电路每次发出六个脉冲信号,且每次从A1取出一个脉冲送回内同步电路作比较,所以该电路的脉冲次数每次都相等并以后保证相位同步。

整个电路还未画出是六个脉冲信号与六个可控硅的直流电路隔离部份,直流电路隔离可用光电方式隔离或用脉冲变压器方式电感隔离,该电路还可以扩展使用。

4.结论

1)此电路是基于各种技术知识综合而设计而成的。如模拟电子技术、数字电路技术、可控硅技术、集成电路开发应用等知识所组成。本电路是否完善,请专家们批评指出。本人利用业余时间及用自己出资购买的元件对本电路做了实验。

2)可控硅触发电路还有电路组成更简单的,就是采用单片微机即单片机IC组成。采用单片微机组成的可控硅触发电路可谓简单可靠而且成本低廉,但必须遍写控制程序,其程序也十分简单,但必须依赖计算机程序员,一般技工无法完成,这是使用单片机的缺点。

3)不采用专用移相IC及双脉冲IC,用普通数字IC及运算放大器和定时器等也可以组成与用专用移相IC及双脉冲IC组成的可控硅触发电路有相同的效果。

【参考资料】

[1] 阎石主编.数字电子技术基础第五版,清化大学电子教研室编,2006.

[2] 童诗白主编.模拟电子技术基础第二版.清华大学教研组编,2006.

[3] 童诗白,徐振英编.现代电子学及应用.高等教育出版社,1994.

上一篇: 科技技术的发展 下一篇: 循证医学的四个原则
相关精选
相关期刊