数学论文汇总十篇

时间:2023-03-21 17:00:47

数学论文

数学论文篇(1)

陈老师教我们的第一节课很独特,首先她问我们的第一个问题是:“数学是什么?”,这个问题虽然简单,但是却充满着奥秘,我回答不出来,但是也有很多同学踊跃举手回答问题“数学是生活中经常运用的知识”“数学是我们思维的一种表达方式。”“数学是……”陈老师似乎比较满意,说:“同学们的回答很精彩,但是,还不完全正确,数学是研究数量、结构、变化以及空间模型等概念额一门学科。通过抽象画和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生……”

陈老师告诉我们的是数学,数学存在的意义,她说,数学不是烦躁的拼命做练习,而是锻炼我们的思维,使我们的思维越来越强,使我们对于某一件事时,可以迅速的判断。数学是一门学科,如果你对数学有兴趣,那么你的思维已经很强了。

没错,通过陈老师的教导,我们已经渐渐懂得数学的含义,数学题目中,也许有些很难,但是每解一道题,就能锻炼我们的思维。比如,陈老师让我们花半个小时去做一道题,这道题是一道初三的题目,即使你会做,也要做到半小时:

数学论文篇(2)

(一)教学目标形式化,缺乏对数学文化的准确定位

在实际教学中,教师只将数学知识作为目标,不能结合数学文化来设定教学目标,只关注课本上的数学知识,特别是一些公式、定理的应用,过于工具性,没有把数学的知识与数学的人文相融合作为教育的首要目标,不能很好地了解和运用数学的思想、方法、精神等人文价值,弱化了学生数学素养的培养。

(二)教学方法落后,缺乏多样化的教学方式

长久以来,课堂教学以教师为中心,教学没有活力与生机,无法兼顾到个别学生的需要,难以进行师生互动,也不能让学生进行探究和合作学习,使学生的探究精神、合作意识、创新意识和动手实践能力受到捆绑,难以发挥其主动性。数学文化得不到全面体现,很难激发学生的学习兴趣,甚至产生厌学情绪。

(三)教学评价简单化,缺乏对数学文化的考量

教学评价能够根据教学行为形成量化的考评结果,从而给出相应的教学指导意见。传统的数学教学评价不太重视具体学习过程,不能反映学生的心理过程和变化,更无法体现学生的人文素养的提高。而现实数学教学中,很多教师仍然沿用传统的数学教学评价方式,不能从数学文化方面入手,不能凸显数学的人文价值。

二、数学文化与高中数学教学结合在一起的方法

数学教育必须以提高学生能力为目标:第一,是理解能力;第二,是学习能力;第三,是判断能力;第四,是解决问题能力;第五,是创造能力。具体内容包括:

(一)做好文化取向是奠定数学文化的重要基础

站在文化取向的角度来看,数学教学的主要目的是利用数学文化完成对学生知识的提升,所以,将数学文化与教学结合在一起,不仅是考虑到教学安排,同时还考虑到整体目标计划。对于数学文化教学主要围绕以下几个方面开展:第一,是数学意识;第二,是数学思想;第三,是数学精神;第四,是数学品质。

(二)以教育理念为指导,构建新型的高中教学思想

过去一段时间里,大部分教学都将教学重点放在了知识的学习,而忽略了教学的逻辑性和思维性。将数学文化与实际教学内容结合一起,与实际生活融合在一起,使学生产生学习数学的兴趣。学习的过程中,正确引导学生掌握学习方法,鼓励学生积极参加不同形式的教学活动,在活动中历练,不仅掌握知识,还学会团结合作。

(三)以学生的需求为指导构建多元化的教学体系

在整个教学过程中,数学教育是以多元的姿态出现的,因此,对于数学文化学习来讲,不仅要培养内涵,同时还要注意培养学习方法。在高中数学教材中,数学文化的定义学生是不能直观看到的,它是在不断学习中体现出来的。对于数学文化来讲,它不仅是内容丰富多样,同时学习方法也是渠道甚广,既包括了一些隐性的理论教学,同时也可以将整个学习态度直接展现出来,尤其是对学生学习数学的兴趣来讲,更能体现出其潜在的意义。在教学过程中将数学文化融入进去,通过教师生动,简洁的文字叙述,不仅能够使学生将注意力转移到学习上来,同时也可以提升其它知识学习,不仅提升了学生学习成绩,同时也促进了他们对数学的认知度和兴趣度。

(四)实现文化教学,提高高中数学的影响力

“数学文化”作为文化的一个重要组成成分。它的内涵丰富多彩,所以应采取更多、更灵活的教学方式,教师可根据教学内容和个人的教学风格进行选择,要注意教学的深入浅出,尽可能对有关内容作形象化的处理。强调数学非形式化的一面,弘扬数学的人文精神,除了知识的学习外,更应强调数学的思维方式、理性精神及数学在实际生活的应用。将课堂教学与课外指导相结合,让学生到生活中去寻找所需的素材和资料,以此有效的培养学生的动手和实践能力,促进其情感、态度、价值观的发展。

数学论文篇(3)

【正文】

中国古代数学的研究,目前存在着一些彼此对立的研究结论;正确地分析存在着的矛盾结论,无疑会有助于人们深入地了解中国古代数学,同时也会使人们对数学史研究的方法和评价标准有新的认识。

一、几个有代表性的矛盾结论

如何评价中国古代数学,如何评价在中国古代文明中数学的作用以及它取得的成就是每个数学史学者关心的问题。但是目前的一些研究却有着一些矛盾的结论,这些矛盾的结论往往是围绕着认识、理解、评价中国古代数学的关键性理论问题展开的。

1.关于古代数学运用的思维方式问题

中国古代数学是否象古希腊那样明确地运用逻辑思维问题,目前已成为评价中国古代数学的一个重要因素,因为在人们的认识和理解中,数学如果没有严格的逻辑思维形式,那就很难成为真正的数学理论,袁晓明先生的研究结论与人们的良好愿望相反,他认为中国古代数学不存在象古希腊数学那样以逻辑为基础的思维方式,“与古希腊数学严格地采用逻辑演绎的逻辑思维方式不同,中国数学则是以非逻辑思维为主,即主要通过直觉、想象、类比、灵感等思维形式来形成概念、发现方法、实现推理的。”[1]

郭书春先生通过对《九章算术》的研究,得出相反的结论,他认为《九章算术》的注释中已经具有并形成了演绎的逻辑方法及演绎的逻辑体系,“刘徽注中主要使用了演绎推理,他的论证主要是演绎论证即真正的数学证明,从而把《九章算术》上百个一般公式、解法变成了建立在必然性基础之上的真正的数学科学。”[2]

巫寿康先生与郭书春先生的观点相同,他认为:“刘徽《九章算术注》中的每一个题,都可以分解成一些首尾相接的判断,如果仔细分析这些判断之间的联系,就会发现这些判断组成若干个推理,然后由这些推理再组成一个证明,因此可以说,《九章算术注》中的论证已经具备了证明的结构,就大多数注文来说,这其中的推理都是演绎推理,大多数证明也都是演绎证明。”[3]

中国古代数学到底“是以非逻辑思维为主”,还是“主要是演绎证明”,这是中国古代数学研究中一个矛盾的结论,还没有得到统一认识的问题。

2.关于中国古代数学理论构造的问题

按照西方数学的模式,一种数学著作若是按应用问题的类别编排,并且每一个题之后给出解法和答案,那么这个数学著作就是一个习题集的模式,也许正是由于这种客观原因,许多国外的学者都认为中国古代数学不存在什么理论构造,李约瑟先生就认为“从实践到纯知识领域的飞跃中,中国数学是未曾参与过的。”[4]著名的数学家陈省身先生也有相同的看法,他认为“在中国几何中,我无法找到类似三角形内角和等于180°的推论,这是中国数学中没有的结果。因此,得于国外数学的经验和有机会看中国数学的书,我觉得中国数学都偏应用,讲得过分一点,甚至可以说中国数学没有纯粹数学,都是应用数学。”[5]

中国的一些数学史学者对此持完全相反的观点,坚持强调中国古代数学理论构造的存在性。李继闵先生认为“中国传统数学具有自己独特的理论体系,它以理论的高度概括、精炼为特征,中算家善于从错综复杂的数学现象中抽象出深刻的数学概念,提炼出一般的数学原理,而从非常简单的基本原理出发解决重大的理论关键问题……中国传统数学理论,乃是为建立那些在实际中有直接应用的数学方法而构造的最为简单、精巧的理论建筑物。”[6]

中国古代数学是否有一个理论意义上的构造体系,这大概是目前中外数学史专家们对中国古代数学研究中的一个最大的分歧点。如何正确地评价中国古代数学的体系构造已成为中国数学史研究中应当回答的理论问题之一。

3.关于珠算在中国数学史中的地位问题。

在中国数学史的研究中,人们一直认为宋元数学是中国古代数学的高峰。宋元之后的明代珠算无法与宋元数学的成就相比,明代珠算一般被认为是“民用”或“商用”数学。言外之意,珠算是不能登中国古代数学理论构造的大雅之堂。许多学者认为宋元数学的衰退、被人遗忘是很值得研究的理论问题,而明代珠算却没有什么值得在理论层面给予研究的意义。

笔者的观点与当前评价宋元数学和明代珠算的观点都相悖。笔者认为珠算是中国古代数学在宋元之后取得的又一里程碑式的成就,它是中国筹算在运演工具上的重大创新,是筹算运演发展的重大突破,是中国古代数学技艺型发展的必然结果。[7]

如何评价珠算在中国数学史中的地位,实际也带来了如何评价宋元数学的一系列问题,在这个问题上笔者也提出了与目前传统观点相悖的论点,即宋元数学的成就,是中国筹算在特定的社会动荡、传统儒家观念发生紊乱、仕大夫仕途无望的文化氛围中奇异性发展的结果,当社会是进入稳定发展、仕大夫按照儒家传统观念走向仕途时,宋元数学就必然会被整个民族文化所淡忘。[8]

对珠算与宋元数学的评价,实际上涉及了如何看待中国古代筹算体系的发展及其内在规律的问题,这一问题也是正确认识中国古代数学的一个理论性的问题。

二、数学史研究的方法论问题及评判的理论依据

从方法论的意义上来考察中国古代的数学史研究,可以发现实际上存在两个不同层次的研究状况,第一层次的研究是指对史料的收集、整理、考证。应当说这个层次的主要工作是在中国古代数学的范畴内对数学史实的发展及其流变进行分析认证。这一层次的分析考证应当确认史料的年代及其真伪,以及史实在中国数学发展中所处的地位。第二层次的研究,是对已确认的史料与世界数学史的比较评价。应当说这个层次的比较研究是在世界数学史的范畴内(实际上主要是中西数学发展的范畴内)进行比较研究,这一层次的主要工作是要确认中国古代数学已达到的理论层次。这一过程显然是把中国古代数学纳入到已有的理论框架中进行比较,进而要求表述中国古代数学在现有古代数学史理论框架内所处的地位、理论层次、构造性状况以及它对现有数学史理论的贡献。

在方法论意义上,这两个不同层次的工作不能混同,因为这两个层次的工作存在着研究的范畴差异、时间差异和评判依据准则的差异。[9]

所谓范畴差异,是指第一层次的研究是在中国文化的范畴内进行分析考证,而第二层次的研究主要是在中西文化的范畴内进行比较评断。第一层次研究此时要解决的是史料真伪状况及在中国文化中的发展状况,而第二层次的研究要回答的是,已经证实的中国史实材料与西方数学相比,与现代的数学理论相比,其结果如何。

所谓时间差异是指第一层次的研究是要把史料放在原有的历史时间内考证史料是什么,它的语言、背景、含意等等,第一层次运用的是历史时间序列。第二层次的比较研究是要把史料放在现代数学史的理论框架内来比较评判中国古代数学的史料达到的理论状态、在人类数学史中的地位等等。因此说,第二层次研究运用的是现代的时间序列。

所谓评判差异,是指第一层次的分析考证运用的是在历史演化发展时数学自身变化发展的评判尺度,即以中国古代数学的自身成就来评判某一特定历史阶段数学史实的意义。此时运用的是中国古代数学史的评判准则。例如,判定某个历史时期筹算的成就,运用的是筹算自身发展的规律来判定那个时期筹算达到的运演和理论的实际状况。当然,第二层次上的比较评判,运用的却是现代数学史研究的理论框架并以此分析评判中国古代数学某个史实所达到的标准。

值得指出的是,我们目前的一些比较评价,实际上都是在第二层次上进行的,但是作为第二层次研究所特有的方法论意义上的要求,却常常不被严格遵守,尤其是第二层次的比较评判中应当特别强调的理论评价准则在先的原则,往往不被重视。也就是说,如果我们要把某一个中国古代数学的史实与世界数学的理论形式相比较,就必须明确地认识到或论证出现有的数学成果构成的理论标准,并以此标准来判断中国古代数学的史料是否达到了这个理论标准。

中国一些数学史学者在进行中国古代数学的比较评判时,往往把第一层次的工作与第二层次的工作混同起来,尤其是在没有指出应有的评价准则时就把自己的感悟、个人的理解换成一种客观的标准,进而就得出一种评判的结果。这样的结论不仅会带来研究结果的矛盾,更为重要的是会使我们的研究成果具有很大的主观性、随意性特征。例如,台湾的学者李国伟先生就曾对国内学者认为刘徽“求微数法”就是无理数的研究成果提出疑义,并且从五个层次论述了刘徽的结果与无理数理论的差异。[10]显然,对于无理数问题的评判,国内一些学者缺乏理论标准在先的意识。

在自然科学史研究中,人们就是在正确地使用方法论的同时,也还有一个对史实论证过程中的潜在的理论模式影响的问题。这个问题实际已经超越了方法论意义的讨论,它实质上涉及了用什么样的古代数学理论模式来评判筹算所具有的理论价值。例如,对于中国筹算发展为珠算的评判以及对宋元数学和明代珠算的评价,虽然在数学史的研究中属于第一个层次的问题,但是它实际上已经涉及了用一种什么样的古代数学的模式来评判筹算取得的一些成果。

现在可以看出,中国古代数学史研究中出现的某些相互矛盾的结论,不仅仅是一个方法论方面的问题,它实际上涉及到用什么样的理论标准来评价筹算的发展、演变以及不同时期取得的成就。更进一步的问题可以成为,中国古代筹算是应当按照西方古代数学的模式来评价,还是放弃西方古代数学的模式重新建立一个中国文化中数学发展的模式,可以说这后一个问题是中国数学史面临的一个很值得讨论研究的理论问题。

三、筹算的特征及分析

从目前数学史研究中可以发现,人们对筹算构成的一些理论性问题很感兴趣,评价颇高,而对实际应用的发展评价颇低,似乎不被看作是中国古代数学的什么重大成果。同样的,人们对《九章算术》中表现的逻辑形式十分看重,而对它表现的筹算操作运演本身评价一般(如对代表正、负意义算筹形式及其排摆方法)。其实中西古代数学明显地存在巨大差异,这些差异正是我们客观认识中国古代数学发展模式和理论框架的必要基础。

吴文俊先生认为,中国古代数学是紧紧依靠算器而形成的一种数学模式。“我国的传统数学有它自己的体系与形式,有着它自身发展途径和独到的思想体系,不能以西方数学的模式生搬硬套……从问题而不是从公理出发,以解决问题而不是以推理论证为主旨,这与西方以欧几里得几何为代表的所谓演释体系旨趣迥异,途径亦殊……在数学发展的历史长河中,数学机械化算法体系与数学公理化演绎体系曾多次反复互为消长,交替成为数学发展中的主流。”[11]中国筹算的依靠算具、形数结合、重在操作运演本身,以解决具体问题为构造模式的这些特征应当看作是一种中国古代数学的理论发展模式。

从中西古代数学的比较可以得到如下四个方面差异。

1.筹算的运演和结果表现在一种竹棍摆排上,而古希腊数学运演和结果则表现在文字符号书写上。

2.筹算在运演是一种竹棍的排摆,是一种规则指导下的手工操作,而古希腊数学的运演是书写在文字符号的运演过程中,是一种规则指导下的文字运演过程。

3.筹算是以具体问题的分类构成体系,而古希腊数学是以文字符号运演的逻辑形式进行分类(按数学的内部规律进行分类)并构成体系。

4.筹算是以实际致用为发展方向,而古希腊数学则是以理性精神的表述为自己的发展方向(西方著名科学哲学家波普尔,直到今天仍认为欧几里得的《几何原本》并不是数学的教材而是柏拉图构造世界的一种图示,因为它以五种正多面体结束最终的构造[12])。

对照上面筹算与古希腊数学的差异,我们可以看出中国古代数学理论建构的某些特征。

第一,运用形数结合的竹棍来表现数学,竹棍的运演本身及竹棍自身的变化就毫无疑问应当是中国古代数学发展的一个重要内容。

第二,运用竹棍的手工操作规则是一种算法而且不留有过程,竹棍操作运演是一种程序。筹算的程序应当是中国古代数学的一个重要内容。这与古希腊文字运演重视逻辑思维方式、逻辑运演的规则是完全相异的。

第三,筹算是以实际问题的类型分类建构,这与古希腊数学以公理、公式为类型的建构模式完全相异。

第四,筹算的致用发展是一种民族文化赋予它的价值取向,它不会也不可能从理性的意义去构造自身、发展自身。因为在中国文化中,起文化中理性指导作用是《周易》的六十四卦模式。[13]

运用上面四个特征的分析,我们可以获得如下的一些结论。

结论1筹算运演程序的成就及筹算运演工具自身的改进和创造(筹算到珠算)都应看作是中国古代数学的重大进展,亦应看作是对人类古代数学的贡献。

结论2中国古代数学的逻辑思维方式与古希腊数学的逻辑思维方式的对比是不对称的比较,中国古代数学的算法程序(包括摆排的技巧及指导思想)才是与古希腊逻辑思维方式相对称的比较。在人类思维的意义上,筹算算法程序的建立和发展与古希腊数学形式逻辑思维的创立和发展是人类古代数学思想的两大方向。

结论3数学的理性构造不应当依西方古代数学的模式为唯一的人类古代数学的模式,数学理性构造的方向是一种文化特征。应当在明确两种文化的数学理性层次(处于形而上层次还是处于形而下层次)差异的基础上,进行数学自身意义的比较,而不能把一种民族文化特征(如西方数学在理性意义上的构造及在理性意义对其它学科的影响)看作人类古代数学的唯一的特征或必要的特征。

应当说,讨论方法论的层次、讨论中西古代数学的模式差异,已经上升为对古代数学的一种哲学意义的思考。目前,中国古代数学史的研究还缺乏对筹算的一些哲学层次的理性思考,我们的一些中西古代数学比较研究往往会不自觉地把西方数学的模式套到筹算上来。

值得指出的是,许多数学史学者在进入到中西古代数学的比较评价时就进入了一种二难状况。其一,是中国学者往往从自身的文化传统及研究中深感筹算的意义,但是筹算与古希腊数学相比却总是由于差异而难获公论。其二,企图找出筹算与古希腊数学具有的某些相似的特征,并以此论证筹算的历史地位,但在古希腊数学的模式面前又很难比较。

笔者认为,中国古代数学史的研究要想走向世界,一个重要的理论问题就是要在哲学的意义上建立一个没有西方数学价值观影响的或称之为超越西方古代数学模式的古代数学理论模式。数学是一种文化这已是中西方学者在目前的共识,文化差异不应当是抹杀古代数学成就的条件,而应当成为人类古代数学不同贡献的说明。我们只有认清中国文化中数学的文化层次、价值取向以及运演工具、运演方式、构造模式的特征,我们才能在一种中西文化差异的基础上客观地评价筹算取得的成果以及它对人类古代数学的贡献。

【参考文献】

[1]袁晓明:《数学思想导论》,广西教育社,1991年版,125页。

[2]郭书春:“关于中国古代数学哲学的几个问题”,《自然辩证法通讯》,1988年,第4期,44页。

[3]巫寿康:“刘徽《九章算术》逻辑初探”,《自然科学史研究》,1987年,第1期,20页。

[4]李约瑟:《中国科学技术史》三卷,科学出版社,1978年,337页。

[5]陈省身:《陈省身文选》,科学出版社,1991年版,244页。

[6]李继闵:《中国数学史论文集》(二),山东教育出版社,1986年版,14页。

[7]王宪昌:“宋元数学与珠算的比较评价”,《自然科学史研究》,1996年,第1期

[8]王宪昌:“宋元数学与文化价值观”,《大自然探索》,1995年,第124—127页。

[9]王宪昌:“试论中国古代数学的评价准则”,《科学技术与辩证法》,1995年,第5期,15—18页。

[10]李国伟:“《九章算术》与不可公度”,《自然辩证法通讯》,1994年第2期,53页。

数学论文篇(4)

今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析。这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变。使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字。这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数。即3×3=9积中有1个奇数数字。33×33=1089积中有2个奇数数字。333×333=110889积中有3个奇数数字。3333×3333=11108889积中有4个奇数数字。……

数学论文篇(5)

第一,在学习新内容时要渗透数学思想。在设计教案时教师要有意识地增加数学思想的启发,将数学思想与新的数学知识结合起来,避免只讲知识表面不讲数学原理,只讲习题不讲思想。在讲授新内容时,不能直接将相关概念和定理告诉学生,而是通过一定的方法引导和启发学生逐步探索、猜测,慢慢接近,掌握知识形成过程中的相关思想,锻炼学生的数学思维。这样学生可以发挥数学思维能力去推理,对所学知识理解得更加透彻,记忆也更加深刻。

第二,在解题中渗透数学思想。数学离不开解题,但是解题的方法不止一种,多一种方法就可能多一种数学思想。如苏教版的练习册中有这样一道题:1998×3.14+199.8×31.4+19.98×314。先让学生观察数字的关联性,学生会很容易看出数值1998小数点在往左移动,3.14的小数点在往右移动,两个数值相乘,根据小数点移动的知识,学生能够推断出三个乘积是相等的,无论它们怎么变动,小数点后面一共是两位,只要算出1998×3.14再乘以3就可以了。这个解题思路实际上渗透了划归的数学思想。教师要在解题之前就开始向学生渗透,解题之后还要进行深化点睛,久而久之,学生就掌握了这种方法。

第三,经常讲,反复讲。数学思想渗透是需要潜移默化的,教师要坚持这一过程,在讲课时不断举一反三,帮助学生深刻领会。

第四,要引导学生从生活中发现数学思想,鼓励学生将课堂中学到的思想运用到生活中,将生活中的问题带到课堂上。

数学论文篇(6)

1993年联合国在我国召开的“面向21世纪教育”国际会议认为:世界第一位的挑战不是新技术革命,而是道德问题。专家们一致认为,如果将来科学技术更进一步发达了,而领导权又掌握在没有道德的人手里,那就是人类的灾难了,因为他手中已经不是一把枪,而是原子弹。因此,当代世界各国都把国民德育作为一项紧迫的任务,并积极探索新形势下的德育模式。在市场经济条件下,努力探讨学科德育的特点、规律,充分发挥其德育主渠道的作用,是我们教师义不容辞的责任。

数学教育作为学校教育的重要组成部分,以它独特的风格,承担着德育的任务。首先,数学是客观物质世界的数量关系及空间形式的客观规律的反应。其次,数学本身具有结论确定的特点,数学教学可以说是培养学生理性的教学。第三,数学教学在培养学生继承基础知识的同时,无形中培养了他们的进取心和创新精神。第四,数学课是学校教育的基础课之一,数学教育是一种文化基础教育。在数学教学中对学生进行德育不仅是必要的,而且是可行的。

一、数学教学中德育的特点

1.隐蔽性数学教学中的德育并不是让教师在数学课堂上进一种说教,而是寓德育于数学教学之中,追求的是德育和智育的有机结合。

2.深刻性数学教学中的德育反映出一种迟效性,它不能收到立竿见影的功效,而需要利用数学的特点,长期熏陶方能见效。但这种德育的功效一旦获得,将不易被改变,终身受益无穷。因此,它又显现出长效性、深刻性。

3.整体性数学之德育,是对人的素质的全面提高,既可以培养学生科学的人生观、世界观,培养理性精神,又可以培养意志与毅力,提高抗挫能力,因而能够提高学生的整体素质。

4.层次性德育内容本身是个层次的结构系统,一方面,教材的知识帅浅入深的,以教材为载体的数学德育,也是同步由浅入深地构成德育系列;另一方面,学生思想品德发展的顺序性和阶段性也要求德育要有层次性。

5.制约性数学教学中的德育内容受教学内容的制约,途径和方法受教学过程的制约。教材是课堂德育的当然载体,依据教材挖掘德育因素是课堂教学的前提。脱离教学内容,德育和智育就成了两张皮,油水两分离;找到了切入点,智育和德育就可以水融,双管齐下。

二、数学教学的德育功能

1.培养科学的人生观和世界观

数学本身充满着唯物辩证法。在数学的发生与发展过程中,概念的形成与演变,重要思想方法的确立与发展,重大理论的创立与沿革等,无不体现唯物辩证法的核心思想——发展、运动与变化。数学对象源于现实世界,说明了认识论的唯物论,体现存在决定意识的观点。通过数学教学可以培养学生科学的思维方法,培养创新意识,认识数学的价值,认识科学的发展是永无止境的,而人生有限,必须善待人生,充分实现自己生命的价值,树立正确的人生观。

2.培养理性精神

诚实、求是,是数学理性精神的本质特征。数学语言的精确性使得数学中的结论不会模棱两可,数学中不存在伪科学,不允许有任何弄虚作假的行为存在。数学让人不迷信权威,不屈服于权贵;数学让人坚持原则,忠于真理。因此,数学教学可以培养学生的自尊、自信、自爱,培养学生独立的人格。

理智、自律,是科学文化人的重要人格特征,数学能够去其浮躁,净化人的灵魂。数学的思维方式,教育人们理智地思考问题,三思而后行。数学的公理化方法、结构方法、数学模型方法、拓广方法等,培养学生思维的条理性、整体性、创造性、深刻性,久而久之,养成从全局出发,抓住事物的本质,自觉按客观规律办事的习惯。

3.培养高尚情操,提高思想修养

数学是一门既美又真的科学,不但拥有真理,而且具有至高的美。包括数学发现中的美学感悟,数学命题从未知到已知的转化,充满了发现科学真理的愉悦和欢乐。对科学问题的好奇,求解的欲望,解决之后的欢乐。对科学问题的好奇,求解的欲望,解决之后的欢乐,是人生秘不可少的体验。还包括数学表示中的美学修养,如数学概念的简单性、统一性,结构系统的协调性、对称性,数学命题与数学模型的概括性、典型性和普遍性,数学中的奇异性等。在数学教学中,学生获得数学的审美能力,既有利于激发对数学的兴趣,也有助于提高创造能力,数学美是激发求知欲、形成内驱力的源泉。

4.培养意志与毅力,提高抗挫能力

数学史是数学家的奋斗拼搏史,展示着数学家为真理而献身的伟大人格和崇高精神。数学每前进一步,都充满艰难险阴,需要数学家们的胆识、勇气和毅力,甚至甘冒生命的代价而百折不回。希帕萨斯因发现无理数而葬身大海,阿基米德因醉心数学而被乱兵所杀。在数学教学中,把定理、公式与数学家逸事联系起来介绍给学生,有仅有助于学生对所学知识的理解和记忆,而且可以培养学生对所学知识的理解和记忆,而且可以培养学生坚强的意志与毅力。学生听了数学家的事迹,必然会心潮澎湃,备受鼓舞,将百折不挠的磨炼,体验成功的喜悦,从而认识到只有经过自己奋斗才能取得激励人和鼓舞人的成就。

5.培养学生的数学意识,提高科技修养

由于在教学中,经常讨论最大值、最小值和最佳解题对策等问题,因此,数学教学可以使学生从事物发展的众多可能性中寻找最佳途径,培养优化意识。

在学生将来的生活和学习中,能被直接应用的现成数学理论知识很少,真正起作用的是学生在数学学习中培养出来的数学意识,才是解决问题的关键。教师要结合适当的实际问题,发展学生的数学建模能力,让学生“跳起来能摘到桃子”。同时,让学生从了解数学发展史上的重大转折和里程碑事件中,如三次数学危机,几何作图三大问题,五次方程不可解与群论,集合论与数学基础,“李约瑟难题”和“陈省身猜想”等等,懂得数学落后即科技落后,就会挨打,就会丧权辱国。从而提高学生学习数学的积极性,增强责任感,培养学生热爱数学和追求真理的良好品质。

三、数学教学的德育原则

1.科学性原则数学教学为形成学生科学的世界观和良好的道德品质提供了坚实的基础。学习数学需要正确的动机和科学的思维方法,遵循认识论的规律。因此,德育渗透要符合马克思主义的科学性原理,符合学生的认知规律,注意数学课的本质特征,把握德育渗透的适度、力度、结合度,才能收到良好的教育效果。

2.渗透性原则教学中要将智育和德育融为一体,防止牵强附会,贴政治标签。要找好德育的切入点,抓住道德的基本点,由此深入、辐射,才能收效。要根据数学教学的特点将德育与教材内容有机结合,相互渗透,达到课堂教学融知识性、思想性于一体的最高境界。

3.系统性原则科学世界观和良好的道德品质的形成要经历一个耳濡目染、潜移默化的渐变过程,不可能毕其功于一役,要根据每学期的教学内容和德育目标制定德育计划,长期地熏陶、渗透,才能水到渠成,见到功效。

4.量力性原则数学教学中的德育,必须根据学生的心理和生理特征,认知基础和思维发展水平,确定符合学生实际的目标,有目的、有计划、循序渐进地进行。学生能力的提高,思想品德的形成,总是因人而异,不可能是同一模式,因此,在保证共同施教达到统一要求的前提下,还要照顾不同学生的层次特点,注意个别教育与共同教育相结合。

5.情感性原则数学教学中德育要讲究艺术性,充分发挥情感效应。在师生交往中,建立一种平等、民主、新切、和谐的师生关系。如果教师在课内外均以教育者自居,表情严肃,态度严厉,学生就会产生压抑感和约束感,甚至会造成心理障碍,日积月累就会对教师敬而远之,这时的教育自然是低效甚至无效。反之,尊重学生,真诚地关心和理解学生,对学生严格要求,而心帮助,一视同仁,就会使学生在一种轻松、愉快的气氛中接受知识,领悟道理,在感情交融的情境中获得启迪,在不知不觉中受到熏陶和感染。

四、实施中应重视的两个问题

1.寓德育于数学教学中的关键是教师教师应面向新世纪,充分认识数学教学中渗透德育的深远意义,转变思想,更新观念,真正将每节课的德育目标落到实处,明确自己的职责是教书育人。“学高为师,身正为范”,教师的举止言行,学生都在细心观察,甚至效仿。教师通过讲授的科学性、思想性,严谨的治学态度,负责始终的教风,诙谐幽默的语言感染着学生,激励他们以坚忍不拔的顽强精神,向理想目标进取。因此,数学教师要不断提高自身修养,除了精通自己所教的知识,还要有一定的数学史知识和数学思想方的知识,能把握中学数学教学的脉络,理出思想教育的层次,探索一些具体的德育方法。这就要求教师以全面提高学生素质、培养新一代为已任,树立新的教学观、学生观、质量观,准确把握学生所思、所求、所感、所爱,有的效矢地教育,才能收到实交效。

2.着眼课内,放眼课外学生个体品德心理的形成,是内部条件和外部条件相互作用的结果。实践性活动是实现这种相互作用的具体过程。教学中要着眼课内,放眼课外,课内长期渗透,课外集中拓宽,才能促进学生把数学学习与崇高的理想结合起来,使学生兴趣化为更大的求知内驱力,进而深化德育效果。丰富多彩的课外数学活动,是课内教学的延伸,又是德育的生动的大课堂。如组织数学美育讨论,组织数学兴趣小组,开展数学竞赛,收集数学在社会经济动中的应用实例等,以此扩大学生的知识视野,提高数学素养,促进学生个性自由发展。

参考文献

数学论文篇(7)

二、数形结合在数学教学中的作用

1.对初高中数学内容的连接有利

初中时期的数学课程内容相对更加具体,以模仿型的习题为主,但高中数学课程更多以抽象内容为主,注重在把握理解数学概念的前提下增强知识运用的灵活性,而且对学生的扩散性思维能力及计算能力也有较高的要求.对刚刚进入高中的学生来说,需要经过一段时间来适应高中数学教育方式,但借助“数形结合”的思想模式来对高中数学进行讲解,能使学生快速了解和掌握高难度的数学知识,进而跟上高中数学教学的进度.

2.对于激发思维有利

数形结合的思想模式,在高中的数学课堂中能够有效地培养学生的扩散性思维,激起学生学习的积极性.高中数学所具有的符号化、抽象性的特点,给予学生一种生冷、刻板、不易理解也不易掌握的感觉,所以多数学生都因此产生了恐惧感,甚至产生了厌学情绪.但数形结合的思想有效地将数学题目的难度进行了简化.通过图形数字的结合,能够培养学生的扩散性思维,让学生学会举一反三,多方面对问题进行思考,进而减轻了学生数学学习的负担,增加学生学习数学的信心.

三、数形结合在数学教学中的应用

1.数形结合在集合问题中的应用

高中数学的一项基础内容是集合,集合的基本概念及表达形式都与图象有着很大的关联性,使用数形结合的方式来对集合问题进行思考,总体来说,就是把繁杂、抽象的数学关系转变成简单具象的图象关系,指引学生更直观地了解与掌握集合知识的要点.其中使用文氏图就能够高校而且直观地对集合难题进行解决.文氏图主要是指利用封闭的曲线图形结合来体现集合本身以及集合与集合之间的关系.在对集合问题进行解答时,如果能够有效地利用文氏图能够达到简化题目的效果.

2.数形结合在函数方程问题中的应用

高中的数学教育中引入了坐标元素,有效地拓展了数学知识点的图形化,使用数形结合的思想模式来对方程问题进行解决,基础的思路主要是把方程的算式两端分式作为函数来进行图象的绘制,之后对坐标与图象及图象与图象的交叉情况来进行分析,用此方式来对问题进行解答.

3.持续提升学生对数学问题的解决能力

多媒体教育设备的使用也为“数形结合”提供了很好的应用条件,高中的数学科目有着很多抽象而且繁杂的知识点,只凭借教师的单纯讲解和学生的生硬理解很难掌握这些内容,这时就应当使用多媒体的教学设备进行辅助,把静态的数学概念知识换变为直观的内容,借由计算机的动画及绘制等功能将繁杂的数学概念用更易理解更灵活的方式体现出来,协助学生对于知识进行更深入的了解.特别是有关曲线运动及点移动的问题,通过多媒体技术的协助可以更直观的体现出题中所给的部分提示,达到协助学生解决问题的同时也能实现对学生扩散性思维进行培养的目标.

数学论文篇(8)

1.定势思维的内涵及在教学中的表现定势是有机体的一种暂时状态。定势思维是指人们按习惯的、比较固定的思路去考虑问题、分析问题,表现为在解决问题过程中作特定方式的加工准备。具体地,定势思维主要有3种特性及表现方式。

①趋向性。思维者具有力求将各种各样问题情境归结为熟悉的问题情境的趋向,表现为思维空间的收缩。带有集中性思维的痕迹。如学习立体几何,应强调其解题的基本思路:即空间问题转化为平面问题。

②常规性。要求学生掌握常规的解题思想方法,重视基础知识与基本技能的训练。如学因式分解,必须掌握提取公因式法、十字相乘法、公式法、分组分解法等常规的方法。

③程序性。是指解决问题的步骤要符合规范化要求。如证几何题,怎样画图、怎样叙述、如何讨论、格式摆布,甚至如何使用“因为、所以、那么、则、即、故”等符号,都要求清清楚楚、步步有据、格式合理,否则就乱套。

定势思维通常有两种形式:适合定势思维和错觉定势思维。前者是指人们在思维过程中形成了某种定势,在条件不变时,能迅速地感知现实环境中的事物并作出正确的反应,可促进人们更好地适应环境。后者是指人们由于意识不清或精神活动障碍,对现实环境中的事物感知错误,作出错误解释。在教学过程中,教师要有目的、有计划、有步骤地帮助学生形成适合定势思维,防止学生形成错觉定势思维。

2.创造思维的形成过程

创造思维是指个人在头脑中发现事物之间的新关系、新联系或新答案,用以组织某种活动或解决某种问题的思维过程。它要求个人在已有知识经验的基础上,重新组合产生新的前所未有的思维结果,并创造出新颖的具有社会价值的产物。创造思维的产生因人而异,没有固定的模式。一般经历4个阶段。①准备阶段。这一阶段的主要任务是搜集资料和有关信息、储存经验,以便为创造做准备。②酝酿阶段。这一阶段的任务是消化、传换信息,在头脑里反复进行象征性的尝试,重新组合概念。③大悟阶段。这时头脑中事物各部分仿佛突然接通了,发现了新关系、新联系,构成了新形象、新假设,得出了新结论。④验证阶段。将产生的思维结果付诸实施。

集中思维和发散思维是构成创造思维的必要成份,逻辑思维是创造思维的基础,灵感的形成是创造性思维的关键。定势思维是夹杂在各种形式的思维活动中起奠基的作用。教师在教学中要认真把握,注意培养。

二、定势思维与创造思维

1.定势思维是集中思维活动的重要形式

课本内容是学生学习的根本所在,它是前人经验、智慧的结晶,从内容到方法,都有严格的规定,它需要利用固有经验,按一定模式去解决问题,而这正是完成基础知识和基本技能教学任务的需要。

2.定势思维是逻辑思维活动的前提

逻辑思维的主要形式是概念、判断和推理,它是证明结论的主要工具。数学教学中主要的思维活动是逻辑思维。如明确定义、推导法则、公式、证明定理、运用知识解决问题等活动,时时刻刻都在运用逻辑思维。在进行逻辑思维时,要经过一步一步的分析,多环节、多步骤地逐步将条件转化为结论,每一步都要“言必有据”并遵循推理的法则。这正是定势思维所要求的。

3.定势思维是创造思维的基础

定势思维一方面表现为思维空间的收缩,另一方面,思维者力求扩充已有经验、观念认识的应用范围,表现为思维空间的扩散。因此,定势思维又成为推动思维展开的动力。从这个意义上讲,定势思维可以成为类比、归纳、联想等发现手段的基础。

4.定势思维与创造思维可以相互转化

定势思维与创造思维是相辅相成的两个概念,而非对立。它们总是互相依赖,互相促进,并在一定条件下可以相互转化。当定势思维积蓄到一定程度时,就会由量变引起质变,转化为创造思维。每一次转化都使二者同时进入一个新的更高水平阶段,如此进行,人们的思维能力才能得到不断发展和提高。

5.定势思维对形成创造思维的消极作用

在强调定势思维积极作用的同时,我们也应该看到它的消极作用,错觉定势思维在数学教学中的影响是客观存在的。不少学生总是习惯于搬用已有的经验,被动记忆、机械模仿、生搬硬套,表现出思维的依赖性、呆板性,这些均是产生错觉定势思维的温床。如用6根火柴搭成4个三角形,这些三角形的每边都是一根火柴那么长。学生解决此问题感到棘手,怎么摆弄也摆不出4个三角形,其原因正是“平面错觉定势”的影响。

三、几个应该重视的问题

1.要重视定势思维自身形成的过程

数学教学的目的在于建立符合数学思维自身要求的具有哲学方法意义的定势思维。这种定势不仅是数学观念系统的重要组成部分,而且也是数学思维能力的具体体现。定势思维的作用不在于定势思维本身,而在于定势思维如何形成。例如,概念的教学,如果就概念讲概念,草率地把概念硬灌给学生,那么只能形成僵硬的概念定势;如果充分调动学生学习的积极性,从实际事例和学生已有知识出发,通过分析比较,引导学生步步深入地揭示概念的内涵和外延,抓住事物的本质,那么学生头脑中建立起来的就是积极的、活跃的“概念定势”,形成适合定势思维。上述两种教法,均是建立“概念定势”,究其过程是有本质区别的,我们在教学中应加以重视。

2.要淡化所谓的“解题规律”

在数学教学活动中,配备适量及适当的习题进行训练是必要的,但是过分地强调并不基本的解题技巧、方法和观点,突出所谓的“解题规律”是不科学的,无疑会使学生形成呆板思维。更有甚者,在学生未能理解的情况下,让他们死记一些解题的诀窍、程序或口诀,这是造成错觉定势思维的重要原因。有一位初中数学教师,将几何题分成几种类型,让学生死记硬背其规律,应付考试,效果不错,得到了部分家长的“称赞”,某种程度上助长了这种错误做法,这也是题海战术长盛不衰的一个重要因素。这种教学方法尽管在某些场合可以暂时取得良好的成绩(分数),但从长远来看,不利于学生思维能力的发展。难怪爱因斯坦曾说过:“现在的教学方法扼杀了人们研究问题的神圣好奇心,在学校里,甚至觉得自己象头野兽一样,被人用鞭子强迫着吃食!”这种状况确实是我们教育的悲哀,这不是在培养和发展人的创造思维能力,而是在“铸造”机器人。

3.正确处理好定势思维与创造思维之间的关系

创造是定势的突破,同时又是定势的产物,并非某些文章中所归纳的,定势思维是制造错误的发源地。消除定势思维的消极作用的关键在于克服错觉定势思维,发展适合定势思维。众多文章过多渲染定势思维的消极作用,无形中给中学数学教学带来了某些不良影响。如有的教师只重视创造思维能力的提高,不重视打好基础,导致学生成绩严重两极分化;有的脱离《大纲》和课本的要求,违背学生的认知发展规律,追求“高难度、高技巧、妙方法”,造成多数学生如入迷雾,不知所措,非但没有形成创造能力,而且必须学的知识也没能掌握。因此,创造思维的训练要有度,教师要注意把握学生掌握知识的阶段性、连贯性和贯力性,合理处理定势思维与创造思维之间的关系。促进定势思维的形成——突破——形成的良性循环,达到提高学生创造思维能力的目的。

参考文献:

数学论文篇(9)

二、培养通透的数学教学文化感悟,让学生体验其美

数学是理性思维和想象的结合,其本身就是一种美的体现,体现在对称性、简洁性等诸多方面。如在研究三角形、函数时,会更加关注等腰三角形、二次函数的轴对称性,这体现了轴对称的美;在研究四边形时,会更加关注平行四边形的中心对称性,这体现了中心对称之美;对于最完美的图形———圆来说,我们则更加关注垂径定理……这种对称之美让学生感受到学数学不再是抽象的、枯燥的,而是一种美的享受和体验。数学的简洁美最直接地表现在数学符号上,它是全世界的通用语言,每个人都能从简单的表达式中读出其确切的含义。比如一些常见的数学符号及公式定理:圆周率π,三角函数sin,三角形的面积公式S=12ah,勾股定理a2+b2=c2等。这些符号公式言简意赅,学生可以从简洁的符号语言中明白其中的道理,体验到数学的简洁之美。数学之美包罗万象,不同的问题从不同的角度体现出一定的数学之美。比如列方程解决问题,要从复杂的问题中抽象出一个简单的等式,这既有抽象之美,又有简洁之美,还有逻辑之美。教师应着重引导学生去体验和感受这些美。

三、孕育严谨的数学教学文化精神,让学生改革其新

数学教学文化具有理性思考、客观认知、不断追求的精神,而这种精神的孕育就是在课堂上、在师生双边的教学活动中。在教学《三角形的内角和》一课时,笔者先设计了“量一量”这个环节:让学生利用量角器测量一个三角形的三个内角度数。通过测量学生发现,三角形三个内角之和大致在180°左右,这使得学生初步认识到三角形的内角和可能是一个定值,但是还难以达成一致。笔者接着让学生进行“拼一拼”:将三角形的三个内角按照顺序拼在一起。学生经过“拼一拼”就会发现三个内角组成一个平角,这使得学生在活动中巩固了对“三角形内角和为180°”的认识。但这样同样具有局限性,于是,笔者顺势引导学生进行推理证明:过一个顶点做对边的平行线,利用内错角互补的原理,将另外两个内角等量转换出来,使得三个内角成为一个平角。“拼一拼”“量一量”的教学环节目的是让学生初步感受到三角形的内角和为180°,同时也让学生对此操作的局限性有一定的认识:操作的粗糙性,测量和拼图总会存在一定的误差,严密性不足;操作的特殊性,测量和拼出某一个三角形的内角和180°这一结论难以推至其他三角形,普遍性不足。因此,适时恰当的推理证明可以有效提高学生的数学学习积极性,培养学生的改革创新的精神及思维的严谨性,并使这些逐步内化为学生的能力和习惯。

数学论文篇(10)

1、数学理论为什么1+1=2(1+1=2的基本原理、道理、哲理是什么?):

纯粹数学理论上存在着缺陷与不足,那就是偶数能被2整除、奇数不能被2整除,换言之,纯粹数学在理论上根本无法承认和接受2是数学公理,因为奇数不能被2整除自身就是科学根据与铁的事实,偶数能被2整除、奇数不能被2整除,如此理论太绝对了,已经给纯粹数学的理论造成了不可思议,奇数不能被2整除、能不能以其他方式被2整除?值得深思、探讨、探索——不能还停留在偶数能被2整除、奇数不能被2整除玄学的理论水平上,要深化理论认识,…。

为什么1+1=2,本文回答既简单又深奥:偶数能被2整除,奇数不能被2整除却着实能被2哲理整除,奇数与偶数相反相成对立统一,1+1=2是数学首要公理,1+1=2蕴涵着深刻的对立统一规律,是啊!它真的既简单又深奥,它简单的表面上看似是小学生的基本知识,然而其道理深奥地不可思议、不可理喻、如此道理、哲理并非所有的人都能够理解与接受,更不是小学生能够理解的数学知识,...!

偶数能被2整除,奇数不能被2整除却着实能被2哲理整除,奇数与偶数不仅存在着对立性,而且还存在着共性和同一性,即异中之同,差异中的共性,…,

其一:奇数不能被2整除却着实能被2哲理整除就是指奇数与偶数的异中之同,差异中的共性与同一性,

其二:偶数能被2整除、奇数不能被2整除就是指奇数与偶数的差异性、排斥性、对立性,

因此说,奇数与偶数既有对立性又有同一性,奇数与偶数二者存在着相反相成、对立统一的辩证关系,它揭示着2是数学公理系统的首要公理,这是世界观的认识问题,有什么样的世界观就有什么样的认识论、方法论,如果玄学,无论如何都是无法理解、接受它,如此真理说不清、理还乱、但是它的庐山真面目就是如此,无法更改,古人云“不识庐山真面目、只缘身在此山中”,需要“跳出庐山看庐山”,要摆脱两千多年玄学的严重束缚,…。

为什么1+1=2不是指数论的“1+1”,为什么1+1=2?不仅要知其然还要知其所以然,…,绝对值1+1=2与数论的“1+1”既有差异又有联系,如果把素数2看作偶素数,那么数论的“1+1”是指大于等于6的偶数可表示为两个素数之和——歌德巴赫猜想,无需奇素数,本文素数就是指奇素数3,5,7,11,13,17,19,23,……,…,数论的“1+1”它是绝对值的特殊公理,数论的“1+1”与绝对值的1+1=2在数值逻辑公理系统中一脉相承,在绝对值1+1=2数值逻辑公理系统中蕴涵着数论的“1+1”,数论的“1+1”是数值逻辑公理系统偶环节上的特殊公理,换言之、数论的“1+1”也是数学公理(例如:6=3+3,8=3+5,10=3+7,12=5+7,14=3+11,16=5+11,18=3+15,……,无穷无尽)拥有客观存在性,并非被摘取下来才拥有真实性、摘取不下来就非真实性和非客观存在性,既不肯定也不否定模棱两可、这背离了数学(逻辑)排中律,…。

虽然哥德巴赫猜想数学命题没有被数学专家毕了、依然被人们研究着,但传统的素数“筛法”,此路不通已失去了昔日辉煌,…。

2、自然数与正整数、单位“1”与自然“1”:

1+1=2是科学抽象的、1+1=2以及正整数是相对于广义的单位“1”而言,单位“1”的含量绝对统一,1+1=2并非自然“1”的意义,事实上自然数与正整数既有差异又有联系,自然数是相对于自然“1”而言,正整数是相对于单位“1”而言,正整数是把自然数提升到了抽象的科学高度,由于自然数、时常因单位“1”不统一、“含金量”不一致,如果对自然数直接进行运算是有很大的局限性——有时正确、有时有偏差,我们人类是聪明智慧的,有了数学的广义的单位“1”、正整数,消除了自然数的局限性,…。

3、哲理整小数以及哲理整小数的双重性质(或哲理整分数和哲理整分数的双重性质):

小数0.5,1.5,2.5,3.5,4.5,5.5,6.5,......,的绝对值拥有相互矛盾的双重性质,其一是哲理整性质、其二是普通小数性质,哲理整性质是指小数0.5,1.5,2.5,3.5,4.5,5.5,6.5,......(注:它们的小数部分均为0.5,只涉及到0.5也可以、也足以)的绝对值比其他普通小数的绝对值整装、…、本文将它们的这一特性简称为哲理整性质(相对整),因为1/2是最大分数单位,则0.5是最大小数单位,因此0.5拥有哲理整性质,它地地道道、的的确确客观存在着,我们的认识迄今为止还未意识到,如此道理、哲理并非所有的人都能够理解接受,唯恐越看越不明白,令人意乱、劳神,...。

哲理整小数:本文将小数0.5,-0.5,1.5,-1.5,2.5,-2.5,3.5,-3.5,……,…和它们的哲理整性质(相对整)统称为哲理整小数,务必明确的说明,哲理整小数拥有相互矛盾的双重性质,其一是哲理整性质、其二是普通小数性质,…。

哲理整分数:本文将分数1/2,-1/2,3/2,-3/2,5/2,-5/2,7/2,-7/2……和它们的哲理整性质统称为哲理整分数,哲理整分数拥有相互矛盾的双重性质,其一是哲理整性质、其二是普通小数性质,…。

普通小数:不包含哲理整小数在内的小数简称为普通小数。

普通分数:不包含哲理整分数在内的分数简称为普通小数。

4、1/2和0.5哲理整性质的科学依据:

分数拥有分数单位,数学教科书应该明确指出1/2是最大分数单位,1/1不是最大分数单位、是整数分数,1/1=1依然体现整数性质、是一个特例,然而迄今为止还没有小数单位,数学需要向前发展提出小数单位、最大消暑单位,要明确指出最大小数单位是“0.5”,而且为奇数能被2哲理整除提供客观科学依据,才更符合数学的客观实际!单凭直觉,最大分数单位1/2和最大小数单位0.5还未体现出其真正数学意义,最大分数单位和最大小数单位在本质上体现哲理整性质才是其真正的数学意义,这是如何对待数学真理的重大认识问题,并非可有可无,可无必然是一个数学错误,1/2和0.5的哲理整性质是微小微妙、微乎其微的变化、微不足道的差异性,若不仔细认真观察很难被人们发现,形而上学排斥它、大多数人无法理解接受它,有理难辩啊,难!真的很难!不仅如此还会遭人讽刺、挖苦等等,…。

关于分数和小数:分数单位1/2,1/3,1/4,1/5,1//6,1/7,1/8,1/9,1/10,…对应下的小数应为小数单位,例如:1/2=0.5,1/3=0.333….,1/4=0.25,1/5=0.2,…,1/10=0.1等等,….。

哲理整性质的来龙去脉:在数值逻辑公理系统中,派生子集合,0.5,1.5,2.5,3.5,4.5,5.5,6.5,……,…从系统发展变化中分化出来,占据整数的位置充分地十足地体现其哲理整性质或者说体现其相对整性质,数值逻辑公理系统为其提供科学依据;最大分数单位1/2、最大小数单位0.5也为其提供科学依据,只有在数值逻辑公理系统中才能够发现0.5,1.5,2.5,3.5,4.5,5.5,6.5,……(1/2,3/2,5/2,7/2,9/2,11/2,13/2,……)拥有哲理整性质,单凭直觉无从谈起,单凭直觉只能看到最大分数单位和最大小数单位,…。

能被2整除的是偶数,…,整数0,1,-1,2,-2.,3,-3,4,-4,5,-5,……,…为偶数能被2整除提供科学依据举世公认,…。

为了便于理解接受也可以首先把0.5,-0.5,1.5,-1.5,2.5,-2.5,3.5,-3.5,……,…暂时将它们看作哲理整数(相对整数),哲理整数为奇数能被2哲理整除提供客观科学依据,哲理整数指小数0.5,-0.5,1.5,-1.5,2.5,-2.5,3.5,-3.5,……,…的绝对值比其他普通小数的绝对值整装——因为0.5是最大小数单位,与整数形成异中之同,差异中有共性,数学与哲学将这一特性简称为哲理整性质(相对整)——哲理整数(相对整),但是理解接受以后:绝对不能忘记了哲理整数拥有相互矛盾的双重性质,一是拥有普通小数性质、二是拥有哲理整性质,只承认它们的小数性质认识是片面的,只承认0.它们的哲理整性质认识是片面的,…。

事实上只有把哲理整数统称为哲理整小数体现双重性质才更确切、完整、正确,…。

5、有理数系数值逻辑公理系统(就不展开叙述了):

{[0~1]}1{[1~2]}3{[2~3]}5……,…(此结构式上下交错对应不能散开)

[0.1~1.5]}2{[1.5~2.5]}4{[2.5~3.5]}6……,…

第1环节:1∑{[0~1]}=∑{[0~1]},

第2环节:2∑{[0~1]}=∑{[0.5~1.5]},

第3环节:3∑{[0~1]}=∑{[1~2]},

第4环节:4∑{[0~1]}=∑{[1.5~2.5]},

第5环节:5∑{[0~1]}=∑{[2~3]},

第6环节:6∑{[0~1]}=∑{[2.5~3.5]},

……,…,

∑{[0~1]}意指0与1之间的基数之和,它是集合族、有无穷个子集合或有无穷个数组,其他依次类推,符号:意指派生子集合,很显然,在系统数值逻辑运算过程中,小数0.5,1.5,2.5,3.5,4.5,5.5,6.5,……从系统发展变化过程中产生分化出来,占据整数位置,充分体现其哲理整性质,即派生子集合,为奇数能被2哲理整除提供科学依据,蕴涵着完整的数值运算规律,数论、集论、算术三位一体、辩证统一,蕴涵着完整数学公理2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,……,…。

潜无限给数值逻辑奠定基础并给作科学指导,潜无限排斥实无限,…。

实无限只能给数理逻辑奠定基础,如何给数值逻辑作科学指导?实无限排斥潜无限,事实上互相排斥,…。

6、广义整数:

广义整数:将整数和哲理整小数统称为广义整数(将整数和哲理整分数统称为广义整数),…。

7、有限不循环小数:

有限不循环小数:为了便于理解,简言之,我们把无限不循环小数有限数字(小数点右边至少有两位或两位以上不循环数字)称之为有限不循环小数,例如:3.14,3.1415,3.141592,3.1415926,1.4142,1.41421356,2.17181938,……,有无限不循环小数必然存在着有限不循环小数,在数值逻辑中,有限不循环小数与潜无限不循环小数拥有替代无理数数值的巨大意义与作用;有限小数中的小数再如此细致地划分出有限不循环小数、有限不循环小数,才更切合实际,在数值逻辑公理系统中会发现:有限不循环小数拥有客观存在性,拥有无限不循环小数就必然存在着有限不循环小数,这的确是一个认识问题,有限不循环小数可表达为分数形式,因此有限不循环小数是有理数,同时还是超越无理数的有限形式,因此可替代无理数数值(无理数的近似值),只谈无限不循环小数(只谈无理数),不涉及到有限不循环小数是不行的,…。

尤其是有限不循环小数,在实质上拥有替代无理数数值的巨大意义与作用——此乃有限不循环小数的重要数学意义。

8、有限循环小数:

有限循环小数:为了便于理解,简言之,我们把无限循环小数有限个循环节(小数点右边至少有两个或两个以上数字循环节)称之为有限循环小数,如:0.1616,0.161616,0.666,0.666666,0.78787878,0.999999,……,有无限循环小数必然存在着有限循环小数,有限循环小数客拥有客观存在性,它可替代无限循环小的数值,…,这也是一个认识问题,有限循环小数可表达为分数形式,因此有限循环小数是有理数,…。

9、普通有限小数:

把小数点后边有一位数或两位数以内的小数简称为普通有限小数,例如:0.9,1.1,1.2,3.6,3.8,5.8,6.8,7.16,………,…。

10、总之、数学理论要有所突破、要有所进展:

数学(算术)需要向前发展有所突破:

(1)提出数学理论为什么1+1=2,

(2)明确指出1/2是最大分数单位,

(3)提出小数单位、最大小数单位、0.5是最大小数单位,

(4)将有限小数细致划分为:

a、哲理整小数:0.5,-0.5,1.5,-1.5,2.5,-2.5,3.5,-3.5,……,

b、普通有限小数,

c、有限不循环小数,

d、有限循环小数,

(5)有理数系数值逻辑公理系统,

(6)广义整数,

(7)哲理整分数:1/2,-1/2,3/2,-3/2,5/2,-5/2,7/2,-7/2,……,

(8)整数分数:把1/1,-1/1,2/1,-2/1,3/1,-3/1,4/1,-4/1,5/1,-5/1,6/1,-6/1,……统称为整数分数,拥有双重身份,…。

(9)双素数:例如6,10,14,22,26,34,38,……,其特征,能表示为两个等值素数之和,双素数星星点点揭示着哥德巴赫猜想拥有客观存在性,无法否定它,

(10)偶素数——2:2既是一个偶数又一个素数,把2简称为偶素数,

等等才更接近数学的实际情况,希望数学教师率先转变数学思维理念给以鼎力支持,…。

总之,依然还是把整数与分数统称为有理数,只不过是又将分数划分为哲理整分数、普通分数、还有整数分数,...,为什么1+1=2——是探索其原理、道理、哲理,一定要弄明白其中的原理、道理、哲理!…,再次说明,如此道理、哲理并非所有的人都能够理解接受,这是很正常的,且末当真、切莫较真,同时也说明一点本文为什么1+1=2的含义不同于1+1为什么等于2?,也未直接涉及到数论的“1+1”,…。

错字、多字、漏字、错误在所难免,本文作为数学学术最新观点,仅供参考、并不强加于人。

参考文献:

1、《辩证唯物主义和历史唯物主义原理》,中国人民大学出版社出版

2、《古今数学思想》(北京大学数学系数学史翻译组译)上海科学技术出版社出版,1981年7月。原作者:(美国数学家)M.克莱因著

上一篇: 色彩艺术论文 下一篇: 目标教学论文
相关精选
相关期刊