数学建模论文汇总十篇

时间:2023-03-20 16:06:59

数学建模论文

数学建模论文篇(1)

姓名:

班级:

学号:

舰艇会和问题

摘要:

当舰艇执行完任务会合航母时,需要采取合适的航行方向与航母会和,可以用坐标系解决这类问题。

现代战争中,航空母舰被视为一个国家海军力量的象征,航空母舰战斗群是以大型航母为核心,集海军航空兵、水面舰艇和潜艇为一体,是空中、水面和水下作战力量高度联合的海空一体化机动作战部队,具有灵活机动、综合作战能力强、威慑效果好等特点,可以在远离军事基地的广阔海洋上实施全天候、大范围、高强度的连续作战。但是航空母舰本身的防御力比较弱,所以航空母舰战斗群集合了其他的的舰船来互相配合,航空母舰战斗群一般包括有巡洋舰、驱逐舰、反潜舰、补给舰、潜艇等等。

在实际中航空母舰战斗群往往也会派遣其一些护卫舰来执行其他的一些任务,在任务完成后,护卫舰要及时与航空母舰战斗群集合。

通过计算得出最佳航行方向后既可以节约航行时间、又可以节省燃料。若是作战时刻更可以抢占先机、更能保障作战获胜!

关键词:

舰艇会和、最佳航行方向、坐标系、快速任务、计算简单

正文:

1、问题提出

某航空母舰派其护卫舰搜寻其跳伞的飞行员,护卫舰找到飞行员后、航空母舰告诉其航速和方向,护卫舰应怎样航行才能与航母会和。

2、符号及模型假设

A:航母

θ1:航母航行方向

b:航母的初始位置

B:护卫舰

θ2:舰艇的航行方向

-b:表示舰艇的初始位置

P:表示航母和舰艇的会和位置

V1:航空母舰的速度

V2:护卫舰的速度

3、建立模型

根据题意可建立如下坐标系:

P(x,y)

A(0,b)

X

Y

B(0,-b)

O

护卫舰

θ1

θ2

4、模型分析与计算

设V2/

V1=a通常a>1

若舰艇要与航母会和由图可知:

即:

化简得:

则上式可化简为:

又题意可知:航母和舰艇的航速、航行方向和b的值已知,根据方程即可求出x、y和舰艇航行方向。

有上述方程解得:

x=

y=

=

5、检验

从上述计算方法可以看出,此方法没有考虑过多的环境因素,如风向、风速、额定船速与实际船速的不同、变道等等的问题。因此此方法在运用于实际问题时要结合环境因素换算成速度

由数学方程式可以看出时间和角度全部由护卫舰的速度和两船的距离决定,只要速度和距离是定值那么能够会和就只有一个解。若战斗时快速的反应出角度,那么护卫舰就能准确的与航母战斗群集合,形成完善的战斗力,从而快速抢占先机,保障作战任务的准确快速实施。

数学建模论文篇(2)

一、开展数学建模活动及竞赛的意义

全国大学生数学建模竞赛问题涉及面广,不仅对学生数学知识要求高,对学生综合能力方面要求更高。通过比赛的方式,可以有效地检验一个学校学生综合素质能力及创新能力等方面是否过硬,从而可以侧面反映出该学校教学过程中存在哪些问题,对学校教学方面改革发展具有重要作用。从2004年开始,我院积极组织号召学生参加全国大学生数学建模竞赛,该项赛事组织以来,在我院得到快速发展,并且取得了骄人的成绩,其中获得国家奖项6项,省级奖项70余项,培养了许多创新能力、应用能力强的优秀毕业生。学生各方面能力提升的同时,更重要的一点,这对于我院数学教学方面改革指明方向,教学中如何有效促进数学教学。数学建模竞赛作为一个学习交流平台,对培养学生数学知识运用及创新方面起到很好的作用,而将建模活动贯穿于整个数学教学过程中,无形中提升学生综合能力,十分符合我院实行项目化教学的要求,也符合社会上用人单位对学生基本能力的要求。通过对我院参加建模竞赛活动学生调查问卷追踪并进行访谈得出,82%的学生认为,通过建模活动,自身综合能力得到极大地提高,工作后查阅资料等方面学习能力进一步提升;14%的学生认为一般,并不是说数学建模不好,主要在于自己学习能力弱,压根不想学新知识,有份工作就好;4%的学生表示不关心,没兴趣,工作中很难遇到相关数学问题。根据调查结果及数学建模指导教师长期经验,本文得出一些结论值得肯定:(1)数学建模竞赛及活动有利于学生数学应用意识及能力的提高;(2)数学建模竞赛及活动有利于学生以后小组合作能力及交往能力的提高;(3)数学建模竞赛及活动有利于学生探索、创新能力的提高;(4)数学建模竞赛及活动有利于学生自身自学能力的提高。

二、开展课堂有效数学建模活动,提高学生综合能力策略

(一)课堂教学采取建模竞赛活动方式使学生

学习观念转变,提升兴趣高等职业学校学生数学基础明显欠缺,且高等数学课程体系已成,传统的围绕定义、定理、公式等理论填鸭式教学方式已不再适合学生学习,即使学生被认为掌握了非常重要的数学知识,却难以在实际生活中应用或根本不会应用,导致学习兴趣降低或毫无兴趣。课堂开展数学建模活动,则可以为数学和实际问题架起一座桥梁,通过该活动,可以促进学生想方设法将实际问题归纳、整理并转化成数学问题,并加以解决,这样学生也感到有成功感。让学生学会知识的同时,更感受到数学真的有用,无处不在。因而,利用数学建模活动教学方式,激发学生兴趣是很有必要的。

(二)数学建模活动可以促进学生创造力培养

全国大学生数学建模竞赛题目多是从工程技术、农业、管理等方面遇到的实际问题提炼而成,而建立模型求解的过程就是对这些问题进行合理解决。针对实际问题从分析开始,到建立模型、求解模型及最后对结果分析,这一系列过程没有固定的方法可用,也没有相同模式遵循,求解过程主要依赖学生知识掌握的功底及充满想象力的思路和方法,这就要求学生必须具有良好的独立思考的能力,极大地发挥自己创造力的能力。所以,教师在实际的教学过程中,利用数学建模竞赛活动教学方式对学生创造力培养具有很好的效果。不断地重复引导学生分析问题、收集资料、建立模型,逐步使学生学会用所学数学知识有针对性地、创造性地解决问题,这样,既拓展学生视野,又能促进学生创造力的培养。

(三)数学建模活动可以促进学生自学能力

既然大学生数学建模题目从工学、农学、社会科学等实际问题提炼而成,那么学生要想真正意义上解决一个实际问题,就必须了解掌握该问题的相关背景,进而必须查阅行业相关资料,自学并掌握行业相关方面知识,这样才可以做到游刃有余。这一过程,学生不知不觉中自学能力得到较大提高,其综合能力潜移默化中得到增强,因此,数学建模活动教学方式对学生自学能力培养很有必要。

(四)数学建模活动可以促进学生之间互相合作

数学建模论文篇(3)

大学数学是大学本科阶段必修的重要的基础理论课程,对于非数学专业来说,大学数学主要是指高等数学、线性代数和概率论三门课程,当然也包括其他一些工程数学如复变函数、数学物理方程以及计算方法等。长期以来,大学数学的教学一直面临着内容多、负担重、枯燥泛味、学生积极性较低等问题。如今我国的高等教育已变成大众化教育,高校生源质量明显下降,大学生学习的自觉性、积极性以及努力程度等均在下降,这在一般的本科院校中尤为突出。这也使得大学数学的不及格率急剧上升,有的专业有些班级的不及格率高达50%,20-30%的不及格率更是普遍,补考重修的大军可谓浩浩荡荡,有的甚至毕业了还要回校补考高等数学。教师也是叫苦不迭,一次又一次出题改卷录分数,工作量一下子就增大不少。很多学生表示自己不是不想学,是没兴趣学,觉得学了又没什么用,而学习过程又是枯燥的,于是便不想学了。偶然看到一位工科学生学习数学的感言:数学像是一个无底洞,小学时老师给了我一盏煤油灯,领着我进去;中学时煤油灯换成了一盏桐油灯,老师赶着我自己摸索进去;上了大学,我怀抱着工程师、设计师的梦想,满以为可以领略到数学的用武之地,然而老师告诉我,你现在学的还是基础,要用没到时候呢;每天似音乐符的积分号充塞我的头脑,我没能谱写好美妙动听的交响曲,却渐渐变成了老油条,梦想就此也远去了。这虽然只是大学生的只言片语,但从中也能窥视到当代大学生的内心世界。他们渴望学好数学,将数学应用到专业技术中,使他们成为专业技术能手。但是大学数学的教学不能满足他们的愿望,使得他们在学习的过程中逐渐失去了学习数学的兴趣,失去了动力和信心。因此,培养大学生学习数学的兴趣至关重要。

一、兴趣在大学数学学习中所起的作用

孔子曰“:知之者不如好之者,好之者不如乐之者”。兴趣可以让人从平淡中发现瑰丽,从困顿中崛起。强烈的兴趣往往可以像聚焦镜一样,将人们的注意力专注于所爱好的事物,吸引人们反复揣摩、钻研和思考,像一盏指明灯引导人们寻找自己的航向。没有兴趣,就会失去动力。只有学生对数学发生浓厚的兴趣,他才会积极主动地去学习它、钻研它并且应用它。只有这样,师生的教学活动才会轻松、愉快,并能够保证良好的教学质量。学习过程中,一旦有了兴趣,很多学生就能够发挥主动性,乐于去思考问题,喜欢提出问题,进而去探究问题的解决方法,也就有了数学思维,有利于培养学生的创新能力。学生是教学过程的主体,只有主体发挥自身主观能动性,教学活动才能有效地完成,教学质量才会提高。现在的大学生多是独生子女,家庭生活条件较优越,个性大都特立独行,缺乏自我约束能力,一遇到挫折就会退缩,做事但凭着自己的喜好和兴趣。对自己感兴趣的事情执着追求,但是不感兴趣的东西,哪怕家长老师天天追着说很重要,他也不会理睬。有些学生第一学期高等数学不及格,问其原因,答曰:不感兴趣,逼着我学也没用。做思想工作的时候,甚至还有学生说:不感兴趣,老师你别管我。然后依旧我行我素,其他数学课程的学习也可想而知。任凭辅导员、任课教师以及家长苦口婆心,学生本身没有兴趣,说什么也是无用。学生学习数学的兴趣的激发和培养离不开教师的引导,尤其是在大学数学学习上。很多学生对大学数学的作用认识不清,觉得学来无用,何必费力去学。此外,大学数学中复杂枯燥的符号运算、繁琐的公式推导、一些概念的高度抽象性以及证明过程的严密逻辑性也令学生对大学数学望而生畏,从而影响了学习的兴趣。这也给广大的大学数学教师带来了严峻的考验及挑战,如何在教学过程中激发和培养学生学习数学的兴趣,如何让学生对大学数学有一个正确的认识,使之能够主动去学,乐于去学,并能够乐在其中,这值得好好思考和探究。

二、数学建模可激发大学生学习数学的兴趣

现今,数学建模竞赛风靡全球高校,数学建模的作用已被大家所认同,特别是对培养学生学习数学的兴趣起到重要作用。很多高校的数学教学也逐渐引入数学建模思想进行教学改革创新,激发学生学习数学的兴趣,培养学生自主解决问题的能力以及创新能力[1-3]。数学建模是用数学语言来描述和解决实际问题的过程,将实际问题抽象成为数学问题,并应用合理的数学方法进行求解,进而转化为对现实问题的求解、诠释和预测等[4,5]。在数学建模培训过程中,发现有的学生为了解决一个问题,可以抱着数学类参考书津津有味地看上大半天也不会走神。但是,对比高等数学课堂,哪怕是最认真的学生,偶尔还是会走神,不是还会有厌烦的情绪。探究其原因,无非还是一个兴趣问题。建模过程,针对一般是实际问题,学生对这个问题感兴趣,就会有探究到底的心理,进而就有原动力去寻找解决问题的思路和方法。而课堂学习,大多因为课时原因,教师无法在有限的时间里去详细介绍每一个知识点的实际应用背景。更确切的说很难与学生所学专业结合,给出数学概念的实际应用背景以及概念的来由,这必将导致课堂教学枯燥乏味,学生自然没有欲望去学,更不愿主动去学。在课堂教学中,如果能够充分结合数学建模的思想,将其融入课堂,给枯燥乏味的数学公式、推理过程赋予生命般的活力,特别是能够结合学生专业背景进行教学,必定能够激发学生的学习数学的兴趣,进而主动探究知识,教师也能够避免传统教学中一味注入式“概念———定理———证明———例题———作业———考试”的教学方式。学生能够从学习中寻找乐趣,获得成就感,教师也能够在教学中与学生共同成长进步。数学建模不仅仅培养学生综合应用数学知识及方法分析、解决问题的能力,也培养了学生的团队协作能力、交流能力以及语言和文字表达能力,同时也培养了学生的竞争意识。建模时,学生会对实际问题感兴趣,当把问题抽象成数学模型时,会有一定的成就感,而成就感会引发更浓的兴趣,使得学生在学习过程中能够充分享受乐趣,自信心也得到加强。

三、数学建模融入教学中的改革思路

数学建模犹如一道数学知识通向实际问题的桥梁,使学生的数学知识与应用能力能够有效的结合起来。学生参与数学建模活动,感受数学的生命力和魅力,从而激发他们学习数学的兴趣,有助于其创新能力的培养。为了将数学建模的思想融入大学数学教学,这里给出几点改革思路:

(一)大学数学课程每部分内容中安排相关的数学建模教学内容

相关的数学建模教学内容可以是案例式,也可以是实际问题,要充分考虑学生专业背景。教师课前把问题告知学生,课上通过启发和组织学生讨论,引导学生将所学知识运用到解决问题中。例如教学利用积分求不规则物体的体积或质量时,可以在课前给出具体物件(可以根据不同专业来选择具体物件),让学生课后自己去寻找解决办法。教学时可先组织讨论学生想出解决办法,活跃课堂气氛的同时能够激发学生学习兴趣。

(二)数学建模教学内容引入大学数学教材

目前大部分教材基本上以概念、定理、推证、例题、习题的逻辑顺序出现,给出的应用背景多数限于物理应用,同样缺乏活力和生命力。很多学生往往在预习时,看教材的应用背景时就已经对学习这部分内容失去兴趣,有了这样的心理暗示,课堂上教师很难将其注意力吸引住。所以,大学数学的教材编写上,必须重视内容的更新和拓展,引入一些建模实例,通过实例激发学习兴趣,进而增强学生对数学重要性的认识。

(三)根据学生实际情况,分层次进行教学活动

数学基础课程一般都是大班级授课,教学过程中教师不可能监控到每个学生的学习状态。通过数学建模活动,可以有效地考查学生的学习状态,有助于区分学生的学习层次,教师才能真正做到有的放矢,帮助学生发掘自身潜力,培养学生学习成就感,激发学生学习兴趣。

四、结束语

将数学建模思想融入大学数学教学中,给从事数学课程教学的教师带来了新的挑战。尽管面临较大的压力,但如果能够积极发挥自身作用进行改革,在教学过程中逐渐融入数学建模思想,必定会使得我们的大学数学教学工作做得更好,学生更有兴趣学习数学。

参考文献

[1]王芬,夏建业,赵梅春,等.金融类高校高等数学课程融入数学建模思想初探[J].教育教学论坛,2016(1).

[2]吴金枚.数学建模的三大作用[J].当代教育发展学刊,2010:5-6.

[3]沈文选,欧阳新龙.简析中学数学建模的教育性质[J].ForumonCurrentEducation,2002(2):91-92.

数学建模论文篇(4)

关键词:认知心理学;思想;数学建模;认知结构;学习观

认知心理学(CognitivePsychology)兴起于20世纪60年代,是以信息加工理论为核心,研究人的心智活动为机制的心理学,又被称为信息加工心理学。它是认知科学和心理学的一个重要分支,它对一切认知或认知过程进行研究,包括感知觉、注意、记忆、思维和言语等[1]。当代认知心理学主要用来探究新知识的识记、保持、再认或再现的信息加工过程中关于学习的认识观。而这一认识观在学习中体现较突出的即为数学建模,它是通过信息加工理论对现实问题运用数学思想加以简化和假设而得到的数学结构。本文通过构建数学模型将“认知心理学”的思想融入现实问题的处理,结合教学案例,并提出建立良好数学认知结构以及数学学习观的原则和方法,进一步证实认知心理学思想在数学建模中的重要性。

一、案例分析

2011年微软公司在招聘毕业大学生时,给面试人员出了这样一道题:假如有800个形状、大小相同的球,其中有一个球比其他球重,给你一个天平,请问你可以至少用几次就可以保证找出这个较重的球?面试者中不乏名牌大学的本科、硕士甚至博士,可竟无一人能在有限的时间内回答上来。其实,后来他们知道这只是一道小学六年级“找次品”题目的变形。

(一)问题转化,认知策略

我们知道,要从800个球中找到较重的一个球这一问题如果直接运用推理思想应该会很困难,如果我们运用“使复杂问题简单化”这一认知策略,问题就会变得具体可行。于是,提出如下分解问题。问题1.对3个球进行实验操作[2]。问题2.对5个球进行实验操作。问题3.对9个球进行实验操作。问题4.对4、6、7、8个球进行实验操作。问题5.如何得到最佳分配方法。

(二)模型分析,优化策略

通过问题1和问题2,我们知道从3个球和5个球中找次品,最少并且保证找到次品的分配方法是将球分成3份。但这一结论只是我们对实验操作的感知策略。为了寻找策略,我们设计了问题3,对于9个球的最佳分配方法也是分为3份。因此我们得到结论:在“找次品”过程中,结合天平每次只能比较2份这一特点,重球只可能在天平一端或者第3份中,同时,为了保证最少找到,9个球均分3份是最好的方法。能被3除尽的球我们得到均分这一优化策略,对于不能均分的球怎么分配?于是我们设计了问题4,通过问题4我们得到结论:找次品时,尽量均分为3份,若不能均分要求每份尽量一样,可以多1个或少1个。通过问题解决,我们建立新的认知结构:2~3个球,1次;3+1~32个球,2次;32+1~33个球,3次;……

(三)模型转化,归纳策略

通过将新的认知结构运用到生活实践,我们知道800在36~37之间,所以我们得到800个球若要保证最少分配次数是7次。在认知心理学中,信息的具体表征和加工过程即为编码。编码并不被人们所觉察,它往往以“刺激”的形式表现为知觉以及思想。在信息加工过程中,固有的知识经验、严密的逻辑思维能力以及抽象概况能力将为数学建模中能力的提高产生重要的意义。

二、数学建模中认知心理学思想融入

知识结构和认知结构是认知心理学的两个基本概念[3]。数学是人类在认识社会实践中积累的经验成果,它起源于现实生活,以数字化的形式呈现并用来解决现实问题。它要求人们具有严密的逻辑思维以及空间思维能力,并通过感知、记忆、理解数形关系的过程中形成一种认知模型或者思维模式。这种认知模型通常以“图式”的形式存在于客体的头脑,并且可以根据需要随时提取支配。

(一)我国数学建模的现状

《课程标准(2011年版)》将模型思想这一核心概念的引入成为数学学习的主要方向。其实,数学建模方面的文章最早出自1982年张景中教授论文“洗衣服的数学”以及“垒砖问题”。虽然数学建模思想遍布国内外,但是真正将数学建模融入教学,从生活事件中抽取数学素材却很难。数学建模思想注重知识应用,通过提取已有“图式”加工信息形成新的认知结构的方式内化形成客体自身的“事物结构”,其不仅具有解释、判断、预见功能,而且能够提高学生学习数学的兴趣和应用意识[4]。

(二)结合认知心理学思想,如何形成有效的数学认知结构

知识结构与智力活动相结合,形成有效认知结构。我们知道,数学的知识结构是前人在总结的基础上,通过教学大纲、教材的形式呈现,并通过语言、数字、符号等形式详细记述的。学生在学习时,通过将教材中的知识简约化为特定的语言文字符号的过程叫作客体的认知结构,这一过程中,智力活动起了重要作用。复杂的知识结构体系、内心体验以及有限的信息加工容量让我们不得不针对内外部的有效信息进行筛选。这一过程中,“注意”起到重要作用,我们在进行信息加工时,只有将知识结构与智力活动相结合,增加“有意注意”和“有意后注意”,才能够形成有效的数学认知结构。根据不同构造方式,形成有利认知结构。数学的知识结构遵循循序渐进规律,并具有严密的逻辑性和准确性,它是形成不同认知结构的基础。学生头脑中的认知结构则是通过积累和加工而来,即使数学的知识结构一样,不同的人仍然会形成不同的认知结构。这一特点取决于客体的智力水平、学习能力。因此若要形成有利认知结构,必须遵循知识发展一般规律,注重知识的连贯性和顺序性,考虑知识的积累,注重逻辑思维能力的提高。

三、认知心理学思想下的数学学习观

学习是学习者已知的、所碰到的信息和他们在学习时所做的之间相互作用的结果[5]。如何将数学知识变为个体的知识,从认知心理学角度分析,即如何将数学的认知结构吸收为个体的认知结构,即建立良好的数学学习观,这一课题成为许多研究者关注的对象。那么怎样学习才能够提高解决数学问题的能力?或者怎样才能构建有效的数学模型,接下来我们将根据认知心理学知识,提出数学学习观的构建原则和方法。

(一)良好数学学习观应该是“双向产生式”的信息

加工过程学习是新旧知识相互作用的结果,是人们在信息加工过程中,通过提取已有“图式”将新输入的信息与头脑中已存储的信息进行有效联系而形成新的认知结构的过程[6]。可是,当客体对于已有“图式”不知如何使用,或者当遇到可以利用“图式”去解决的问题时不知道去提取相应的知识,学习过程便变得僵化、不知变通。譬如,案例中,即使大部分学生都学习了“找次品”这部分内容,却只能用来解决比较明确的教材性问题,对于实际生活问题却很难解决。学习应该是“双向产生式”的信息加工过程,数学的灵活性在这方面得到了较好的体现。学习时应遵循有效记忆策略,将所学知识与该知识有联系的其他知识结合记忆,形成“流动”的知识结构。例如在案例中,求800个球中较重球的最少次数,可以先从简单问题出发,对3个球和5个球进行分析,猜测并验证出一般分配方法。这一过程需要有效提取已有知识经验,通过拟合构造,不仅可以提高学生学习兴趣,而且能够增强知识认识水平和思维能力。

(二)良好数学学习观应该具有层次化、条理化的认知结构

如果头脑中仅有“双向产生式”的认知结构,当遇到问题时,很难快速找到解决问题的有效条件。头脑中数以万计“知识组块”必须形成一个系统,一个可以大大提高检索、提取效率的层次结构网络。如案例,在寻找最佳分配方案时,我们可以把8个球中找次品的所有分配情况都罗列出来。这样做,打破了“定势”的限制,而以最少称量次数为线索来重新构造知识,有助于提高学生发散思维水平,使知识结构更加具有层次化、条理化。在学习过程中,随着头脑中信息量的增多,层次结构网络也会越来越复杂。因此,必须加强记忆的有效保持,巩固抽象知识与具体知识之间的联系,能够使思维在抽象和现实之间灵活转化。而这一过程的优化策略是有效练习。

(三)良好数学学习观应该具有有效的思维策略

要想形成有效的数学学习观,提高解决实际问题的能力,头脑中还必须要形成有层次的思维策略,以便大脑在学习和信息加工过程中,策略性思维能够有效加以引导和把控。通过调节高层策略知识与底层描述性及程序性知识之间的转换,不断反思头脑思维策略是否恰当进而做出调整和优化。譬如,在案例中,思维经过转化策略、寻找策略、优化策略、归纳总结四个过程,由一般特殊一般问题的求解也是思维由高层向底层再向高层转换的层次性的体现。

数学建模论文篇(5)

2、Ansoft仿真结果

有限元分析是根据数学理论变分的原理,采用剖分插值的微元划分法,建立各微剖分区间的相互关系。有限元法的计算步骤包括建立所求解结构的几何模型、定义其几何边界条件、定义材料属性、加载荷、设定计算参数以及后处理等。电磁铁结构的材料属性如表1所示。在Ansoft仿真后处理程序中得出的普通电磁铁二维求解场域的磁力线分布如图4所示。从图4中可以看出,在工作气隙区域有2个磁分路。根据计算结果可以分析电磁铁绕组自感特性,即通电绕组电感随动铁位置和相应电流变化而变化的规律。自感的计算公式为:L(i,x)=ψ(i,x)/i(7)根据式(7)和磁链特性可计算出动铁芯在整个行程中动铁位置与绕组自感特性曲线(见图5)。从图5可以得出如下结论:绕组电流不变时,动铁芯离极靴越远气隙越大,自感变小;气隙越小,在不饱和的情况下,自感越大。具体到该电磁铁,当绕组电流在0.2A以下范围时,由于电流较小,电磁铁内磁场尚处于线性区,自感特性仅是动铁位置的函数,而与电流无关,因此在电流0.2A以下自感特性曲线基本重叠;当电流逐渐增加时磁场逐渐饱和,相同动铁芯位置,电流越大自感越小。以上仿真结果与理论分析和数学解析结果一致。方形极靴时,采用有限元法计算解出的电磁铁电磁力与动铁芯位置的关系曲线见图6。从图6可以看出,电磁铁方形极靴电磁力特性比较陡峭一些,由于磁路的非线性,导致随着位移的变化电磁力呈非线性变化。

数学建模论文篇(6)

1.2浅谈现阶段空气污染监测现状我国的空气监测起步较晚,但是发展速度很快,相关部门根据实际情况制定了众多的措施,并取得了良好的成效。环境监测是环境保护的基础性工作,它具有涉及面广、专业性强和投资大等特点。为了能够提高全国空气监测工作的质量于效率,国内环境部门将已经在全国组织监测网络。除此之外,国家也制订了统一的监测原则,在各地方设立了环境监测站,充分发挥了各方面的技术人才的优势,同时引进众多先进设备,大幅提高了我国空气监测的工作的质量。我国的空气质量监测人员应用了科学合理地监测与测试数据的技术,使我国的空气质量监测水平不断提高,逐渐的在世界占据领先地位。在我国广大空气质量监测人员的不断努力的基础上,国家仍在不断地完善环境保护法律,促进我国环境监测工作进一步地展开与加强。现在空气环境监测工作主要是运用各种方法连续或者间断地测定环境空气中污染物的性质、浓度进行分析,并评价空气环境质量的过程。现在国内监测环境主要分为环境空气污染源监测、环境空气质量监测、特定目的应急监测等三种。经过近20年的发展,我国的空气质量监测体系逐渐完备,整体环境监测工作并无漏洞。但是仍然在一些细节工作存在问题,这需要我国的空气质量监测人员不断总结经验,并根据实际工作情况作出合理的调整,争取最大程度的提高我国空气质量监测工作的质量。

1.3加强空气污染监测的办法空气污染监测工作与人们的日常工作、学习息息相关,做好空气污染监测工作才能制定出更为有效地保护环境方案,因此,如何提高我国空气污染监测质量就显得极为重要。为了能够提高污染监测质量,监测人员首先需要对有关空气质量的法规、技术标准、污染测定方法及对测定仪器有着足够的了解。其次,监测人员要规范空气监测手段,在进行监测时一定要秉着科学的态度进行监测工作,确保监测数据和信息的及时、准确、可靠。另外,空气质量监测人员要掌握进行空气污染建模的步骤,只有科学的空气污染建模,才能使污染检测更加科学、高效。影响空气污染监测的因素有很多,这需要监测人员有着足够的监测工作经验,并在工作中能够积极学习优秀的污染监测案例,总结经验,尽可能的提高监测工作的质量。

2浅谈空气污染建模

2.1进行空气污染建模的意义科学、合理的布点建模工作可以大大地提高空气质量监测工作的效率,得到的监测的数据也会更加准确,能够更加真实地反映大气的污染状况。进行空气污染建模工作的重点就是合理选择空气污染监测点,它直接影响到监测结果的代表性和精度,合理的检测地点可以减少监测工作的工作量,也可以提高所得数据的精准度。因此,合理的进行空气质量监测、科学的选择检测地点是监测质量保证的重要环节。

2.2进行空气污染建模的注意事项

2.2.1明确监测的目的,在空气污染监测体系中,包括城市环境空气质量的监测和污染源对环境影响的监测,目标不同,它们的监测目的是不同的。这需要城市环境空气质量的监测,主要是为了调查环境空气中污染物的时空分布规律以及对敏感体的暴露情况,进行污染对环境影响的监测,主要是为了掌握污染源的变化趋势以及排放污染物的规律。

2.2.2确定污染源的状况,不同的污染源的建模方法不尽相同,因此,在进行分布建模之前,需要相对调查范围内及附近范围污染源的分布、排出量等因素进行综合的调查及分析,确保空气污染建模工作能够顺利进行。

2.3空气质量监测点的选择合理的进行空气质量检测点的选择是科学的进行空气污染建模的重中之重,进行空气质量检测点的选择主要考虑以下两个方面:其一是监测点的代表性,其二是检测点的数量。从代表性来讲,由于每个监测点所代表的作用是不同的,每一个监测点都有特殊的作用如是代表一定的功能区,代表污染源的影响、代表区域环境背景等,因此,进行监测点的选择要综合考虑当地的空气污染源、污染度、地形地势、监测任务的周期等众多问题。从检测点的数目来讲,如果监测任务是暂时性的,同时需要得到精度较高的监测数据,就需要增大样点的布设范围,对于需要布设众多监测点的情况下,可以选择各种布点方法,例如规格网格法、扇形布点法等。对于长期的定点监测,则不能够设立过多的监测点,这将需要花费大量的资金,因此需要采用按人口和功能区布点法。以上所述的两点因素对监测工作后期的布点建模有较大的影响,还有一些次要因素如地形特征,风力情况等也会对检测工作造成影响,。因此在监测工作中监测人员必须考虑全部因素,才能形成有代表性的布点建模,更好地完成空气污染监测工作。

数学建模论文篇(7)

建模比赛的一般分工是数学模型的建立、程序编写与拟合、论文的叙述。其中论文是评定参赛队伍成绩的好坏、高低、获奖级别的唯一依据,并且也是每组参赛期间成果的结晶,这是相当重要的一部分。那么今天我们就来分享一下有关建模论文的写作的一些注意事项。

首先

论文的评阅原则是

假设的合理性 ;建模的创造性;

结果的合理性 ;表述的清晰性。

在写作的时候可以按照这些要点来给自己一个大概的估计。

我们在写论文的时候,一般是按如下的结构:

1.摘要

2.问题的叙述,问题的分析,背景的分析等

3.模型的假设,符号说明

4.模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)

5.模型的求解

6.模型检验:结果表示、分析与检验,误差分析,……

7.模型评价:特点,优缺点,改进方法,推广……

8.参考文献

9.附录:计算框图、详细图表,……

摘要是整篇论文最精华的部分,也是评阅人最关注的部分。在写摘要时,我们首先要对这个模型进行数学归类,并且通过之前和队友一起进行建模过程中对整体思路有着比较清楚的了解,然后阐述模型的优点、算法特点等,最后对主要结果进行说明,即回答题目所问的全部问题。

对于模型的建立,基本原则是实用、有效,因为我们建立模型是为了解决实际问题的,而不是追求单纯理论数学上的“高大上”。能用初等方法解决就不用高级方法;能用简单方法解决就不用复杂方法;能用被更多人看懂、理解的方法就不用只能少数人看懂、理解的方法。

数学建模论文篇(8)

在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统(根据厂家各种资源、产品工艺流程、生产成本及客户需求等数据进行数学经济建模)与客户进行商业谈判。

一、数学经济模型及其重要性

数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。要看自己比较熟悉精通哪门学科,充分发挥自己的特长。

数学并不能直接处理经济领域的客观情况。为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。

二、构建经济数学模型的一般步骤

1.了解熟悉实际问题,以及与问题有关的背景知识。2.通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。3.使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。4.运行所得到的模型。把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。问题的假使是否恰当,是否忽略了不应该忽略的因素或者还保留着不应该保留的因素。并对模型进行必要的调整修正。重复前面的建模过程,直到建立出一个经检验符合实际问题的模型为止。一个较好的数学模型是从实际中得来,又能够应用到实际问题中去的。

三、应用实例

商品提价问题的数学模型:

1.问题

商场经营者即要考虑商品的销售额、销售量。同时也要考虑如何在短期内获得最大利润。这个问题与商场经营的商品的定价有直接关系。定价低、销售量大、但利润小;定价高、利润大但销售量减少。下面研究在销售总收入有限制的情况下.商品的最高定价问题。

2.实例分析

某商场销售某种商品单价25元。每年可销售3万件。设该商品每件提价1元。销售量减少0.1万件。要使总销售收入不少于75万元。求该商品的最高提价。

解:设最高提价为X元。提价后的商品单价为(25+x)元

提价后的销售量为(30000-1000X/1)件

则(25+x)(30000-1000X/1)≥750000

(25+x)(30-x)≥750[摘要]本文从数学与经济学的关系出发,介绍了数学经济模型及其重要性,讨论了经济数学模型建立的一般步骤,分析了数学在经济学中应用的局限性,这对在研充经济学时有很好的借鉴作用。即提价最高不能超过5元。

四、数学在经济学中应用的局限性

经济学不是数学,重要的是经济思想。数学只是一种分析工具数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用,而不能将之替代经济学,在经济思想和理论的研究过程中,如果本末倒置,过度地依靠数学,不加限制地“数学化很可能经济学的本质,以至损害经济思想,甚至会导致我们走入幻想,误入歧途。因为:

1.经济学不是数学概念和模型的简单汇集。不是去开拓数学前沿而是借助它来分析、解析经济现象,数学只是一种应用工具。经济学作为社会科学的分支学科,它是人类活动中有关经济现象和经济行为的理论。而人类活动受道德的、历史的、社会的、文化的、制度诸因素的影响,不可能像自然界一样是完全可以通过数学公式推导出来。把经济学变为系列抽象假定、复杂公式的科学。实际上忽视了经济学作为一门社会科学的特性,失去经济学作为社会科学的人文性和真正的科学性。

2.经济理论的发展要从自身独有的研究视角出发,去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件,它不是无条件地适用于任何场所,而是有条件适用于特定的领域在实际生活中社会的历史的心理的等非制度因素很可能被忽视而漏掉。这将会导致理论指导现实的失败。

3.数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化,从而不利于经济学的发展。

数学建模论文篇(9)

2数学建模融入数学课程是高职数学课改的有效切入点

近年来,随着全国大学生数学建模竞赛的深入开展,数学建模教学和竞赛培训在全国高职院校如雨后春笋般蓬勃兴起,并且有力的推动了高等数学课程教学改革。同时,许多院校的实践经验证明,在学时有限的情况下把数学建模的思想方法渗透到高等数学课程中来是高职数学课改的有效途径。

2.1数学建模融入数学课程能够培养和提高学生的学习兴趣

学习兴趣对学生的学习效果有着决定性的作用,只有让学生培养对数学的学习兴趣,才能从根本上解决高职数学教学中存在的问题。数学建模是一个将实际问题用数学的语言、方法,去近似刻画、建立相应模型并加以解决的过程。数学建模的过程符合学生认知问题、处理问题、反思问题的全过程,能极大提高学生的学习主动性和数学的趣味性,学生能够从实践中体会到数学的作用,从而增加对数学学习的兴趣。

2.2数学建模思想融入数学课程能够加快高职学校素质教育的步伐

高等职业教育的培养目标是培养高素质技能型人才。要求既要能动脑又要能动手。因此高职教育的培养目标决定了数学教学应该以培养技能型人才为目的,理论知识服务于实际应用。高职学生毕业后将成为国家各行业的生力军,如果他们能够运用已有的数学知识与方法不断革新工艺、改进方法、提高效率、增强产品竞争力,必将会为我国的建设与发展做出巨大贡献。清华大学姜启源教授曾说:相对于本科院校而言,以培养技能型、应用型人才为目标的高职院校,将数学建模作为数学教学的重要组成部分,更有其必要性和可行性。

2.3数学建模思想融入数学课程能够提升学生各方面的能力

学生在学习过程中,通过对数学建模这种科学的前沿的教学方式的反复实践,能够有效地提高自己的各方面能力。由于建模对计算机的应用较多,所以能够加强学生对计算机功能的掌握,数学建模需要将数学与其他知识相结合,需要极大的信息量和知识面,计算机能有效的扩大学生的知识面,使得学生能够更全面科学的进行数学建模;同时,数学建模能培养学生的团队意识和协作能力,学生也能通过建模来找到自己在团队的合适位置。

3数学建模教学实践及学生创新能力的提高

近年来,我院在把数学建模的思想方法融入高等数学课程方面进行了深入的探索与实践,许多教学与实践相结合的教学方法与手段以及新颖的教学内容正逐步进入高等数学课堂,对提高学生学习数学、应用数学的积极性,提高学生分析问题、解决问题的能力起到了非常大的作用。

3.1融入数学建模思想精心设计教学内容

按照“知识导入、案例展开、由浅入深、拓展思考”的思路精心设计课堂教学内容。由贴近生活.与实际联系密切的趣味问题导入,在教学中创设问题情境,发散学生的思维,吸引学生积极动脑,主动地参与学习。同时鼓励学生用已有的知识和经验去推理、观察、比较、分析、综合、概括、归纳等寻求解决问题的方法,实现快乐学习的理念。在建模案例的挑选上,尽量从问题背景简单,容易入手的题目开始,让学生了解建模的一般过程,然后再由浅入深。每个案例之后设置拓展思考,培养探索精神,通过典型案例分析基本知识讲解触类旁通举一反三,归纳总结掌握一类问题的处理方法的过程,达到应用数学能力的全面提升。实施情景案例、项目驱动、任务导向教学,在建立实际问题的模型过程中,穿插介绍必要的理论知识点,让学生带着问题学知识,并在实践中运用知识、提升能力,理论教学与实践教学相互渗透。

数学建模论文篇(10)

2数学建模引领和促进“数据结构”课堂教学改革

2.1数学建模流程指导“数据结构”课堂教学过程的优化数学建模一般要经过分析问题、建立模型、模型求解、解决问题四个环节,而且后三个环节可以多次循环进行以便得到令人满意的结果。“数据结构”教学过程中可以按这样的思路来引出问题,进一步给出更好的算法,这样可以引导学生创新意识的培养和逻辑思维能力的提高。下面结合课程中排序部分讲到了“冒泡排序”算法来展示这个过程:}这样一个算法对任何一个10数据组都能进行正确排序,看似问题已经解决了,但这时应该让学生考虑:如果给出的一组数据2.2数学建模团队的协作模式启发“数据结构”课堂教学模式变革数学建模时问题复杂、信息多样、计算量大等特点决定了整个任务不是一人能完成的,需要一个分工协作较好的团队。只有准备充分、分工明确、精诚合作的团队才能取得好的成绩。受此启发,教学过程中,可以对于部分内容采用分组学习和讨论的方式进行。如在学习“队列”的时候,可以让学生分成几组,每一组首先通过资料查询等方法提出一个可以抽象为队列的实际问题(如火车调度问题、银行排队问题等),然后针对实际问题小组内展开讨论,进一步写出算法并验证。教师可以分时段地参与到不同的小组中讨论。2.3数学建模结果的实用性和高效性指导“数据结构”课堂教学评价数学建模的最终结果要求实用和高效。实用就是要求最终建立的数学模型及其算法能针对具体的问题给出正确的结果,否则就是错误的模型,整个过程是失败的。高效就是要求针对具体的问题提出的模型特别是算法所用时间是最短的,所需要的条件是最少的。“数据结构”课堂教学效果如何需要做出判断,如何判断才是合理的?课堂教学后可以通过考试或课程作业汇报等形式,针对具体的问题,看学生给出的算法是否真的能把问题解决了,将多个同类问题的算法做比较和评价,看是否有改进或创新。

3“数据结构”课堂教学为数学建模提供必要的能力储备

3.1在“数据结构”课堂教学中培养学生的抽象思维能力课堂教学中涉及到了数据组织的三大逻辑结构(即线性结构、树状结构和网状结构),在教学过程中多提出一些实际问题,然后针对这些问题引导学生利用所学知识进行问题抽象,最终把实际问题涉及到的对象用某种逻辑结构表示出来。这样学生的抽象思维能力会不断提高。下面讲一个例子:多叉路通灯管理问题[10]:某个城市的某一路口的道路交叉情况现状如图1所示,要求给出一个针对该路口的红绿灯管理方案,既要能高效地顺利通行又不会发生交通事故。图1路口的道路交叉情况示意图对于这个问题,如果只是针对图1宏观地去分析比较复杂而且不具备通用性,提出的问题应该是解决一类问题。结合“数据结构”的内容很容易想到用图状结构来解决,关键问题是怎样抽象为图状结构。抽象过程之一可以是这样:因为是通行道路交叉问题,因此通路是数据元素,不能通行可以抽象为关系,结合图1展示的现场情况,可以给出图2所示的通行关系图。图中颜色不同的顶点所代表的通路不能同时放行。3.2在“数据结构”课堂教学中培养学生的算法分析和创新能力“数据结构”课程一开始就提出算法效率以及分析方法,可见算法的效率的重要性。因此,后续经典算法讲解完都给出了算法分析思路,课堂教学中,也要重视这一点。在教学过程中应该有意识地通过讲解或讨论的形式,让学生习惯于这种算的的比较和分析,并在此基础上提出自己新的想法。比如文中第二部分第1点提到的“冒泡排序”算法的改进问题,就是一个很好的例子。再比如针对排序问题,课程中还提出了其它的算法,其中“选择排序”算法更为经典。算法如下:3.3在“数据结构”课堂教学中培养学生的动手能力“数据结构”课程一般有配套的实验课程,实验课程的主要内容就是课堂教学过程给出的算法的验证以及改进或新提出的算法的实现。实验过程需要学生用自己熟练掌握的语言工具通过在计算机上编写和调试对应的程序,通过程序的结果来检验算法的正确性与否。从这个角度来讲,锻炼和提高了学生的动手能力,这也正是数学建模中两个重要环节(即模型求解、解决问题)所必须的一种能力。

上一篇: 初中语文教育教学论文 下一篇: 全科医学概论论文
相关精选
相关期刊