电路实验教学论文汇总十篇

时间:2023-03-16 15:24:53

电路实验教学论文

电路实验教学论文篇(1)

二、实验教学方法改进

传统的实验教学方法基本上是老师给出学生实验目的和要求,学生根据老师的演示,机械的模仿。虽然完成了实验教学计划,但是会造成学生对实验不感兴趣,创新精神得不到发展。[4]

1.将仿真软件引入实验教学中

将仿真软件引入传统的电路实验教学中来,可以达到软硬结合、虚实相辅的目的。[5]例如:在谐振电路的实验中,我们要求学生不但要测出谐振频率,还要绘出不同Q值下的通用幅频特性曲线,以及UL(ω)和、UC(ω)曲线。将multisim仿真软件引入电路实验之后,可以轻松、准确的显示出曲线,有利于同学们对理论知识的分析和理解,还有助于提高学生的实验兴趣。

2.利用网络平台支撑实验教学

在实验教学网站上提供实验指导书、实验教学大纲、仪器设备的使用方法、常用仪表的使用说明,电子元器件手册和老师的实验教学课件等教学资源供学生查阅,学生可通过系统中师生互动平台与老师、同学进行交流。

3.采用多媒体教学手段,提高实验教学的效率

在实验教学时数有限的情况下,利用多媒体教学方式,一方面可更加有效地指导学生完成大纲要求必须做的实验,提高学生的动手能力,另一方面可通过观看实验演示,延伸实验教学范围,弥补课堂教学的不足,以达到以点带面的教学效果。[6]

三、实验教学管理的改进

1.加强预习环节的监督

严格要求学生的预习环节,为了使学生更好地完成实验,要求学生按实验预习要求及内容进行课前预习,大部分同学会做到,但是也会有一些自觉性差的同学不去预习,这样一定会影响实验的完成进度和质量。为了检验学生是否完成预习,预习完成后,我们会要求学生登录实验预约系统,接受实验项目预习测试,作为学生实验考核的一项重要指标,从而有效的保证了实验预习质量。[7-8]

2.实验过程中加强团队合作意识

实验过程中采用分组合作的方式,进行实验。这样可以提高同学之间的沟通能力,加强同学的合作意识。将团队合作精神引入到实验教学中,使实验教学由一个人参与变成多个人共同参与,学生为了更好地完成实验,会在实验过程中有明确的分工和互助,这样有助于培养学生的团队合作能力,从而整体优化实验教学效果。[9-10]

3.全面的实验考核机制

实验成绩评定,不能单纯依靠实验报告中的数据,要以实验考试的形式考核学生的动手能力,由于我校电路实验没有单独设课,所以学生在做实验时积极性不高,老师会在每班实验全部完成后进行现场实验考核。在规定时间内要求学生独立完成实验元器件的选择、实验电路连接、实验数据测量和计算等过程。老师根据完成情况给出实验操作分。实验结束后老师将学生的实验预习成绩、实验操作成绩、实验报告成绩,按照合理的分配,生成学生的实验成绩。避免单靠实验报告给定成绩的片面性,不仅可以使学生查看成绩,而且可以使学生更全面地了解自已的薄弱环节。采用这种实验考核方式之后,学生做实验的积极性有了极大的提高,对电路实验及仪器使用记忆深刻,动手能力大大增强。[11-12]

四、实验内容的设计

1.进行实验内容和要求的调整

针对学生专业的不同,学习程度的不同,实验内容和要求上做适当的调整,例如只有电气、自动化专业的同学做一阶电路和二阶电路实验,而其它专业如机械制造专业的同学只设三个基础实验。同样的戴维南定理实验,要求电气专业的同学通过多种测量方法,计算出等效电阻,而其他专业同学可以只用一种方法测量并计算。

2.以工程项目为核心设计实验内容

以工程项目引导实验设计,例如:在日光灯电路连接及功率因数提高这个实验中。项目设计的总体目标是借助于该实验平台,构思、设计日光灯电路,并实现将日光灯点亮,简单故障排除,并且能提高功率因数。为了完成设计目标,首先需要学生深刻理解日光电路的工作原理,充分了解实验系统的组成和功能,熟悉日光灯电路实验装置的结构及使用方法;其次,需要将任务分解为连接、测量等子任务,确定每一子任务需要完成哪些工作,并设计相应的电路;而后在电工实验台上搭建电路并点亮日光灯,自已动手用智能功率表或其他仪表测量电路的各项参数,自已分析计算功率因数,并通过并联电容的方法提高功率因数接近于1;最后,进行实验调试,若不能达到预定目标,还需要根据电路、电工学知识进行分析,采取相应的措施,重新修正参数,直到得到满意的实验结果为止。在实验中不可避免地遇到随机干扰、估计不准等实际工程问题。在整个教学过程中,以工程项目为驱动不断拓展和层层推进来带动实训步骤,由教师引导学生完成整个项目。从构思、设计、方案决策、器件选型、电路搭建、测试、数据收集整理等方面,对学生进行了完整的知识点和技能训练。

3.鼓励学生大胆创新

鼓励学生大胆创新,让学生自己设计实验方案,以往的实验教学往往是老师先讲实验的原理和实验过程中应注意的问题,即应该怎样做,不能怎样做,这种做法虽然使学生掌握了这个实验,但学生的大脑得不到积极的开发,学习处于被动状态。所以在实验教学中,有时应让学生大胆地做出自己的猜想,自己设计实验方案,然后教师和学生共同评选出最佳方案进行操作,分析过程、现象,得出结论。如在讲元件伏安特性实验时,我们可以提出实验要求用伏安法将元件的伏安特性曲线画出,让学生自已去设计电路,做出原理图,并用multisim软件进行仿真,确定所用元器件的规格,选择合适量程的仪表和电阻箱等,放手让学生自己完成实验的整个过程,并对测量数据进行数据处理,并形成文档资料。这样,学生必须要动手动脑,选择仪表的量程,电阻的大小,考虑连接电路时应注意什么问题等。在实验的过程中,学生有时不能一步到位,需要进行重复操作、观察、数据处理、结果分析等,这些过程本身就能很好地锻炼学生的实验能力,使他们的创新思维得到充分的发展。使学生在构思—设计—实现—运行的过程中,开拓思维,增强动手操作能力。这恰恰符合能力培养为目标的工程教育理念。

电路实验教学论文篇(2)

 

电子线路是一门建立在实验基础上的学科。在电子线路的教学过程中不论是基本概念的建立,重点的突出,难点的突破,还是疑点的消除都可以通过演示实验来完成,为了充分发挥演示实验的作用,我们根据不同的教学目的,设计了各种类型的对比性实验,引导学生通过比较来理解要阐述的问题。

一 导入新课的对比实验

教师由对比实验导入新课,不仅能激发学生强烈的求知欲,而且有利于向学生显示新课题的目的性。例如,我们在讲'晶体二极管'这一新课题时,先演示两个引导性的对比实验。实验一:在音乐片中正向串接一只晶体二极管,接通电路,学生会听到一段优美的音乐;实验二:将此二极管反向接在电路中,结果无音乐声发出,学生对此不无感到新奇,接着教师向学生提出问题:为什么出现不同的现象?学生的注意力会迅速集中到研究的对象-晶体二极管上。此时教师因势利导,告诉学生:接入电路的是一只晶体二极管,这就是我们本节课要研究的对象。

二 形成概念的对比性实验

对于学生难以理解的抽象概念,采用对比性实验的好处在于:化抽象为具体,变教条为活用;通过边实验,边分析的教学方法进行对比和分析概括出事物的本质特征,进而形成概念,完成认识上的第一次飞跃。如在”滤波“这一概念的教学中设计如下对比实验:首先在半波整流的输出端接示波器,接通电源后让学生观察半波整流输出电压波形,这时学生可以清楚地看到脉动的直流电压波形。然后在电路的输出端并接滤波器,接通电源,再让学生观察输出波形,可以看出波形发生了变化,由此教师引导学生分析两个波形不一样的原因,从而得出结论。通过上面的对比试验使”滤波”的概念建立在感性认识的基础上,学生更容易理解。

三 导出规律的对比试验

教材中有些内容容易造成学生片面的认识,为此我们设计了针对性较强的对比试验,采用实验观察与理论分析相结合的教学方法,认真处理实验观察与思维加工的关系,使教学内容变得形象、具体,学生易于接受核心期刊目录。如在RC积分的微分电路中,我们设计了几组实验,采用边实验,边分析,边对比的做法引导学生通过对实验现象的观察物理论文,分析比较,推导出正确的结论。电容C在接入电路前要进行放电处理。实验一:示波器接在R两端,将开关打在A点,开关闭合的瞬间,发现示波器上显示的波形突然跃升到一个新的位置后稳定,说明R两端的电压发生突变。实验二:将示波器接在C两端,示波器上显示的波形逐渐缓慢上升,然后停在一个稳定位置,说明电容器两端的电压不能突变,实验三:示波器接在C两端将开关打在B点,开关闭合的瞬间,示波器上显示的波形是逐渐缓慢下降 最后接近为零,同样说明电容器两端的电压不能突变。学生通过观察分析得出如下结论:在RC电路中,电阻两端的电压能突变,而电容器两端的电压不能突变。

实验原理如图1-1

图1-1

四 消除疑点的对比试验

三极管共发射极放大电路中,学生对“单相共发射极放大电路具有反向作用”这一特性不理解,疑点较多。为此,我们设计以下演示实验:用双踪示波器分别接在共发射极放大电路的输入端和输出端,从示波器上可以一目了然的看出V0与Vi的相位关系,这样在实验提供的感性认识的基础上,再通过理论分析学生就可消除认识上的疑点,对“单相共发射极放大电路具有反向作用”这一理论的理解就更具体,深刻了。

五 排除混淆的对比试验

学生在学习晶体管开关特性时,虽然知道三极管截止和饱和可以相当于开关的断开和接通,但在实际做题时容易混淆。为此,可以演示以下实验,如图1-2所示,把开关合在A点,灯不亮,把开关合在B点,灯亮,由此引导学生分析三极管是相同的,区别是输入电压不同,再经过理论计算,弄清楚该现象出现的原因。学生通过对比试验的观察与分析,明白了两种电路既有区别又可以依据一定的条件相互转化,从而达到感性认识和理性认识的统一。

图1-2

总之,对比性实验在电子线路教学过程中应大量推广和应用,使枯燥无味的理论分析变得更具体,形象,这样不仅能激发学生强烈的求知欲望,提高学生的动手能力而且能培养他们团结协作的精神。

参考文献

[1]何琳.在职业技术教学中培养学生关键能力[J] .高教论坛,2008

[2]全红.BTEC课程教学模式对高职教学改革的启示[J] .老区建设,2009

电路实验教学论文篇(3)

论文摘要:本文从实验教学的重要性、实验内容的安排、实验课堂教学的方法等几个方面,针对应用型本科电路基础实验的教学进行了分析和研究,力求通过电路基础实验教学方法的改革,提高学生的专业技能、实验技能与动手能力。

前言:电路基础是电气自动化专业的专业基础类课程,是本专业同学学习后续专业课程的重要基础,因此,电路基础的教学效果好坏,直接影响到学生专业课的学习。而作为电路基础教学中的重要环节,电路基础实验的教学方法就很值得我们去分析和研究。笔者通过自身的教学,将从实验教学的重要性,实验内容安排的合理性及实验课堂教学方法的先进性等三个方面谈谈个人的浅见。

一、电路基础实验教学的重要性

作为应用型本科的学生,除了掌握好理论知识之外,专业技能和动手能力的提高也是很重要的一个课题。电路基础实验对电路基础的教学而言是非常重要的教学环节。实验课不仅仅帮助学生巩固和加深理解所学的理论知识,更重要的是训练他们的实验技能,培养他们敢于实际操作善于实际操作的能力。因此,电路基础实验为学生理论联系实际、动脑动手相结合搭建了一个平台。

二、电路基础实验内容安排的合理性

以前的实验与理论教学是一体的,实验内容按照电路基础课程设置实验,每讲一章或几章电路课,穿插一个实验进行验证,所以验证性实验较多。但对于应用型本科学生而言,专业技能要求更高,因此目前的实验设置已经不适应现在的教学需要。故此,建议使用自编教材。在编写教材时,根据应用型本科学生应具有较强的实践应用能力的特点,重点突出实用性、直观性,体现对学生基本技能的训练。减少验证性实验,增加了综合性、设计性、培养动手能力的实验。在实验中,还应该安排适当的测试,测试性实验可以真实的反应出学生对实验技能的掌握程度,教师可以通过测试及时对程度稍差的同学提供帮助,以提高实验效果。

三、实验课堂教学方法的先进性

由于电路属于专业基础课程,而实验内容又多以验证性为主,因此,在以往教学中,灌输式实验教学指导思路占据了主导地位。在实验内容、实验步骤、所用仪器完全一致的情况下,学生在整个实验过程中始终处于被动灌输的状态,没有主动思维的过程。学生只要按照教师的步骤进行实验,基本都能得出正确的实验数据,这种传统的教学方法非常不利于培养学生的分析设计能力和实验技能。因此,为发挥学生的主动性,可以在验证一些定理时加入电路的设计,做实验前提前告知实验内容,让学生自己设计电路,经过教师的批改后,利用自己设计的电路完成实验。如此一来,既达到验证定理的实验目的,同时经过电路的设计,学生对所学理论也能更好的应用。

结束语:电路基础实验是电气自动化专业学生在所有电气类课程实验中的第一步,走好了第一步,就等于为今后的学习道路打好了基础。因此,我们要注重实验教学内容和教学方法的改革,为实验教学多做一些努力,让学生能更好的将理论与实践相结合,成为一名拥有较强动手能力的应用型本科学生。

参考文献

[1]邹玲,姚齐国.电路理论.武汉:华中科技大学出版社,2006.

[2]邱关源.电路(第五版).北京:高等教育出版社,2006.

电路实验教学论文篇(4)

doi : 10 . 3969 / j . issn . 1673 - 0194 . 2013 . 19. 056

[中图分类号] G64 [文献标识码] A [文章编号] 1673 - 0194(2013)19- 0102- 02

1 传统电子线路教学模式凸显弊端

在传统的电子线路体系课程教学中,工程应用是该类课程教学的宗旨。学生要想掌握更多、更新的专业知识和技能,实现可持续发展,必须学好电子线路这类课程。对于这类课的掌握程度,决定了学生后续专业课程学习的效果,无疑影响着学生学习的热情。从日常教学和学生表现的情况了解到,目前电子线路类课程的教学存在着许多问题,学生难以入门、学习起来困难、很多概念难以理解、对所学知识无法应用等,使很多学生难以提起学习的兴趣,自然也就不可能有好的学习效果。究其本质,是电子线路课程内容繁杂、不直观,对于初学者而言,缺乏一个形象的有机联系。

电子线路教学实践过程中,包含着各种重要的电学基础定理、电路分析过程、电路体系测试与性能,这些都要通过理论分析与实验来验证得到结论。但电学基础实验设备价格一般比较昂贵,一般高等学校不大可能购置如数字存储示波器、高频信号发生器、逻辑分析仪等先进的实验设备。

在传统实践教学中,电子线路实验不仅需要大量的电子器件等实验器材,而且有些实验测试设备不能达到应有的实验精度,使实验结果出现偏差。由于即使错接一根导线也可能导致实验设备的损坏,因此在实验过程中,如受测试仪器本身性能和电子实验器件的限制,很难从容地显示各种电路的分析过程;也无法将测试仪器上的曲线及数据及时保存和打印;更难以复现诸如频谱分析、网络分析、多路数字信号等电学过程等。由于设备问题,有些数据也会偏离正常值,从而混淆了对电路的理解,影响学生对电路的基本原理和性能的理解,失去了理论课教学的作用。

2 电子线路仿真对电子线路教学的促进作用

在电子线路教学中,各个高校大多采用传统的理论教学模式,使得理论课教学枯燥无味。采用电子仿真软件后,理论课教学可以采用互动式教学方法。可以和学生互动,让学生参与到电子理论教学中来,可以大大激发学生学习理论课的积极性,提高学生的理论水平,培养学生分析问题和解决问题的能力。

随着电子计算机技术的大力发展,各种电子仿真软件不断涌现,大大简化了电子线路体系课程的教学。与传统实验相比,电子仿真软件不需要附加实验信号源、电子测量设备,但与实际电路运行结果相同,可以进行任意设计电路,进行运行、数据分析,并且其实验数据和技术指标都是真实有效的,这样不仅可以把笨重而昂贵的实验仪器搬进课堂,也可以随着同学把实验室搬到各地。

通过课堂和实验室实践教学相融合,可增强学生的学习兴趣,改善真实情境,观察隐藏的电特性及实验现象,具有安全性能高和利用虚拟实验仪器节省经费等优点,可以帮助学生学习各种不同的电学概念,并进行各项实验。这使得在理论教学中可以穿插实践教学内容,直观性好、学习效率高,激发学生参与各级各类电子设计大赛的积极性。通过电子线路仿真软件教学,将大大激发学生的学习积极性,使原来枯燥无味的理论教学变得形象直观,增强教师与学生的互动性。

3 电子线路课程体系中教与学模式的转变

刚学习电子线路类专业课程时,绝大多数学生对专业知识体系结构及所要学习的内容并不了解,随着学习难度的日益加大,其热情也会随之降低。在学生中,不乏有对电子线路课程专业知识的神秘感、好奇心和自信心,但又缺少对所学知识学习的持续能力。而电子线路体系课程正是自主学习消化理解和需要长时间探索的基础类课程。因此,结合课程学习和学生特点,不能应用传统的教学模式,即先讲理论,再进行实践,这样就错过了抓住学生兴趣的好时机。

以计算机技术为核心的信息技术的发展,为电子线路体系课程的教学提供了现代化的、课堂和专业实验室相结合的教育新技术。在课堂上,学生可以跟随老师同步实验。课余时间,学生可以在计算机上完成教师指定的仿真,可以自行设计电路,可以对比不同的输入变量仿真出各种结果。这样就可以使学生变被动为主动,更好地理解课上所学内容。

4 紧密加强电子线路课程体系之间的内在联系

电子线路体系课程包括电路理论、模拟电子技术、数字电子技术、高频电子线路、电子测量、传感器、单片机原理等课程。而一个完整的实践项目内容也涵盖了电子线路体系课程中大部分所学课程。因此,仅靠单一科目的学习无法满足项目实践的需要。而一个综合项目需要的实作器材、仪表、仪器种类多,涉及各个学科单项实验室,这给综合项目设计带来了困难。而电子线路仿真得益于电子计算机技术的发展,使学生在非实验室场地也可完成各种所设计的电子系统。电子线路仿真自带的实作器材、仪表、仪器种类多,涉及几乎所有电子线路类课程所需器件,不会出现因器材、仪器、仪表不足而不能实验的缺憾。电子线路计算机仿真在教学中应用可以大大推动电子线路实践课程的改革与创新。

5 结 论

本文利用现代教育技术,将电子线路体系课程和计算机工程应用有机地结合起来,深化与完善电子线路教育教学体系。大连海洋大学电子信息工程专业于20世纪80年代在电子线路教学过程中就已经引入计算机辅助设计电子电路方面的课程与实验,加强学生利用计算机设计电子线路的能力。目前已经开设电子线路仿真设计、电子线路板制作、电子设计自动化3门课程及其课程设计。围绕电子线路体系课程,诸如电路理论、模拟电子技术、数字电子技术、高频电子线路、电子测量等课程设置电子线路综合设计,使课程之间保持着紧密的衔接与交融,大幅度提高学生综合利用所学知识的能力,效果良好。

主要参考文献

[1] 徐辉. 传统电子学教学和现代EDA技术的整合[J]. 湖北教育学院学报,2006,23(2):98-101.

[2] 蔺智挺. “电子线路计算机辅助设计”教学改革探索[J]. 中国科教创新导刊,2012(12):157-159.

电路实验教学论文篇(5)

引言

电子技术既是电子类专业的重要专业基础课,又是一门技术性较强的专业必修课,学生除了要掌握扎实的理论基础,还要具备分析、设计以及应用电路的实践能力。实验实践则是加深和巩固学生动手实践和创新能力所必须的一种教学手段和教学途径。本文对电子技术实验的薄弱环节进行了分析,并提出了EDA软件在实验教学中的应用这一教学手段,经过实践,取得了较好的效果。

1.电子技术实验的薄弱环节

第一,传统的实验方法是完成硬件电路连接后验证、调试,得出实验结论。学生必须熟练使用仪器、仪表或实验箱等实验设备,在连接线路调试过程中对出现的问题能够排除故障。但是由于工科专业对实验设备的频繁使用,大部分设备会出现灵敏度降低、器件老化、损坏等问题,那么实验的效果将会受到严重影响。第二,教师的教学方法目前仍存在‘填鸭’式、‘说教’式的上课方式,这种以教师为主的教学方法,教师在台上讲多年未改的教材,学生没有自己的独立思考和见解,形成被动灌输的局面。使学生缺乏创新观念和意识。大学生对实践能力的认识和重视程度不够,难以彻底摆脱知识本位的学习理念,将理论学习、最终成绩看得很重,而把实践能力、实践过程当作无足轻重的事。第三,实验课上,主要以理论教学为主,没有得到学生重视,学生根据实验指导书照抄实验目的、实验原理、实验内容,每次实验结束发现学生对实验的原理都解释不清楚。教师不仅从实验方法、步骤、注意事项方面进行一一讲解,而且还需手把手进行实验演示,在检查学生演示实验结果时学生一知半解,机械式的操作,不能灵活的将实验现象与理论知识有机的联系在一起。学生的学习几乎处于被动状态,达不到实验教学的目的。第四,实验课的考核方式不完善,实验课多以出勤、实验报告的形式给出,对学生的考核不全面。这种形式主义,使得部分学生“浑水摸鱼”,进实验室后对待实验不认真,小组的成员在进行实验内容的时候,有些学生却忙于抄袭上次课的实验报告,学生的分数不能如实反映学生掌握知识的真实水平。

2.EDA软件在电子技术实验中的应用

在电子技术设计领域,可编程逻辑器件(如CPLD、FPGA)的应用,已得到广泛的普及,这些器件为数字系统的设计带来了极大的灵活性。这些器件可以通过软件编程而对其硬件结构和工作方式进行重构,从而使得硬件的设计可以如同软件设计那样方便快捷。这一切极大地改变了传统的数字系统设计方法、设计过程和设计观念,促进了EDA技术的迅速发展。EDA技术就是以计算机为工具,设计者在EDA软件平台上,用硬件描述语言VHDL完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。EDA技术的出现,极大地提高了电路设计的效率和可操作性,减轻了设计者的劳动强度。1)将EDA软件应用于电子技术实验教学,以实践促理论,用理论指导实践。以往的教学方法侧重于理论知识讲解,十分抽象,无法实现软硬件结合而产生的直观现象,在电子技术实验中引入EDA软件教学,以HDL语言示例和MAX+plusII、Protel、AltiumDesigner、multiSIM10等电子电路设计与仿真工具教学软件引入课堂演示,加深和引导学生对电路设计的感性认识。看似重实践、轻理论的教学方法既有利于激发学生的学习热情,通过实验实践,掌握理论,在实践中巩固理论,用理论指导实践,从而达到较好掌握知识的目的。,2)将EDA软件应用于电子技术实验教学,丰富实验教学内容。通常实验中‘填鸭’式、‘说教’式的上课方式所讲的实验内容多年一成不变,不能激发学生的兴趣。引入EDA软件实验教学,重视实验内容的趣味性和实用性,更新精心设计每一个实验,让学生产生新鲜感,从而激起他们的兴趣。3)将EDA软件应用于电子技术实验教学,能够提高设计效率。传统的硬件电路设计过程都是由人工完成,硬件电路的验证和调试是在电路构成之后进行的,电路存在问题只能在验证后发现。EDA软件设计能够快速准确的完成电路的设计,利用计算机进行性能和功能的分析,如果发现错误或方案不理想,可以重新设计电路再仿真,直至得到满意的电路,大大提高了设计的质量和效率,并且节省了设计成本。

3.设计举例

应用EDA软件设计出一个555定时器的应用电路,这是一个模拟电子电路和数字集成电路的混合电路设计,包含三极管开关放大电路、555构成的多谐振荡电路、功率放大电路。如果直接在数字电路实验箱上连接线路,由于器件种类多,器件的选择和连接稍有不慎,将会影响实验效果。采用EDA软件仿真此电路却能够节约时间,先观察实验现象,若不正确,修改设计再仿真,得出满意的结果后,再到实验箱上去连接电路。将软件设计和硬件实现结合起来,学生的学习兴趣得到提高,授课效果有所改善。

4.结语

将EDA仿真软件与电子技术实验教学相结合,既能提高实验教学的质量和效率,又能能够使学生加深对电路原理的掌握,理论联系实际,建立学生的感性认识,激发和培养学生的学习兴趣,引导他们进行实践阶段学习,鼓励学生实验创新。在理论教学与真实实验之间架起一座沟通的桥梁,对更新实验教学方法,提高实验教学质量,降低实验成本,改善实验教学效果能够起到很大的促进作用。

参考文献

[1]杨伟明,刘成臣,刘玉良.“模拟电子技术”实验教学的现状与思考[J].实验室科学,第17卷2014年4月:88-91.

[2]潘杰,裴洪文.EDA技术在单片机实验环节中应用研究[J].《电子科技》,2013年第12期:154-156.

电路实验教学论文篇(6)

中图分类号:TM13 文献标志码:A 文章编号:1674-9324(2016)32-0121-02

一、电路原理课程的现状

1.电路原理课程的发展。大学阶段的电路原理课程的学习中,学生需要学习掌握电路的基本理论和定律,具备独立分析计算的能力和设计电路、开展实验的初步技能,为后续的自动化、电气工程及其自动化、测控仪表、通信工程、电子信息工程等专业课程打下基础。近年来,电路技术的应用领域迅速扩展,如纳米电子学等新学科的兴起,新的元件如无源的电路第4类基本元件(忆阻器)的发现[1],电路理论的内容不断充实,从线性、非时变、无源、双向和二端元件电路发展到非线性、时变、有源和多端元件电路,电路的超大规模集成推动电路系统体积不断缩小,电路原理课程产生了较大的发展。但是,从上世纪末形成的电路原理课程教学体系却基本上处于稳定状态。这种教学体系已经显现出一些不适合课程内容发展的情况。在教学中,仍按过去电路的特点分为强电电路和弱电电路,与新出现的强电电路的信号处理管理(如电脑控制下的UPS供电电路)等新发展不适应;授课中强调理论知识教学,学生更善于列方程求解理想电路,缺乏对元件建模背景的分析,实际应用能力培养不足。2011年教育部电子电气课程基础课程教指委《电子电气课程基础课程教学基本要求》一书中,详细介绍了国内外课程现状及其相互比较,并建议电路课程今后应着重总结教学内容与工程实践相结合的经验,处理好电路类课程基本理论与现代科学技术之间的关系[2]。我们认为,电路原理课程发展至今,最重要特征更加注重理论联系实际。

2.电路原理课程特点。电路原理是一门理论性和实践性很强的课程,其主要特点可概括为理论性强、实践性强和创新空间大。①理论性强:课程中基础知识点多,经典理论多,数学推导多。课程的这一特点,决定了电路原理课程在后续专业课程的基础性地位,对课程内容的掌握程度直接影响后续专业课程的学习效果[1]。②实践性强:掌握了电路原理课程内容,我们可以通过设计电路模型,对任何实际的电路进行分析研究,并通过研究结果指导工程实践,解决实际需求。课程的这一特点,决定了电路课程的学习必须将理论与实践相结合,相互促进。③创新空间大。电路设计中,采取不同的连接方式,同样的电路元件可以构成不同的电路,发挥不同的作用。课程的这一特点,扩充了电路设计的创新空间,提高了学习的趣味性,为发挥学生在学习中的主观能动性提供了条件。

3.课堂教学的特点。①学生学习特点。一些学生对课程内容的运用重视不够,更多采取考前题海战术的方式取得学分,未建立起通过学习扎牢基础、促进今后学习和提升运用能力的目的。②教师授课特点。由于电路原理课程理论性强的特点,教师不得不用更多时间向学生讲解基础知识,确保理论的完整性和系统性,而在有限的教学时间中,运用能力的培养就相对弱化。

根据电路原理课程的发展特点,我们在课程的教改中,需要体现电路原理课程的特点和当代大学课堂教学的特点。

二、电路原理教学方法改革

法国政治家托克维尔在他那本经典的代表作《旧制度与大革命》中提出,深刻的改革是有充分准备的人们自行动手从事的全面改革。可以说,课程教改需要合适的条件环境,目的明确的顶层设计和切实可行的具体措施。由此,我们可以尝试提出以下三项原则:在教育目标方面,以提高学生实践能力为培养目标的原则;在条件环境层面,依靠现代科技手段促进学习的原则;在具体措施层面,促进学生主动学习为主的原则。把握这三条原则,我们可以从以下几个方面强化理论和实践的结合,更好地推进电路原理课程教改。

1.教学内容中注重理论学习和实例分析相结合。针对课程理论性强的特点,必须强化理论的系统学习,需要通过让学生掌握基础知识、理解基本原理,从而建立起电路原理的基本知识框架,为运用知识开展实践和后续课程的学习提供基础。但是,理论学习时,必须重视理论与实践转化的过程。对于初学者来说,从基础知识、基本原理到实例运用,有一个逐渐深化认识和转化适应的过程,教师必须在讲授理论知识时,引导学生进入这个渐变的过程。这就要求教师在理论讲解中,有针对性地开展实例分析,特别是对于教学难点和重点部分,有针对性地选择工程实例开展教学,以元件为载体讲解基础知识,以工程模型为依托阐述基本原理,从而在抽象的理论知识和客观的工程实例间建立联系,让学生在促进理论知识的深入理解的同时,潜移默化地提升知识的运用能力。

2.教学方式上注重内容讲解和仿真软件辅助相结合。随着大学教学条件的改善,大学课堂教学中,过去采取的“教师板书―学生记录”方式已转变为“多媒体展示+教师板书―学生纪录”方式。这种变化,由于多媒体技术的运用,将教师从繁复的板书中解脱出来,可以将更多的课堂时间用于内容讲解,课堂教学效率有了很大提高。但是,即使采取教师课前发放多媒体课件内容的方法,学生在课堂上的主要学习方式仍然是记录,这种教学方式的变化,其实质仍然是理论学习的经典方法――教师讲解、学生记录,没能更好满足现代教育更注重发挥学生主观能动性这一要求,也不能适应电路原理课程实践性强的特点。基于基础条件的提升,多媒体教学手段的普遍运用,在课堂教学中使用仿真软件开展分析具备了推广条件。很多教师已经在探索,在电路原理课程的课堂讲解中,运用仿真设计开展辅助教学。运用仿真设计辅助教学就是配合理论知识的讲解,利用多媒体教学设备,通过电路仿真软件设计相应的电路模型,计算测试结果,并指导学生观察和总结的过程。仿真设计本身属于一种模拟试验,使用仿真软件辅助教学,其实质就是理论教学与模拟实践的结合。使用仿真设计辅助教学,可以深化学生对理论知识的理解,更重要的是,学生在学习中,已经从传统的被动听理论讲解转变为主动观察模拟试验,教学的实践性特征明显增强,使学生自然而然地从传统学习方式向现代教学学习方式转变。

3.教学实践中注重电路实验与仿真软件模拟实验相结合。实践是提高工科专业课程教学效果的方式,更是工科专业教育的最终目的。通过实践教学既可以巩固学生的理论知识,又可以培养学生的动手实践能力,提高学生的综合素质。电路原理课程的实践主要采取实验课的方式。按实验的内容分,可以分为验证性实验、设计性实验和创新性实验三种。验证性实验就是通过实验对理论进行验证,教师根据课程内容设计实验,学生在教师的指导下重复实验过程,通过对实验结果的观察,验证课程中基本理论,在抽象的理论知识和实际的实验结果间建立联系,深化对理论知识的认识。设计性实验和创新性实验主要是为了提升运用能力,学生根据实际问题自主设计实验,并在教师的帮助下开展探索性研究,通过实验结果对设计进行不断优化,找到解决实际问题的设计方案,从而提升运用理论知识解决实际问题的能力。电路实验是电路课程学习的重要环节,是体现教育理念中理论联系实际原则的体现,是学生获得知识的重要手段,更是培养学生观察分析和解决实际问题能力的重要途径。电路实验对于电路原理课程这一实践性强的课程具有重要作用,但是,当前电路实验存在以下不足:一是由于课时限制,以及扩招后学生数量增多,实验设备、场地相对不足,学生进行电路实验的课时不能满足教学的需要。二是由于电路实验是在既有设备、元件的基础上进行,受学校实验条件的限制,大多数情况下只能开展验证性实验,实验课具有的提升学生创新能力的作用发挥不足,不能很好满足设计性实验和创新性实验的需要。解决这一问题,一方面需要不断加大投入,提升实验室的装备水平,充实实验室师资力量水平,满足设计性实验和创新性实验的要求。另一方面,需要引入仿真软件模拟实验,以最便捷的方式提高实验效果。使用仿真软件模拟实验,就是在实验中,采用计算机软件进行电路设计实验,通过软件分析实验结果。实验中,学生可以开展验证实验,利用无形的电路模型开展电路分析,迅速得到实验结果,提高实验效率。更重要的是,学生可以开展设计性实验和创新实验,为学生提供了广阔的创新空间。学生针对需要解决的问题设计电路,并实时调整设计方案,比较便捷地修改电路,从而解决实际问题。在这一过程中,实验灵活性的增加可以促进学生主动性,实验趣味性的增加可以激发学生学习兴趣,有效发挥了学生的主观能动性。这一方式具有容易设计、容易修改、容易实现等优点,有效规避了传统物理实验存在的受设备条件限制严重、实验存在安全风险的问题,可以用最少的代价开展科学研究,从而拓宽学生视野、开拓学生思维、锻炼实践操作能力,适应理论结合实际的发展需要。

通过对电路原理课程和大学教学特点的分析,笔者提出了以坚持依靠现代科技手段、提高学生实践能力和提升学生主动性原则,在电路原理课程教改中,提出了教学内容中注重理论知识学习和工程实例分析相结合、教学方式上注重知识讲解和仿真软件辅助相结合和教学实践中注重电路实验与仿真软件模拟实验相结合的建议,以不断推进教学改革并提升教学成效。

电路实验教学论文篇(7)

作者简介:邬宝寅(1985-),男,河南信阳人,郑州科技学院机械系,助教;张莉(1982-),女,河南开封人,郑州科技学院机械系,助教。(河南郑州450064)

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)06-0068-02

一、软件应用简介

Multisim是美国国家仪器(NI)公司推出的基于Windows操作系统的仿真工具。其中Multisim 10.0版本的软件具备原理图设计、硬件描述语言设计,模拟、数字电路仿真,可编程器件仿真、PCB设计与输出等功能。该软件原是为电气工程师设计的,可以帮助电气工程师设计电路软硬件,分析电路的运行情况,并指导对电路设计的修改,减少电路设计出错的可能性。Multisim 10.0同样可用于电学教学,通过Multisim可以在其界面上搭建目标电路,调用虚拟仪表测量电路中各处的状态、参数,分析电路的运行情况,并与理论计算的结果相印证,验证理论计算正确与否。

就仿真功能而论,Multisim的元件库里含有丰富的电子、电气元件,包括基本元件、通用集成电路和不少常见的专用集成电路、可编程器件等。界面里含有多种虚拟仪表。通过调用电子元件,可以在Multisim的界面上搭建绘制所研究电路的电路图,调用各种虚拟仪表连接到电路当中需要测量的位置上,运行电路便可观察出虚拟仪表上的读数,了解电路的参数,这个过程等同于在实验室中搭建了一个真实的电路。

二、应用思路

机械类专业的“电工电子技术”是一门理论性与实践性兼备的课程,传统教学采用板书讲授法,现在又多采用多媒体课件的教学方法,更多的教师在讲授电工电子技术时,以多媒体课件为主,对其中理论推导的过程结合以板书讲授。这两种都是理论教学的方法,一个逻辑缜密,但过程抽象,另一个比较直观。“电工电子技术”的另一个教学环节是实验课,多是在实验室中进行,由学生自己动手操作。这两个教学环节不管是在时间上还是在空间上都是独立的,无法进一步紧密地结合。

在课堂教学中引入Multisim软件仿真技术,便是要将理论教学和实验教学结合起来,将实验室搬到课堂,搬到教室的大屏幕上,使学生在学习理论知识的同时,能够直接观察到实验现象――尽管只是从屏幕上观察到的。这将加深学生对理论知识的印象,从而降低教师对理论知识讲解的难度。这个过程实质上是将电学分析的成果,以一种比多媒体课件更加直观的形式表达出来,因为在仿真软件的窗口上,电路的运行是动态的。

以教师为主导的理论教学和以学生为主导的实验教学都是不可替代的,Multisim软件仿真教学是联系理论教学和实验教学的桥梁,可以寓实验教学于理论教学之中,使两者之间没有时间空间上的界限,不再是两个相互独立的教学环节。

三、教法和学法设计

将板书讲授教学、多媒体课件讲授教学和Multisim软件仿真教学三者结合在一起,可以实现比较好的教学效果。

1.教法设计

如图1所示,在课堂教学中,多媒体课件是课堂素材的主体,中间穿插板书推演和Multisim软件仿真,其中Multisim软件仿真素材的电路可以以超链接的形式加在多媒体课件中。首先提出所要讲解的目标电路,分析电路中所使用电子元件的类型,元件的特性以及电路的组成、结构特点等信息,然后对电路进行简化,建立电路的电学模型。这个过程可以结合多媒体课件中的图像文字进行讲解。然后是根据电路电学模型中的已知条件,解算出电路的未知条件,得出电路的输入输出关系,并可以代入电路的具体参数数值得出结论性数据。这个过程比较抽象,可以采用传统的板书推演方式。随后进行的就是Multisim软件仿真,打开课前准备好的Multisim原理图文件,在软件窗口上观察记录元件参数,运行仿真,记录虚拟仪表所测得的数据,然后将之代入理论推导出的电路的输入输出关系中,加以验证。最后是对该电路实例的综合和总结。

2.学法设计

电路仿真软件NI Multisim 10.0使用十分方便,学生完全可以通过自学了解该软件的使用方法,并加以应用。教师可以在学生中推广该软件,让学生在有条件的情况下自行下载安装,利用业余时间自主学习该软件的用法,甚至可以用来解决一些实际的电路分析、设计问题,将之作为解决电路问题工具之一。其在课程设计、毕业设计中都有可用之处。

四、应用举例

下面以RLC串联电路为例,来举例说明一下NI Multisim 10.0在课堂教学中的应用。

首先运行软件,如图2所示,在软件的窗口中调用交流电压源、电阻、电感和电容,将电压源电压改为220V,频率改为50Hz,将电阻、电感和电容的参数分别修改为100Ω、100mH和100μF。然后调用虚拟电压表,分别测量电阻、电感、电容两端的电压,调用电流表测量回路中的电流,调用示波器观测电阻、电感和电容相对于零电位点的波形。点击运行键使电路处于运行状态,观察电压表电流表的读数,得出如表1所示读数。

1.阻抗关系验算

通过表1可以计算出电感感抗、电容容抗。

由此可以得到复阻抗和总电流:

通过计算可知,电流计算结果与测试结果相同,可以验证感抗、容抗计算公式和复阻抗计算公式。

2.电压关系验算

通过表1和阻抗关系验算结论得出电阻、电感和电容的分压:

由此可以得到复总电压:

通过计算可知,总电压计算结果与测试结果相同,可以验证RLC串联分压计算公式。

3.谐振关系与波形

通过以上计算可知,电感分压与电容分压十分接近,电路接近串联谐振状态,电阻分压等于电源电压,电流达到最大值,由此可以验证串联谐振关系。

双击窗口中的虚拟示波器,打开示波器波形图(如图3所示)可以观察到RLC串联电路中各点的波形图。电路中所调用的是四踪示波器,其中A通道测量的是总电压,B通道测量的是LC串联的电压,C通道测量的是电容两端的电压。观察可知总电压有效值将近220V,电容两端的电压有效值大约70V,而LC串联后的电压非常小,趋近于谐振状态。

五、结论

现代多媒体教学方式为灵活多样使用教学方法提供了环境,而丰富的软件技术又为教学提供了多种便利的工具。电路仿真软件NI Multisim 10.0是一种计算机辅助电路设计软件,借助现代多媒体教学环境,灵活使用该软件的仿真功能,使之成为多媒体教学要素的一部分,可以为提高电学课堂教学效果提供一定的帮助。

参考文献:

[1]荣军,丁跃浇.计算机仿真软件在“电力电子技术”教学中的应用[J].中国电力教育,2011,(12).

电路实验教学论文篇(8)

中图分类号:G63 文献标识码:A文章编号:1003-8809(2010)08-0055-01

合肥铁路工程学校经过十年多的不断提高教师自身的素质,不断总结教学经验,不断改善实验设备,并增加了新的教学方式和手段,使我校在电子技术课程教学中能跟上时代的需求,达到了较好的教学效果。

以下是我多年在电子技术课程教学中的经验和方法:

1、 优化电子技术课程的教学内容

原先的电子技术课程教学完全以理论教学为主,加上课程内容较多共16章内容,模拟电路9章,数字电路7章,实验设备落后老化,实验课安排极少,基本上是以板书形式进行理论教学。而随着中职学校入学门坎越来越低,学生文化课基础相对较差,对于大量较难懂的专业理论知识学习,同学们学习的难度很大,学生学习的积极性不高,对所学的知识不感兴趣,有一段时间造成了很多学生不想学,老师教书没劲的局面。因此必须要简化优化教学内容。对于像场效应晶体管,晶闸管等内部结构较复杂且不常听到,不常用到的电子器件我们做了删节,只保留了晶体二极管,晶体三极管等常用的半导体器件的课程内容,并只讲解以晶体二极管、晶体三极管做成的各种简单的电路。如:以晶体二极管做成的桥式整流、滤波和稳压电路,以晶体三极管做成的单级放大电路,并且以两个单级放大电路组成两级阻容耦合电路,同时还保留了简单的集成电路,简单的功放电路等内容。对于较复杂的调谐电路、复杂的功放电路、集成触发器、时序逻辑电路、脉冲产生和整形电路这些理论性太强的电路我们做了删节。这样就简化了我们的教学内容,使同学们对于我们所讲授的内容也比较容易接受。

2、 理论教学与实验教学结合起来

电子技术是一门实验性学科,如果只以理论课的形式,理论知识“满堂灌”、“抱着走”的这种教学方式,学生学习表现出很大的被动性,缺乏学习的动力,对所学知识不感兴趣,教学质量不高。因此电子技术课程必须走理论和实践相结合的道路,激发出学生们的学习兴趣,并培养出同学们的实际操作和动手能力。我校在省教委支持下,政府采购,购置了十几台电子实验操作台,配置相关的实验箱后,可以完成我们所要做的全部电子线路实验。

现在我们课程的教学方式是边讲理论课,边做实验。也采用了先做实验,知道实验结果后,再讲解理论课,通过理论加实验的这种模式,使同学们即掌握了电子线路常用仪器、仪表的用途和使用方法,也学会了连接各种电子线路图,并很容易学会各种电子线路图的工作原理。由于同学们亲自操作,对自己亲手所测得实验数据,和亲眼所见的实验结果,表现出极大的兴趣,从直接的感受中了解事物,掌握知识,教学质量得到了很大提升。

例如:(1)先完成晶体二极管的伏安特性理论课程的讲解,作出伏安特性的曲线图,再通过实验验证二极管伏安特性曲线。

a. 测量二极管正向特性

不断改变加在二极管的正向电压,测流过的二极管电流。Ud从0.1V――0.2V――0.3V――0.4V――0.5V――0.6V――0.7V――0.8V,只有当Ud加到0.5V(门坎电压)时二极管才能导通,随后电流随电压不断变大上升,开始增加较为缓慢,以后急剧增大,进入导通状态,二极管正向压降的增大十分微小,近于定值硅管为0.7V。

b. 测量二极管反向特性

在起始一定范围内,反向电流很小,它不随反向电压而变化,但反向电压增加到某一数值时(反向击穿电压)时,反向电流会突然急剧增大,这种现象称为反向电击穿。

同学们通过亲手测出的数据,再作出二极管的伏安特性曲线图,和我们理论课所讲的完全一致,使理论课的知识在实验课得到了证实。

(2)先做实验,再讲理论课。单相桥式整流电路,如果单纯采用讲述的方式学生会对整流波形,电压,电流公式不理解,甚至记不住。因此先让学生自己动手连接电路,用示波器观察整流波形,用万用表测电压,电流。再讲理论课同学们就很容易掌握所学的知识了。

3、 以新的教学模拟开展教学

电子教学的难点之一是,许多复杂流动的电子图像难以用语言描述清楚,我们可以采用仿真电路制成多媒体课件,集文字、图片、动画和声音于一体的方法加以改进。同学们很容易理解,又容易记忆。还可以采用当今电子技术最新设计手段的电子线路计算机辅助设计,使用仿真元件,将模拟电子线路实验所需的元件和组件全部以图标的形式显示在屏幕上,使用者只需要打开各种工具栏和元件库,取出需要的仪器设备(如:万用表、示波器、信号源等)接在线路上。点击开关,就可以通过电子模拟完成实验。在课堂上我们也可以完成我们想做的实验。

4、 加强实训课 培养同学们的动手能力

实训课的目的,就是培养同学们实际动手能力,并可完成简单的电子产品的焊接与组装,这是从理论到实践相结合的很好途径。

在实训课上,同学们即熟悉各种电子产品装配用的常用工具,电子产品各种元器件,印制电路板和其它一些常用材料。通过在练习用的线路板上反复焊接、拆焊。通过:“五步法”到“三步法”的练习,同学们熟悉了点焊、搭焊、钩焊、绕焊、拆焊等焊接技巧。同时也学会了看懂简单电子产品电路图,学会了组装简单的电子产品的工艺。组装了电子门铃、万用表、收音机、直流稳压电源等电子产品。也使得电子技术这门课从理论到实践有机的结合起来,提升了教学质量,也为同学们今后走向社会打下了一个良好基础。

通过十多年教学工作,使电子技术这门课程无论在理论、实验、实训上都积累了一定的宝贵经验。今后需更加努力,不断探索更新,更完善的教学方法和手段,使电子技术这门课程教学质量得到更大的提升。

电路实验教学论文篇(9)

作者简介:霍炬(1977-),男,河北唐山人,哈尔滨工业大学电气工程系,副教授;齐超(1970-),女,黑龙江齐齐哈尔人,哈尔滨工业大学电气工程系,教授。(黑龙江 哈尔滨 150080)

基金项目:本文系黑龙江省高等教育教学改革项目(项目编号:JG2012010166)的研究成果。

中图分类号:642.0 文献标识码:A 文章编号:1007-0079(2013)26-0040-02

哈尔滨工业大学电工基础教研室成立于1952年,教研室的前辈对教研室和电路课程建设做出了巨大贡献。哈尔滨工业大学校训“规格严格,功夫到家”就是在俞大光院士等前辈的倡导下形成的,它对学校的建设和发展产生了深远的影响。

在20世纪50年代,该课程称为电工基础,是电路和电磁场的合并,在70年代,才将电路和电磁场分开,分别设课。目前“电路”课程是面向电类专业本科生开设的技术基础课。自从2003年教育部启动精品课建设以来,[1]结合国家精品课建设要求,以及学校办学定位和培养目标,课程组实施了一系列特色鲜明的教学改革和教学实践。课程建设过程中始终注重体现一流的教师队伍、一流的教学内容、一流的教学方法、一流的教材和一流的教学管理的精品课程建设主旨和内涵,保证了精品课程建设的目标和水平。

一、“电路”课程教学方法改革

1.深化教材改革,将电路理论阐述与电路仿真分析相结合

教研室从推出《电路理论基础》第一版教材以来,结合新时代的培养方针,不断调整完善,与时俱进,一直持续进行教材改革。迄今已推出第三版教材,第四版教材已完成初步规划。《电路理论基础》第三版教材将电路仿真机辅分析软件OrCAD和MATLAB成功引入例题解析,教材中每节有代表性的例题除了常规解法外,都会用OrCAD或MATLAB辅助求解,[2]极大地调动了学生学习积极性,增强了学生的理解力。

2.传统授课方式与多媒体电子教案授课方式相结合

传统的板书教学可以通过书写板书留给学生思考时间,从而使得学生能紧随教师的授课思路,能当堂理解和消化教师的授课内容。但传统的板书教学能提供的信息量有限,难以适应现代教学改革的需求,因此引入多媒体教学就成为一种有效手段。引入多媒体教学可以充分利用计算机的特点,将文字、声音、图形及影像等多种媒体整合在一起,既保证课堂的信息量,又使得学生获得的信息更加生动形象。

3.课堂教学、实验教学和上机教学相结合

将OrCAD仿真软件引入理论教学和实验教学中。对于比较复杂的电路,课堂讲授既费时又难以现场观察其电路行为,而应用计算机辅助分析则能方便地改变电路的参数、结构、频率等,从而帮助学生认识复杂的电路系统行为。为强化学生对OrCAD仿真软件的掌握,课程设置了16学时的上机实验,要求学生应用该软件计算直流电路、交流电路、暂态电路以及非线性电路问题。

4.课前、课后延伸式教学相结合

每学期开课前,根据上学期专家、学生和教师反馈,教研室对教学内容重新进行精心安排,科学地制定教学日历,并上传到网络上,学生可以清楚地了解课程的总体安排和各章节主要内容。由于“电路”课程是专业基础课,采用大班教学,教师与学生单独沟通机会相对较少。针对这种情况,课程组采取了一系列措施:每天安排一位教师答疑;将每位老师的电子邮箱、QQ号公布给学生开通网上答疑等。实践下来,收到了非常好的效果,不仅能够及时解决同学在学习中的疑问,还能了解学生对教学的个别需求,从而改进教学方法。

5.启发式教学,激发学生自主学习

在教学过程中采用回忆式提问、理解式提问、应用式提问、专题讨论等方法,积极引导学生主动思考,鼓励学生回答问题,加强了学生自主学习的能力和判断能力,并培养了学生主动思考的习惯和探索精神。每学期布置一到两次大作业,引导学生对学过的知识进行总结,达到融会贯通的效果。

6.注重基础课与后续专业知识点的结合

对重要的知识点介绍它的前因后果,使学生用辩证发展的思维看待基础课程中知识点的学习,形成发散思维,将学习的知识构成有机的整体,有利于学生对后续专业课程的学习,培养学生综合运用知识的能力。例如,从大学物理中的波现象引入到传输线的波过程;将复频域中的网络函数和控制系统中传递函数及稳定性相结合。

7.把工程背景和科技发展史引入教学

“电路”课程虽然是专业基础课,但和工程实际密切相联。为了培养学生发现问题和解决问题的能力,在讲授分析理论的同时,还介绍其工程背景和应用,使学生了解工程实际应考虑的复杂因素,从而建立起对电路的实际器件与电路模型的相互联系的认知,深刻理解电路模型的适用范围、条件和局限,了解重要的分析方法产生的历史条件和工程背景。例如讲授正弦交流和三相电路时,让学生了解交流电的历史及国际标准、国家标准;讲授分布参数电路时,介绍电缆和电力传输线的故障测距。

二、“电路”课程教学手段更新

1.多媒体电子教案的应用

教研室制作了《电路理论基础》电子教案,由高等教育出版社出版,每个教师可以根据自己的教学风格进行修改。对于抽象的、难以理解的内容,同时制作了部分动画课件帮助学生理解,如频率特性、波的多次反射、驻波。

2.网络教育

开发了电路课程网站(http://)和电路实验教学网站(http://),实现了立体化教学,为学生创造了自主学习的客观环境。课程网站为学生开辟了一个新的学习途径,加强了教师与学生和外校同行的交流与互动。教师在网上答疑不仅使提出问题的学生受益,也可使其他的学生受益。此外,其他高校的学生可以通过网站下载了解本课程的相关资料和信息,实现了优质的教学资源共享。

3.自主学习能力和创新能力的培养

为了调动学生自主学习的积极性,对部分院系电路考试方法进行了改革,在原来考试方式(平时成绩+作业成绩+期末笔试成绩)的基础上,增加了附加分。要求学生在课程学习期间撰写有关电路理论和电路应用的小论文,教师对此小论文进行评判给出附加分,附加分满分为8分。此举措锻炼了学生发现问题和解决问题的能力,部分学生所写的小论文经教师指导修正后已在相应的期刊上发表。

三、实践教学突出

以培养学生基本实验技能、综合设计能力和科研创新能力为目标,在实践教学中突出学生四种能力的培养。

1.理论验证及基本实验技能的培养

理论验证及基本实验技能是实验的基本功,以此加深理解电气信息、电子科学技术领域内的基本理论,对课堂教学所学的部分理论内容进行实验验证。学生通过实验可初步掌握常用的电工仪表、电子仪器设备的使用方法;按预定的实验要求完成基本的电路实验,准确地读取实验数据,测绘波形和曲线,分析实验结果,写出符合要求的实验报告。这种基本科学实验能力的培养,对于每个学生都是至关重要的。

2.学生动手能力的培养

要求学生完成有一定内容深度和工作量的小课题,使学生学会通过实践学习科技知识,掌握综合用电的本领。实验室给出实验题目并提供实验条件,学生从查阅资料、选择元器件、构思实验步骤、调试电路,到完成实验,均需要自己独立完成。通过这样的实验,增强了学生的实验兴趣,全面提高了学生动手能力。

3.工程计算能力的培养

通过在电路理论和实验教学中采用OrCAD和MATLAB软件进行电路仿真,充分发挥计算机在实验教学中的作用,培养学生的仿真意识和仿真分析能力。仿真实验能够帮助学生更好地完成设计任务,动手操作实验之前,先仿真,以验证设计正确与否。以实际操作实验为主,计算机仿真为辅,既突出了实验能力的培养,又强调了新实验手段的学习。

4.掌握高新技术能力的培养

学生在校期间,应利用实验中心先进的实验设备,尽可能多地了解和掌握高新技术,如EDA、PWM控制器、可编程控制器、单片机、计算机仿真技术等,这样在以后的技术工作中才能具有更多的本领、更强的能力,处于更有利的竞争地位。

四、青年教师培养规范

青年教师的培养是建设好精品课程的重要保证。[3]为此,教研室特别注重对青年教师的培养,为他们的迅速成长尽量创造有利条件,具体培养措施如下:

1.实行指导教师制度

每位青年教师来教研室工作后,教研室为其配备一名教学经验丰富的指导教师,从教学、科研等各方面研究并制定详细的培养计划,并要求每学期至少有两次具体指导。

2.实行上岗制度

新来教师必须进行岗前培训和试讲,获得上岗资格。必须经过1~2个学期的助课,完成全部指导实验教学的内容,方能进行讲课工作。

3.教研室实行集体备课制度

每学期进行5次集体备课,对教学中出现的疑难问题和教学方法进行讨论,以利于教师相互促进,相互提高。

4.鼓励在职攻读博士学位

大力支持青年教师完成博士学位的攻读。在学校政策鼓励下,教研室任课教师已全部获得博士学位。

5.吸收青年教师参与教材的编写工作

通过参与教材的编写工作,加深青年教师对教学内容的理解,促进教学水平的提高。

五、结论

在国家精品课建设过程中,“电路”课程教学依据以育人为本的理念,按照“规格严格、功夫到家”的传统,对基本概念严格要求,注意理论联系实际,注意研究教学方法改革,采用互动式教学,培养学生思考和表达能力,激发学习该课程的兴趣;并不断充实和更新多媒体电子教案和课程网站,使其被广为利用;加强实验教学,在基本型实验的基础上,开创了设计型实验和个性化研究型实验,培养学生动手能力;培育了一支年轻有为、水平高、团结紧密的教师队伍。

参考文献:

电路实验教学论文篇(10)

中图分类号:G431文献标识码:A文章编号文章编号:1672-7800(2013)012-0200-02

作者简介:孙利华(1979-),女,硕士,中国地质大学江城学院讲师,研究方向为电子和EDA技术。

0引言

数字电子技术是高等院校电子信息、通信、自动化类专业的一门学科基础课,实用性很强[1]。该课程的教学目标是让学生理解数字电路的工作原理与逻辑功能,掌握数字电路的分析与设计方法,最终能根据要求设计出较合理的电路。所以,该课程既包含了逻辑性强的理论又包含了很多具体实践应用环节。在讲授数字电子技术时要特别注意理论与实践教学结合,但实际教学中受实验硬件条件的限制,实验课课时安排较少或时间安排不合理,无法做到老师讲的同时让学生操作,使学生缺乏对基本原理和概念的直观认识。Multisim 软件为数字电子技术课程教学提供了一个很好的平台,可作为传统教学手段的有力补充。借助Multisim 软件对数字电路工作进行仿真演示,使理论和实践教学内容更加紧密地结合起来,既可以提高学生的学习兴趣,又能帮助学生更好地掌握数字电子技术的基本理论,为后续课程打下坚实的基础。

1Multisim10概述

Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。Multisim向用户提供一个全方位功能强大的电子虚拟实验平台[2]。软件自带了型号丰富的元件库和功能齐全外形逼真的各类主流虚拟仪器,可完成对模拟电路、数字电路、单片机电路的设计与仿真调试,用户只需轻点鼠标即可观看到逼真的电路运行。该软件简单易学,利于激发学生的学习兴趣,目前已被广泛应用到各高校电子类课程的教学中,取得了良好的教学效果。

2Multisim10 在数字电子技术理论教学环节中的应用

数字电子技术理论教学目的是帮助学生掌握数字电子技术的基本概念和理论。传统教学方式采用多媒体课件加板书,学生缺乏对数字电路的直观认识,教学效果欠佳。特别是在讲授编码器、竞争与冒险、触发器等难以理解的内容时,学生会因为不理解,要么死记硬背,要么丧失学习兴趣。若引入Multisim软件进行仿真,可以帮助学生更好地理解概念。

基本RS触发器是进入时序电路学习的第一个内容,是学好时序电路的关键,但学生往往难以理解基本RS触发器的工作过程,特别是触发器“不定”的工作状态。教师可以在Multisim软件中搭建如图1所示电路,由两个与非门构成基本RS触发器[3],借助小灯泡的亮与灭来演示RS触发器的“置1态”、“置0态”、“不变”和“不定”四种状态。其中,当R、S均置0时,触发器的输出都为1,两个灯泡都等于1,当R、S都回到1时,两只灯泡则不停地交错闪烁,可以告诉学生这就是“不定”的状态,让学生对该状态有了直观认识,帮助他们理解和记忆触发器的工作原理。

3Multisim10在数字电子技术实践教学环节中的应用

把Multisim10应用到实践教学环节中可以开展一些学校实验室因为实验设备、经费等方面原因无法开展的实验;可以避免真实实验操作可能带来的未知风险;可以提高实践环节中实物搭建电路的成功率,降低仪器和元件的损坏率。

3.1验证性实验

验证性实验一般是让学生在试验箱上验证数字电路的工作原理,以加深对基本概念的理解。试验箱上已集成好所有元器件,学生要做的工作就是根据实验指导书用导线把器件连接起来,往往是电路接了一遍,仍然不了解工作原理。若能在使用试验箱前先在Multisim

中对电路进行仿真,有助于学生理解电路的原理,不仅了解应该怎么接电路,还能知道为什么这么接。以集成计数器74LS190逻辑功能验证实验为例,可以在实验前让学生在仿真软件中搭建如图2所示电路。当把开关E置为0,F置为1时,电路实现十进制的加法计数器的功能。通过电路仿真可以帮助学生了解74LS90芯片各引脚的功能,知道每个引脚应该如何接进电路,以及共阳极和共阴极数码管的区别,还可借助如图3所示逻辑分析仪仿真结果理解74LS90的QA、QB、QC和QC与时钟信号的对应关系。教师可以把仿真软件中的电路、虚拟仪器和试验箱上的元器件、仪器结合起来讲解,可提高学生在试验箱上搭建电路的成功率,降低元件的损坏率。

3.2设计性实验

在理论教学和验证性实验之后会安排设计性实验教学环节,也就是课程设计。一般要求学生根据设计要求,利用所学过的数字电路的设计与分析方法,选择合适的芯片,搭建电路并制作出实物。例如,设计一个汽车尾灯控制电路,要求:①假设汽车尾灯部左右两侧各3个指示灯(用发光二极管模拟);② 汽车正常运行时指示灯全灭;③右转弯时,右侧3个指示灯按右循环顺序点亮;④左转弯时,左侧3个指示灯按左循环顺序点亮;⑤临时刹车时,所有指示灯同时点亮。学生拿到设计题目后,可查阅资料,首先在软件中搭建出电路,如图4所示,进行仿真以检验设计是否满足题目要求,仿真结果达到要求后再利用实物焊接在实验板上。该方式既能提高学生的电路设计能力,又可激发学生的创新精神,真正达到设计性实验的目标。

4结语

教学实践证明, 将仿真软件引进数字电子技术的理论和实践教学中, 可以把抽象的理论通过软件搭建的电路形象化,许多普通高校实验室中不易接触到的仪器设备可以方便地从软件中选用, 从而增强课堂教学的直观性和生动性, 加深学生对基本概念、原理的理解[3],提升学生学习数字电子技术的兴趣和积极性, 培养创新精神,为后续专业课学习打下坚实的基础。

参考文献参考文献:

[1]郭映.Multisim仿真软件在数字电路教学中的应用[J].计算机与现代化,2010(7).

[2]张新喜.Multisim 10电路仿真及应用[M].北京:机械工业出版社,2010.

[3]康华光.电子技术基础(数字部分)[M].北京:高等教育出版社,2000.

[4]李若琼.Multisim在 “电工技术”教学中的应用[J].电子科技,2011,24(2).

上一篇: 人力资源管理创新论文 下一篇: 资本经营论文
相关精选
相关期刊