生物燃料论文汇总十篇

时间:2023-03-16 15:24:37

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇生物燃料论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

生物燃料论文

篇(1)

 

0 引言

随着化石资源的枯竭和环境污染的加剧,清洁可再生的代用燃料成为发展的必然趋势。目前,我国应用于机动车的代用燃料主要有压缩天然气和液化石油气,但实质上它们都是化石燃料的衍生品,其发展严重受化石燃料的制约。

理论上,生物质气化气有合适的热值和能量密度,能够满足作为内燃机燃料的要求,而且可以实现CO2净“零排放”。早在第一、二次世界大战期间,生物质气化气就已经作为机动车燃料应用于欧美等国家(1);目前,我国生物质气化气作为内燃机燃料的试验工作相继展开。任永志等(2)试验研究了内燃式燃气发电机的运行特性;孟凡生等(3-4)分析了我国低热值燃气内燃机的发展及应用现状,并对生物质气化气作为内燃机燃料的燃烧特性做了简单分析;孟凡彬等(4)试验研究了生物质气化气作为车用燃料初步规律。本文以不同组分生物质气化气作为原料,进一步研究了生物质气化气作为车用燃料的适应性和排放特性。

1 试验内容

1.1 试验原料:

试验原料为生物质气化气,其中1#­­-6#为生物质空气气化气,7#-12#为生物质富氧气化气,具体见表1。

表1 生物质气化气组分及热值

Table 1 the components of producer gas andlow heat value

 

NO.

CO2/%

C2H4/%

C2H6/%

H2/%

O2/%

N2/%

CH4/%

CO/%

Qv/kJ/m3

1#

9.00

0.00

0.00

15.77

0.99

50.62

0.75

22.88

4853.98

2#

9.68

0.00

0.00

16.73

1.07

49.88

0.97

21.68

4884.89

3#

15.87

0.30

0.00

16.46

0.28

45.06

1.89

20.14

5195.70

4#

15.61

0.31

0.00

15.62

0.22

45.77

2.13

20.32

5222.56

5#

11.42

1.55

0.00

12.92

0.67

49.52

2.28

21.64

5969.60

6#

11.00

1.75

0.00

13.61

0.63

49.30

2.14

21.57

6121.69

7#

24.41

0.71

0.00

32.33

0.00

1.33

3.72

37.50

10022.68

8#

23.55

1.39

0.23

28.73

0.54

4.58

4.89

36.10

10480.57

9#

18.34

0.91

0.20

25.76

0.89

7.55

6.07

40.28

10778.35

10#

13.06

0.53

0.00

28.34

0.36

9.77

2.69

45.25

10078.75

11#

13.36

0.55

0.00

27.92

0.55

11.06

2.70

43.87

9877.44

12#

19.80

1.28

0.00

25.26

1.00

14.01

篇(2)

作者简介:王雪梅(1976-),女,重庆永川人,副研究员,主要从事科学计量学、GIS与文献计量学集成研究.

资源与环境科学以人类生存和发展所依赖的地球系统特别是地球表层系统的特征和变化规律为主要研究对象,研究内容涉及地球科学及其分支学科,以及生命科学、化学、工程与材料科学、信息科学及管理科学的诸多分支学科领域。经济快速发展对资源环境科学提出了巨大需求,中国科学院围绕我国经济社会发展的重大问题及其相关的资源环境与地球科学问题,在资源环境和地球科学领域取得了一系列研究成果[1~3]。利用WebofKnowledge平台SCI-E数据库,对2009—2014年中国科学院SCI论文及地球科学与资源环境科学领域论文产出进行统计,并与全球及中国论文产出相比较,了解中国科学院在地球科学与资源环境科学领域的研究产出及其发展状况。

1数据来源与分析方法

从WebofScience的251个学科分类中遴选出与地球科学、环境/生态学相关的学科,根据学科分类在ScienceCitationIndexExpanded(SCI-E)数据库检索资源环境科学领域的相关论文,应用美国汤森路透公司的ThomsonDataAnalyzer文本挖掘软件进行数据分析和制图,对全球和中国的资源环境科学领域产出进行统计分析。

地球科学(Geosicence)领域包括:能源与燃料(Energy&Fuels)、地质工程(Engineering,Geological)、石油工程(Engineering,Petroleum)、地球化学与地球物理学(Geochemistry&Geophysics)、地理学(Geography)、地质学(Geology)、地球科学多学科(Geosciences,Multidisciplinary)、湖泊学(Limnology)、气象与大气科学(Meteorology&AtmosphericSciences)、矿物学(Mineralogy)、矿产与矿物加工(Mining&MineralProcessing)、海洋学(Oceanography)、古生物学(Paleontology)、遥感(RemoteSensing)、水资源(WaterResources);环境/生态学(Environment/Ecology)领域包括:土壤科学(SoilScience)、生态学(Ecology)、海洋工程(Engineering,Marine)、环境科学(EnvironmentalSciences)。

2015年2~3月在SCI-E数据库对全球、中国、中国科学院的SCI论文产出进行检索和统计,中国科学院检索范围包括署名中有“中国科学院”的论文,包括中国科学院各研究所及中国科学院大学(中国科学院研究生院),不包括未署名“中国科学院”的中国科技大学论文。

2中国科学院论文产出总体态势

2009—2014年期间,SCI-E共收录论文955.6万篇,其中署名中国的论文有113万篇,署名中国科学院的论文有15万篇。图1反映了全球、中国、中国科学院2009—2014年年度论文产出量变化。全球、中国、中国科学院的SCI论文分别以年均2%,14%和10%的速度增长。2014年与2009年相比,全球SCI论文增长近11%,中国增长约为93%,而中国科学院增长了62%,由图2可见中国SCI论文增长速度远高于全球论文增长速度。

图3统计了中国SCI论文占全球百分比和中国科学院SCI论文占中国百分比,表明中国论文占全球的份额持续上升,而中国科学院论文占中国的份额则逐步有所下降,但中国科学院资源环境类研究所发表的SCI论文数量占中国科学院的份额稳中有升。从图2也可见,中国科学院资源环境类研究所2014年与2009年相比,SCI论文增长了约92%,与中国SCI论文的增速很接近,高于中国科学院整体的论文增长速度。

将2009—2014年环境/生态学和地球科学领域各年论文按照被引频次高低统计TOP1%,TOP10%,TOP20%和TOP50%论文的数量,以及中国和中国科学院相应级次TOP论文的数量,并统计中国占全球的比例和中国科学院占中国的比例(图4)。

根据论文全部著者统计的结果表明,中国在全球资源环境科学研究领域各级次TOP论文中的比例基本为15%~20%,中国地球科学领域TOP论文数占全球的比例高于环境生态学领域,并且地球科学领域TOP1%的高水平论文比例很高。中国科学院在中国资源环境科学研究领域各级次TOP论文中的比例为26%~32%,中国科学院环境/生态学领域TOP论文数占中国的比例高于地球科学领域。

3资源环境科学领域的重点研究方向

基于SCI学科分类,分别对2009—2014年全球SCI论文最多的20个学科领域的论文数占全球SCI论文总数的比例、中国SCI论文最多的20个学科领域的论文数占中国SCI论文总数的比例,以及中国科学院SCI论文最多的20个学科领域的论文数进行统计。结果显示,全球各学科领域中,生物学与生物化学发文最多,发文最多的20个学科领域主要侧重于医学和生命科学等,相比之下,中国产出偏重于材料科学以及化学、物理等相关学科领域,中国科学院在环境科学方面论文产出数量比例较高。

资源环境科学领域论文产出占全球自然科学领域论文产出的8%左右,中国该领域论文产出占中国SCI论文比例接近10%,中国科学院该领域论文产出占中国科学院SCI论文比例约为20%(图5)。

2009—2014年,中国SCI论文占全球比例约为12%,而资源环境科学领域中国SCI论文占全球份额超过14%。其中,环境科学是全球、中国和中国科学院资源环境科学领域论文产出的最主要的领域。此外,中国在能源与燃料、遥感、地质学等方面论文产出占全球比例相对较高,而在生态学、古生物学等方面所占比例较低。中国科学院关于古生物学方面的SCI论文在中国资源环境领域论文中的比例最高,达到54%;此外,在土壤科学、地理学、湖泊学、生态学、气象与大气科学等方面的论文占中国的比例也较高,但在石油工程、海洋工程等方面所占比例较低,不足10%(图6)。

图7中,气泡的大小表征资源环境各子领域占全球资源环境科学领域论文产出份额的大小,即点越大,该子领域论文数在全球资源环境领域中的比例越高;X轴表示资源环境子领域中国占全球论文的百分比,值越高表明该子领域中国占全球的比例越高;Y轴表示资源环境子领域中国科学院占中国论文的百分比,值越高表明该子领域中国科学院占中国的比例越高。气泡大的那些子领域(如环境科学等)是全球资源环境科学研究比较多的热点方向;右下角的那些子领域(如能源与燃料等)是中国资源环境科学相对比较有优势的研究方向;左上角那些子领域(如古生物学等)是中国科学院资源环境科学相对比较有优势的研究方向。

中国科学院资源环境类研究所2009—2014年发表的SCI论文主要涉及的学科领域包括:环境科学、生态学、地质学、工程学、气象与大气科学、农学、地球化学与地球物理学、化学、水资源、科学与技术、海洋与淡水生物学、地理学、植物学、海洋学等。

4主要研究机构的科学贡献

中国科学院几乎所有的研究机构都在SCI资源环境科学领域期刊发表过论文,2009—2014年根据全部著者统计超过100篇的研究所有50多个,在资源环境科学领域发表SCI论文较多的前10个研究所见表1,这些较多的研究所都属于中国科学院资源环境类研究机构。

2009—2014年中国科学院27个资源环境类研究所以第一著者发表的SCI论文共有22032篇,其中,生态环境研究中心、地质与地球物理研究所、海洋研究所、地理科学与资源研究所、大气物理研究所、广州地球化学研究所、南海海洋研究所、寒区旱区环境与工程研究所等较多,第一著者的SCI论文数都在1000篇以上(表2)。

中国科学院资源环境类研究所论文的篇均被引次数为6.03次/篇,表2中的“表现不俗的论文篇数”统计的是这些研究所高于基准值的论文篇数,即当前总被引次数除以从年至2014年的累积年得到的年均被引6次及以上的论文[4]。生态环境研究中心、地质与地球物理研究所、广州地球化学研究所的表现不俗论文都在150~200篇。

中国科学院资源环境类研究所被引频次位于前10%的论文篇数,即研究所2009—2014年被引16次及以上的论文篇数,也是生态环境研究中心、地质与地球物理研究所、广州地球化学研究所最多,都在260篇以上。

参考中国科学院文献情报中心科学前沿分析中心设计科学贡献指数[5],定义:

式中:Ci为中国科学院资源环境类第i个研究所科学贡献指数,P10%i为第i个研究所被引前10%论文数量,Citedi为第i个研究所论文被引总频次,n为中国科学院资源环境类研究所的数量。结果显示,生态环境研究中心、地质与地球物理研究所、广州地球化学研究所、海洋研究所、大气物理研究所、地理科学与资源研究所的科学贡献指数较高,都在0.1以上。

5结论与建议

通过以上分析可以看出:

(1)2009—2014年,中国科学院SCI论文增长了62%,高于全球11%的增长率,低于中国93%的增长率,但中国科学院资源环境类研究所的SCI论文增长了约92%,与中国论文增速相接近。

(2)中国在全球资源环境科学研究领域各级次TOP论文中的比例基本为15%~20%,中国科学院在中国资源环境科学研究领域各级次TOP论文中的比例为26%~32%,中国科学院环境/生态学领域TOP论文数占中国的比例高于地球科学领域。

篇(3)

Abstract: in this paper the preparation of rapeseed oil is the physico-chemical properties of the biodiesel and combustion performance testing research. To rapeseed oil as raw material, through the ester exchange method for biological diesel, and 0 # diesel part of the performance indexes of physical and chemical contrast, through comparing various indicators have reached national indexes, the three kinds of the mixing proportion of biodiesel fuel mix the diesel engine test, the result shows that the content of the mixed fuel burn biodiesel fuel consumption, CO emissions when a slightly increased, HC emissions significantly lower than 0 # diesel. The preparation of rapeseed oil biodiesel can meet the requirements of the alternative petrochemical diesel.

Keywords: rapeseed oil; Biodiesel; The diesel engine; emissions

中图分类号:Q2-3 文献标识码:A文章编号:

0 引言

随着社会经济的发展,国民生活水平的提高,车辆在人们的日常生活当中越来越普及,大量使用石化燃料的同时也带来了许多问题,如石化柴油含有多有害物质,通过燃烧后直接排入大气层,对环境和人类的生存有着破坏作用,石化能源又是不可再生能源,面临着能源枯竭等问题。各国相继寻找清洁、安全、可再生、可替代石化柴油的新能源。生物柴油是指以油料作物、野生油料植物和工业微藻等水生植物油脂及动物油脂、废餐饮油等为原料,通过物理或化学的方法制成的甲脂或乙脂燃料,可用来替代石化燃料来满足工业、民用等要求。国内目前对生物柴油的生产和应用也进行了开发,已成功研制出利用菜籽油、光皮树油、麻风树油、大豆油、米糠油脚料、工业猪油、牛油等作为原料,经过甲醇预酯化再酯化作用,生产制备出的生物柴油,不仅可以作为代用燃料在柴油发动机上直接使用,而且还可以作为柴油清洁燃料的添加剂。从生物柴油的理化性质可以看出生物柴油对环境是友好的,生物柴油所含的双键数目少,分子中含氧量较高,含碳支链数目少或没有,这使得生物柴油有较好的燃烧特性,燃烧比较完全。石化柴油燃烧过程产生的主要污染物是:烟尘颗粒、SOX、CO、HC以及NOX等。与石化柴油相比,生物柴油的燃烧尾气中除NOX浓度稍微升高外,烟尘颗粒、SOX、CO、HC的排放明显下降[1,2]。此外,生物柴油中不含有芳香烃,燃烧后不会产生芳香烃和PAH。而且生物柴油还具有无毒、可生物降解等优点。

本文对菜籽油制成的生物柴油进行理化性能指标测试、发动机燃烧试验,对排放性能进行研究。从而进行分析掺烧生物柴油尾气成分,得出更经济、更环境友好的掺烧比例。

1 材料与方法

1.1 试验材料

市购菜籽油、甲醇(分析纯)、磷酸(分析纯)、氢氧化钠(颗粒状)

1.2 实验原料和方法

1.2.1 生物柴油的制备

本试验采用酯交换法制备生物柴油[3],即通过甲醇将原料油中的脂肪酸甘油酯的甘油基取代下来,形成碳链较短脂肪酸甲脂和甘油。

其反应原理如下:

C3H5(RCO0)3+3CH3OH=3RCOOCH3+C3H5(OH)3

首先,取一定量的菜籽油置于烧杯中,水浴加热至60℃,将按比例混合好的甲醇氢氧化钠溶液倒入烧杯中,开始搅拌、并计时,待反应结束后将烧杯在室温的条件下静置分层,上层为生物柴油与甲醇的混合物,下层为甘油与未反应的脂肪酸甘油酯的混合物,收集上层液体并用磷酸溶液滴定至中性,加入温水洗涤3―4次,静置分层后除去下层的水相,将上层淡黄色液体在常压下进行蒸馏,以除去甲醇和水分,待蒸馏结束后,过滤除去杂质,即得淡黄色的澄清液体生物柴油。

1.2.2 生物柴油理化性能指标

试验设备:TSY―1109/1109A石油产品运动黏度测定仪、TSY-1103A石油产品半自动闪点测定仪、TSY―1115石油产品铜片腐蚀测定仪、TSY―1110原油和液体石油产品密度测定仪、TSY―1106A石油产品馏程测定仪等仪器。

试验方法:根据各个实验仪器使用方法及国家标准的要求进行测试。

1.2.3 生物柴油台架试验

实验装置:ZX195柴油发动机、DSZ-2转速数字显示仪,D-150水力测功仪,FC2210智能油耗仪、NHA505废气分析仪、烟度计。

试验方法:本试验是在海拔1900m,相对湿度为60%,实验室温度为25 ℃的实验室中进行的,将柴油机油箱中注入0#柴油并进行5分钟热机,让柴油发动机在2000r/min的转速下改变发动机的负荷,分别在0%、20%、50%、80%、100%五个阶段通过所接仪器对HC、CO和油耗等测试,记录所得数

据,然后将油箱中的油全部放尽;将掺混10%生物柴油的混合燃料分别加入油箱中同样空机运行几分钟,保证混合燃料充满整个油路,然后进行测试、数据采集;同样的方法将掺混20%生物柴油的混合燃料进行试验、数据采集;最后做100%生物柴油的试验,并进行数据采集。

2 试验结果与分析

2.1 部分理化性能指标对比

从表二中可以看出B100生物柴油的部分理化性能指标与0#柴油相接近,其中,运动黏度在石化柴油的范围内,接近于上限,所以雾化情况要略差于石化柴油;B100生物柴油的密度、铜片腐蚀接近于0#柴油;在闪点方面,生物柴油要高出0#柴油74℃,故在运输、储存过程中要比0#柴油更加安全、稳定。

表二B100生物柴油与0#柴油

2.2 燃油消耗率

从图2中可以看出在2000r/min的工况下,掺混不同比例生物柴油的混合燃料燃油消耗率总体趋势是随负荷的升高而升高,当负荷在100%时,B10、B20、B100生物柴油燃油消耗率比0#柴油燃油消耗率分别高出9.8%、9.8%、15.4%。造成这种情况是因为生物柴油的热值要比石化柴油的低,在同一工况下掺混生物柴油的比例越高燃油消耗率越高。

图2 2000r/min不同负荷燃油消耗率

2.3 HC排放

从图3中可以看出HC排放在满负荷情况下随转速增加而下降,且HC排放明显低于0#柴油的排放,在2000r/min满负荷的工况下B10、B20、B100HC排放比0#柴油分别低了48.7%、52.4%、66.8%,且随着生物柴油掺混比例的升高而降低,造成这种现象是因为生物柴油中芳香烃含量很少,十六烷值比较高,理论上讲芳香烃含量越少,则其滞燃期越短,HC排放越低;十六烷值较高时,燃油着火性能较好,滞燃期短,其未燃烧碳氢和裂解碳氢均少。另外,生物柴油含有10%的氧,使生物柴油燃料比石化柴油更有利于燃烧,从而减少HC化合物的排放。因此,掺混生物柴油的混合燃料由于芳香烃含量减少、十六烷值高、含氧量增加,使得混合燃料在柴油机中燃烧的HC排放相对降低[5~8]。

图32000r/min满负荷HC排放

2.4 CO排放

从图4中可以看出掺混生物柴油比例越高时CO排放在2000r/min的工况下随负荷升高而升高,当负荷达到100%时CO排放高于石化柴油,CO是燃油燃烧的中间产物,根据发动机CO形成的机理[3,4]:当混合气过浓(大负荷时或者发动机启动时),将因缺氧所致;或者燃烧温度过低(混合气过稀),CO进一步氧化的速度减慢,虽然生物柴油含有10%的氧,但由于生物柴油的黏度远远大于石化柴油,严重影响了生物柴油在柴油机中的雾化性能,使其燃烧不完全,从而造成CO排放增加。而且,当燃用生物柴油和柴油混合燃料时,生物柴油里面仍有一定的甲醇、甘油和钠盐等杂质未除净,也会造成燃料燃烧的不充分。高负荷时,CO的排放急剧上升是因为在高负荷高转速时,柴油机的喷油量增加使局部缺氧加剧,燃油不能充分燃烧,从而生成更多的CO[9~11],因而导致了在2000r/min满负荷工况下混合燃料的CO排放比石化柴油的要高,且掺混比例越高排放比例也越高。

图4 满负荷CO排放

3 结论

1)通过部分理化性能指标的对比,生物柴油闪点比0#柴油高,可以看出生物柴油在运输储存方面要比石化柴油0#柴油安全;由于运动黏度比0#柴油的高,所以在雾化方面要比0#柴油差些。

2)通过ZX195柴油机燃用0#柴油和分别掺混20%、50%、100%生物柴油的混合燃料的排放对比试验可知:菜籽油为原料油制备的生物柴油在燃油消耗率方面比0#柴油略有升高;在HC排放方面明显低于0#柴油,CO排放量略高于0#柴油,综合测试显示掺混比例为20%生物柴油的混合燃料最为理想[12,13]。

参考文献:

[1] 吴贵福,贾元华,姜东华.柴油机燃用生物柴油混合燃料排放性能试验研究[J].内燃机,2009,6:43-45.

[2] 范焱虎. 三种生物柴油理化性能指标对比分析及柴油机试验研究[D].云南农业大学硕士论文,2011(6).

篇(4)

中图分类号:TK6 文献标识码:A 文章编号:1674-3520(2015)-01-00-02

液体燃料的不足已严重威胁到我国的能源与经济安全。我国一次能源消费量仅次于美国成为世界第二大能源消费国, 2006年进口原油已达5000万t,占总量40%。因此,国家提出了大力开发新能源和可再生能源,优化能源结构的战略发展规划[1-2]。生物质燃料是惟一可以转化为液体燃料的可再生能源,将生物质转化为液体燃料不仅能够弥补化石燃料的不足,而且有助于保护生态环境。生物质燃料包括各种农业废弃物、林业废弃物以及各种有机垃圾等。我国生物质资源丰富,理论年产量为50亿t左右,发展生物质液化替代化石燃料有巨大的资源潜力。

目前生物质液化还处于研究、开发及示范阶段。从工艺上,生物质液化又可分为生化法和热化学法。生化法主要是指采用水解、发酵等手段将生物质转化为燃料乙醇。热化学法主要包括快速热解液化和加压催化液化等[3-8] 。本文主要介绍生物质燃料液化制取液体燃料的技术与研究进展。

一、生化法生产燃料乙醇

生物质生产燃料乙醇的原料主要有能源农作物、剩余粮食和农作物秸秆等。美国和巴西分别用本国生产的玉米和甘蔗大量生产乙醇作为车用燃料。从1975年以来,巴西为摆脱对石油的依赖,开展了世界最大规模的燃料乙醇开发计划,到1991年燃料乙醇产量已达130亿L。美国自1991年以来,为维持每年50亿L的玉米制乙醇产量,政府每年要付出7亿美元的巨额补贴[2,3,8]。利用粮食等淀粉质原料生产乙醇是工艺很成熟的传统技术。用粮食生产燃料乙醇虽然成本高,价格上对石油燃料没有竞争力。虽然我国政府于2002年制定了以陈化粮生产燃料乙醇的政策,将燃料乙醇按一定比例加到汽油中作为汽车燃料,已在河南和吉林两省示范。然而我国剩余粮食即使按大丰收时的3000万t全部转化为乙醇来算,可生产1000万t乙醇,也只有2000年原油缺口的1/10;而且随着中国人口的持续增长,粮食很难出现大量剩余。2007年以来,粮食价格高涨,给国家的安定带来威胁,因此,在我国非粮生物质燃料才是唯一可靠的生物质能源。

从原料供给及社会经济环境效益来看,用含纤维素较高的农林废弃物生产乙醇是比较理想的工艺路线。生物质制燃料乙醇即把木质纤维素水解制取葡萄糖,然后将葡萄糖发酵生成燃料乙醇的技术。我国在这方面开展了许多研究工作,比如武汉理工大学开展了农林废弃物真菌分解-碱溶热解-厌氧发酵工艺的研究,转化率在70%以上[9]。中国科学院过程工程研究所在国家攻关项目的支持下,开展了纤维素生物酶分解固态发酵糖化乙醇的研究,为纤维素乙醇技术的开发奠定了基础[10]。以美国国家可再生能源实验室(NREL)为代表的研究者,近年来也进行了大量的研究工作,如通过转基因技术得到了能发酵五碳糖的酵母菌种,开发了同时糖化发酵工艺,并建成了几个具有一定规模的中试工厂,但由于关键技术未有突破,生产成本一直居高不下[11-13]。纤维素制乙醇技术如果能够取得技术突破,在未来几十年将有很好的发展前景。

二、生物质燃料热化学法生产生物质油

生物质燃料热化学法生产生物质油技术根据其原理主要可分为加压液化和快速热解液化。

(一)生物质燃料快速热解液化

生物质燃料快速热解液化是在传统裂解基础上发展起来的一种技术,相对与传统裂解,它采用超高加热速率(102-104K/s),超短产物停留时间(0.2-3s)及适中的裂解温度,使生物质中的有机高聚物分子在隔绝空气的条件下迅速断裂为短链分子,使焦炭和产物气降到最低限度,从而最大限度获得液体产品。这种液体产品被称为生物质油(bio-oil),为棕黑色黏性液体,热值达20-22MJ/kg,可直接作为燃料使用,也可经精制成为化石燃料的替代物。因此,随着化石燃料资源的逐渐减少,生物质快速热解液化的研究在国际上引起了广泛的兴趣。自1980年以来,生物质快速热解技术取得了很大进展,成为最有开发潜力的生物质液化技术之一。国际能源署组织了美国、加拿大、芬兰、意大利、瑞典、英国等国的10多个研究小组进行了10余年的研究与开发工作,重点对该过程的发展潜力、技术经济可行性以及参与国之间的技术交流进行了调研,认为生物质快速热解技术比其他技术可获得更多的能源和更大的效益[14]。

世界各国通过反应器的设计、制造及工艺条件的控制,开发了各种类型的快速热解工艺。几种有代表性的工艺、各装置的规模、液体产率等参数见文献 [14]。

(1)旋转锥式反应工艺(Twente rotating cone process),荷兰Twente大学开发。生物质颗粒与惰性热载体一起加入旋转锥底部,沿着锥壁螺旋上升过程中发生快速热解反应,但其最大的缺点是生产规模小,能耗较高。以德国松木粉为原料,反应温度600℃,进料速率34.8kg/h的条件下,液体产率为58.6%。

(2)携带床反应器(Entrained flow reactor),美国Georgia 工学院(GIT)开发。以丙烷和空气按照化学计量比引入反应管下部的燃烧区,高温燃烧气将生物质快速加热分解,当进料量为15kg/h,反应温度745℃时,可得到58%的液体产物,但需要大量高温燃烧气并产生大量低热值的不凝气是该装置的缺点。

(3)循环流化床工艺(Circulating fluid bed reactor),加拿大Ensyn工程师协会开发研制。在意大利的Bastardo建成了650kg/h规模的示范装置,在反应温度550℃时,以杨木粉作为原料可产生65%的液体产品。该装置的优点是设备小巧,气相停留时间短,防止热解蒸汽的二次裂解,从而获得较高的液体产率。但其主要缺点是需要载气对设备内的热载体及生物质进行流化,最高液体产率可达75%。

(4)涡旋反应器(Vortex reactor),美国国家可再生能源实验室(NREL)开发。反应管长0.7m,管径0.13 m,生物质颗粒由氮气加速到1 200m/s,由切线进入反应管,在管壁产生一层生物油并被迅速蒸发。目前建成的最大规模的装置为20kg/h,在管壁温度625℃时,液体产率可达55%。

总之,生物质快速裂解技术具有很高的加热和传热速率,且处理量可以达到较高的规模,目前来看,该工艺取得的液体产率最高。热等离子体快速热解液化是最近出现的生物质液化新方法,它采用热等离子体加热生物质颗粒,使其快速升温,然后迅速分离、冷凝,得到液体产物,我国的开展了这方面的试验研究。

(二)加压液化

生物质加压液化是在较高压力下的热转化过程,温度一般低于快速热解。最著名是PERC法。该法始于20世纪60年代,当时美国的Appell等人将木片、木屑放入Na2CO3溶液中,用CO加压至28MPa,使原料在350℃下反应,结果得到40%-50%的液体产物。近年来,人们不断尝试采用H2加压,使用溶剂及催化剂(如Co-Mo、Ni-Mo系加氢催化剂)等手段,使液体产率大幅度提高,甚至可以达80%以上,液体产物的高位热值可达25-30MJ/kg,明显高于快速热解液化。超临界液化是利用超临界流体良好的渗透能力、溶解能力和传递特性而进行的生物质液化,最近欧美等国正积极开展这方面的研究工作[15-17]。和快速热解液化相比,目前加压液化还处在实验室阶段,但由于其反应条件相对温和,对设备要求不很苛刻,在规模化开发上有很大潜力。

生物质燃料转化为液体后,能量密度大大提高,可直接作为燃料用于内燃机,热效率是直接燃烧的4倍以上。但是,由于生物油含氧量高(约35wt%),精炼成本较高,因而降低了生物质裂解油与化石燃料的竞争力。这也是长期以来没有很好解决的技术难题。

三、结论与建议

随着化石燃料资源的逐渐减少,生物质燃料液化技术的研究在国际上引起了广泛的兴趣。经过近30年的研究与开发,车用燃料乙醇的生产已实现产业化,快速热解液化已达到工业示范阶段,加压液化还处于实验研究阶段。我国生物质资源丰富,每年可利用的资源量达50亿t,仅农作物秸秆就有7亿t,但目前大部分作为废弃物没有合理利用,造成资源浪费和环境污染。如果将其中的50%采用生物质液化技术转化为燃料乙醇和生物质油,可以得到5亿-10亿t油当量的液体燃料,基本能够满足我国的能源需求。因此,发展生物质液化在我国有着广阔的前景。

我国在生物质快速热解液化及加压液化方面的研究工作还很少,与国际先进水平有较大差距,需要加强此项研究。开发生物质油精制与品位提升新工艺,降低生产成本是生物质热化学法液化进一步发展,提高与化石燃料竞争力的关键。

参考文献:

[1]倪维斗,靳辉,李政. 中国液体燃料的短缺及其替代问题[J]. 科技导报,2001, (12):9-12.

[2]阎长乐. 中国能源发展报告2001[M]. 北京:中国计量出版社,2001.15-35.

[3]何方,王华,金会心. 生物质液化制取液体燃料和化学品[J]. 能源工程,1999, (5):14-17.

[4]袁振宏,李学凤,蔺国芬. 我国生物质能技术产业化基础的研究 [A].吴创之,袁振宏.2002中国生物质能技术研讨会论文集[C]. 南京:太阳能学会生物质能专业委员会, 2002. 1-18.

[5]李文. 生物质的热解与液体产物的精制[J]. 新能源,1997, 19(10): 22-28.

[6]Kloprise B, Hodek W, Bandermann F. Catalytic hydroliquefaction of biomass with mud and CoO-MoO3 catalyst[J]. Fuel, 1990,69(4): 448-455.

[7]Amen-Chen C, Parkdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass: a review [J]. Bioresource Technology, 2001,79: 277-299.

[8]Chornet E, Overent R P. Biomass liquefaction: an overview [A]. In: Overrnd R P. Fundamentals of thermochemical biomass conversion [M]. Essex: Elsevier,1985.967-1002.

[9]杨颖.生物质载体生物膜碱溶热解厌氧发酵的试验研究[学位论文].武汉理工大学,2006

[10]陈洪章,李佐虎. 汽爆纤维素固态同步糖化发酵乙醇[J]. 无锡轻工业大学学报,1999,18(5):78-81.

[11]Cook J, Beyea J. Bioenergy in the United States:progress and possibilities [J]. Biomass and Bioenergy,2000,18:441-455.

[12]McKendry P. Energy production from biomass (part2): conversion technologies[J]. Bioresource Technology,2002,83:47-54.

[13]Mielenz J R. Feasibility studies for biomass to ethanol production facilities in Florida and Hawaii [J].Renewable Energy, 1997,10(2-3):279-284.

[14]郭艳,王,魏飞,等. 生物质快速裂解液化技术的研究进展[J]. 化工进展,2001,20(8):13-17.

篇(5)

生物醇油性能优越

西安老科技教育工作者协会(简称西安老科协),成立于1983年是经西安市民政局核准登记的社团法人单位。其下属的西安老科协专利技术开发中心主要从事专利申请、技术转让、技术交流、技术开发、新技术新产品的推广与培训。中心科研实力强大,信誉有保障,拥有西北最大国内一流的专利技术文献、科技学术论文数据库和完善的技术开发服务体系。

新型生物醇油是一种新型节能环保燃料,耗量低,热量足,且无黑烟、无泄漏、无毒、无残液、无积碳,无安全隐患,使用方便,成本仅为传统燃料的1/3左右,让接产客户享有足够的利润空间。该燃料用途广,尤其适合销往饭店、学校食堂、工厂食堂、工业窑炉或锅炉等场所,市场十分广阔。生产生物醇油成本低廉,配制原料在各地化工厂、化肥厂和化工市场均可购置。新型生物醇油性能优越,热值可高达8600到10000大卡/千克,与石油液化气的热值相当,可以替代传统燃料,满足厨房烹饪需求,节省饭店、食堂、家庭的开支。

生物醇油包括醇水型、醇烃型、醇醚型各类技术配方。车用甲醇汽油技术包括低甲醇含量,不需要改车的M15和高甲醇含量的M85,以及配套车用甲醇汽油双燃料转换器和最新研发的甲醇柴油等多种节能技术。该系列技术产品大大节省了车辆出行、运输的费用。

新型灶具高效节能

令生物醇油如虎添翼

西安老科协专利技术开发中心不但技术力量雄厚,并且运用专业技术打造出一系列硬件设备。中心针对当前市面上传统灶具的问题,研发出一系列节能、高效能的生物醇油灶具,包括家用灶、猛火灶、无风机家用商用灶及锅炉、燃烧机等十几种类型的产品,好车有好油才能跑得快,燃料好,灶具好,才能更节能!

当前,市场上普遍使用的都是传统的醇油灶具,其原理是把醇油经油管送入灶芯,采用高压风机把醇油分散雾化燃烧,这种燃烧方式,由于有一部分醇油被吹离灶芯,造成浪费,再加上强冷风气流,降低了火焰温度,消耗了部分能量,所以火力疲软。要想提高温度,只有增加油耗量。气化灶则是把醇油先通过自身系统气化为气体,高温气体在高压状态下,经多个喷嘴喷射燃烧,没有油损耗,没有热损耗,燃烧温度更高,所以节能效果更显著,可节约燃料30%到50%,且不用风机。西安老科协专利技术开发中心开发研制的生物醇油即时气化技术可实现液体生物醇油持续、稳定、充分气化后,气态燃烧。使用该技术生产的大灶、小灶、民用灶具,均不用鼓风机,和鼓风机炉灶相比,同样配方的生物醇油采用即时气化技术燃烧,可节能50%以上。无风机,不用电,气化燃烧更节能。

周到细致的指导方案

让接产客户运作无忧

一个好项目需要有成熟的运作方案来支持,严谨周密的后期运作指导不但能够杜绝生产使用中的各种问题、隐患的出现,同时也会为接产客户减少不必要的精力、财力、时间的浪费。西安老科协专利技术开发中心不但致力于能源技术的研发,更是结合了多年燃料市场的实战经验,总结出一系列规范化、标准化运作方案。生物醇油燃料技术要适应市场需求必须是系列化的,不是一两个配方就能解决的,整个技术应该是全程化的,包括原料的选择、质量判断、配置过程中常见问题应如何处理、灶具的改造使用和维护、酒店油箱、油管的安装,及经营销售方式。没有强大的技术实力做后盾,辛辛苦苦开发的市场就会变成别人的嫁衣,被别人所吞噬。

专业细致的技术服务打造行业的技术培训服务规范。来人可免费参观灶具样品、燃烧效果,查看相关证件,也可以自己到市场购买原料,当场试验,核算成本,实际考察客户使用情况、满意后再合作。西安老科协专利技术开发中心会实事求是的为客户提供客观公正的技术信息,并为客户做好售后技术服务工作,长期一如既往的把技术升级改进工作落得实处,让接产客户运作无忧。

欢迎到西安老科协专利技术开发中心实地考察,背靠权威机构合作百分百放心!西安老科协衷心地提醒广大读者在进行项目投资前:多电话咨询、多考察市场、多实地参观,如有需要,西安老科协可免费赠送人工合成液化气的详细制作配方!

西安老科协专利技术开发中心

地址:西安市雁塔路南段99号(省科技大院)北四楼 西安火车站:5、30、41、500路到大雁塔站下车即到

电话:029-85525023 85538190

15891738148

篇(6)

文/李昌珠

进入新世纪以来,植物油脂用途的拓展加速,被广泛用于油脂基能源产品(生物柴油、生物航空燃料油和生物油)、油脂基化工产品(表面活性剂、油漆、涂料)和油脂基材料产品。在植物油脂市场巨大需求拉动下,以生产工业油脂、芳香油或类似烷烃类原料为主的工业油料植物产业成为相对独立的门类迅速发展壮大。

1960 年,全球油脂产品产量为3000万吨,到2004年增至1.31亿吨。这一刚性增长趋势反映了油脂产品用途的拓展和需求量的增大,同时也警醒国际社会高度重视植物油料的生产。2000 年以来,我国食用植物油消费总量稳步增长,2011年达到2595 万吨,比2000 年增长44.3%,年均增长3.4%。2012 年我国消耗植物油脂达2700 万吨,其中72.2% 依赖进口维持供应。与此同时,作为国民经济命脉重要组成部分的石油工业,所需原油对外依存度也超过了60%。能源安全的形势异常严峻。开发新能源替代石油尤为迫切。2007年9月4日,国家发改委了《中国可再生能源中长期发展规划》。《规划》称,到2020 年,以能源作物为主要原料的燃料乙醇、生物柴油等生物液体燃料将达到替代石油1000万吨的能力。我国工业油料能源植物资源十分丰富、种类繁多、分布广泛,其中木本油料植物有400种。可利用的、含油率在15%~60% 的有200 种。含油率高达50%~60% 的有50 种。已经广泛应用的有30种。其余大部分还没有利用。巨大的挖掘潜力与可再生生物质能源的属性,使得工业油料植物可望成为解决能源问题的重要替换性资源。

当前,我国食用植物油脂和工业用途油脂的消费总量约4200 万吨,但利用耕地自主生产能力只有大约800 万吨。3400 万吨的缺口需要耕地约4533 万公顷。由于人口众多,我国的耕地始终是稀缺资源。据有关部门分析,近年我国粮食种植面积的预警区间为1.0 亿~1.1 亿公顷,而2011年我国粮食种植面积为1.11亿公顷,接近预警红线。为保障国家粮食安全,我国70% 的耕地必须种植粮食作物。不与口争粮,不与粮争地,是不可逾越的底线。工业油料植物大多具有野生性,耐旱、耐贫瘠,在山地、高原和丘陵等地域都能很好地生长。我国南方约有2000 万公顷的农林荒地荒山。利用这些非耕地种植油料植物,可以缓解耕地资源稀缺、实现生态重建和工业油脂资源规模化生产的有机结合。

生态环境问题一直是我国经济社会面临的一个共性难题。工业油料植物,如蓖麻、光皮树、油桐和山苍籽等,对重金属污染土地、废弃矿区和盐碱地有相当强的耐受力。目前,全国受重金属污染的土地达到1000万公顷以上。湖南是重金属污染最为严重的省份之一,因金属矿产开采等直接造成的林地污染及植被破坏有17万多公顷,受到不同程度的重金属污染威胁的耕地有106万公顷,受到较为严重的重金属污染的耕地有20 多万公顷,受重金属污染影响的湿地等水域面积则更大。大规模培育工业油料植物,在提供能源产品解决能源危机的同时,也可以治理重金属污染、改善土壤质量。另一方面,工业油料高效转化油脂基化工产品、油脂基能源产品和油脂基材料产品,相对于用石油原料生产同类产品,具有毒性低、易生物降解、适应环境强等优点,可以减少二氧化碳等温室气体排放和颗粒物质释放,达到节能减排的目的。

我国的贫困人口基本分布在丘陵山区。经济落后的重要原因是森林资源不能高效转化为市场需要的商品。生物柴油、生物油和生物航空燃料油以及油脂化工产品大规模应用于燃料油市场后,原料油的需求将大量增加。这将大大促进工业油料植物种植基地发展及农林业产品结构优化调整,迫使工业油料植物原料生产进一步扩大规模、深化拓展,逐步形成工业油料植物农业、工业油料林业和生物质燃料油生产三位一体的生物液体燃料工业体系,使之成为广大农村地区振兴地方经济的重要支柱产业,为高效农林业创出一条新路。不少从事传统农业生产的农民可以生产油脂工业品,从而为农村地区带来更多的就业机会,增加农民和林区职工收入,进一步促进农村经济发展和农民脱贫致富,缓解由农村向城市移民的浪潮,缓解城市就业压力,增强农村经济的活力。另外,工业油脂清洁高效加工新技术的推广使用,将促进油脂产品升级,引领包括生物柴油、生物油和固化剂等产品在内的工业油脂新兴产业及良种、技术、产品和加工装备产业的发展。

以上充分表明,工业油料植物产业不与粮食争地,能缓解能源危机、改善生态环境、生产高附加值产品、提高就业机会、带动新农村建设,具备了巨大的发展潜力和广阔的市场开发前景,势在必为。

(未完待续)

篇(7)

 

一、前言

回顾我国“十五”交通发展,我国交通事业保持了快速健康发展的良好势头,全社会累计完成交通建设投资21957亿元,年均增长18.7%,超过建国以来51年完成投资的总和,是“九五”期间完成投资的1.92倍,其中公路建设完成了19505亿元,使高速公路的建设实现了历史性突破,高速公路总里程达到了4.1万公里,“两纵两横三个重要路段”全部建成;新建农村等级客运站3232个,停靠站点10.2个,新增农村客车1.23万辆,乡镇客车通达率98%,建制村通车率81%。同时根据国家统计局的权威数字,截至2005年底,中国民用汽车保有量为3160万辆,其中私人汽车保有量为1852万辆,占总量的58.6%。私人汽车中,载货汽车452万辆,载客汽车1384万辆。博士论文,环境保护措施。

二、交通发展对环境的影响

交通事业的迅猛发展,给国民经济的发展带来巨大的动力的同时也给环境带来了巨大的压力,具体表现在:

1、交通建设期间对环境的影响

(1)、地形地貌的变化,导致生态循环系统的改变

高速公路的路线一般较长,与地方的道路和管渠等交叉在一起,由于高速公路的运营是处于一个全封闭状态下的,因此高速公路的标高或高于原地面或低于原地面,致使大量的开挖或回填不同程度地对周围的地形地貌产生破坏,相应的破坏了土体原有的自然结构和水循环路径,改变了沿线生物的生存环境,影响了其生长、活动的规律,可能会导致某些生物或植物的生存危机,在一定程度上破坏了当地的生态循环系统。

(2)、植被的破坏,造成大量的水土流失

因公路建设过程中不可避免的大开大挖,破坏了原地表植被,导致了土表裸露、土质松软,增加了水土冲刷量,造成河流、沟渠淤积、积水淹漫农田等水土流失灾害。据不完全统计,全国水土流失面积解放初期为17.4亿亩,到1980年约治理6亿亩。由于治理赶不上破坏,水土流失面积却扩大到22.5亿亩,约占国土总面积的1/6,涉及近千个县。全国山地丘陵区有坡耕地约4亿亩,其中修梯田约1亿亩,而另外3亿亩坡地正遭受水土流失的危害。

(3)、水资源的污染,导致水中生物的大量死亡

沿河公路的修建过程中,部分单位的环保意识差,将钻孔桩用泥浆直接排放到河水中,导致河道淤塞,影响船只正常通行;同时由于泥浆中添加了Na2CO3(俗称碱粉或纯碱)、NaOH(氢氧化钠)等化学材料,对河水的水质也产生一定的影响,导致水中生物的大量死亡。

2、交通运营期间对环境的影响

(1)、汽车尾气的排放对环境的影响

以汽油、柴油为燃料的汽车开动时会产生废气和固体微粒。废气中含有水蒸气、一氧化碳、二氧化碳、氮氧化合物、硫化物、甲烷、乙烯、醛和铅颗粒等污染物, 这些污染物排放到大气中, 渗透到水、土壤中, 并逐渐积累, 会对沿线的人类和动植物产生不良影响,使其生活环境进一步恶化, 甚至会造成全球气候异常, 这种污染的程度随着公路运营时间的增长及交通量的增加而不断加重。

(2)、汽车所产生的噪音对人类及其他生物的影响

公路运营过程中,汽车车体振动、发动机运转、轮胎与路面摩擦、鸣喇叭以及公路沿线提供各种服务设施、设备均会产生噪声, 在公路沿线形成一条噪声带, 这些噪声对附近的人群产生心理(失眠等) 和生理(血管收缩、听力受损等) 上的影响,降低人们的工作效率,尤其对公路两侧人口密度较大的敏感区域(学校、住宅区、商业区、医院等) 干扰较为突出,而野外区域的干扰则较小。

(3)、汽车产生的油污染

汽车在运行过程中滴、漏油和车辆在维修过程中产生的污油都会随着水的流动而渗入土壤中从而对当地的生态环境产生影响。

(4)、汽车在夜间运行过程中产生的光污染

光污染是一类特殊形式的污染,它包括可见光、激光、红外线和紫外线等造成的污染。可见光污染比较多见的是眩光。例如每当夜晚在马路边散步时,迎面而来的机动车前照明灯把行人晃得眼都睁不开,这就是一种光污染,叫做眩光。博士论文,环境保护措施。

三、保护措施

1、全球环保措施的发展

由于在前期的人类活动中,人们只是将经济利益最大化作为追求目标,忽视了对自然环境的保护工作,现在大自然已经开始了“回报”人类了。1952年伦敦烟雾事件、臭氧层空洞、海平面上升、土地沙漠化和各地酸雨现象等的频频发生给人类敲响了警钟,,使越来越多的国家和社会开始关注环境保护工作,并提出了可持续发展的口号。

可持续发展 (SustainableDevelopment) 是八十年代提出的一个新概念。1987年世界环境与发展委员会在《我们共同的未来》报告中第一次阐述了可持续发展的概念,得到了国际社会的广泛共识。全球可持续发展五大要点:①发展援助:发达国家向发展中国家增大经济援助的力度,其援助比例达到其国家生产总值的0.7% ;② 环境保护:工业化国家应当恪守“京都议定书”官员限制温室气体排放量的规定,保护地球环境,防止全球继续变暖;③ 清洁水源:节约用水,并到2015年实现一半以上缺乏清洁饮用水源的人口提供洁净饮用水;④ 能源开发:大力推广清洁能源及电能的提高,提高可再生能源在能源消费结构中的比例;⑤绿色贸易:促进世界生产及贸易过程中的环保意识和社会责任感。

2、我国交通环保措施

我国根据可持续发展战略,制定了《中国21世纪初可持续发展行动纲要》,并针对交通事业的发展提出了交通行业由能源消耗型的行业向节约型行业转变的口号。在资源、能源和资金约束日趋明显的情况下,必须采取更加有效的措施,节约土地,节能降耗,以保证实现“十一五”发展目标。节约土地就是要落实最严格的耕地保护制度,最大限度地保护环境,从严把关,尽量利用荒地和废弃耕地。节能降耗就是要努力降低交通建设、运输管理各个领域、各个环节的建设成本和管理成本,发展循环交通经济,推进节约型行业建设。要进一步完善投融资机制,进一步拓宽筹资渠道,鼓励和引导社会资本进入基础设施建设领域。博士论文,环境保护措施。博士论文,环境保护措施。

公路建设必然会造成对环境的影响,要全然避免和杜绝是不可能的,因此我们必须要在《中国21世纪初可持续发展行动纲要》的指引下,合理规划、设计和施工以及后期的使用过程中尽量予以控制,使这种危害降低到最小。

(1) 做好路网的合理规划

我们在确定路网规划时,要从全局出发,树立公路建设与自然协调发展的系统观念,必须考虑将拟建设公路占用农田数量减少到最少,将公路对自然景观、文物古迹及国家自然保护区所造成的影响降到最低,对不可避免的环境影响要做出全面合理的评价,为以后阶段的公路环保设计提供依据。

(2) 进行公路建设项目预可、工可的环境评价

在路网规划或线位选定后,都应按照交通部1996年颁布了《公路建设项目环境影响评价规范(试行)》规范进行环境影响评价,超过规范和相关规定的方案要坚决摒弃。

(3) 做好施工过程中的环保宣传工作,同时制定严格的环保控制方法

通过宣传,使得环保观念深入到每个单位每个人的心中,形成“人人为环保”的态势;同时制定严格的奖罚措施,对于不按照环保办法执行,严重影响当地生态环境的单位予以重罚。

(4) 采用各种手段,减小噪音污染

研究表明:交通状况,音源、声音传播与噪声量密切相关。因此,防治噪声的主要方法有以下几种:一是加强交通管理, 上路前进行车辆噪声监测, 管制重车百分比,交通量及行车速度;二是调整纵坡,减少纵坡过大可能导致汽车爬坡时增加的噪声量;三是改进路面结构类型,改善面层混合料成分,适度修正横向刮纹间距或改作纵向拖纹处理,以谋求降低交通噪声;四是尽可能采用降噪效果好的路堑型式,尤其是路线通过敏感区时;五是适当设置遮蔽物,可在公路两侧设置隔声林带、隔音墙、隔音堤等,以降低噪声位准;六是实施减少噪声最直接有效的方法——改善车辆本身构造。

(4)汽车排放污染的防治

汽车排放的废气与固体微粒对大气的污染最为严重,这些污染会引起金属腐蚀,对建筑物和雕塑品造成破坏,抑制动植物生长,给经济、文化领域造成损失。因此,必须制定相关的汽车排放标准,机动车上路前需进行尾气检测;完善汽车的自身结构,改进发动机,采用电子控制燃油喷射,发明使用电动车、太阳能汽车和其它不污染环境的新型能源车;采用现代燃料,优先使用无铅汽油,增加以液化石油气或压缩天然气为燃料的气瓶车,推广气体燃料,使用符合规定的剂和燃油添加剂;研制和推广废气减毒装置,完善汽车保养和修理制度,推广节油装置。通过以上的措施,可将汽车排放物造成的污染降到最低的程度。博士论文,环境保护措施。

四 结语

环境与发展是不可分割的,它们相互依存,密切相关。博士论文,环境保护措施。因此我们在发展交通时必须坚持可持续发展的战略思想,清楚的认识到自身的位置和处境、优势和不足,进一步处理好发展与环境之间的关系,为我国综合国力的的增强和人类社会的发展作出贡献。.

参考文献:

1、中国21世纪初可持续发展行动纲要全文新华社2003.7.25

2、高艳龙,张榕情如何建设公路建设对环境的影响中国公路2003,24

篇(8)

        研究论文

        (257)co2对褐煤热解行为的影响 高松平 赵建涛 王志青 王建飞 房倚天 黄戒介

        (265)煤催化气化过程中钾的迁移及其对气化反应特性的影响 陈凡敏 王兴军 王西明 周志杰

        (271)应用tg-ftir技术研究黄土庙煤催化热解特性 李爽 陈静升 冯秀燕 杨斌 马晓迅

        (277)三维有序大孔fe2o3为载氧体的生物质热解气化实验研究 赵坤 何方 黄振 魏国强 李海滨 赵增立

        (284)首届能源转化化学与技术研讨会第一轮通知 无

        (285)o-乙酰基-吡喃木糖热解反应机理的理论研究 黄金保 刘朝 童红 李伟民 伍丹

        (294)基于流化床热解的中药渣两段气化基础研究 汪印 刘殊远 任明威 许光文

        (302)超临界水中钾对甲醛降解过程影响的研究 赵亮 张军 钟辉 丁启忠 陈孝武 徐成威 任宗党

        (309)反应温度对加氢残渣油四组分含量和结构的影响 孙昱东 杨朝合 谷志杰 韩忠祥

        (314)高温沉淀铁基催化剂上费托合成含氧化合物生成机理的研究 毛菀钰 孙启文 应卫勇 房鼎业

        (323)pd修饰对cdo.8zn0.2s/sio2光催化甘油水溶液制氢性能的影响 徐瑾 王希涛 樊灿灿 乔婧

        (328)热等离子体与催化剂协同重整ch4-co2 魏强 徐艳 张晓晴 赵川川 戴晓雁 印永祥

        (334)《燃料化学学报》征稿简则 无

        (335)磷化镍催化剂的制备机理及其加氢脱氮性能 刘理华 刘书群 柴永明 刘晨光

        (341)改性y型分子筛对fcc汽油脱硫性能的研究 董世伟 秦玉才 阮艳军 王源 于文广 张磊 范跃超 宋丽娟

        (347)燃料特性对车用柴油机有害排放的影响 谭丕强 赵坚勇 胡志远 楼狄明 杜爱民

        (356)o2/co2气氛下o2浓度对燃煤pm2.5形成的影响 屈成锐 徐斌 吴健 刘建新 王学涛

        (361)铁铈复合氧化物催化剂scr脱硝的改性研究 熊志波 路春美

        (367)如何写好中英文摘要 无

篇(9)

阳离子聚合物对树脂沉积的控制作用

回用白水用作纸机喷淋水可降低能耗

瑞典开发出新型草酸降解酶

竹浆和稻草浆的黑液除硅技术

优化工艺降低纸机真空度需求

美国纤维素乙醇转化技术的现状及发展

关于征集中国造纸学会第十五届学术年会论文的通知

美国生物质燃料产业的机遇和挑战

2011年中国造纸工业10项要闻评选及读者竞猜即将揭晓

欧洲木质纤维素生物质乙醇的生产、使用现状及展望

2011中国国际造纸和装备博览会暨全国纸张订货交易会在桂林召开

ArboraNano利用木材生物质材料开发高性能产品

废热回收——清洁技术的新浪潮

加拿大林产工业显示复苏迹象

福伊特造纸在中国的发展

2020年中东地区的纸张消费量将达到2900万t

'2011(第六届)中国国际造纸化学品展览会在上海隆重举行

《中国造纸》2011年度“玖龙纸业杯”优秀论文评选活动正在进行

带臭氧漂段的TCF漂白技术

细菌在纸厂废水净化生物硫循环中的作用

心材比例对亮果桉硫酸盐浆性能的影响

运用生物酶和白腐菌的针叶木生物机械法制浆

氧脱木素过程中添加剂对提高木素去除率的影响

酶处理对漂白硫酸盐蓝桉浆打浆性能的影响

改性无机粒子用作脱墨助剂

2010年中国造纸工业10项要闻评选读者竞猜活动通知

日本造纸工业固体废弃物处理

王子制纸富冈工厂N1纸机的操作经验

美国造纸工业及其能源结构概况

日本特种纸概况

加拿大造纸工业有望在2011年扭亏为盈

Heimbach公司新增靴式压榨带系列产品

Rottneros公司将退出南非纸厂项目

加拿大Kadant公司收购筛筒供应商和相关脱水设备生产线

Technidyne公司获得FPInnovations大胶黏物测定技术授权

篇(10)

本书第1作者Ibrahim Dincer是安大略理工大学机械工程系教授,也是工程和应用科学学院的项目负责人。他独自撰写或合作撰写过几十本书,发表过的期刊和会议论文被引用超过1000次,还发表过很多技术报告。他曾多次主持国内与国际会议、担任会议主席。他还参与了很多国际知名会议的初创工作,包括国际能源与环境专题讨论会等。他曾经担任过300余次主题演说,还担任着多种国际期刊的主编和编辑,如《国际能源研究期刊》,《国际燃烧热力学期刊》,以及《全球变暖研究》等。

本书采用独特的方式,融合了最新的技术信息、研究成果和成功示范应用,旨在吸引大量工程师、学生、工程实践人员、科学家和研究人员,为他们展现可持续能源技术的最新发展。

宁圃奇,博士,研究员

(中国科学院电工研究所)

Puqi Ning,Associate Professor

(Institute of Electrical Engineering,CAS)Giovanni Petrecca

Energy Conversion and

Management

2014

http:///book/

免责声明以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。

上一篇: 子女教育论文 下一篇: 医药学论文
相关精选
相关期刊
期刊推荐 润色服务 范文咨询 杂志订阅