生物燃料论文汇总十篇

时间:2023-03-16 15:24:37

生物燃料论文

生物燃料论文篇(1)

MFCs将可以被生物降解的物质中可利用的能量直接转化成为电能。要达到这一目的,只需要使细菌从利用它的天然电子传递受体,例如氧或者氮,转化为利用不溶性的受体,比如MFC的阳极。这一转换可以通过使用膜联组分或者可溶性电子穿梭体来实现。然后电子经由一个电阻器流向阴极,在那里电子受体被还原。与厌氧性消化作用相比,MFC能产生电流,并且生成了以二氧化碳为主的废气。

与现有的其它利用有机物产能的技术相比,MFCs具有操作上和功能上的优势。首先它将底物直接转化为电能,保证了具有高的能量转化效率。其次,不同于现有的所有生物能处理,MFCs在常温,甚至是低温的环境条件下都能够有效运作。第三,MFC不需要进行废气处理,因为它所产生的废气的主要组分是二氧化碳,一般条件下不具有可再利用的能量。第四,MFCs不需要能量输入,因为仅需通风就可以被动的补充阴极气体。第五,在缺乏电力基础设施的局部地区,MFCs具有广泛应用的潜力,同时也扩大了用来满足我们对能源需求的燃料的多样性。

微生物燃料电池中的代谢

为了衡量细菌的发电能力,控制微生物电子和质子流的代谢途径必须要确定下来。除去底物的影响之外,电池阳极的势能也将决定细菌的代谢。增加MFC的电流会降低阳极电势,导致细菌将电子传递给更具还原性的复合物。因此阳极电势将决定细菌最终电子穿梭的氧化还原电势,同时也决定了代谢的类型。根据阳极势能的不同能够区分一些不同的代谢途径:高氧化还原氧化代谢,中氧化还原到低氧化还原的代谢,以及发酵。因此,目前报道过的MFCs中的生物从好氧型、兼性厌氧型到严格厌氧型的都有分布。

在高阳极电势的情况下,细菌在氧化代谢时能够使用呼吸链。电子及其相伴随的质子传递需要通过NADH脱氢酶、泛醌、辅酶Q或细胞色素。Kim等研究了这条通路的利用情况。他们观察到MFC中电流的产生能够被多种电子呼吸链的抑制剂所阻断。在他们所使用的MFC中,电子传递系统利用NADH脱氢酶,Fe/S(铁/硫)蛋白以及醌作为电子载体,而不使用电子传递链的2号位点或者末端氧化酶。通常观察到,在MFCs的传递过程中需要利用氧化磷酸化作用,导致其能量转化效率高达65%。常见的实例包括假单胞菌(Pseudomonasaeruginosa),微肠球菌(Enterococcusfaecium)以及Rhodoferaxferrireducens。

如果存在其它可替代的电子受体,如硫酸盐,会导致阳极电势降低,电子则易于沉积在这些组分上。当使用厌氧淤泥作为接种体时,可以重复性的观察到沼气的产生,提示在这种情况下细菌并未使用阳极。如果没有硫酸盐、硝酸盐或者其它电子受体的存在,如果阳极持续维持低电势则发酵就成为此时的主要代谢过程。例如,在葡萄糖的发酵过程中,涉及到的可能的反应是:C6H12O6+2H2O=4H2+2CO2+2C2H4O2或6H12O6=2H2+2CO2+C4H8O2。它表明,从理论上说,六碳底物中最多有三分之一的电子能够用来产生电流,而其它三分之二的电子则保存在产生的发酵产物中,如乙酸和丁酸盐。总电子量的三分之一用来发电的原因在于氢化酶的性质,它通常使用这些电子产生氢气,氢化酶一般位于膜的表面以便于与膜外的可活动的电子穿梭体相接触,或者直接接触在电极上。同重复观察到的现象一致,这一代谢类型也预示着高的乙酸和丁酸盐的产生。一些已知的制造发酵产物的微生物分属于以下几类:梭菌属(Clostridium),产碱菌(Alcaligenes),肠球菌(Enterococcus),都已经从MFCs中分离出来。此外,在独立发酵实验中,观察到在无氧条件下MFC富集培养时,有丰富的氢气产生,这一现象也进一步的支持和验证这一通路。

发酵的产物,如乙酸,在低阳极电势的情况下也能够被诸如泥菌属等厌氧菌氧化,它们能够在MFC的环境中夺取乙酸中的电子。

代谢途径的差异与已观测到的氧化还原电势的数据一起,为我们一窥微生物电动力学提供了一个深入的窗口。一个在外部电阻很低的情况下运转的MFC,在刚开始在生物量积累时期只产生很低的电流,因此具有高的阳极电势(即低的MFC电池电势)。这是对于兼性好氧菌和厌氧菌的选择的结果。经过培养生长,它的代谢转换率,体现为电流水平,将升高。所产生的这种适中的阳极电势水平将有利于那些适应低氧化的兼性厌氧微生物生长。然而此时,专性厌氧型微生物仍然会受到阳极仓内存在的氧化电势,同时也可能受到跨膜渗透过来的氧气影响,而处于生长受抑的状态。如果外部使用高电阻时,阳极电势将会变低,甚至只维持微弱的电流水平。在那种情况下,将只能选择适应低氧化的兼性厌氧微生物以及专性厌氧微生物,使对细菌种类的选择的可能性被局限了。

MFC中的阳极电子传递机制

电子向电极的传递需要一个物理性的传递系统以完成电池外部的电子转移。这一目的既可以通过使用可溶性的电子穿梭体,也可以通过膜结合的电子穿梭复合体。

氧化性的、膜结合的电子传递被认为是通过组成呼吸链的复合体完成的。已知细菌利用这一通路的例子有Geobactermetallireducens、嗜水气单胞菌(Aeromonashydrophila)以及Rhodoferaxferrireducens。决定一个组分是否能发挥类似电子门控通道的主要要求在于,它的原子空间结构相位的易接近性(即物理上能与电子供体和受体发生相互作用)。门控的势能与阳极的高低关系则将决定实际上是否能够使用这一门控(电子不能传递给一个更还原的电极)。

MFCs中鉴定出的许多发酵性的微生物都具有某一种氢化酶,例如布氏梭菌和微肠球菌。氢化酶可能直接参加了电子向电极的转移过程。最近,这一关于电子传递方法的设想由McKinlay和Zeikus提出,但是它必须结合可移动的氧化穿梭体。它们展示了氢化酶在还原细菌表面的中性红的过程中扮演了某一角色。

细菌可以使用可溶性的组分将电子从一个细胞(内)的化合物转移到电极的表面,同时伴随着这一化合物的氧化。在很多研究中,都向反应器中添加氧化型中间体比如中性红,劳氏紫(thionin)和甲基紫萝碱(viologen)。经验表明这些中间体的添加通常都是很关键的。但是,细菌也能够自己制造这些氧化中间体,通过两种途径:通过制造有机的、可以被可逆的还原化合物(次级代谢物),和通过制造可以被氧化的代谢中间物(初级代谢物)。

第一种途径体现在很多种类的细菌中,例如腐败谢瓦纳拉菌(Shewanellaputrefaciens)以及铜绿假单胞菌(Pseudomonasaeruginosa)。近期的研究表明这些微生物的代谢中间物影响着MFCs的性能,甚至普遍干扰了胞外电子的传递过程。失活铜绿假单胞菌的MFC中的这些与代谢中间体产生相关的基因,可以将产生的电流单独降低到原来的二十分之一。由一种细菌制造的氧化型代谢中间体也能够被其他种类的细菌在向电极传递电子的过程中所利用。

通过第二种途径细菌能够制造还原型的代谢中间体——但还是需要利用初级代谢中间物——使用代谢中间物如Ha或者HgS作为媒介。Schroder等利用E.coliK12产生氢气,并将浸泡在生物反应器中的由聚苯胺保护的铂催化电极处进行再氧化。通过这种方法他们获得了高达1.5mA/cm2(A,安培)的电流密度,这在之前是做不到。相似的,Straub和Schink发表了利用Sulfurospirillumdeleyianum将硫还原至硫化物,然后再由铁重氧化为氧化程度更高的中间物。

评价MFCs性能的参数

使用微生物燃料电池产生的功率大小依赖于生物和电化学这两方面的过程。

底物转化的速率

受到如下因素的影响,包括细菌细胞的总量,反应器中混合和质量传递的现象,细菌的动力学(p-max——细菌的种属特异性最大生长速率,Ks——细菌对于底物的亲和常数),生物量的有机负荷速率(每天每克生物量中的底物克数),质子转运中的质子跨膜效率,以及MFC的总电势。

阳极的超极化

一般而言,测量MFCs的开放电路电势(OCP)的值从750mV~798mV。影响超极化的参数包括电极表面,电极的电化学性质,电极电势,电极动力学以及MFC中电子传递和电流的机制。

阴极的超极化

与在阳极观测到的现象相似,阴极也具有显著的电势损失。为了纠正这一点,一些研究者们使用了赤血盐(hexacyanoferrate)溶液。但是,赤血盐并不是被空气中的氧气完全重氧化的,所以应该认为它是一个电子受体更甚于作为媒介。如果要达到可持续状态,MFC阴极最好是开放性的阴极。

质子跨膜转运的性能

目前大部分的MFCs研究都使用Nafion—质子转换膜(PEMs)。然而,Nafion—膜对于(生物)污染是很敏感的,例如铵。而目前最好的结果来自于使用Ultrex阳离子交换膜。Liu等不用使用膜,而转用碳纸作为隔离物。虽然这样做显著降低了MFC的内在电阻,但是,在有阳极电解液组分存在的情况下,这一类型的隔离物会刺激阴极电极的生长,并且对于阴极的催化剂具有毒性。而且目前尚没有可信的,关于这些碳纸-阴极系统在一段时期而不是短短几天内的稳定性方面的数据。

MFC的内在电阻

这一参数既依赖于电极之间的电解液的电阻值,也决定于膜电阻的阻值(Nafion—具有最低的电阻)。对于最优化的运转条件,阳极和阴极需要尽可能的相互接近。虽然质子的迁移会显著的影响与电阻相关的损失,但是充分的混合将使这些损失最小化。

性能的相关数据

在平均阳极表面的功率和平均MFC反应器容积单位的功率之间,存在着明显的差异。表2提供了目前为止报道过的与MFCs相关的最重要的的结果。大部分的研究结果都以电极表面的mA/m以及mW/m2两种形式表示功率输出的值,是根据传统的催化燃料电池的描述格式衍生而来的。其中后一种格式对于描述化学燃料电池而言可能已经是充分的,但是MFCs与化学燃料电池具有本质上的差异,因为它所使用的催化剂(细菌)具有特殊的条件要求,并且占据了反应器定的体积,因此减少了其中的自由空间和孔隙的大小。每一个研究都参照了以下参数的特定的组合:包括反应器容积、质子交换膜、电解液、有机负荷速率以及阳极表面。但仅从这一点出发要对这些数据作出横向比较很困难。从技术的角度来看,以阳极仓内容积(液体)所产生的瓦特/立方米(Watts/m3)为单位的形式,作为反应器的性能比较的一个基准还是有帮助的。这一单位使我们能够横向比较所有测试过的反应器,而且不仅仅局限于已有的研究,还可以拓展到其它已知的生物转化技术。

此外,在反应器的库仑效率和能量效率之间也存在着显著的差异。库仑效率是基于底物实际传递的电子的总量与理论上底物应该传递的电子的总量之间的比值来计算。能量效率也是电子传递的能量的提示,并结合考虑了电压和电流。如表2中所见,MFC中的电流和功率之间的关系并非总是明确的。需要强调的是在特定电势的条件下电子的传递速率,以及操作参数,譬如电阻的调整。如果综合考虑这些参数的问题的话,必须要确定是最大库仑效率(如对于废水处理)还是最大能量效率(如对于小型电池)才是最终目标。目前观测到的电极表面功率输出从mW/m2~w/m2都有分布。

优化

生物优化提示我们应该选择合适的细菌组合,以及促使细菌适应反应器内优化过的环境条件。虽然对细菌种子的选择将很大程度上决定细菌增殖的速率,但是它并不决定这一过程产生的最终结构。使用混合的厌氧-好氧型淤泥接种,并以葡萄糖作为营养源,可以观察到经过三个月的微生物适应和选择之后,细菌在将底物转换为电流的速率上有7倍的增长。如果提供更大的阳极表面供细菌生长的话,增长会更快。

批处理系统使能够制造可溶性的氧化型中间体的微生物的积累成为了可能。持续的系统性选择能形成生物被膜的种类,它们或者能够直接的生长在电极上,或者能够通过生物被膜的基质使用可移动的穿梭分子来传递电子。

通过向批次处理的阳极中加入可溶性的氧化中间体也能达到技术上的优化:MFCs中加入氧化型代谢中间体能够持续的改善电子传递。对这些代谢中间体的选择到目前为止还仅仅是出于经验性的,而且通常只有低的中间体电势,在数值约为300mV或者还原性更高的时候,才认为是值得考虑的。应该选择那些具有足够高的电势的氧化中间体,才能够使细菌对于电极而言具有足够高的流通速率,同时还需参考是以高库仑效率还是以高能量效率为主要目标。

一些研究工作者们已经开发了改进型的阳极材料,是通过将化学催化剂渗透进原始材料制成的。Park和Zeikus使用锰修饰过的高岭土电极,产生了高达788mW/m2的输出功率。而增加阳极的特殊表面将导致产生更低的电流密度(因此反过来降低了活化超极化)和更多的生物薄膜表面。然而,这种方法存在一个明显的局限,微小的孔洞很容易被被细菌迅速堵塞。被切断食物供应的细菌会死亡,因此在它溶解前反而降低了电极的活化表面。总之,降低活化超极化和内源性电阻值将是影响功率输出的最主要因素。

IVIFC:支柱性核心技术

污物驱动的应用在于能够显著的移除废弃的底物。目前,使用传统的好氧处理时,氧化每千克碳水化合物就需要消耗1kWh的能量。例如,生活污水的处理每立方米需要消耗0.5kWh的能量,折算后在这一项上每人每年需要消耗的能源约为30kWh。为了解决这一问题,需要开发一些技术,特别是针对高强度的废水。在这一领域中常用的是UpflowAnaerobicSludgeBlanket反应器,它产生沼气,特别是在处理浓缩的工业废水时。UASB反应器通常以每立方米反应器每天10~20kg化学需氧量的负荷速率处理高度可降解性的废水,并且具有(带有一个燃烧引擎作为转换器)35%的总电力效率,意味着反应器功率输出为0.5~1kW/m3。它的效率主要决定于燃烧沼气时损失的能量。未来如果发展了比现有的能更有效的氧化沼气的化学染料电池的话,很可能能够获得更高的效率。

生物燃料论文篇(2)

一、生物液体燃料(生物燃油)是中国今后开发利用生物质能的一个主要方向 1.1生物液体燃料产业的主要驱动因素是石油安全 生物质能资源包括农作物秸秆和农业加工剩余物、薪材及林业加工剩余物、禽畜粪便、工业有机废水和废渣、城市生活垃圾和能源植物,可转换为多种终端能源如电力、气体燃料、固体燃料和液体燃料,其中受到最多关注的是生物质液体燃料(生物燃油)。世界不少国家已经开始发展生物燃油产业(包括生物燃油加工业以及其相关产业,如能源农业和能源林业),其中共同的目的在于保障石油安全。 2011年中国石油净进口量为1.2亿吨,消费量为3.1亿吨,进口依存度达到了38.7%;国际能源署(IEA)预测中国到2010年、2020年石油进口依存度将达到61.0%和76.9%。石油进口量和进口依存度的迅速攀升给中国石油安全带来了日益严重的影响;中国的石油安全问题也引起了一些国家的顾虑。国产的石油和石油替代燃料能否“养活中国”呢?与资源有限的煤炭液化和国内油气资源开发等手段相比,资源可再生而且潜力巨大的生物燃油技术也受到了越来越多的关注。巴西生物燃油产业利用蔗糖发酵制取生物乙醇,2002年消费量达到了104亿公升,替代率接近40%。 美国和欧盟国家在生物燃油产业方面也有丰富的经验。不过巴西的发展背景与中国更为接近。巴西生物燃油产业(以生物乙醇工程为开端,后来又发展了生物柴油)源于1975年,起因主要有二:一是出于国家能源安全和经济发展的考虑,在1973-1974年第一次石油危机中,由于巴西80%的燃料依赖进口,油价暴涨使巴西损失了40亿美元,经济也受到沉重打击;其次是为了促进国内种植业的发展和保护农民的利益,因为巴西是全球最大的甘蔗种植区。 1.2发展生物燃油产业将带来显著的环境效益 能源农林业的大规模发展可以有效地绿化荒山荒地、减轻土壤侵蚀和水土流失。大量使用生物燃油对中国大气环境的保护和改善也有着突出的意义:与化石燃料相比,生物燃油的使用很少产生NOx和SOx等大气污染物;由于生物质CO2的吸收和排放在自然界形成碳循环,其能源利用导致的CO2排放远低于常规能源。到2050年生物燃油开发量如果能达到1.05亿吨(这一数据是基于能源研究所2005年“中国能源中长期开发利用前景分析”研究项目的生物质能部分的情景分析;情景分析中能源林业以生产生物柴油原料为主,能源农业以生产生物乙醇原料为主;其中2020年、2030年、2050年预计开发量为:生物乙醇0.039、0.079、0.16亿吨,生物柴油0.15、0.33、0.89亿吨),则可绿化约3000万公顷荒山荒地,减排约3.1亿吨CO2。 1.3发展生物燃油产业将为中国“三农”问题的解决做出相当的贡献 建设从能源农林业到生物燃油加工业的生物燃油产业链可以成为中国解决“三农”问题的一个有力手段。 1.3.1带动农业经济和林业经济 2020年生物燃油开发量预计为1900万吨左右,初步估算可给国家和地方创产值1000亿元。到2050年生物燃油开发量如果能达到1.05亿吨,将创造5000亿元左右的年产值、吸纳1000万个以上的劳动力(主要是能源农林业接纳的就业),并为带动农村经济发展起到极大的作用;形成这部分生物燃油产能的初始投资(主要是产业建设投资,荒地改造和树种等费用相对较低)预计可以控制在1.0万亿元以内:年产值与产能投资的比值(大于1:2)大于某些常规能源产业的比值(例如,火电的年产值与产能投资的比值约为1:2.5)。 1.3.2创造大量就业特别是农村地区的就业 可以吸纳1000万个以上的劳动力,其中主要是农村劳动力,这有利于缓解农村大量劳动力闲置的局面。 1.3.3为中国的城镇化建设提供有力支持 一方面,中国的城镇化建设提高了人均能源需求量,特别是人均燃油需求量;另一方面,城镇化建设需要与之相伴的产业建设和就业机会的创造(一定程度上还需要增加在农村的就业机会以缓冲农村向城镇的移民浪潮):能源农林业(和生物燃油加工业)在这两方面都可以发挥重要作用。 二、中国生物燃油发展现状与趋势 2.1中国发展生物燃油产业已有一定的技术基础 生物燃油产业的核心技术是生物燃油技术和能源作物的选育和种植技术。自“八五计划”期间已经开

生物燃料论文篇(3)

目前,国际流行的淀粉质产品制造乙醇技术分为三类:一是使用玉米或者小麦等粮食作物;二是用红薯、木薯、甜高粱等非主粮等;第三类则是农作物秸秆、林业加工废料、甘蔗渣及城市垃圾中所含的废弃生物生产,统称为纤维素。三种技术中,最为成熟的是玉米、小麦和甘蔗为代表的乙醇生产技术,巴西和美国已经有大规模的制造基地。 相对于玉米等粮食原料,木薯、甘薯、甘蔗等非粮乙醇虽能避免粮食消耗,但目前非粮乙醇产业化程度还不高。虽然多种作物可以作为能源作物开发,但真正能实现规模化商业开发的只有玉米、小麦、甘蔗等少数。近年来,世界各国发展生物燃料雄心勃勃,但是其代价则是全球粮价飙升,而大豆、玉米和小麦将首当其冲。在吃不饱或吃不好的情况下,把粮食转化为燃料在伦理上是进退两难的选择。 从长远来看,植物纤维也就是以秸秆等纤维素为原料的燃料乙醇,才是今后行业的发展方向,而薯类和甜高粱仍然只是燃料乙醇的过渡原料。 一、玉米 1.“饿死穷人”去“喂饱汽车” 生物燃料包括生物柴油和燃料乙醇,而豆油和玉米分别是美国生物柴油和燃料乙醇的基本原料,目前美国国内生物燃料的研发和生产火热,大型、超大型的工厂不断上马,对豆油和玉米的需求增长速度不断加快。美国提出未来10年内把美国的汽油消耗量缩减20%和增加生物燃料产量至1.07亿吨的能源目标,并实施了一系列扶持燃料酒精项目的政策,美国燃料酒精产量飞速增长。06/07年美国燃料酒精消耗了5400万吨酒精用玉米,约占全国玉米总产量的20%。预计2007/08年使用酒精用玉米8400万吨,约占全国玉米总产量的25%。美国鼓励生物能源的生产,必将为生物能源的主要原料玉米提供需求基础,同时也势必增加美国国内对玉米的使用量,进而减少美国在全球的玉米供应量,使得全球玉米库存减少。 由于世界乙醇汽油用玉米呈现强劲增长走势,年增长需求达25%,导致玉米价格持续走高。发达国家带动的全球乙醇汽油投资热,已经引起发展中国家的极大愤怒。墨西哥的玉米饼价格大幅上升引起大规模的民众抗议示威活动。委内瑞拉总统说,大量使用乙醇燃料就是以“饿死穷人”的代价去“喂饱汽车”。就连美国专家也预言:乙醇汽油热将造成世界8亿机动车主与20亿贫困人口大规模地争夺粮食。 2.从能源偿还比来看并不划算 要考虑从生物燃料取得效益的发展机遇,应从长远发展角度着眼。谷物基乙醇的原料直接与食品来源相竞争,其生命循环周期的碳排也是一个问题,这一能源投资的能源偿还(EROEI)比所需求的要少得多,这意味着产生的净能量很难高于生产它所使用的能量。乙醇要通过许多步骤才供应到用户:一是玉米种植、施肥和收割,二是玉米运送到乙醇工厂,三是生产乙醇,四是用槽车或罐车把乙醇运送到调合现场,五是调合,六是配送。把乙醇送到市场、送到每个调合中心经过许多步骤,大大增加了供应的复杂性。为增加原料、收割、加工和供应到市场的乙醇数量,生产乙醇要在化石燃料能源方面大量投资。因为各个步骤都需要使用化石燃料,作为运输燃料乙醇提供的能量应该超过生产它所消耗的能量。美国生产乙醇主要是用玉米,这种乙醇的能量只是比消耗的能量稍多一点。 2008年4月,美国能源部长塞缪尔?博德曼(Samuel Bodman)称,以玉米为原料的乙醇生产增长是导致粮食价格上涨的原因之一,美国应开始逐渐减少以玉米等粮食作物为原料生产乙醇。在寻求整体能源结构多样化的同时,我们还必须追求生物燃料的多样化。但博德曼并不贬低玉米乙醇的重要性,对玉米目前对美国能源安全性持肯定态度。但指出我们必须开发并使用新一代的乙醇。 二、木薯 1.木薯的优势 木薯具有成本低廉,能源开发不与人畜争口粮的突出特点,据统计,以木薯生产酒精,每亩土地可得到的酒精量是玉米,稻米的两倍。 自去年以来,国家发改委委托有关咨询公司对湖北、河北、江苏、江西、重庆五省份的评估结论认为,利用薯类作为燃料乙醇生产原料,符合国家“非粮替代”“不与人争粮”的要求。国家发改委建议,各省应该根据当地的国土资源状况,制定可靠的薯类原料基地建设方案,确保薯类原料供应。国家发改委称,薯类燃料乙醇的生产可促进农业和农村发

生物燃料论文篇(4)

中图分类号:V31 文献标识码:A 文章编号:1674-098X(2016)11(b)-0021-03

在航空科学技术广泛的领域中,进步与发展日新月异。而在航空技术的发展进步过程中,作为能源的航空燃料的发展显得尤为重要。在能源紧缺、环境恶化、先进航空与绿色航空亟待发展的大环境影响下,航空燃料的发展面临着新的挑战与机遇。

随着近代航空工业的飞速进步,航空燃料一直在不断发展中。但由于目前燃油紧缺和价格上涨,航空燃料已成为制约我国航空产业发展的重要因素之一。为了更好地发展先进航空燃料,对其性质的理论研究已成为当务之急。当前人们对喷馊剂系难芯恐饕集中在合成燃料、生物燃料及改性燃料3个方面,其中合成燃料成本相对较高;生物燃料有着广阔的前景,但仍处于试验阶段。在这种背景下,改性航空燃料不失为一种经济有效的方法。

该文通过改变航空燃料的配比及分析,以改良航空燃料的性能,从而提高航空燃料的利用率,降低飞行的风险,推动航空工业的发展。同时,在分析过程中,会对分子的结构与航空燃料的性能之间的关系加以总结,以便对完整的航空煤油组分结构进行理论分析。

1 研究过程

设计好的各配比的组分含量见表1。

1.1 航空燃料的密度

1.1.1 密度计算方法――基团键贡献法

密度在航空燃料的性质中占有很重要的位置。考虑到机身自重,所以要分析出燃料随配比变化而有所有益的一项,减轻飞机的重量,从而降低能耗。

研究密度有多种方法,比如LK方程、基团贡献法、基团键贡献法等。综合各方法利弊,选择基团键贡献法作为该文研究密度的计算方法。

基团键贡献法中的基团键是指两个基团之间形成的化学键。基团键的重点是考虑化学键所连接的基团,而不是原子。相比较其他计算密度的方法而言,基团键贡献法不仅计算量较小,而且考虑了基团的特性和链接性,能够更好地区分同分异构体,有着较强的区分结构的能力,有助于研究组分结构对密度变化的影响。

1.1.2 相关计算公式

定义GBi以确定基团键的种类和数目:

GB

密度ρ与分子结构密切相关,对于基团键GBi表征的分子结构而言,其密度ρ必然为GBi的函数,使用数学方法做近似的处理。考虑到不同基团键对密度的影响程度不同以及当基团键数目无限增加时密度区域有限值这一客观事实,故选择密度函数为:

其中,n(GBi)为基团键GBi的数目;ci和wi为与基团键特性有关的常数。这些常数均可查表获得。

1.1.3 计算结果与讨论

分析比较表2数据可知,设计配比为配比3的航空燃料密度值最大。配比2设计中直链烷烃组分与配比3相同,配比4设计中单支链烷烃组分与配比3相同,配比5设计中双支链烷烃组分与配比3相同,这3种配比密度值都低于配比3,因此没有一种结构对密度产生明显影响。而相对与配比1,配比3提高了各组结构中碳原子数较高化合物的组分含量,配比1为全组中计算密度值最低的配比,因此可以认为主要是各组结构中碳原子数目对混合物密度值造成影响。

1.2 航空燃料的热值

1.2.1 热值的计算方法――键能法

考虑到当代喷气式飞机的高速飞行需要强大的动力支持,所以要分析不同配比下的航空燃料的热值,选择出其中热值较高的一项,从而提高飞行效率,减小不必要的能耗。

在物理化学中,求解热值有多种方法。该文选择键能法作为航空燃料热值的计算方法。

键能法中,化学键的键能定义为把拆开1 mol某化学键所吸收的能量,通常用E表示,单位为kJ/mol或kJ・mol-1。那么,反应热ΔH等于反应物的键能总和与生成物的键能总和之差。而1 mol某物质的燃烧所放出的热量为该物质的摩尔生成热即为该物质的热值。

1.2.2 相关计算公式

对于化学反应而言,其实质就是旧键的断裂和新键的生成,所以说化学键在燃烧中是需要十分关注的一项。热值的相关计算公式为:

ΔH=∑E(反应物)-∑E(生成物)

其中,ΔH为反应物的热值解;∑E(反应物)为反应物的键能总和;∑E(生成物)为生成物的键能总和。

对于航空燃料而言,其中的组分大部分为烷烃。而对于烷烃而言,其燃烧反应过程中,化学键类型主要为:C-C、C-H、O=O、C=O、O-H,查询JANAF表,得到5种化学键的键能。

1.2.3 计算结果与讨论

分析比较表3的数据可知,在6组设计配比中配比3的热值最大。配比2与配比6中碳原子数目相同,而结构不同,但二者的热值计算结果确实一致。同样地,配比4与配比5亦是如此。由此可见,未有一种结构对热值产生明显影响。而由配比1到配比2、6到配比4、5再到配比3,各组的结构中碳原子数较高化合物的组分含量增加,因此可认为混合物热值的主要影响因素为各组结构中碳原子数目。

1.3 航空燃料的闪点

1.3.1 闪点计算方法――基团贡献法

当代喷气式飞机由行速度很快,所以需要在短时间内燃烧大量的航空燃料来提供动力。航空燃料的闪点若是不高,那么其进入燃料室中便极其容易发生剧烈的反应。

常见的闪点计算方法有多种,例如Lydersen方程、定位分布贡献法、基团贡献法等等。其中基团贡献法利用烃类混合物中每一个基团的特性分别进行计算,其计算结果与烃类混合物的闪点实验值较为接近,选取基团贡献法作为该文关于闪点的计算方法。

在基团贡献法中,通过对于不同的基团的分析,从而进一步确定分子的结构特征,更好地估算出混合物的闪点。因此也能够从六组配比中选择出闪点较高的一组,提高航空燃料的性能。

1.3.2 相关计算公式

混合物的闪点是很重要的,但是对于混合物闪点实验上的测定却是十分困难的。所以,综合Li的体积分数法和Castillo的热容分数法,可将分子结构特征与混合物临界温度的关系表示为:

δi=,TδiT闪ci

式中,Yi为组分i的摩尔分数;T闪点i为组分i的闪点;Fi为与分子结构特征相关的函数。而由气体热容数据确定的Fi与分子结构特征的关系为:

式中R=1.99,分子结构特征参数ai、bi,参数Δi的数值均为查表得出。

1.3.3 计算结果与讨论

分析比较表4中的数据可知,设计配比为配比6的航空燃料的闪点最大。同时,配比3的闪点也为较高,仅与配比6的闪点相差约为0.304 K,与配比6的闪点几乎相近。配比1与配比5中碳原子数较少的组分含量较多,配比2和配比4支链的组分含量较少。而相比较其他配比而言,配比3和配比6中双支链的烷烃含量较多。因此可以认为主要是各组结构中支链数目对混合物闪点造成影响。

2 数据整理与分析

综合第2节的研究过程中的结论与分析,可以粗略地总结出与航空燃料的密度、热值以及闪点的变化规律。第一,航空燃料组分中的碳原子数目对密度有着主要的影响,碳原子数的烷烃含量越多,那么航空燃料的密度就越大。第二,航空燃料的热值大小仍取决于其中高碳含量组分的多少,高碳含量组分越多,其热值越高。第三,对于闪点而言,其大小则取决于燃料中支链的多少,支链较多、结构较为复杂的烷烃组分的含量越大,航空燃料的闪点就高。

综合表4以及表3,配比3的热值、闪点在所设计的6种配比中较大,这用于航空燃料可以对于发热量以及安全性方面作出基本的保障。虽然配比3的密度在所设计的六种配比中的密度较大,可能会对航空发动机燃油总质量造成一定的影响。但是对比热值和闪点的优势而言,该文认为其优势可以弥补密度所造成的损失。因此,在目前6种设计配比中,配比3为最优配比。

由于此次研究仅针对航空煤油RP-3的26.2%进行,旨在定性层面对不同配比下航空燃料性质随混合物各组分结构、碳数变化的可能变化进行研究,日后可以参考此次研究结果,对完整的航空煤油组分结构进行理论分析,从而选择出更好的、优质的、先进的航空燃料配比组成。

3 结语

该文针对传统航空燃料性能上的不足,利用改变航空燃料的配比的方法来提高燃料的性能。通过对不同配比下航空燃料性能的分析,发现有些配比下的航空燃料的性能有着明显的提高。同时,笔者也总结出分子结构、碳原子数目等与航空燃料性能之间的规律,以便分析其他航空燃料性能的使用。综上,该文完成了不同配比下航空燃料性质变化的理论分析,为未来先进航空燃料发展提供了一定理论基础。

参考文献

生物燃料论文篇(5)

 

燃料燃烧要放出热量,相同质量的不同燃料完全燃烧放出的热量是不一样的。热值这个物理量的引入就是为反映燃料燃烧的放热本领。我们把1千克某种燃料完全燃烧放出的热量,叫做这种燃料的热值。热值的单位是焦/千克,读做焦每千克。

知道了某种燃料的质量和热值,计算它燃烧时放出热量的公式是:放出热量=燃料热值×质量。若用Q表示放出热量,q表示热值,m表示质量,则公式写成Q=qm。

二、两种热机

关于内能的利用,有两个重要方面。内能的一个重要应用就是用它来加热物体。内能的另一个重要应用就是用它来做功。各种热机就是利用内能做功的机器。

内燃机是使燃料直接在气缸里燃烧,也就是全部能量转换过程在发动机内完成的热机。应用最广泛的内燃机有汽油机和柴油机两种。

汽油机和柴油机在构造上大致相同,它们在构造上的区别是汽油机气缸顶部装有火花塞,用它产生的火花来点燃从汽化器送进气缸里的雾状燃料混合物。而柴油机气缸顶部没有火花塞,但有一个喷油嘴,没有汽化器,但有高压油泵中国期刊全文数据库论文开题报告范文。柴油机的点火是在压缩冲程末由高压油泵经喷油嘴向汽缸内喷射雾状柴油,雾状柴油遇到远远超过它的燃点的热空气,便立即燃烧。

汽油机和柴油机的工作过程,都是由吸气冲程、压缩冲程、做功冲程、排气冲程这四个冲程组成。完成每个工作过程初中物理论文初中物理论文,曲轴要转两周。在柴油机里,推动活塞做功的燃气的温度和压强都比汽油机里高,燃气做的功较多,所以效率比汽油机高,功率较大。

汽油机和柴油机的区别我们可以用下面的表格表示:

三、热机的效率

在热机里,用来做有用功的那部分能量跟燃料完全燃烧所放出的能量之比,叫做热机的效率。

如果用Q表示燃料完全燃烧放出的热量。Q1表示与有用功相当的热量,表示热机的效率。那么有:

蒸汽机的效率很低,只有6%~15%,内燃机效率比蒸汽机的高,汽油机的效率为20%~30%,柴油机的效率为30%~45%。热机效率是热机性能的一个重要指标。

四、内能的利用与环境保护

关于内能的利用和环境保护的问题。要知道工业企业,交通运输工具,家庭炉灶和取暖设备,它们都要用煤、石油等燃料,以取得和应用内能。它们排放的烟尘废气是大气污染的主要来源。

生物燃料论文篇(6)

 

能源和环境污染已是人们非常关注的问题,世界上各发达国家和我国早在几十年前就已开始太规模地研究,并在生产各环节上加以控制。富氧燃烧即在燃烧的助燃空气中加大氧含量,可以大大地改善燃烧条件,提高燃烧效率,减少大气污染,因而是改善燃烧的较好方法之一。论文参考网。

近年来,国外发达国家玻璃行业中的富氧及全氧燃烧技术研究及应用已逐渐推广,他们的研究结果表明,采用富氧燃烧或全氧燃烧技术,不仅节省燃料、减少废气及有害气体的产生量,而且可以使产量提高,窑炉炉龄延长,且玻璃成本下降。至于富氧燃烧技术在水泥行业的应用,还未见报导.为探讨其应用的可能性,本文通过理论分析对其在水泥回转窑的应用进行初步探讨。

1富氧燃烧缩短燃料完全燃烧所需的时间

增加空气中氧气的浓度,如氧的浓度能提高到25%,则煤粉的燃烧时问可大大缩短,为此,按无灰碳粒燃烧的计算公式 进行估算 设τ1为当空气中氧气的浓度为21% 时,碳粒完全燃烧所需的时间(s)τ1。设τ2为当空气中氧气的浓度为25%时,碳粒完全燃烧所需的时间(s)τ2。

τ1=ρδ/(8mD×0.21×1.428) (1)

τ2=ρδ/(8mD×0.25×1.428) (2)

式中:ρ为碳粒的密度(kg/m3),δ为碳粒的颗粒直径(m);D为氧气的扩散系数(m2/s);m为碳与氧的化学当量E(0.375);1.428为氧气在标准状态下的密度(kg/Nm3)。由(1)/(2),得

τ2=0.84τ1

由此得出结论,如氧气的浓度提高至25%时,煤粉的燃烧时问可缩短16%。在空间尺寸不变的情况下,由于煤粉燃尽时间缩短,煤粉燃尽的程度自然提高。这就减少了煤粉的不完全燃烧所造成的热量损失,达到节能目的。另外CO、N 等有害气体生成量相应减少,有利于环保。

2富氧燃烧提高了窑内气流对物料的辐射传热速率

在水泥回转窑内火焙向物料传热的主要方式是辐射传热-而窑内气流对物料的辐射传热速率又主要取决于气流的温度和气疯的黑度,二者越高,辐射传热量越多,富氧燃烧能达此目的。由于空气中氧气的浓度提高,相应可减少空气量,使得进燃烧室的N2量下降,火焰的总体积下降(即火焰的体积流量下降)。在燃料的加入量不变的情况下,火焰的温度相应提高,提高的程度主要取决于空气中氧气的浓度。

如某厂水泥回转窑的台时产量为26t/h 煤耗为0.25 kg/kg熟料,每小时烧煤量6500kg,燃烧带的过剩空气系数为1.1。燃煤的理论空气量为6Nm/kg(煤)。论文参考网。

由此看出,需含氧气为21%的空气量:

V=26000X0.25×6×1.1=42900Nm/h

在此空气中的含氧量=42900X21%=9009Nm/h。当空气中氧气的浓度提高至25 时,所需的空气量

V=9009/0.25=36036Nm/h

因此,空气量减少16%

进入燃烧室的N2量相应下降20%,使得火焰的总体积下降,在燃料的加入量不变的情况下,火焰温度提高,提高的程度主要取决于空气中氧的浓度,当空气中氧气的浓度达到25%时,经计算,火焰温度可提高lO0℃左右。另外因入窑空气量减少,使得火焰中CO2与H2O的体积百分比浓度升高,火焰的黑度也相应增大。

根据计算得知,当助燃空气中氧含量为25%时,CO2的体积百分浓度提高17.5%,水蒸汽的体积百分浓度相应提高17.7% ,由于CO2与H2O的浓度均增加许多,火焰的黑度相应增大,当空气中氧气的浓度为21%时。火焰的黑度经计算为0.2104,当空气中氧气的浓度为25%时,火焰的黑度经计算为0.2245。增加的程度约6%,火焰对物料的辐射传热量提高的程度大致计算如下:

对水泥回转窑来说,气流对物料的辐射传热量由下式计算

Qfm= 5.699×δgδm×[(Tg/1OO)4-(Tm/1OO)4]×Fm×ψg.m/(l-(1-δg)(1-δm )]W (3)

式中;δg 为火焰的黑度, δm为物料的黑度。Tg为火焰的温度(K);Tm为物料的温度(K);Fm为火焰的表面积(即容器的内表面积,m2 );ψg.m为火焰对物料的辐射角系数。

由于

ψg.m = Fm/Fg×ψm.g 而ψm.g =1 (4)

ψm.g为物料表面对火焰的辐射角系数;Fm为物料的表面积(m2 )。将式(4)代人式(3)并转化为对流换热的形式得:

αgm= 5.699×δgδm×[(Tg/1OO)4-(Tm/1OO)4]/[(l-(1-δg)(1-δm )×ΔT] (5)

式中,αgm为火焰对物料的辐射传热系数(W/m .℃);ΔT为燃烧带火焰温度与该带物料温度之差。

由公式(5)计算,当空气中氧气的浓度为2l% 时:

αgm=257.4 W/m2·℃

当空气中氧气的浓度为25% 时:

αgm=310 W/m2·℃

由此看出,水泥回转窑燃烧带火焰对物料的辐射传热量提高的程度应为20.4% 。回转窑其他各带的辐射传热量都相应提高,提高的幅度不会相差很大。

3 讨论

为使生料完成一系列的物理化学过程变成质量较高的熟料.必须在回转窑内保持一定温度,并供给物料一定热量以及一定范围内保持足够的反应时间,这就要求煤粉燃烧后造成高温的同时,形成的火焰有一定长度、形状和稳定性,以满足水泥生产的工艺要求。

富氧燃烧技术的应用,一方面可使火焰温度及黑度提高,从而加大火焰对物料的辐射传热能力.有利于水泥生产。同时因减少空气用量,以及煤燃烬程度的提高,使燃料的燃烧效率提高,达到节能降耗减少污染的目的。但另一方面,由于煤燃烧速度的提高,使火焰长度缩短,若操作不当。论文参考网。易造成短焰急烧,使高温部分过于集中,易烧垮“窑皮”及衬料,不利于窑的长期安全运转。同时由于氮气的减少,导致窑内对流减弱,不利于对流传热,并增加窑内温度的不均匀性和易产生热斑。为充分发挥富氧燃烧的优势而避免带来不利影响。必须在燃烧

设备及工艺操作方面作相应调整,如采用新型的适于富氧燃烧的燃煤喷枪。或在煤燃烧时适当提高煤将喷出的速度,并努力实现烟气循环利用,加大窑内气流动量,改善窑内对流传热等等。以满足生产对火焰长度及温度场的要求。

当然,富氧燃烧技术的应用还将受到制氧设备及成本的限制。但随着社会对节能环保要求的日趋强烈,以及高效制氧技术的发展,富氧燃烧在水泥窑的应用将有可能成为现实。

4 结束语

富氧燃烧可改善煤的燃烧条件,缩短燃烧所需时间,实现燃料的完全燃烧。同时也可使传热速率大幅度提高,因此有利于水泥生产,此外,采用富氧燃烧,可使废气排放量及CO、NO 等有害气体的产生量下降。有利于节能环保,但富氧空气的引入不可避免地会政变水泥的原有工况条件,因而在操作及设备方面必须作相应的调整,以满足水泥回转窑生产中所要求的火焰及温度场要求。

参考文献

谢峻韩.氧燃料燃烧技术在国外玻璃行业中的应用.国外建材科技.1996.17(3):8~11

孙晋涛.硅酸盐工业热工过程及设备北京:中国建筑工业出版社t1983

华东化工学院.玻璃工业热工设备(下册).北京;建筑工业出版社,1980

陈锗诤.节能技术.北京:国防工业出版.1989

生物燃料论文篇(7)

文章编号:1672-3791(2013)07(b)-0202-02《燃烧理论》是一门内容丰富、实用性很强的学科。内容丰富一是因为燃料种类繁多,比如油料、煤炭、气体燃料等;二是因为燃料聚集形式多种多样,比如气态、液态、固态等。三是因为燃料在燃烧时,所处燃烧环境、点火形式、点火强度的不同、使得燃料的着火过程、燃烧形式与燃烧速度发生很大变化。实用性很强是因为在实际生产与生活实践中经常遇到与燃烧相关的问题,比如发动机、锅炉、点火器、各种燃烧器。人们为了对此进行深入研究,建立了许多专门的燃烧理论学科,比如瓦斯的燃烧与爆炸、气缸发动机的燃烧、喷气式发动机的燃烧、煤炭的燃烧、火药的燃烧、火箭推进剂的燃烧、锅炉等各种燃烧器理论。还有火灾预防学科,它也是燃烧理论的一个专门学科。以上专门建立的燃烧理论专科,分别对其专门应用领域进行专门讨论。它们分别适用于相应的专业。但是,《燃烧理论》所包含的一些基本知识,是每个专业都要掌握的。它们主要包括燃烧化学动力学,其阐述了燃烧的速度与化学反应机理之间的关系;燃烧学的物理基础,解释了燃烧过程中的物理过程,比如燃烧过程中的物质和能量的输运过程,给出了质量守恒方程、动量守恒方程、能量守恒方程,还可以得到组分守恒方程;、燃料的着火理论,分析了燃料着火的物理化学原理,给出物理模型,建立热守恒方程,得出着火判据。另外还有火焰传播与稳定的理论、气体燃料的燃烧理论、液体燃料的燃烧理论、煤燃料的燃烧理论等。除了以上基本知识,弹药工程与爆炸技术专业应主要关注火炸药、推进剂的点火,燃烧与爆炸。1 对课程重难点的把握《燃烧理论》是弹药工程与爆炸技术专业的专业基础课,该学科所包含的知识与本专业炸药爆炸理论,起爆器材、烟火学、工业炸药、爆炸安全技术与管理课程知识相关。学好燃烧理论课,有助于学生对那些知识的掌握,所以让学生学好本课程很重要。虽然燃烧理论知识很多,但主要还是围绕着评判是否会着火和计算燃烧速度。有许多物理模型和数学方法用于讨论以上两个问题。虽然有时推导过程复杂且难以理解,但它是本课程的基础,应让学生掌握其物理原理和数学推导原理[1]。在燃烧物理基础一章里,质量守恒、动量守恒、组分守恒、能量守恒是基本知识,而关于二维平板附面层假设、捷尔道维奇变换、相分界面上的边界条件的斯蒂芬流数学推导是难点。在着火过程一章里,谢苗诺夫热守恒建立、热图分析和热自燃临界条件的物理原理是基本知识,数学推导是难点。在气体燃料的燃烧一章里,扩散燃烧、预混燃烧的物理原理和数学表述是基本知识,火焰结构数学描述是难点。在液体燃料的燃烧一章里,雾化燃烧形成原理与物理模型建立是基本知识,燃烧速度计算是难点。在固体燃料的燃烧一章里,煤炭分类、煤炭燃烧过程、典型燃烧器结构与工作原理是基本知识,燃烧速度计算是难点。爆炸物品种繁杂,大致可以分成火药、炸药、固体推进剂、液体推进剂等不同种类。而火药又可分为点火药、发烟药、焰火药;炸药可分为起爆药、猛炸药、工业炸药。火炸药的燃烧形式可分为热分解、缓慢燃烧、快速燃烧、爆炸、爆轰。所以爆炸物的燃烧一章知识很多。其中爆炸物分类及其燃烧特点是基本知识,燃烧压力与燃烧速度计算的基本物理原理很重要,计算方程的数学简化是难点。2 充分掌控授课计划要上好《燃烧理论》课,教师除了要弄清其知识的基本构成和和各章基本知识与难点外,还做好以下工作。2.1 认真备课,最好采用电子课件,即多媒体,因为用多媒体以下好处(1)提高知识表达效率、表达质量和知识传授量。《燃烧理论》课程内容多,板书速度慢,用电子课件可以快速展示。该课公式多、其中有一些数学推导过程复杂,用电子课件,可以推的更细,让学生更易理解。另外,可以利用电子课件对一些难点与重点从不同角度反复说明,有利于学生领会。(2)可以方便地插入图片、视频,加强课件的表达能力。《燃烧理论》课程知识包括许多物理模型,比如质量守恒、动量守恒、组分守恒、能量守恒、热自然、强迫点燃、二维平板附面层、火焰结构、射流结构、图表。在黑板上画这些内容要花许多时间,且难以说清楚。但是在电子课件中,就很容易展示在屏幕上。另外、可以通过动画演示一些变化的过程,这些过程在过去有时很难让学生在短时间内理解,而用动画,一看就懂。比如在讲因气流流速的增大,层流火焰发展成湍流火焰的过程,过去都是在黑板上画一幅图,纵坐标是气流流速,横坐标是雷诺数,在不同雷诺数处画出相应火焰形状,一幅图要花五分钟才能画完。且因为图是静止的,难以让学生理解。现在通过动画,将随着流速的增大,火焰由层流发展成湍流火焰的动态过程连续展示,学生一看就明白。过去需要一节课讲这些内容,现在只需半节课,节省下的时间,可以让学生讨论,加深他们对知识的理解。比如,在讲到喷气式发动机工作原理时,就可以用一段动画,演示空气经涡扇进入涵道,油雾燃烧,从而喷出高压气体的过程。2.2 给出专题,让学生分组讨论研究,激发学生学习积极性在教学过程中,注意就一些难点、重点、提出问题、让学生分组讨论。将讨论内容按照论点、论据、论证说明、结论四项,写在电子课件中,并让各组学生在下次上课时,选一代表上台论述。随后,引导全班同学就各组论述情况进行讨论,最后教师分析总结;学生喜欢这种学习形式,有时他们在宿舍讨论至深夜,并积极争取上台表述的机会。学生都说,这样可发挥学生学习主动性,促进他们思考、论辩的能力[2]。可大大加深他们对所学知识的理解。比如,在讲到斯蒂芬流形成原理与数学表述时,因为这部分知识比较抽象,学生一时难以理解,我就把学生分成五个组,每组五人,让他们课后讨论。在下次上课时,每个组分别上台,结合电子课件,论述他们对此问题的理解。一个小组说,斯蒂芬流最主要的特点是发生在相分界面上,并且要物理化学过程和扩散过程同时发生。他一语道破了斯蒂芬流的关键点。另一组学生就书中所举碳粒在纯氧中燃烧和水蒸发两例,说,在这两个例子中,都是讲物质向上,离开相分界面。比如,碳粒在燃烧时,二氧化碳是离开碳粒而去。在水蒸发中,水蒸气也是离开水面而去。但是,为了吸收异味,在冰箱中放置活性炭,也符合具备扩散与物理过程的条件,在相分界面上也可以用斯蒂芬流边界条件与物质守恒方程描述[3]。在这里,活性炭周围的气体,是进入活性炭里的,这与书中两例不同。这个例子很新颖,从我各看到的基本燃烧理论和流体力学书中,从未见过。这表明,学生在此对斯蒂芬流有了较为深刻的认识。2.3 多举实例,理论联系实际,帮助学生理解现在学生参加社会实践少、参加劳动也少、所以有时对许多在生活中本应耳熟能详的现象毫无所知,这就要求教师多举例,帮助他们理解。比如在讲气体燃料的预混燃烧和扩散燃烧时,一些同学难以理解,我就拿生活中常见的气割枪举例,工人在点气割枪时,先开乙炔气,不开氧气。先打着火机,让其在烧嘴口前部等待乙炔气从枪口喷出,点燃后,形成扩散火焰,因为扩散火焰燃烧强度速度低,不会爆炸,比较安全。然后,再拧开氧气阀,氧气在烧嘴前与乙炔混合,形成预混燃气。当其从烧嘴喷出后再燃烧,利用预混火焰的特点,达到较高燃烧速度和温度,从而进行气割和气焊。有时工人在预热工件时,故意减少氧气流量,因为扩散燃烧火焰体积大、温度低,对工件加热效果更好。这样,学生很容易就理解了扩散燃烧和预混燃烧理论。3 理论与实例相结合的授课方式有一次,在讲热自燃时,学生问我,前年秋后他家稻草堆不知为何,莫名其妙的自己先是冒烟、后来就烧掉了。我问他,着火前是否下过雨,他说着火前七、八天下过一场雨,我分析说,可能是因为雨水流入麦草堆内部,导致其发酵,而发酵是放热过程,当其中心部位的麦草热生成大于其向外所散的热量时,就着火了。另一位同学家在煤矿,他说见过煤堆自燃,我分析也是类似原因。我还用热自燃理论,分析了在我国乳化炸药生产线乳化工序发生的爆炸事故,也是由于乳化机工作异常,转子转速过快,其内物料因粘滞流动摩擦过度,使得物料温度迅速上升;或在乳化前的水相或油相中混入硬杂质,由于这些杂质的摩擦,导致物料温度上升,物料体系热分解放热,体系热生成速度超过热散失速度,热分解加速,发展成燃烧,随着燃烧速度加快,燃烧波阵面压力增大,最后发展成冲击波,从而发生爆炸事故。《燃烧理论》虽然难学难教,但只要想方设法,认真准备,就一定能上好课,取得良好的授课效果。参考文献[1]

生物燃料论文篇(8)

世界一次能源缺乏,而我国一次能源更是紧缺,各国都在寻找开发可再生能源,如太阳能、风能、垃圾废料、生物质能等。生物质能是由植物的光合作用固定于地球上的太阳能。在可再生能源中,生物质能以实物形式存在,具有可储存、可运输、资源分布广、环境影响小等特点,受到世界各国的青睐。生物质能是目前应用最为广泛的可再生能源,其消费总量仅次于煤炭、石油、天然气,位居第四位,并且在未来可持续能源系统中占有重要地位。但是在生物质作为燃料的发电项目中,大气污染仍需要特别关注,提出切实可行的预防措施。

本文以洪雅县生物质发电厂项目环评为例,分析其生物质燃料成份与SO2预防及治理措施的关系。

1 洪雅县生物质发电厂概况

项目为利用洪雅县境内的林(竹)木及各类农作物秸秆直接燃烧发电的生物发电厂,其装机容量为1×120t/h生物质高温超高压循环流化床锅炉,配套1×30MW高温超高压凝汽式汽轮发电机组,为生物质直燃式发电项目。项目采用秸杆、林业三剩物及次小薪材作为燃料,用量20.5万t。项目建成后每年可为电网提供清洁能源约2.25亿kW.h/a。

2 生物质燃料成份分析

洪雅县生物质发电厂的生物质燃料来源主要来自于林(竹)木废弃物、秸秆、奶牛粪便等,根据燃料配比比例:玉米秸秆24%、竹枝18%、稻草13%、锯末7%、灌木23%、牛粪15%,采用加权平均,混合生物质燃料的成份如下表1。

3 生物质电厂常规的SO2控制技术

目前,生物质电厂控制二氧化硫的处理方法较多,比较常用的为炉内喷钙脱硫技术。炉内喷钙脱硫技术是通过向炉内直接添加石灰石粉来控制SO2排放。投入炉内的石灰石在850℃左右条件下发生煅烧反应生成氧化钙,然后氧化钙、SO2和氧气经过一系列化学反应,最终生成硫酸钙,化学反应式为:

CaCO3CaO+CO2(煅烧反应)

CaO+SO2+1/2O2CaSO4(固硫反应)

石灰石在煅烧过程中,由于CO2溢出,在固体颗粒的表面及内部形成一定的孔隙,为SO2向颗粒内部扩散及固硫反应的发生创造了条件。在CFB锅炉燃烧条件下,石灰石煅烧反应生成的CaO具有较高的孔隙率,脱硫反应活性好,可以有效增加石灰石有效利用率,提高CFB锅炉炉内脱硫效率。

4 洪雅县生物质发电厂SO2控制技术

根据对该电厂所采用的生物质燃料成份分析,混合燃料含硫量约为0.09%,燃料中灰分中的CaO含量约为23.73%,根据燃料的使用情况(年使用燃料20.5万t)可计算出SO2的产生浓度为326mg/Nm3;根据燃料灰分的产生量(约为1.22t/h(9150t/a))分析,

灰分中CaO含量(t/a)=9150×23.73%=2171.295;

原料中Ca含量(t/a)=2171.295×40÷56=1550.925

核算出原料中的Ca的摩尔数为38,生物质燃料全硫含量校核值约为0.09%,原料中的硫的摩尔数为5,因此,校核燃料的钙硫比=38/5=7.6,大于2.0,固硫率按50%计,因此,项目SO2的最大排放浓度为163mg/Nm3,满足《火电厂大气污染物排放标准》(GB13223-2011)中表1二氧化硫(四川地区)最高允许排放浓度200mg/Nm3的要求,SO2可直接达标排放,不需另采取烟气脱硫设施。

5 结论

本文根据对洪雅县生物质发电厂所采用的混合生物质燃料成份及燃料灰分分析,得到燃料含硫量及灰分中氧化钙的成分,进一步分析出原料中钙的含量,可计算出燃料的钙硫比及固硫率,经以上论证可以看出,生物质发电项目,经过对原料及灰分的成份分析,可得出燃料中钙硫比,其产生的二氧化硫经过燃料中本身含有的钙进行固硫,不需新增其他脱硫设施,可满足《火电厂大气污染物排放标准》(GB13223-2011)中图1二氧化硫的最高允许排放浓度要求。

【参考文献】

[1]姚芝茂,邹兰,王宗爽,武雪芳.我国中小型燃煤锅炉SO2排放特征与控制对策[J].中国环境科学,2011,31(Suppl):1-5.

[2]屈卫东,杨建华,杜雅琴.火电厂SO2污染排放控制方法探讨[J].电力环境保护,2004,12.

[3]何正浩,李劲.燃煤发电SO2污染控制技术及其在我国的应用与展望[J].电力环境保护,2002,3.

生物燃料论文篇(9)

 

0 引言

随着化石资源的枯竭和环境污染的加剧,清洁可再生的代用燃料成为发展的必然趋势。目前,我国应用于机动车的代用燃料主要有压缩天然气和液化石油气,但实质上它们都是化石燃料的衍生品,其发展严重受化石燃料的制约。

理论上,生物质气化气有合适的热值和能量密度,能够满足作为内燃机燃料的要求,而且可以实现CO2净“零排放”。早在第一、二次世界大战期间,生物质气化气就已经作为机动车燃料应用于欧美等国家(1);目前,我国生物质气化气作为内燃机燃料的试验工作相继展开。任永志等(2)试验研究了内燃式燃气发电机的运行特性;孟凡生等(3-4)分析了我国低热值燃气内燃机的发展及应用现状,并对生物质气化气作为内燃机燃料的燃烧特性做了简单分析;孟凡彬等(4)试验研究了生物质气化气作为车用燃料初步规律。本文以不同组分生物质气化气作为原料,进一步研究了生物质气化气作为车用燃料的适应性和排放特性。

1 试验内容

1.1 试验原料:

试验原料为生物质气化气,其中1#­­-6#为生物质空气气化气,7#-12#为生物质富氧气化气,具体见表1。

表1 生物质气化气组分及热值

Table 1 the components of producer gas andlow heat value

 

NO.

CO2/%

C2H4/%

C2H6/%

H2/%

O2/%

N2/%

CH4/%

CO/%

Qv/kJ/m3

1#

9.00

0.00

0.00

15.77

0.99

50.62

0.75

22.88

4853.98

2#

9.68

0.00

0.00

16.73

1.07

49.88

0.97

21.68

4884.89

3#

15.87

0.30

0.00

16.46

0.28

45.06

1.89

20.14

5195.70

4#

15.61

0.31

0.00

15.62

0.22

45.77

2.13

20.32

5222.56

5#

11.42

1.55

0.00

12.92

0.67

49.52

2.28

21.64

5969.60

6#

11.00

1.75

0.00

13.61

0.63

49.30

2.14

21.57

6121.69

7#

24.41

0.71

0.00

32.33

0.00

1.33

3.72

37.50

10022.68

8#

23.55

1.39

0.23

28.73

0.54

4.58

4.89

36.10

10480.57

9#

18.34

0.91

0.20

25.76

0.89

7.55

6.07

40.28

10778.35

10#

13.06

0.53

0.00

28.34

0.36

9.77

2.69

45.25

10078.75

11#

13.36

0.55

0.00

27.92

0.55

11.06

2.70

43.87

9877.44

12#

19.80

1.28

0.00

25.26

1.00

14.01

生物燃料论文篇(10)

中图分类号:TU767 文献标识码:A 文章编号:1672-3791(2012)08(c)-0055-01

燃烧性能是建筑材料本身对火反应的能力,燃烧性能的分级则是根据其对火反应能力的特增参数的大小进行排列,并且划分等级。材料燃烧性能分级体系是材料火反应能力的体系。建筑材料的燃烧性能在一定意义上,直接影响着建筑材料的正常使用。就目前发展来看,各个国家都有自己的燃烧性能分级体系,将建筑材料的火反应燃烧等级进行分级,由于缺乏统一的指标,各个国家的分级程度不同。火灾理论在我国的发展起步较晚,因此在理论建设上还存在明显不足。

1 建筑材料概述

建筑材料是材料构造和形式的高度统一,在建筑物中使用的材料称之为建筑材料,随着建筑业的发展和建筑工艺的提高,各种新型的建筑材料得到了非常广泛的应用,包括了保温材料、隔热材料、高强度材料等新型材料,这些材料在当前的建筑中得到了很好的应用。建筑材料可以分为结构材料、装饰材料以及其他专用材料。随着我国经济的发展,环保理念日渐深入人心,建筑材料的选择上也开始去选择绿色环保的材料。生态建筑材料主要来自于生态环境材料,生态环境材料的首要特征是节约资源和能源,其次是能够减少建筑材料的环境污染,避免对环境造成破坏,最后是生态建筑材料能够方便回收和循环利用。

建筑材料的火反应是和建筑材料的特征和建材性质直接相关的,随着建筑物的建设发展,各种新型材料日渐出现,对建筑材料的燃烧值的研究也显得愈发重要,只有对建筑物的燃烧值做了具体的检测之后,才能清楚建筑物的热力反应,为更好地利用建筑材料,防止建筑火灾提供可能,加强建筑物和建筑材料使用过程中的安全性和稳定性。不同额建筑材料在火反应基础上具有不同的燃烧特性,笔者将在下文中针对不同的建筑特征和火反应的基本概念分析基于火反应谈建筑材料应用特征及其级别。

2 火反应概述

2.1 火反应试验

各个国家的火反应试验方法不同,以试验对象分类可以分为材料的燃烧性能和建筑制品的燃烧性能。以材料为对象的火反应试验,主要是以测定材料的物理和化学燃烧性能为主。比如材料的温度、自燃点、燃烧时间等。对建筑品的燃烧性能主要是指使用安全上为目标,检测订制品德燃烧特性。建筑材料一般分为非燃烧性材料和燃烧性材料。针对非燃烧性材料的测试标准各个国家不尽相同,因此,对非燃烧性材料的划分和等级确认都是不相同的。从检测的研究上来看,对建筑材料的分级和划分,是采用以量热学耗氧原理为基础的测验方法。

燃烧热也称为热值,是指单位质量的材料完全燃烧后释放出来的总热量,严格的说也是标准条件下,燃烧材料的热反应是对建筑材料的氧化反应。首先从热力学第一定律来看,物质在燃烧过程中的能量变化是功和热两种形式。热效应是发生火灾的重要来源,研究燃烧的热学性质是对建筑材料的热反应研究的重要内容。采用热化学反应方程计算燃烧热的方法只是对单质或者纯化合物,而从建筑材料的使用来看,纯物质的应用范围是很小的。建筑材料的各种成分是非常复杂的,因此不可能写出非常明确的化学分子。因此,在实际应用中,大多数建筑材料和实际应用中的多数材料的燃烧值都需要试验确定,就当前的检测技术来看,最佳的测定方法是氧弹量热计方法。

2.2 火反应荷载密度

火反应荷载密度是指在火灾环境下,火灾空间内的可燃物燃烧时产生的总热量。火灾的荷载密度是指火灾空间内的所有可燃建筑材料完全燃烧之后产生的总热量,即单位面积上的可燃材料的总发热量。火反应的荷载可以分为固定火灾负荷,活动火灾负荷、临时火灾负荷。固定火灾负荷即是指在房间内装修用、基本固定不变位置的可燃材料,比如房间内的墙面、地面等;活动火灾负荷是指房间内正常使用的另外的布置,比如衣物、家具等;临时火灾负荷是指由建筑的使用者临时带来并且在此停留的极短时间的燃烧状态。

3 建筑材料燃烧的毒气效应

对火反应的燃烧毒性的研究,是对有机建材在燃烧或者热分解情况下产生的烟尘和气体的成分进行定量和定性的了解,对建筑材料研究的主要目标是确定毒性,还有一个目标是设计分级。建筑材料气体的产生,在燃烧过程中主要分为热分解阶段和燃烧阶段。释放的气体所含的成分主要是为C、H、O、N、S等,这些化学原色通过组合产生了CO、CO2、SO2、NH3等气体,在燃烧的过程中还有可能会有乙醛等高分子单体物质,随着这些气体成分的出现还会出现产生大量烟尘以及水蒸气等。然而空气中的O2的变化会直接导致CO、CO2的生成。火反应过程中所产生的毒气会对人体产生危害,其危害主要表现在毒气的吸入,这种效应是随着建筑材料本身的特性、人体在火灾中暴露的时间,火灾产生的毒气浓度,毒气效应会让人的嗅觉和呼吸系统受到刺激,丧失行动能力,模糊视线,损伤肺组织和抑制呼吸而死亡。因此火灾情况下,会容易使人的意识模糊,行为错乱,实际建筑材料在燃烧过程中产生的毒气效应是综合性的,体现出对人体的不同作用强度。

4 建筑材料的防火评级

通常情况下,材料的净燃烧热和燃烧所需要的氧气是成比例的,换言之,每消耗1kg的氧约释放13.1×103kJ的热量。对于大多数的建筑可燃物来说,这个数量的变化时在5%左右的范围内。平均来讲,不同材料所释放的热量速大致在900s的试验周期以内,并且释放热量的速率逐渐朝平稳靠近。热释放速率最大值和总放热量可以作为表示建筑材料在规定时间内对火反应特征的基本参数。不同类型的建筑材料在燃烧过程中所释放出来的热量是存在较大差异的,在相同的外部条件下,热量释放的速率和时间之间关系主要体现在峰值的大小的差异上。

综上所述,基于火反应谈建筑材料应用特征及其级别,针对不同的建筑材料是具有不同的的燃烧性能的,提高对建筑材料火反应的研究,有利于增强建筑材料的稳定性和安全性。

参考文献

[1] 李引擎,陈景辉,季广其.建筑材料对火反应特性及分级体系[J].消防科学与技术,2001(5).

[2] 卢国建.建筑室内火灾轰燃的预测及控制方法研究[D].重庆大学,2005.

[3] 杨晓菡.建筑室内木材火灾特性参数规律性研究[D].重庆大学,2006.

上一篇: 子女教育论文 下一篇: 医药学论文
相关精选
相关期刊