温室效应的解决方法汇总十篇

时间:2023-12-22 11:23:07

温室效应的解决方法

温室效应的解决方法篇(1)

日光温室在冬季及早春生产中,经常遇到“两大、两不足、一低”的现象,“两大”即湿度大,温差大;“两不足”即二氧化碳不足,光照不足;“一低”即地温低。在生产中导致蔬菜产品质量较差,产量低,严重影响经济效益。要解决上述问题,在管理工作中应注意以下几方面。

1 解决湿度大的方法

日光温室蔬菜病害的发生和流行与温室大棚内的湿度关系密切,湿度达到一定程度病原菌会通过水滴渗入到植株的表面或果实表面引起发病。种植喜温、耐热性蔬菜夜温要保证15 ℃以上,耐寒、半耐寒性蔬菜夜温要保证10 ℃以上。降低湿度的方法有:

1.1 覆膜降湿

温室大棚要盖聚乙烯无滴膜,由于温室大棚内外温度差异较大,棚膜结露是不可避免的,水珠会沿膜面流下。蔬菜种植行及走廊要尽量覆盖地膜,这样不仅提高地温,还降低水分蒸发从而降低湿度。

1.2 灌溉降湿

提倡膜下软管微灌、滴灌,尽量避免沟灌。若要沟灌水量不要太大。灌溉时要提前了解天气状况,保证灌溉后至少3 d晴天,以便通风排湿。

1.3 通风降湿

性能好的高效节能型日光温室冬季在晴天12∶00-14∶00之间室内最高温度可以达到32 ℃以上,此时打开天窗放风,由于外界气温低,温室内外温差过大,常常是放风不足30 min,气温已降至25 ℃以下,这时应将天窗关闭,使温室贮热增温,当室内温度再次升到30 ℃左右时,重新打开天窗放风排湿。这种放风管理应重复多次,使午后室内气温维持在20~25 ℃。由于反复多次的升温、放风,可有效地排除温室内的水汽,使二氧化碳气体得到补充,使室内湿度维持在植物适宜的范围内,并能有效地控制病害的发展和蔓延。如果只在中午进行一次放风排湿,翌晨温室内湿度大、雾较重,会加重病害的发生。冬季温室揭苫后不宜立即放风排湿,日光温室使用无滴膜覆盖后,由于外界气温低,揭苫后常看到温室内有大量雾气飘浮,若此时立即打开天窗放风排湿,外界0 ℃以下的冷空气进入温室内会进一步加速水汽的凝聚,使雾气更重,将会加速病害的侵染和蔓延。因此除了严寒地区,冬季日光温室一般应在外界最低气温达到0 ℃以上时再在揭苫后开天窗排湿气。一般10~15 cm宽的小缝30 min,即可将温室内的雾气排除。中午再进行多次放风排湿,就将温室内的水汽排出,以减少叶面结露。

1.4 减少药剂喷雾降湿

冬季日光温室病虫害防治要以烟熏剂和粉尘剂为主,尽量少喷雾,减轻室内湿度,以利于控制病害的发生和蔓延。

2 解决温差大的方法

日光温室要突出保温性,如果晚上保温效果好,能缩小白天和晚上的温度。在蔬菜生长期间,冬季及早春日光温室中午温度达到30 ℃时要及时放风降温,当温度降到25 ℃时要闭风增温,傍晚前后室内温度降到20 ℃左右时增加温室覆盖物。当冬季温度很低时,夜间在温室四周可加围草帘或玉米秸秆,棚前挖防寒沟,也可在草帘上面加盖一层薄膜,既能保温,又防雨雪淋湿草帘。

3 解决光照不足的方法

日光温室薄膜要选用聚乙烯材料制成的无滴膜,这种材料制成的薄膜透光性好,能连续使用2年。在蔬菜种植管理中要采取有效措施,增加光照时间,提高光照强度,促进蔬菜的光合作用。在蔬菜生长期间经常清扫膜面,提高薄膜的透光率;在保证温度的前提下草帘要早揭晚盖,使蔬菜早见光、多见光,增加光合产物的积累。如遇连阴天,无雨雪时,也要拉起草帘或间隔拉帘,增加散射光照,还可在室内悬挂反光幕、白炽灯等进行人工补光。连阴天过去,忽然转为晴天时,白天拉揭草苫时不可一次全部揭开,要采取“揭花苫”,即转晴第1天上午先揭开1/3,到下午2时揭开2/3,再过1 h后将草苫全部揭开。使温室内光照逐渐增加,温度缓慢上升,可避免闪秧。如转晴后草苫一次全部揭开,温室内秧苗骤然遇到强光高温,叶面蒸腾水分量大,超出根系的吸水量,易使植株萎蔫而枯萎死亡。

4 解决二氧化碳不足的方法

在寒冷的冬季,日光温室蔬菜生产时,为了保温的需要常使大棚处于密闭的状态,造成室内空气与外界空气相对阻隔。日出后,随着蔬菜光合作用的加速,室内二氧化碳浓度急剧下降,有时会降至二氧化碳补偿点以下,蔬菜作物几乎不能进行正常的光合作用,影响了蔬菜的生长发育,造成病害和减产。在此情况下,采用人工方法适量补充二氧化碳是一项必要的措施。增加二氧化碳的方法:

4.1 温室内内置式生物反应堆的应用

将地整平后,在日光温室内蔬菜种植行下开70 cm宽、20 cm深的沟,每667 m2铺5 000 kg秸秆,撒施150 kg饼肥,每667 m2用10 kg菌种,每千克菌种掺20 kg麦麸、18 kg水,把三者拌合均匀堆积5 h左右即可使用。然后浇水覆土。

每667 m2接种植物疫苗4 kg。将处理好的疫苗撒到做好的反应堆垄上,然后用镐头将疫苗与10 cm土充分混匀然后起垄,搂平后按大垄距90 cm,小垄距70 cm起垄。垄底宽45 cm、垄顶宽20 cm、垄高15~20 cm。

注意事项:前3个月不要冲施化肥,以免使土壤pH升高,降低菌种疫苗活性;浇水时不要随水冲杀菌剂;每次浇水后4~5 d要及时打孔,用14号钢筋每隔25 cm打1个孔,要打到秸秆的底部。

4.2 硫酸 ― 碳酸氢铵反应法

在设施内每40~50 m2挂1个塑料桶,悬挂高度与作物的生长点相平,先在桶内装入3~3.5 kg清水,再徐徐加入1.5~2 kg浓硫酸,配成30%左右的稀硫酸,以后每天早晨,揭草苫后30 min左右,在每个装有稀硫酸的桶内,轻轻放入200~400 g碳酸氢铵,晴天与盛果期多加,多云天与其他生长阶段可少加,阴天不加。

温室效应的解决方法篇(2)

中图分类号 S625.51 文献标识码 A 文章编号 1007-7731(2017)08-0063-06

1 引言

日光温室的基本功能之一是提供作物冬季适宜生长的温度条件。温度是影响设施园艺作物生长的最为重要的环境因素之一[1]。虽然农业O施的应用在一定程度上解决了生产中的温度胁迫问题,但是高低温胁迫危害依然严重,一直以来是日光温室生产上的重要限制因素[2]。而对于中国北方的日光温室,最亟待解决的是提高过冬期间日光温室温度。

日光温室内温度调控分为空气温度调控和根系温度调控,它们都是作物的生长重要限制因子。在实际生产中,由于栽培介质的缓冲作用,根际温度变化与气温变化规律相近但时间上相应延缓[3-4],对作物生长影响更大[5];且当空气温度适宜时,影响更明显[6-7]。Yan[8]对黄瓜植株的研究表明,根系低温严重抑制了黄瓜的生理活动,当根系温度升高时,黄瓜植株逐渐恢复了正常的生长。适当的根际温度能够促进作物对干物质的吸收积累[9],Walker的研究发现,在12~35℃范围内,根际温度每降低1℃就能引起玉米生长量下降约20%[10]。此外,陈t[11]的研究表明,根际加温比传统加温更节能,曲梅[12]通过局部根际加温调控比空气全范围加温节能28%左右。因此,根际温度加温在温室作物的温度调控中具有重要的研究意义和价值。

日光温室冬季要提高作物根际温度,最重要的是对土壤(或基质)进行保温及加热。为了解决日光温室冬季土壤温度低的问题,国内学者做了许多研究,提出了许多解决方案。其中大多从单一方面提高土壤温度,或注重温度的提高[13],或注重节能[14],或注重耐用性[15]等。本文总结了前人对土壤(或基质)进行保温及加热的研究现状,并进行了展望。

2 日光温室冬季土壤保温方法研究

日光温室热量的主要来源是太阳辐射。而到达土壤表面或植物冠层的净辐射,一部分流入或流出土壤,形成土壤热通量,一部分用于加热土壤和空气(显热),另一部分用于土壤水分蒸发和作物蒸腾作用消耗(潜热),如公式所示:Rn=G+L×ET+H。式中:Rn为净辐射,G为土壤热通量,L为潜在汽化热,ET为蒸散量,L×ET为潜热通量,H为显热通量[16]。

所以室内土壤能量的得失主要有5个途径[17],一是表层土壤与温室各部分的辐射传热,二是太阳辐射,三是表层土壤与空气的对流热传导,四是相邻土壤层间及各层间土壤的热传导,五是土壤表面冷凝水的潜热。土壤保温措施大都从这5个途径出发,提高土壤蓄热量,减少放热量。

2.1 地面覆盖保温 目前许多试验证明了覆盖透明塑膜、黑色塑膜、黑色砂砾、沥青乳液等[18]对土壤有较好的增温效果,其增温效应主要体现在提高地温平均值和最大值[19]。增温机制[20]为:隔绝了土壤与外界的水分交换,抑制了潜热交换;减弱了土壤与外界的显热交换;覆盖物(如地膜)及其表面附着的水层对长波反辐射有削弱作用而使夜间温度下降减缓。对于覆盖物来说,由于部分阻挡了太阳辐射及与温室各部分的辐射传热,故白天相对裸地获得的热量较少,但是在夜晚,土壤放热量却大大减少。所以良好的保温覆盖物可以较好地进行白天蓄热,又大大减少夜晚放热。覆盖物保温特别是薄膜保温使用方便,成本很低,增温幅度取决于地面覆盖材料的光谱透射率、土壤本身的物理热特性及其外界环境的条件[21],比如透明薄膜塑料比黑色薄膜塑料的保温性更好。该方法一般可使地温增加1~3℃。但是由于许多覆盖物不可降解,故使用不当会产生污染。

2.2 起垄保温 起垄是一个简便常用的农艺操作,改变了微地形和作物生长的小气候,增大了适宜作物生长的土层,使土层更加松软,利于微生物活动,提高了有效养分,节水保墒,为作物生长创造了一个良好的生态环境[22-23]。垄作栽培的小气候效应主要表现在提高地温,降低周围空气相对湿度,加强作物近地面部通风透光,从而减轻病虫害发生程度,使植株发育良好。除此之外,垄作栽培也改变了土壤的物理性质。黄庆裕[22]等认为,垄作栽培可使土壤的通透性加强,还原性有毒物质减少,同时土壤的蓄热能力、导热能力都比平畦和淹田低,从而使土温、水温提高快,作物生长健壮[24-26]。

除了可以使土壤增温,有研究[27]表明土壤起垄后还可以降温,增温还是降温主要取决于太阳辐射在土垄上的分布状况。比如对于常见的南北向垄作,由于春季上午和下午的太阳高度角较低,阳光主要照射土垄的东、西面,辐射面积小,但是集中,垄温度增高的快;中午则相反。

对于增温土垄来说,其保温增温机制[28]主要有以下2点:一是由于起垄后土壤表面积发生了变化,改变了土壤接受太阳辐射能的面积、部位、角度,可以更充分地接受太阳能,达到增温的效果。二是起垄调节了导热性质等,改变了局部土壤的热物理性质。起垄后,受太阳辐射部分的土壤体积增大,而且由于垄作的土壤较为疏松,故土壤的含水量、空气含量也相应增大,土壤热容量随之增大[29]。综上,起垄后,土壤的孔隙度和容重变小,导热性降低,保温性能增加。

土垄原材料丰富,材料成本较低,但目前日光温室内主要仍是人工起垄,人工成本较大;增温土垄除了可以提高土壤温度,还可以有效地协调小范围的土、水、肥、气、热、光等关系。垄作的表面积相对平作更大,白天蓄热量大而夜晚的散热量也大,故土垄覆膜会减少夜间的散热量,对增加土温更加有效。土垄的蓄热散热量还受土垄含水率、孔隙度、土壤种类等影响,起垄时应综合考虑。

2.3 防寒沟保温 由于空气的传热性能比土壤要小40~100倍[16],所以除了减少土壤热量向空气中散失,冬季更要减少室内土壤热量向相邻土壤层特别是向室外散失。防寒沟的作用正是阻止室内土壤热量的向外传递。防寒沟的保温效果由填埋深度和厚度、保温材料性能、填埋位置等决定。白义奎等[30]认为防寒沟埋深为0.8m是合理的(以超过当地冻土层深度为准)。对于绝热材料的选择,应考虑含水率、导热系数、整体性等能影响绝热材料的绝热性能的因素。故应该选择吸湿性小、导热系数小、整体性好的材料,比如聚苯板。填埋时温室两侧山墙和后墙也应设置防寒沟。防寒沟建造成本相对前两种较大,不过保温效果良好。对于防寒沟的科学设置、温度场分布、简化施工等方面,国内相关研究较少,但随着对日光温室围护结构研究的深入,如采取多层异质保温墙体、新型覆盖材料[31-33],使得地面横向传热占总传热的比例及其对日光温室热环境的影响越来越大,其研究也会越来越完善。

2.4 其他土壤保温措施 除了以上保温作用较大且较为常用的方法外,还有几种措施也会对土壤温度有一定的保温作用。一是中耕保温。棚室内土壤因为高强度种植而板结,太阳辐射难以进入根系土层,土层蓄热能力小,致使土壤温度低,易使作物根系受冻。板结土壤团粒结构少,进行适度中耕可优化土壤结构[34],既能抑制水分潜热失能,又能控温防冻,不足之处是这种方式保温效果有限且人力成本较高,需要不定期的进行整地翻地。二是增施有机肥,在土壤中增施有机肥可以提高土壤对辐射的吸收能力。从加热角度来说,由于一些有机肥分解后产生许多生物热,可以小幅度提高土温。三是掌握适宜的揭放帘时间与方法。赵清友[35]提出双层保温被不同步开闭以提高室内温度。冬季早晨天亮之后,首先揭开上层保温被,过1h左右太阳出来后,再揭下层帘,可有效防止日光温室膜内侧因温度骤降而结冰,同时预防了早晨因揭帘不当而造成的热量损失。下午放帘时间掌握在室温最高时,放下底层保温被保温,待日落前将上层帘全部放下。较高的空气温度会向土壤的辐射和传导更大热量,增加了土壤的蓄热量。土壤保温的优点首先是不需要额外的耗能,更加节能;其次,较少使用设施设备,成本低。缺点是不可控且升温效果不太明显。大部分时候,日光温室冬季需要的热量仅靠保温远远不够,需要对土壤加热。

3 日光温室冬季土壤加热方法研究

由于土壤的热传导速度较慢,一般土壤表层的热量要经过3~4h才能传到20cm深处,有研究[36]表明气温对地温的影响只有2%,即当1m高处的气温为100℃时只能使地温提高2℃。且日光温室中土壤面积大,冬季加热时间长,消耗能源会很大。所以是否使用稳定而廉价的能源及节能、效果好、成本低的加温设备是衡量日光温室冬季土壤加热方法优劣的标准。根据加热所利用能源种类的不同,可分为化石燃料加热、电能加热、太阳能加热、地热能加热、生物质能源、混合能源等土壤加热方式。

3.1 利用化石燃料加热土壤的方式 温室供暖所采用的化石燃料热源设备有燃煤锅炉、燃油锅炉、燃油热风机等。其所采用的燃料是煤炭和柴油[37],都是高污染的化石能源。使用燃煤锅炉时一般在日光温室采用单栋普通燃煤锅炉热水供暖的方式,需要人工夜间烧锅炉。徐刚毅[38]在温跨度7m,长度40m,热负荷为75w/m2的传统日光温室,经计算如采用燃煤锅炉供暖,一日要产生0.42GJ热量,则需燃煤0.03t(锅炉的燃烧效率按70%计)。该方法虽然可控性强且增温效果明显,但由于能耗大、成本高、环境污染严重,目前使用化石燃料作为加热土壤热源已经较少。

3.2 利用电能加热土壤的方式 电能加热土壤有以下几种能量利用形式:

3.2.1 通过电热器加热冷水,再通过热水管道加热土壤 徐刚毅[38]通过采用新型电锅炉供暖方式对日光温室土壤加温,将水加热至40℃,可以使日光温室的夜间最低的室内气温提高2~3℃,地埋管深度为30cm,据地面5cm处的地温最低,平均为12.6℃;15cm处地温最高,平均温度达到19.8℃。电锅炉采暖具有节能、环保、可控等优势,在技术上和经济上是可行的。该方法的不足之处在于能源转化过程中消耗较大,且当水温接近土温时,热传导速率大大减缓,将低温水加热到接近土温的这部分的能源无法使用,成本高、温度上升滞后。除了使用水管加热土壤外,刘明池[39]使用电加热棒加热冷水,再将热水通入多孔质陶瓷管负压栽培系统,通过多孔质陶瓷管加热土壤,该系统最大的优点就是能够利用负压自动调控土壤水分的同时,还能利用陶瓷管内循环温水调控土壤的温度。而由于这种新型的陶瓷管本身含有大量微细毛细孔,利于水管放热。试验结果显示,加温处理的15cm深度处土壤白天和夜间平均温度分别比对照高出2.7℃和1.2℃。

3.2.2 通过电热元件直接加热土壤 目前较为常见的是利用电加热线加热。肖日新[40]利用DV型电加温线对土壤进行三线加幔相较单线、双线加热,每消耗1W所提升的温度更高。该系统在功率密度为25W/m2的情况下,能使根际土温维持在20℃以上。张红梅[13]使用一种日本生产的具有一定宽度的农用发热膜,这种发热膜是由金属发热丝嵌入聚丙烯保护膜构成的。在温控相同的条件下,发热膜无论在育苗期还是植株生长期,耗电量都小于加温线。其缺点是调控方面欠缺,所以在种子萌发出土后要及时降低昼夜温度,防止作物徒长。除了线状或带状加热元件外,还有板状加热元件。碳纤维层压复合导电发热板[41]具有热效率高、发热均匀、耐腐蚀、便于自动化控制等优点[42]。赵云龙[15]等分析比较了电热线与碳晶电热板加热土壤的效果发现,电热线以自身为辐散中心呈线性散热;而碳晶电热板散热形式为面状,相同功率下其表面温度较低,降低了对植物根系的伤害[43]。对于用电能加热土壤的方法,技术成熟可行,加温效果明显且可控。但是由于成本较高,能耗较大,一般用于早熟促成栽培或是育苗等对温度敏感的生产环节。对土壤的加热总体较为均匀,且土壤升温速度较快,受天气因素影响小。电热加热土壤,能源利用率主要取决于电热元件电转化热的效率,故使用时应选用效率高的电热元件。

3.3 利用太阳能加热土壤的方式 太阳辐射能是一种廉价的清洁能源,但是太阳能直接加热土壤技术上较难实现,一般以太阳能为能源加热土壤需要借助介质,目前较为常见的方法是利用太阳能加热气相(如空气)或液相(如水)介质,再将介质的热能通过管道等设备传递给土壤。

早在20世纪80年代,国内就有一批科技工作者利用太阳能提高温室地温[44]。蒋锦标[45]和叶景学[46]都采用空气作为介质蓄放太阳能给地温加热。张海莲[47]在青海进行太阳能的热效果研究,设计了不同埋深的地热管。王顺生[48]将太阳能集热器和蓄热水箱置于日光温室内,白天集热,夜间散热。刘圣勇等[49]利用太阳能真空管集热器对太阳能集热,使用保温蓄热水箱蓄热,通过循环水泵和地下散热器向土壤传热,平均地温比对照煤炉加热系统的温室提高了4.4℃,产量提高比高达21%,甚至更高。于威[50]也用同样原理在深浅双层埋管方式的基础上,设计了分开深浅双层埋管为各自独立的加温系统,探讨了埋管深度对土壤增温效果的影响,结果表明地下0.8m深地埋管道较0.4m深在阴天将发挥更大效果。而在晴天日二者差别不大。马彦霞等[51]设置了3个埋管深度即地下20cm深处埋散热管、地下25cm深处埋散热管、地下30cm深处埋散热管,对日光温室土壤进行加热试验,结果表明散热管埋在地下25cm处时效果最好,对西瓜的生长和品质有很大提高。除了用太阳能直接加热液相,也可以从空气中提取太阳能,即使用空气源热泵热水器。即利用热泵技术将空气中低品位的热量转移到热水中,从而加热热水,再用热水加热土壤。

影响该方法效率的因素主要有太阳能吸收能力,对介质的保温能力以及散热能力等。该方法节能环保,晴天时效果良好,是当前日光温室长期对土壤加热的主要方法。但是其加热性能受环境影响很大,比如空气源热泵热水机组[52]的制热能力和产水量随着环境温度的降低而降低。当阴天或低温天气,该方法的效果将大打折扣,不稳定。加热效果方面虽然不如电加热加热幅度大,但是主要能源为太阳能,可大大减少成本。

3.4 利用生物质能加热土壤的方式 生物质能是一种通过有氧发酵及厌氧发酵来处理畜禽粪便、秸秆等农业废弃物的生态环保的可再生能源。在有氧条件下通过好氧微生物的作用可使有机固体废弃物达到稳定化(形成腐殖质)、减量化(有机物降解)、无害化(病原性生物失活),并转变为良好的土壤改良剂和有机肥。英国的G.Irvine等[53]研究表明Deerdykes堆肥装置在15d的堆肥周期内可产生7 000~10 000kJ/kg的可利用热,并对提取热的方法进行了全面研究,设计出一种气水换热器,得到43℃以上的热水,并从经济性角度分析了分解热回收利用是可行的。根据反应物含固率的不同分为湿式和干式,为厌氧消化两种方式。传统的发酵技术一般用湿式厌氧发酵技术即将稻秆等有机固体废弃物与人畜粪便等有机物混合,在厌氧微生物的作用下产生沼气。但湿式厌氧发酵技术的应用范围和地域因其耗能高、反应物预处理成本高而受到限制。沼气发酵时会产生大量的热能,韩成付[54]在平均温度31.6℃进风条件下对玉米秸秆好氧分解产热特性研究发现,出风温度峰值达57.9℃,平均产热速率为3.0W/kg(以湿重计),折合单位容积反应器产热速率为501.6W/m3,7d可回收总热量为342.7MJ。故在综合农业园区,日光温室利用发酵余热加热土壤。美国和英国等国家已有农场在利用稻秆和畜禽粪便进行好氧堆肥的同时,采用换热器或热粟等方式回收好氧堆肥反应过程中产生的生物热,进行供暖和供热的报道。

由于发酵本身也需要维持较高温度,甚至有时还需要加热,所以发酵过程中能提取的能量有限。除了利用发酵产生的热量,在我国东北地区还利用燃池进行日光温室土壤加热。燃池是一种利用以生物质为主的各种价格低廉废弃物的加温方法,可持续供热、且均匀稳定。研究表明[55],燃池可以显著提高地温,在纵向距燃池中心0.5m、1.5m、3.5m、7.5m温度测点试验数据表明,分别提高了26.88℃、9.06℃、1.76℃、1.76℃;燃池对空气的提温效果也很显著,平均温度提高了3.6℃。不足的是传热过程中温度梯度很大,范围比较窄,影响加温效果。

使用生物质能源加热温室土壤的方法具有可持续性,最大的问题在于稳定性和持续性差,控制温度难度大。而对原材料要求较多,一是需要发酵、燃烧原料,二是发酵时的环境要求较严格,三是配套设施较多。

3.5 利用地热能加热土壤的方式 这里的地热能包括非地热井田区域的较深层次的土壤所拥有的低位热能以及地热井田的高位热能。张玉瑾等[56]利用温度采集系统测得青岛即墨市土壤初始温度分布,结果显示,0~20m浅层土壤随着深度的增加,温度逐渐上升,20~90m时土壤温度稳定在14℃左右,达到了恒温;90~103m,土壤温度又有一定幅度的上升,最高为16℃左右,其温度在冬季高于地表,可以用于加岜聿阃寥馈6温室由于其自身的蓄热效应被认为是利用浅层地能最有效的设施之一,冬季通过热泵技术和夏季蓄积的热量可以加热温室。方慧[57]等采用地面供暖方式,将加热管置于地表以下,然后以整个地面作为散热面加热温室。该试验主要目的是为了加热室内空气,但该方法也应用于加热表层土壤。除了利用深层土壤所拥有的低位热能,一些拥有丰富地热资源、地热井田的地区可以利用温度较高的地热能建设地热温室。亢树华[58]研究1985年于海城市东四方台西地郑家街建设的地热温室,发现进水口平均温度可达88.2℃,在放热量为250.92~292.74kJ/m2的情况下,试验温室气温可与室外造成32℃温差。而在进水温度为72℃时,加热土壤,10~30cm的土壤温度均在20℃以上,黄瓜增产58.3%。

天然的地热活动区只有在特定的区域才可以使用,不过加热效果特别好,加热效率高,成本低,稳定性好,唯一缺点就是对施工要求很高。一般地区只能利用较深层土壤自身的低位热能对冬季浅层土壤进行加热,由于两者温差不大,加热效果往往不尽人意,反而是加热室内空气效果较好。不过土壤的蓄放热能力较好,具有很大利用潜力。

3.6 利用混合能源加热土壤的方式 太阳能、生物质能、地热等新能源有来源不稳定,能量不足等缺点,而来源稳定的化石燃料及电能对环境污染较大且耗能严重,对于这一点,许多学者选择将两种或多种能源组合运用,取得了很好的加热效果。

首先,太阳能与地热能组合优缺互补。太阳能热泵在天气情况好的季节(夏季)供热量较大,但是需热量较小,天气情况差的季节(冬季)供热量较小,但是需热量较大,而地源热泵由于土壤温度常年稳定,其供需热量规律恰好相反;地源热泵可以弥补太阳热泵受天气影响的缺点,太阳能热泵可以弥补地源热泵供热不足的缺点,提高土壤源热泵的COP[59]。目前其在温室的应用主要集中在加热空气,土耳其太阳能协会的Onder Ozgener[60]采用内径为32mm,埋深为50m的垂直U型地埋管太阳能辅助地源热泵用于温室供热系统的运行性能研究。这个系统设计安装在土耳其的伊兹密尔市法治大学太阳能协会,根据2004年1月20至3月31日的供暖测试发现,土壤热提取速率平均为57.78W/m,结果显示,单一的中央供能系统(不依赖其他供能系统)在环境温度很低的情况下不能满足温室的热损失。戴巧利[61]利用主动式太阳能集热/土壤蓄热系统对日光温室进行加温,与自然辐照温室相比地温平均升高2.3℃,蓄热量达228.9~319.1MJ,加热效果显著。王侃宏[62]设计了太阳能辅助加热土壤源热泵系统,试验显示热泵COP埋管出口水温变化成正比,太阳能加热之后COP提高到3,效果很好。

其次,太阳能空气集热-土壤蓄热组合也得到应用。戴巧利[63]设计的温室增温系统,是这两者组合的恰当应用。当太阳辐射能透过透明盖板后,其能量被镀有选择性涂层的吸热板吸收,加热工质(空气)然后送到地下管道,通过空气将热量传给地下土壤,最后将带有尾热的空气送入温室加温。加热效果显著:可将温室内气温提高3℃左右,提高土壤温度2.5℃左右。在夜间可进一步提高室内温度,平均提高4℃左右。混合能源可以互相弥补各自能源的不足,不过加热效果仍有待提高,合理控制设备成本会有较好的应用前景。

4 总结与展望

在日光温室的能源利用方面,随着日光温室室内空气保温加热技术的发展与完善,土壤保温与加热的地位越来越高。目前常用的土壤保温技术如覆膜、起垄、设防寒沟等技术成熟、操作简单,成本低,但是需要一定的人力,所以适合日光温室生产的起垄覆膜机械有待研发与推广。为了将冬季日光温室土壤温度提升至适宜作物生长的范围,在土壤保温的基础上,发展合理、节能、稳定的土壤加热系统很有必要。除了化石燃料及电能等高耗能、高成本能源外,凡利于农业生产及推广的各种可再生的清洁能源都可以利用,不过其中低位能源较多。其中空气源主要碜蕴阳辐射能,因受自然天气的影响而致使运行不平稳均匀。正是因为受天气制约,致使棚室需热期与供热期的严重不匹配,这也是空气热泵亟需解决的问题;水源因区域、水质和蓄能量差别使其难以大面积推广应用;太阳能因随季节变难以保证均匀稳定;地源热因前期建造工程复杂、成本较大,换热器COP较低且随使用逐渐降低[64],制约其大范围推广。因此,有必要开发利用混合能源的日光温室土壤加热系统。以可再生能源为主,在作物对温度需求敏感时期可补充使用化石燃料、电能等的模式具有很好的推广价值。

日光温室中,传统的土壤种植将逐渐被无土栽培取代。无土栽培具有以下优点[65]:提高水分、养分利用效率;良好的解决了传统土壤栽培中难以解决的水肥气热矛盾。无土栽培是解决设施土壤连作障碍最有效的方法。但基质的蓄热保温性能劣于土壤,冬季暴露在空气中的基质温度过低。傅国海[66]设计了一种起垄内嵌式基质栽培模式,土垄包被基质栽培槽,并通过塑料膜与基质隔离,利用土壤良好的蓄热保温性能来提高根际夜间温度。在此栽培基础上,利用主动蓄放热系统[67]等其他土壤加热系统,可能会有很好的增温效果。

参考文献

[1]Dodd I C,He J,Turnbull C G,et al.The influence of supra optimal root-zone temperatures on growth and stomatal conductance in Capsicum annuum L[J].Exp.Bot,2000,51:239-248.

[2]李文,杨其长,张义,等.日光温室主动蓄放热系统应用效果研究[J].中国农业气象,2013,34(5):557-562.

[3]Nielsen K F.Roots and root temperature.In:CARSON,E.W (ed.):The Plant Root and its Environment[J].University Press of Virginia Charlottenville,1974:293-295.

[4]任志雨,王秀峰.根际温度对黄瓜幼苗矿质元素含量及根系吸收功能的影响[J].山东农业大学学报:自然科学版,2003,34(3):351-355.

[5]Miao M,Zhang Z,Xu X,et al.Different mechanisms to obtain higher fruit growth rate in two cold-tolerant cucumber (Cucumis sativus L.) lines under low night temperature[J].Sci.Hortic,2009,119:357-361.

[6]Tahir I,Nakata N,Yamaguehi T,et a1.Influence of high shoot and root-zone temperatures on growth of three wheat genotypes during early vegetative stages[J].Journal of Agronomy and Crop Science,2008,194(2):141-151

[7]Ambebe T F,Dang Q L,Li J.Low soil temperature inhibits the effect of high nutrient supply on photosynthetic response to elevated carbon dioxide concentration in white birch seedlings[J].Tree Physiology,2010,30(2):234-243.

[8]闫秋艳,段增强,李汛,等.根际温度对黄瓜生长和土壤养分利用的影响[J].土壤学报,2013,50(4):752-760.

[9]王国良,吴竹华,汤庚国,等.根际加温对无土栽培非洲菊冬季产花的影响[J].园艺学报,2001,28(2):144-148.

[10]Walker J M.One-degree increments in soil temperatures affect maize seedling behavior[J].Soil Science Society of America Journal,1969,33(5):729-736.

[11]陈t.植物根际加热降低温室能源消耗[J].农业工程技术:温室园艺,2008(3):20-20.

[12]曲梅,马承伟,李树海,等.地面加热系统温室热环境测定与经济分析[J].农业工程学报,2003,19(1):180-183.

[13]张红梅,金海军,丁小涛,等.不同加温装置对冬季黄瓜育苗和生长的影响.中国瓜菜,2012,25(4):12-15.

[14]王永维,苗香雯,崔绍荣,等.温室地下蓄热系统蓄热和加温性能[J].农业机械学报,2005,36(1):75-78.

[15]赵云龙,于贤昌,李衍素,等.碳晶电地热系统在日光温室番茄生产中的应用[J].农业工程学报,2013(7):131-138.

[16]秦耀东.土壤物理学[M].北京:高等教育出版社,2003:133.

[17]孟力力,杨其长,Gerard.P.A.Bot,等.日光温室热环境模拟模型的构建[J].农业工程学报,2009,25(1):164-170.

[18]隋红建,曾德超.地面覆盖应用与研究的现状及发展方向[J].农业工程学报,1990,6(4):26-34.

[19]潘渝,郭谨,李毅.地膜覆盖条件下的土壤增温特性[J].水土保持研究,2002,9(2):130-134.

[20]王渖,邓根云.地膜覆盖增温机制的研究[J].中国农业科学,1991,24(3):74-78.

[21]李成华,马成林,张德骏.地面覆盖材料的光谱透射率及其对土壤温度的影响[J].农业工程学报,1996,12(4):155-158.

[22]黄庆裕.水稻垄作栽培的关键技术及其效应分析[J].广西农业科学,1995,4:151-152.

[23]戴德.高寒山区冷浸田水稻半旱式免耕垄作增产机理[J].安徽农业,1998,3:7.

[24]张俊田.油菜垄作栽培技术[J].现代化农业,1993,11:10-11.

[25]汪忠华.横坡分带压茬垄作玉米的增产效应和对土壤肥力的影响研究[J].耕作与栽培,1993,1:57-62.

[26]柯有恒,李再刚.垄作水稻增产效应试验初报[J].中国农业气象,1989,10(3):55-56.

[27]郭仁卿,梁陟光,刘汉中.垄作对土壤热状况的影响.土壤肥料,1991(3):23-25.

[28]王旭清,王法宏,任德昌,等.作物垄作栽培增产机理及技术研究进展[J].山东农业科学,2001(3) :41-44.

[29]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006:171-172.

[30]白义奎,刘文合,柴宇,等.防寒沟对日光温室横向地温的影响[J].沈阳农业大学学报,2004(Z1):595-597.

[31]陈瑞生,郑海山,刘步洲.日光温室气象环境综合研究-墙体、覆盖物热效应研究初报[J].农业工程学报,1990,6(2):77-81.

[32]周长吉.缀铝膜保温幕保温性能测试分析[J].农业工程学报,1994,15(3):191-195.

[33]白义奎,王铁良,李天来,等.缀铝箔聚苯板空心墙体保温性能理论研究[J].农业工程学报,2003,19(3):190-195.

[34]刘海侠,王乐涛.冬季日光温室防寒保暖措施[J].西北园艺(蔬菜),2014(6):25-26.

[35]赵清友.日光温室增温防寒技术研究[J].园艺与种苗,2012(3):37-38.

[36]阮雪珠,孔令凯.防寒沟-温室节能的有效措施[J].农业工程,1983(4).

[37]白义奎.日光温室燃池-地中热交换系统研究[D].沈阳:沈阳农业大学,2007.

[38]徐刚毅,刘明池,李武,等.电锅炉供暖日光温室土壤加温系统[J].中国农学通报,2011,27(14):171-174.

[39]刘明池,徐刚毅.陶瓷管负压控温栽培系统在番茄日光温室冬季生产中的应用效果[J].农业工程学报,2005,21(09):186-188.

[40]肖日新,丁茁荑,刘虎,等.果菜类蔬菜特早熟栽培技术[C]//中国园艺学会首届青年学术讨论会论文集.1994.

[41]谭羽非,赵登科.碳纤维电热板地板辐射供暖系统热工性能测试[J].煤气与热力,2008,28(5):26-28.

[42]杨小平,荣浩鸣,沈曾民.碳纤维面状发热材料的性能研究[J].高科技纤维与应用,2000,25(3):39-42+48.

[43]张海桥.碳晶电热板系统运行调节的实验及模拟研究[D].哈尔滨:哈尔滨工业大学,2010.

[44]李秀敏.利用太阳能提高温室地温的研究[J].自然资源研究,1987(1):45-49.

[45]蒋锦标,赵冬梅,才丰.太阳能地下热交换在日光温室的应用[J].辽宁农业职业技术学院学报,2001(1):7-8.

[46]叶景学,张广臣,李凯,等.保护地实用型太阳能地中热交换装置设计与使用[J].北方园艺,2001(2):5-7.

[47]张海莲,熊培桂,赵利敏,等.温室地下蓄集太阳热能的效果研究[J].西北农业学报,1997,6(1):54-57.

[48]王顺生,马承伟,柴力龙,等.日光温室内置式太阳能集热调温装置试验研究[J].农机化研究,2007,2(2):130-133.

[49]刘圣勇,张杰,张百良.太阳能蓄热系统提高温室地温的试验研究[J].太阳能学报,2003,24(4):461-465.

[50]于威,王铁良,刘文合,等.太阳能土壤加温系统在日光温室土壤加温中的应用效果研究[J].沈阳农业大学报,2010,41(2):190-194.

[51]马彦霞,石建业,张旦,等.太阳能土壤加热系统在西瓜反季节栽培中的应用[J].长江蔬菜,2012(20):35-36.

[52]李晓虹,封海辉,刘克福,等.空气源热泵热水机组应用能效评价研究[J].给水排水,2016,42(3):86-90.

[53]G.Irvine,E.R.Lamont,B.Antizar-Ladislao.Energy from Waste:Reuse of Compost Heat as a Source of Renewable Energy[J].International Journal of Chemical Engeineering,2010(10):1-10.

[54]n成付.有机固废高效好氧-厌氧联合反应能源回收与利用研究[D].南京:南京理工大学,2013.

[55]王铁良,白义奎,刘文合.燃池在日光温室加热的应用实验[J].农业工程学报,2002,18(4).

[56]张玉瑾.土壤源热泵长期运行土壤温度场研究[D].青岛:青岛理工大学,2010.

[57]方慧,杨其长,孙骥,等.地源热泵在日光温室中的应用[J].西北农业学报,2010,19(4):196-200.

[58]亢树华,孙玉华,吴学恩.地热温室结构和加热保温设备的研究[J].辽宁农业科学,1987(3):28-32.

[59]郭长城,石惠娴,朱洪光,等.太阳能-地源热泵联合供能系统研究现状[J].农业工程学报,2011(S2):356-362.

[60]Onder Ozgener.Arif Hepbasli.Performance analysis of a Solar-assisted ground-source heat pump system for greenhouse heating:an experimental study[J].Building and Environment,2005,40:1040-1050.

[61]戴巧利,左然,李平,等.主动式太阳能集热/土壤蓄热塑料大棚增温系统及效果[J].农业工程学报,2009,25(07):164-168.

[62]王侃宏,毕文峰,乔华,等.太阳能辅助加热土壤源热泵系统理论分析[J].河北建筑科技学院学报(自然科学版),2005,22(1):10-14.

[63]戴巧利.主动式太阳能空气集热-土壤蓄热温室增温系统的研究[D].镇江:江苏大学,2009.

[64]管巧丽.太阳能-蓄热与地源热泵供热水系统的TRNSYS模拟与研究[D].天津:天津大学,2009.

[65]关绍华,熊翠华,何迅,等.无土栽培技术现状及其应用[J].现代农业科技,2013,23:133-135.

温室效应的解决方法篇(3)

引言

随着恒温恒温空调控制器在实际中的广泛应用,在系统运行中空调控制器较容易出现问题,其温度与湿度控制往往还不能达到设计的要求。针对恒温恒湿空调控制中的问题,采取优化设计方案,解决恒温恒湿领域中存在的问题。

1 恒温恒湿空调控制器的组成

恒温恒温空调控制器中,主要包括压缩机、通风机、冷凝器、空气过滤器以及蒸发器与电控元件等多项部分组成,恒温恒湿空调可以制冷,也可以换冷、热风[1]。在恒温恒湿空调器中,其构造中也就相对于是空调的末端设备,也是在空调器中的自带制冷、热泵系统,恒温恒温空调控制的冷却盘管可以是直接的蒸发式表冷器,这样在加热时就可以经过冷凝器与风系统进行相互的交换,从而提供一定温度的水同风系统之间进行能量交换。

2 实际中恒温恒湿空调控制的原则

恒温恒湿空调控制器在工作中,主要应用于小面积的空调区域,一般都是采用一次回风系统,经过表冷器来处理空气,并且在恒温恒温空调控制中,其空气处理系统采用分程调控方式实现。在对室内湿度控制中,对于相对湿度偏高时就可以按减少加湿量,增加新风量以及加大冷却量的顺序进行控制[2];若是相对湿度偏低时,就可以以反方向顺序进行控制操作;在对室温进行控制中,若是室温高于定值之时,就可以减少加热量,并加大冷却量来实施控制操作,反之则按相反顺序进行操作[3]。一定注意的是,若是室外空气的含湿量大于室内送风中的含湿量之时,那么此时室内的参数定值需要从冬季改到夏季;而且,对于加热控制中,只可以一次单独加热到 5℃;还有就是在恒温恒湿空调控制系统中,采冷除湿,此时的冷却量可以用于控制温度与湿度,对于两个信号干扰的情况下可以选择首控制偏离大的参数进行操作。

3 在恒温恒湿空调控制系统中存在的问题

对于恒温恒湿空调中,其控制系统中还存在一定的问题,节能效果较差,且在实际恒温恒湿控制中,在温度控制、湿度控制以及节能控制三者之间,不能做到良好的融合,温湿度不能得到很好的控制。其常见的问题包括室内温度与相对湿度偏高的问题[4],以及室内温度控制达到了设计要求,但是其相对湿度却偏高的问题,室内温度控制达到设计要求之后相对湿度又偏低的问题,室内温湿度达到设计要求之后制冷机停机频繁的问题,这些都将会严重影响恒温恒湿空调器的使用效果,并不能起到节能的作用,不具备良好的恒温恒湿设计要求。

4 改善恒温恒湿空调控制器问题的措施

在恒温恒湿空调控制中,针对室内温度与相对湿度偏高的问题,其原因或许是因为空调器的设计容量偏小而造成的,从而不能满足有效的除热、除湿需求,实际中可以在满足工艺要求的情况下换新的空调器,就可以很好的解决这个问题。针对恒温恒湿空调控制中的相对湿度却偏高问题,大多数的原因是因为机组在高温高湿的室外环境下运行,然而由于其空调器制冷机在稳定运行中,所以机器不好出现停机的现象,但是由于空调器的再热量不够,而且其制冷量容量也偏小,这样就会导致该问题的发生,具体的解决办法就是加大电加热器的容量,若是还在出现相对湿度偏低的情况,那么还需要相应的加大加湿量,通过加大热量来抵销冷量的方法,调整湿度控制正常,但这种方法会造成对能源的浪费。针对在恒温恒湿空调控制出现的相对湿度偏低问题,大多情况下是因为调器制冷机组除湿能力大的因素,从而造成送风状态点的含湿量偏低,形成湿度偏低问题,具体的解决方法就是可以检查机组控制系统中的逻辑动作,确保其风管系统阀门与过滤器通畅,并适当的调大机组的风量,从而可以有效提高送风状态点上的温湿度。针对在恒温恒湿空调控制中的制冷机停机问题,多数是因为相对湿度波动大而造成的,由于在重新启动制冷机后,其温湿度可以较快速的达到设计的范围,那么若是机组的制冷量偏大,则其加热量也就是会偏小,针对此问题可以采取加大加热器容量的方法进行改善,但是这样依然会造成能源上的浪费。

5 提高实际应用中恒温恒湿空调控制的质量

在恒温恒湿空调控制系统的应用中,为确保实际中温湿度控制系统满足设计需要,可以强化对其生产质量的控制措施,这样也可以有效避免能量损耗。因此在恒温恒湿空调控制的应用中,首先应该根据业主提供的室内温湿度以及局部排风量等参数资料,由设计人员对恒温恒湿空调控制进行详细的设计,并制定有效的执行方案,提高恒温恒湿空调控制系统在实际运行中的稳定性。然后由设计人员进行计算冷热负荷计算,偏离实际负荷,并且根据不同工程的不同要求,设计人员可以制定合理的配置方案以及温控制方案,以保证恒温恒湿空调控制方案的经济性。并且在恒温恒湿空调控制系统设计中,优化控制方案,还应该有设备供应商配置良好的控制器与传感器设备,对室内的湿度采用直接控制法进行设计,并采用新风单独降温除湿的方案。而且在实际条件允许的情况下,还可以应用制冷机冷凝器来作为加热器,并在控制系统完成之后做好安装调试工作,确保恒温恒湿空调控制可满足设计需求。

6 结束语

综上所述,在恒温恒湿空调控制之中,因为温湿度会受到气候、风量以及室内湿量与室内发热量的影响,因此在实际的设计中需结合具体情况来进行恒温恒温空调器选型,做好选型工作之后还一定要确保在系统安装后进行精心的调试,这样才可以有效确保恒温恒湿空调控制中满足用户要求。

参考文献

[1]王培.恒温恒湿空调系统的节能研究[D].南京理工大学,2012,7(18):41-42.

温室效应的解决方法篇(4)

1 温室效应的定义

温室效应是指透射阳光的的密闭空间由于与外界缺乏热交换而形成的保温效应,具体到地球上就是太阳的短波辐射可以透过大气层射入地面,而地面增暖后放出的长波辐射却被大气中的二氧化碳等物质吸收,从而产生的大气变暖的效应。而大气中也存在着一些能够吸收长波辐射的物质如水汽、CO2、CH3、N2O、SO2、O3、CFCS、微尘等。通常将这些气体称之为温室气体,其中CO2的全球变暖潜能最小,但是其含量却远远超过了其他气体,因此是主要的温室效应贡献者。

2 温室效应的来源及危害

自欧洲工业革命以来,大量的森林燃烧、火山爆发、汽车尾气的排放等使得大气中的CO2的浓度持续攀升,这是“温室效应”加剧的主要原因。而化石类矿物质燃料的燃烧排放的CO2占了较大的比例,在欧洲工业革命之前的1000年,大气中的CO2浓度一直维持在280mL/m3,工业革命后大气中的CO2含量迅速增加,到1995年大气中的CO2浓度已经达到358mL/m3。自十八世纪以来大气中的CO2浓度已经增加了30%,而且还在以每年0.5%的速度增加。由此导致了许多严重的后果:全球气温持续升高,据联合国气候变化专门委员会(IPCC)的结果,目前全球平均温度比1000年前上升了0.3℃到0.6℃。而在此前地球的平均温度变化不超过2℃。联合国还预测到2050年全球CO2排放量继续增加,全球平均气温可能上升1.5℃到4.5℃,将大大超过以往一万年的速度;冰川融化,海平面上升,由于全球气候变暖直接导致了两级冰川消融,海水受热膨胀,从而海平面上升,据世界气象组织预测如果地球温度照现在的速度继续升高,到2050年南北极冰山将大幅融化,上海、东京、纽约和悉尼等沿海城市将被淹没;加重区域性自然灾害,IPCC 第四次评估报告指出, 未来全球地表温度将继续升高, 极端天气气候事件与气象灾害的频率和强度继续增大。同时地球的生命系统和生态环境也将面临严重的考验。

3 温室效应的防治

温室气体的罪魁祸首是CO2,想要合理控制温室效应关键在于控制CO2向大气的排放量。然而温室效应具有区域性、特殊性和全球性的特点,虽然全国都在想了很多办法来控制自己区域内的温室效应,但是仅仅依靠一个或几个国家是远远不够的,必须加强全世界各国的合作才能真正解决温室效应这个世界难题。

针对这个问题,我觉得应该采取长期加短期的治理模式,即长期大范围调控加短期针对性应对的方式来逐步解决温室效应问题。

3.1 长期治理机制

3.1.1 加强世界各国间的合作。温室效应作为人类可持续发展中面临的重大挑战,正受到国际社会越来越广泛的关注。加强国际间的合作不仅能够使环保理念在更广的范围内得到传播和发展,而且能够创造出更加先进的技术来治理温室效应。通过制定协议等方式更能有效的制约各国的行为以及实现逐步解决温室效应的目标,例如在1997年149个国家通过的的《京东协议书》使人们减排的任务更加明确。

3.1.2 将环保问题纳入施政纲领。温室效应是在工业化发展过程中产生的副产物,要发展就会产生温室气体。以前,西方各国多采用先污染后治理的方式,结果产生了许多严重的后果:安第斯山脉延续在秘鲁境内的著名山峰胡阿斯卡鲁,山上冰雪已经融化了1280公顷,冰山覆盖率仅为30年前的40%;智利的奥希金斯冰山100年来“缩水”了15公里;阿根廷的乌帕萨拉冰山正以每年14米的速度消失。在哥伦比亚,冰山较之1850年消失了80%,而厄瓜多尔的主要冰山在20年间损失一半。 为此需要不断完善法制政策,由“末端治理”向“重在预防”转变;由经济与环境兼顾向可持续发展优先转变:由“被动治污”向“主动治污”转变:推动环境革命,建设“低能耗、二氧化碳低排放型城市”

3.1.3 开发新能源、调整能源结构。在我国,电力行业是温室气体排放的主要部门之一。而在我国的电力装机容量中,火电(主要是煤电)占绝对统治地位,这是因为我国的煤炭资源丰富且成本较低,并且煤电的投资建设周期较短,能够很快的满足国内经济发展对电力的需求。这样国情下以煤为主的能源消费结构必将导致大量的温室气体排放,而煤作为化石能源具有不可再生的特点,过分的依赖煤炭资源不仅对我们的环境产生恶劣的影响而且对我国未来的发展也会产生一定的威胁,因此开发新能源就显得特别重要,而随着科技的进步,水能、风能、太阳能、核能等新能源的开发和利用正在一步步成为可能。水力发电是目前在我国技术应用最广泛的新能源,水能发电具有成本低廉、技术成熟输出稳定等诸多优点;风能发电是继水电之后比较成熟的可再生能源发电技术,我国风能资源总技术可开发量至少为10亿千瓦,是目前主要的替代能源之一;太阳能是最清洁的能源之一,我国目前已有建筑屋顶总面积约100亿平方米,可安装约20亿平方米的太阳能热水器。

3.2 短期治理机制

3.2.1 严格执行减排标准。众所周知,环境保护与经济发展是一种相互制约的关系,一些地方政府片面的追求GDP的发展而忽视对对环境的重视,对那些产生环境污染而应该受到相应处罚的单位采取宽容的处理方式,从而使环境问题一步步恶化起来,为社会经济发展埋下了重大隐患。因此对执法者加强教育,使之真正认识到环境问题的重要性从而加大执法力度,打消一部分人的侥幸心理,进而实现减排目标。

3.2.2 采用经济手段加以调控。加大对新能源的开发力度、培养人才,为实现清洁生产奠定基础,鼓励使用新技术、新设备淘汰落后的生产设备来实现节能减排,逐步建立碳排放权的交易制度,通过政策补贴、适当提高碳税来使厂家认识到节能减排带来的利益问题,从而使厂家越来越重视节能减排。

温室效应的解决方法篇(5)

1.疏通暖气管道

在暖气出现不热现象时,可以检查一下是否因为暖气的管道堵塞而导致。因为一般的管道在使用3-5年后都会出现管道老化的现象,使用时间长了,管道内会堆积各种沉淀物与水垢,容易将暖气管道堵塞。如果是这个原因可以自己或者请人来疏通暖气管道即可。

2.打开暖气阀门

如果你平时是比较马马虎虎的人,那么在供暖后,出现暖气不热的现象,很可能是你忘了打开暖气的阀门。这个时候,只需要找到暖气阀门并且打开即可正常供暖。

3.打开温控阀门

家中如果安装的是暖气片,那么想要正常供暖是需要打开温控阀的,因为温控阀在关闭状态下暖气片是无法变热的。要解决这个问题,很简单,打开温控阀就可以。

4.排出管道内的气体

在使用暖气过程中,如果出现暖气一半热一半不热的情况,很可能是因为管道内有积气,也会使得管道内形成一种“堵塞”状况,使得热水循环不能正常进行,这样暖气自然也就不热了。要解决的话,只要把管道内的气体排出,让热水循环正常运行才能让暖气热起来。

暖气不热原因及解决办法:

01、暖气“憋气”

供暖初期,在上水的过程中大量的空气随之进入供暖管道,聚集在散热器内形成气堵,如果不及时排气,就会造成暖气不热的现象。特别是同一片暖气片部分热,部分不热,是典型的气堵现象。

解决办法:

每组暖气片的后面都有一个手动的排气阀(如图所示),将旋轴旋开,把空气排净,直至水流平稳。如果暖气排气阀螺丝已经锈死,千万不能贸然使劲拧动,以免排气阀断裂导致暖气热水喷出,要请专业水暖人员上门维修。同时,住在高层的住户应该定期检查暖气热度,如果发现有热度不均的情况,就要及时排气。

02、温控阀门未打开

如果出现部分房间热部分房间不热的情况,可能是流量不平衡造成的。

解决办法:

首先需要检测不热的暖气片进回水的温控阀有没有打开。如果用的是普通温控阀,顺时针方向为关小(S方向),逆时针方向为开大(O方向),如未开或开的较小,则逆时针旋开,如果开度较大阀门较热,则顺时针调小,通过多次微调,最终达到每个暖气片一样热的效果;如果采用的是比例调节温控阀,可以按照开度进行调节,最热的暖气片开到1-2之间,冷的开到2-3之间,一般不需要太多调整就可以解决问题。

03、管线阻塞

如果去年室内温度是20度,在锅炉房和换热站供热工作正常的情况下,室内温度有所降低。那么,可以初步判断暖气片或系统中被赃物堵死。

解决办法:

找物业检查管道井,并对家里整个采暖系统进行彻底冲洗。

04、暖气超期服役

暖气不热的原因还有可能是暖气使用年限超长,内壁结垢,热阻增加,导致水流不畅,温度上不去。老式的暖气片的使用寿命是20年左右,现在的新式暖气片使用寿命大概是七八年,10年已经达到极限。

解决办法:

住户应该根据自家实际情况,在使用年限达到上限之前更换新的暖气。

05、供暖主管接反了

上进下出的暖气片下面先热,上面后热,接热能表的主管温度低于另一根主管的温度。主管接反的危害很大,不仅暖气片供暖效果差,而且供暖水从没有安装过滤器的回水管流入室内供暖系统,暖气片和管道很容易被赃物堵塞。

解决办法:

如果是立管供水错误,则找物业公司调整过来,如果只是入户主管接反,则找供暖系统的公司调整过来。

06、供暖系统压力较低

一般要保证入户供暖压力不小于0.3Mpa(正常要在4-8Mp之间),每年刚开始供暖时,由于物业公司害怕系统压力高,出现爆管漏水的情况发生,有个低压试运行阶段,如果正式供暖10天后,入户压力仍然低于0.3Mpa,就会导致室内有的暖气片热,有的暖气片不热,或者,干脆都不热,或效果较差。

解决办法:

找物业公司调节系统压力。

07、入户进回水压差较小

暖气片不热,或有的热有的不热,或上面热下面不热等。将其他暖气片关闭,只开那组不热的暖气片,这时如果热,就代表是压力下压差小造成的。一般入户进水的压力和回水的压力的差值不小于0.05Mp,否则,即使入户供水压力较高,由于压差较小,就像平静的河水没有落差一样,是流不动的,供暖效果当然好不了。

解决办法:

找物业公司调节入户的压差。

08、供暖水温较低

暖气片不太热,或虽然暖气片有些热,但室内温度始终达不到国家标准18℃。一般小区供暖的设计标准都为:进水80℃、回水60℃,室温18℃,而暖气片的配置也是按照这个标准配置,如果水温较低,则暖气片的散热量就降低,达不到室内所需的热负荷,当然室内温度就升不上去。

温室效应的解决方法篇(6)

2建筑节能外墙保温技术分析

2.1外墙内保温

外墙内保温是将苯板、保温砂浆等保温材料置于外墙的内侧的施工方法。这种施工方法具有施工方便、对建筑外墙垂直度要求不高、施工干扰小进度快等优点。同时,经过多年的实践应用,总结出外墙内保温的一些缺陷,包括:多占用住户的使用面积;给住户的二次装修和吊挂物品带来麻烦;梁、板、柱部位结构热桥的存在带来较大的热损失。由于内保温保护的部位在建筑的内墙及梁的内侧,内墙及板对应的外墙部分没有保温材料的保护,导致采暖房屋冬天室内的墙体温度与室内墙角温度差可达10℃左右,与室内的温度差可达15℃以上,一旦室内的湿度条件适合,在此处即可形成结露,出现结露现象。结露水的反复浸渍造成了建筑内侧墙面发霉、开裂。内保温在这种无法避免的技术上的缺陷,导致了其必然要被更合理的保温技术所取代。

2.2外墙夹层式保温

外墙夹层式保温是将苯板、岩棉、玻璃棉、木屑、聚苯乙烯泡沫塑料、聚氨酯泡沫塑料等可用于保温的材料置于同一片外墙的内、外侧墙体之间的施工方法。墙体可以是粘土砖,也可以是砌块。这种施工方法对保温材料的质地要求不高,基本各种能够用于保温的材料均可使用,不受施工季节的限制,具有一定优势。可是,由于夹层式保温层的存在,导致内、外侧墙体之间需要连接件进行连接固定,使其在构造上相对变得复杂,遇到构造柱和圈梁时,又不可避免地造成了结构内部的热桥现象。对结构依然会因温差产生不同的形变速度和形变尺寸,使建筑结构处于不稳定的环境中,常年温差结构形变产生的裂缝,导致整个建筑使用寿命的缩短。

2.3外墙外保温外墙

外保温是将保温材料置于外墙外侧的施工方法。由于外保温是将保温隔热体系置于外墙外侧,从而使主体结构所受温差作用大幅度下降,温度变形减小,对结构墙体起到保护作用,延长了建筑物的寿命,同时有效减少建筑结构的热桥,增加建筑的有效空间,消除了冷凝,提高了居住的舒适度。外保温技术不仅适用于新建的建筑工程,也适用于旧楼改造,适用性强范围广、技术含量高。这种施工方法在技术上的合理性和优越性导致了其得以广泛应用的必然。目前,外墙外保温技术已成为我国墙体保温的主导技术。在集通铁路管内沿线相关配套房屋和住宅的施工过程中,外墙外保温这种优势明显、可操作性强的保温方法也得到了广泛应用,并取得了良好的效果。例如:锡林浩特丽都花园住宅小区、通辽集通凯宸佳苑住宅小区以及有关集通管内沿线站区站舍的配套用房等。外墙外保温的应用有效消除了室内冷凝现象,提高了室内热环境的能源效率,有效改善了房屋使用条件和舒适度,优势明显。

3建筑外墙外保温出现的质量问题及解决措施

3.1质量问题包括外保温脱落、冬季室内墙面结露、外保温板空鼓、外饰面层开裂等现象。

3.2上述质量问题的原因及解决措施

(1)外保温系统脱落现象。

①粘结胶浆配合比不准确导致外保温的脱落现象。解决措施:严格控制胶浆配合比。

②外墙基层表面的平整度超出允许偏差的标准,偏差过大。解决措施:采取打磨等措施尽可能调整外墙面平整度。

③选用的聚苯板密度不足18kg/m3,不能满足饰面荷载的承载,导致聚苯板受拉而破坏。解决措施:控制聚苯板质量,使其密度符合工程要求。

④外墙面做保温前基层表面没有处理好,不利粘贴。解决措施:按照技术规程处理好基层,认真检查使其符合要求。

(2)冬季室内墙面结露现象。

①因保温节点的设计导致局部热桥,从而引起室内墙面结露现象。解决措施:改善节点保温设计方案。

②因施工质量粗糙造成保温板间有过大缝隙。解决措施:严格按技术标准作业,执行检查、复核制度。

③因墙体里的水分没有散发完全引起的室内墙面结露现象,在经过一个采暖期后,这个现象通常会有所改善。解决措施:应尽可能让其水分挥发充分。

(3)外保温板空鼓现象。

①因墙体过于干燥,或雨后墙面含水量过大这两种极端原因,导致保温板粘贴时胶浆流挂,导致保温板空鼓。解决措施:基层干燥要掸水,过湿则要待其水分挥发合适再施工。

②因胶浆的配置稠度过低,当胶浆涂刷到墙面时产生流挂而导致板面空鼓。解决措施:应立即停止施工,重新调配至合适方可。

③在进行保温层的施工时,双手用力不均匀,导致板的一端翘起,引起板面空鼓。解决措施:应双手均匀进行推揉挤压动作使其粘贴均匀。

④在施工时,每块保温板的胶浆涂抹不均,导致板面空鼓。解决措施:严格按技术规程作业。

(4)外饰面层开裂现象。

①因建筑的不均匀沉降导致饰面层开裂。解决措施:尽可能减少建筑不均匀沉降、结构变形、设置必要的沉降缝。

②因太阳辐射的影响使外墙外表面因温度变化而变形,导致饰面层开裂。解决措施:合理设置伸缩缝,避免因表面温度变化产生的裂缝。一般伸缩缝的设置可根据建筑物的外立面,按7m×7m以内设置。

③因雨水冲刷导致饰面层开裂,多出现在采用无组织排水的水舌下方一定距离处。解决措施:采用有组织排水,做好泄水措施。

④因保温面层中相邻加强网之间未搭接或搭接宽度太窄导致饰面层开裂。解决措施:操作人员施工时严格按技术规程施工。

⑤因保温板材板缝产生的裂缝。解决措施:在接缝处增设加强耐碱玻璃纤维网。

⑥因保温板存放时间过短而产生较大的后收缩,玻璃纤维网格布质量较差,延伸率太大或网格布未进行防腐处理。解决措施:严格把关进货的质量。

⑦因保温层上的底层保护砂浆过薄,导致饰面层开裂。解决措施:适当加大底层和面层的厚度和强度。

温室效应的解决方法篇(7)

冬季运行设备存在的主要问题及解决办法

机械格栅

冬季运行中反应问题最多的是机械格栅,表现为故障频繁,值班人员无法正常操作,清渣效率不高,使得过栅断面减少,栅前液位过高,造成阻水,直接影响进水流量和厂区下水管线的畅通,导致水泵频繁开启、各生产车间下水不畅,厂内排水管线出现冒水现象。

机械格栅冬季运行的主要故障原因为:冬季运行室内湿度较大、潮气多、夜间气温过低,造成机械格栅限位开关结冰,使机械格栅无法正常工作。

解决措施:在格栅间的房屋结构、设备特点上充分考虑到机械格栅的冬季运行存在房屋内部潮气大、控制操作柜腐蚀严重等问题,在房屋的结构上考虑采取自然通风的技术措施,在房屋的顶部增加换气扇,保证处理设施内的潮气能够自然从屋顶排出,减少了限位开关的结冰次数,保证了机械格栅的正常稳定运行。

建议北方地区的污水处理厂在机械格栅冬季运行时,要充分考虑室内通风,防止设备结冰问题。

半室内输送装置设为机械输送装置

此类设备在冬季运行时,由于气温过低,易造成污泥斗处污水和污泥结冰,造成污泥斗堵塞,严重影响正常的生产运行。

解决措施:将原有的污泥斗拆除,在污泥出口处安装无轴螺旋输送机,通过无轴螺旋输送机将产生的污泥输出,在改造过后,起到了很好的运行效果,连续几个冬季从未发生过因污泥出口结冰堵塞而影响正常生产的现象。

建议北方地区的污水处理厂在冬季运行时,要充分考虑将半室内输送装置及室外输送装置设为机械输送装置。

北方地区污泥池及污泥浓缩池池体上安装保温装置

污泥池及污泥浓缩池在冬季易出现表面结冰现象,导致污泥浓缩池出水堰板全部因结冰膨胀变型,同时也增大了构筑物被结冰的膨胀力损坏的危险,污泥池的表面结冰也造成污泥池内的污泥泵在故障时无法正常吊出维修,严重影响正常的生产运行,对安全生产造成很大的安全隐患。

其主要原因为:冬季户外气温较低,污泥池及浓缩池上清液中含有大量的浮渣和浮泥,比较粘稠,流动性较差,极容易结冰。

解决措施:在污泥池及浓缩池池体上方安装阳光板保温罩,其原理类似于农业的“蔬菜大棚”,保证池内的温度始终保持在0℃以上,有效的杜绝了表面结冰现象的发生。

值得注意的几点是:

1、保温装置的支撑结构材质应选用抗腐蚀材质,最好采用不锈钢材质,因污泥在储存及发酵的过程中会产生大量的腐蚀性气体,对普通的钢材腐蚀性较大,会大大减少设备的使用寿命。

2、在设计安装保温装置的同时要注意做好保温装置的通风性,因污泥在储存及发酵的过程中会产生大量的有毒有害气体,防止运行人员在进行操作时发生中毒事故。

3、在安装保温装置后,在保温装置内及保温装置附近要严禁烟火,因污泥在储存及发酵的过程中会产生大量的易燃易爆气体,防止遇明火发生爆炸及火灾事故。

建议北方地区的污水处理厂在冬季运行时,要充分考虑在污泥池及浓缩池上做好保温装置,对于尚无条件安装保温罩的地方,可以临时采用对污泥池及浓缩池表面铺盖塑料薄膜或保温棉被进行保温。

冬季运行的其它措施

1、曝气沉砂间、污泥脱水间冬季运行时,由于为了保持室内温度而将车间门窗进行封闭,通风条件较差,但是,车间内有毒有害气体排放不及时影响职工身体健康、车间水蒸气较大,车间内配电柜因湿度较大经常造成电器元件腐蚀、短路造成很大的安全生产隐患。

解决措施:在车间内增大引风设备功率、增加引风设备台数采取间歇性开启引风设备,既保持室内通风,又保证室内温度不明显下降。另外将电缆沟与室内排水沟进行分开设置,避免潮气通过排水沟窜至配电柜,大大降低了电气设备的故障率。

2、鼓风机齿轮箱增加加热管

鼓风机在冬季运行中,一旦发生故障停机,启动备用设备难度较大、时间较长。其主要原因是由于冬季鼓风机室内温度过低,造成鼓风机齿轮箱润滑油凝固,使鼓风机无法在短时间内进行启动,恢复正常的工艺生产。

解决措施:在鼓风机齿轮箱内增加加热管,为齿轮箱提供热源,使鼓风机润滑油在短时间内恢复启动温度,恢复正常使用。

冬季运行前的准备工作

北方地区冬季时间长,月平均气温低,为保证冬季设备正常运行,必须采取相应的防冻措施,污水处理厂在进入冬季运行前,通常要做好以下工作:

1、要对全厂的设备进行全面的检修和维护,包括更换设备润滑油及注油脂的工作。所有大修项目尽量在10月底冬季到来之前结束。

2、进入冬季以后,所有的污水处理区和污泥处理区必须保持连续运行,进入冬季后各构筑物不允许放空,避免池体出现含水冻融现象。

3、保证冬季供暖设备正常运行,进入冬季前,对厂内供暖设备、供暖管线进行全面的检查维护,保证冬季供暖期间连续正常运行。供暖方面,保证各生产车间室内温度保持在50℃以上。注意门窗封闭,车间门要安装棉门帘,巡视时要格外注意室内温度的变化,对一些易冻的井室要做好保温,如污水池、初沉池排泥阀井室、初沉池放空阀井室等。

4、对厂区下水管线、浮渣井在入冬前作一次彻底的疏通和清理。

5、对厂区内各种污水、污泥、空气、投药管线和阀门应注意防冻,对裸露在室外的管线要缠好保温棉、保温毡,对一些间歇性输送液体的管线应在管线外缠绕伴热带,保证管线内液体不上冻结冰。

冬季运行工艺与设备运行要求:

1、冬季运行工艺要求:因环境气温低,城市污水水温一般在10℃左右,在工艺运行上应根据实际处理的水量适当延长曝气时间,适当提高污泥浓度,增加污泥龄,保证处理效果。

2、调整设备运行状态。一般设备间歇运行,在冬季运行时应适当调整运行时间,变间歇运行为连续运行。

3、鼓风机进风阀开度要适当控制在低限位,防止气温过低,造成电流过大出现过载停机。

温室效应的解决方法篇(8)

在生产中,部分菜农往往凭着经验施肥,造成耕层土壤中大量元素之间的不平衡,氮磷偏高,钾肥含量不足。尤其是氮肥过剩后,经分解会产生铵离子,影响作物对钾、钙的吸收,使作物养分的吸收出现不平衡,作物的正常生长受到影响。同时氮肥用量过大,很容易造成蔬菜体内硝酸盐积累,使得蔬菜品质下降,产投比降低。钾肥用量少,也会使植物抗逆性变差,病虫害严重,产品品质下降。

解决办法:对土壤进行测定,根据蔬菜产量、土壤肥力、不同肥料元素利用率,确定适宜施肥量,达到平衡施肥。

2、有机肥也要合理

许多菜农对有机肥的腐熟程度不够重视,为了省事,往往把末完全腐熟的肥料施到菜地里,由于棚室温度较高,致使有机肥在腐熟过程中,产生一些有害的中间产物,如有机肥酸类等,这些物质积累到一定程度,能使种子中的蛋白质变性,致使种子出苗不齐。

解决办法:在棚室内施用的有机肥,一定要在棚室外将农家肥堆积彻底腐熟好,充分发挥农家肥的作用,提高土壤肥力,改善土壤的理化性质。

3、防止土壤盐渍化

保护地栽培是一个相对封闭的系统,季节性覆盖改变了自然状态下的水分平衡,土壤得不到雨水充分淋洗,形成设施殊的自下到上的水分运动形式,致使盐分在土聚集,加之棚室土壤温度显著高于露地,土壤的风化作用明显加剧,土壤矿物分解的离子和人为施入的肥料结合起来而使土壤盐分浓度增加很快,导致土壤通透性变差和土壤板结。

解决办法:克服土壤盐积化,可以采用雨季开棚,让雨水冲涮淋溶,将土壤表层盐分得到稀释,降低盐分含量,保证作物正常生长。对已盐积化的土壤要进行倒茬,换土,或增施有机肥等措施。

4、注意搞好土壤消毒

土壤消毒已引起菜农的重视,但他们往往用的是化学方法,比如敌克松、氯化苦等药剂,长此以往势必造成土壤中药残留物增多,影响植株的正常生长,造成产品品质下降。

解决办法:在夏季休闲时间,将稻草或麦秸切成4-6公分段,每亩250-1000公斤撒让石灰,翻人土中起垄灌水覆盖地膜,在阳光照射下,焖10-20天,这样不但能进行土壤消毒,还能培肥地力。

二、合理利用棚室增加经济效益问题

1、调整好棚室比例

有些农户认为建温室费用很高,就不建或少建大棚,造成棚室比例失调,影响了反季节蔬菜生产。在棚室生产中,还有些菜农为了省事,经常在温室里育苗和生产同时进行,由于幼苗和植株生长所需的环境条件不同,势必造成幼苗徒长和植株不能正常生长,还有可能引起病害的交叉感染。

解决办法:为了能在反季节生长中获得高的效益,应该保证棚室的比例,一般每300平方米可定植5--6亩。同时,在反季节生产中,菜农应该将生产室和育苗室分开,保证幼苗和植株的生长环境。这也是提高产量的一个重要环节。

2、抓好多茬次和反季生产

建大棚、温室造价高。在冬季生产还需保温,取暖两项投资,有的农户考虑到经济总是就放弃了冬季生产,导致茬次减少,效益低,在春季生产中没有保温措施,就会出现冻害,导致减产。在棚室周年生产中,还存在茬次倒不开现象,同一种、同一科蔬菜连作现象大有存在,导致病虫害严重,而减产。

解决办法:为了保证棚室蔬菜在反季节生产不受冷害而减产,可以采取外盖保温被,内挂二层幕,反光幕,也可用蒸气锅炉提高地温、气温或用寒地克药剂进行防治,在同年生产中,依市场需求合理轮作,安排好茬次。

3、引进品种不当

有些菜农为了追求高效益,没有经过市场调查,就盲目从外地引进品种,大面积种植,造成了经济损失。

解决办法:依市场需求,选择抗逆性强、品种好、产量高的品种,淡季蔬菜生产以当地的消费习惯为主,结合温室性能情况而定,受环境影响,最冷季节应以叶菜类为主,同时要考虑外地菜涌人当地对本地菜的影响。

4、产品质量不高

在生产中,菜农往往为了追求产量,而重施化肥,在使用农药不当,污染蔬菜,使蔬菜品质变差,影响效益。

解决办法:选择抗病优良,减少病虫害发生,增施有机肥、叶面肥,减少化肥用量,用低毒低残留农药防治病虫害,使产品污染物不超标。

三、新技术应用

棚室蔬菜生产,是在一个相对密封的特殊环境中进行的。根据棚室的特点,运用一些新技术达到增产、增效,新技术如下:

1、二氧化碳施肥

二氧化碳是光合作用的原料之一,进行蔬菜生产,在日出后0.5-1小时,二氧化碳浓度最低,如不及时补充,就会影响光合作用降低产量,为此在日出后0.5-1小时,补充二氧化碳30分钟,可提高二氧化碳浓度1000ppm,闭棚1小时后放风,苗期可增产20%,定植后可增产25--35%,全生育期可增产40-50%,阴雨天,农肥多时效果不明显。

2、粉尘法防治病虫害

棚室内湿度过大,温度过高,易产生病虫害,而粉尘法不但可以降低棚室内湿度,减少病虫害发生条件,效果可达90%以上。

3、生长激素的应用

4、节水灌溉

采用滴灌系统,有效降低棚内湿度10%,提高地温2-3℃,改善土壤结构,可节水35%以上,增产20%,追肥方便,还不易引起烧苗。

温室效应的解决方法篇(9)

农作物秸秆是农业生产过程中的副产物,是地球一大可再生资源,也是有效地促进农业生产良性循环的重要生物资源。如何进行科学利用,是中国乃至世界的一大难题[1]。十一届三中全会以后,中国农业连年丰收,秸秆数量猛增,因没有成熟的秸秆消耗转化技术,致使秸秆乱堆乱放甚至野外焚烧,既浪费了珍贵的资源,又污染了环境,同时给国家和人民生命财产带来了严重威胁,严重影响了经济的健康发展和人民群众的日常生活[2]。

北方地区日光温室蔬菜越冬栽培一直存在栽培障碍。改善日光温室蔬菜越冬栽培的环境条件,提高蔬菜栽培质量,是当前农业生产中存在的实际问题。通过采用秸秆生物发酵栽培措施,研究该措施对日光温室内栽培环境的影响,在解决当地日光温室辣椒越冬栽培障碍问题的同时,探索出一条农作物秸秆有效利用的途径[3]。

1?材料和方法

1.1?试验材料

1.1.1?试验时间与地点

试验于2009-2010年在辽宁省阜蒙县富荣镇棚菜示范区进行。试验场地为相同面积(均为667 m2)、同等肥力条件的2个日光温室,进行统一整地和施用等量底肥(667 m2施农家肥6 t),温室日常管理为同一管理模式(设置滴灌,揭盖草苫、通风换气等)。

1.1.2?试验材料

2009年9月7日铺设玉米秸秆,667 m2用量4 t。试验以辣椒为主作蔬菜,9月20日定植。采用的生物发酵菌种为复合有益微生物菌种——沃丰宝生物制剂,中国农业科学院、辽宁圭谷农业科技有限公司联合研发。

1.2?试验方法

1.2.1?试验设计

试验共设2个处理。

处理1:应用秸秆生物发酵栽培措施,小区面积220 m2,每小区栽植辣椒720株,36株/畦,共20畦。设置3次重复,随机排列。

处理方法:(1)秸秆铺设。在长100.0 m、宽7.5 m的标准日光温室内每隔1.5 m挖南北向宽40 cm、深30 cm纵沟;将玉米秸秆顺沟铺满并踩实,秸秆在沟的两端露出槽15 cm[4]。(2)菌种配制。将菌种、麦麸和水按1∶15∶15配比进行混和(用量参照使用说明)。(3)灌水撒菌。菌种配好后,在铺好秸秆的槽内灌透水,使秸秆充分吸水,并在其上面均匀铺撒菌种。(4)覆土做畦。在撒好菌种的秸秆上覆盖种植土15 cm,做成80 cm高畦(作业道70 cm)。(5)打孔通气。用钢筋在畦面上隔20 cm均匀打孔,打孔需穿透秸秆层[5]。

处理2(CK):日光温室辣椒普通越冬栽培,小区面积220 m2,每小区栽植辣椒720株,36株/畦,共20畦。设置3次重复,随机排列。

处理方法:空白对照耕层内未铺设秸秆,即普通栽培。

1.2.2?调查方法

1.2.2.1?测定指标及使用仪器

采用物理测量方法进行试验数据的采集,如辣椒植物学性状,环境因子如温度、水分、CO2浓度等。主要仪器有直尺,游标卡尺,温度计(气温、地温),空气湿度计、土壤烘干仪、CO2浓度测量仪等。辣椒果实称量工具为磅秤。采用仪器分析方法进行生化指标的测定,如辣椒生化性状,果实品质分析等。主要仪器有LI-6400XT光合仪、紫外可见分光光度计、全自动定氮仪等仪器。

1.2.2.2?环境因子测定方法

2009年11月中旬开始日光温室环境因子的监测。在小区内取不同的点,来设置各种环境测量仪器。

温湿度计分别设置在温室种植区的前脚、中部、后部(距离后墙80 cm)3处,在距地面50 cm处悬挂,均匀分布在温室3个小区内,小区内不设重复,共计9处,数值取平均值。

地温计设置在温室种植区的前脚、中部、后部(距离后墙80 cm)3处,分别埋设10 cm、15 cm、20 cm深度地温计,随机排列;均匀分布在温室3个小区内,小区内不设重复,共计9处,同等深度数值取平均值。

在每小区采用5点采样法采集土样,不设重复,采用烘干法测量土壤含水量并取平均值。

选定温室种植区的前脚、中部、后部(距离后墙80 cm)3处进行辣椒生化指标测定,采用LI-6400XT光合仪测量,并在每个小区观测,各项数值取平均值。观测时间为观测当天9∶00-15∶00。

1.2.2.3?辣椒生化性状及产量测定方法

2010年2月初开始采收辣椒果实。辣椒果实产量统计方法:以前5次采收的辣椒果实总质量为前期产量,之后至拉秧(7月9日)采收的果实总量为后期产量,前期产量和后期产量之和为总产量。

1.2.2.4?辣椒果实品质分析测定方法

果实的取样方法:2010年5月10日在试验区每个处理内随机抽取9个点(每个重复3个点),各点取4~5个果,分别混合在一起,送至检验中心检测。检测指标主要有可溶性糖、VC、蛋白质、硝酸盐、水分、干物质含量。

2?结果与分析

2.1?秸秆生物发酵对日光温室内环境温度的影响

2.1.1?对日光温室内气温的影响

日光温室气温越冬阶段变化曲线见图1。从测取的不同日期日平均气温数据中可以看出,秸秆处理的日光温室环境日平均气温比对照要高。通过数据分析对比,平均较对照高2.46 ℃。同时可以看出,日光温室气温在11月中旬开始逐步走低,至翌年1月初温度最低,之后气温逐步走高。这说明在此期间日光温室辣椒越冬栽培环境的气温提升至关重要。

2.1.2?对日光温室内地温的影响

日光温室辣椒栽培环境不同深度地温变化曲线如下,10 cm、15 cm、20 cm地温相应变化曲线分别见图2~4。

从数据图中可看出,秸秆生物发酵处理的日光温室内日平均地温比对照要高,只是不同深度的日平均地温提高的幅度不同。数据对比分析表明,10 cm处地温较对照平均高1.31 ℃,15 cm处地温较对照平均高0.96 ℃,20 cm处地温较对照平均高1.20 ℃。同时,日光温室地温在11月中旬开始逐步走低,至翌年1月初最低,之后日光温室地温逐步走高,与气温走势相似。这说明日光温室辣椒越冬栽培在此期间提升地温是至关重要的。

2.2?秸秆生物发酵对日光温室内环境湿度的影响

2.2.1?对日光温室内空气湿度的影响

不同处理辣椒栽培环境的空气湿度数据见表1。从表中数据看出,秸秆生物发酵处理的日光温室空气湿度比对照要高,通过数据分析对比,平均较对照高4.94%。而从空气湿度的阶段变化上看,无明显规律。日光温室内空气中的水分主要来源于作物叶面蒸腾和地表蒸发。该结果表明,秸秆生物发酵处理的日光温室环境水分的蒸发量要大于对照温室,从而间接说明,该处理的日光温室土壤持有水分要多于对照,表明该处理使温室土壤的保水能力得到提高。

2.2.2?对日光温室土壤含水量的影响

不同处理日光温室内土壤含水量数据见表2。从表中数据看出,秸秆生物发酵处理的日光温室土壤含水量要比对照高,通过数据分析对比,平均较对照高30.05%。而从土壤含水量的阶段变化上看,无明显规律。这说明秸秆生物发酵处理可有效地提高土壤的持水能力,缓解灌溉水的下渗,同时使土壤的保水性能得到提高,从而改善日光温室越冬栽培环境的土壤水分条件。

2.3?秸秆生物发酵对日光温室内CO2浓度及辣椒光合作用的影响

从表3数据可看出,秸秆生物发酵处理显著地提高了栽培环境CO2浓度及辣椒叶片的胞间CO2浓度,分别较对照提高37.32%和30.88%,有效地增加了辣椒光合作用的原料(CO2),其他指标也相应得到改善。从图5看出,9:00左右温室CO2浓度最高,随着辣椒光合作用的逐步增强,CO2的消耗逐渐加快,温室内的CO2浓度逐步降低,接近中午时趋于平缓,但仍较对照高100 μmol/mol左右。而对照的CO2浓度则无明显变化,说明没有外源CO2,辣椒生长处于“饥饿”状态,从而削弱了辣椒的光合作用,影响其光合物质的积累,进而阻碍产量的形成。

2.4?秸秆生物发酵对辣椒植物学性状的影响

分别在辣椒的始花期和盛果期进行植物学性状调查及比较,结果见表4。从表4数据可以看出,秸秆生物发酵处理的辣椒植物学性状的各项指标数据明显优于对照。通过分析比较得出,秸秆生物发酵处理的辣椒平均株高较对照高13 cm,平均株幅较对照大5 cm,平均茎粗较对照高0.21 cm,果实性状也好于对照。这说明通过秸秆生物发酵处理,可全面改善日光温室辣椒越冬栽培环境条件,从而促进辣椒的生长发育。

2.5?秸秆生物发酵对辣椒产量的影响

从表5中数据可以看出,秸秆生物发酵处理的辣椒前期产量、后期产量及总产量均高于对照。通过数据分析对比,秸秆生物发酵处理的辣椒前期产量较对照高33.14%,后期产量较对照高21.32%,总产量较对照高26.32%。经方差分析,秸秆生物发酵处理的辣椒各时期产量与对照各时期产量差异均达到极显著水平。

2.6?秸秆生物发酵对辣椒果实品质的影响

辣椒果实的品质分析于2010年5月14日在农业部农产品质量监督检验测试中心(沈阳)完成,不同处理辣椒果实品质见表6。从表中数据可以看出,检验辣椒果实品质的重要数据指标VC和干物质含量,秸秆生物发酵处理明显优于对照。秸秆生物发酵处理的辣椒果实VC含量为643.9 mg/kg,干物质含量为5.8%;对照辣椒果实VC含量为413.3 mg/kg,干物质含量为5.4%。秸秆生物发酵处理的辣椒果实VC含量较对照提高55.79%,经方差分析,极显著高于对照。其他指标则差异不大。

3?结论与讨论

3.1?结论

3.1.1?在外界环境气温最低的冬季,日光温室辣椒越冬栽培通过采用秸秆生物发酵措施,可产生大量的热量,有效地提高日光温室环境气温2~3 ℃,提高环境地温1~2 ℃。

3.1.2?在外界环境寒冷干燥的冬季,日光温室辣椒越冬栽培通过采用秸秆生物发酵措施,可改善土壤结构,有效缓解灌溉水下渗,提高日光温室内土壤的保水能力,减少灌水次数,避免因多次灌溉造成室内高湿,保持土壤水分均衡,避免忽干忽湿,有效地改善辣椒栽培环境的水分条件。

3.1.3?在外界环境CO2浓度稀薄的冬季,日光温室辣椒越冬栽培通过采用秸秆生物发酵措施,可释放出大量CO2,大幅度提高日光温室内环境CO2浓度。秸秆生物发酵处理的环境CO2浓度及辣椒叶片胞间CO2浓度分别较对照提高37.32%和30.88%。弥补了温室内CO2的不足,从而促进辣椒的光合作用,加速光合产物的积累,促进了辣椒的早熟和产量的增加。

3.1.4?在外界环境最不适温室越冬栽培的冬季,采用秸秆生物发酵措施,秸秆发酵后产生的有机和无机养分,可增加土壤养分供给,使养分供给更全面。辣椒果实的VC含量和干物质含量较对照分别提高55.79%和7.41%,在一定程度上改善了辣椒的果实品质。

3.1.5?在外界环境极端恶劣的冬季,日光温室辣椒越冬栽培通过采用秸秆生物发酵措施,可全面改善辣椒栽培质量,增加日光温室越冬栽培辣椒的抗逆性,提高抵抗低温冷害的能力。同时,促进辣椒提早成熟上市,增加前期产量,增产幅度33%以上;提高单位面积总产量,增产幅度26%以上。

3.2?讨论

该项试验研究虽然取得了初步的成果,但秸秆生物发酵在辣椒越冬栽培中的表现仍有不足之处,还有待进一步试验论证。为了能够使该措施最终在当地辣椒越冬栽培中得以大面积推广应用,需注意和解决以下问题。

3.2.1?秸秆的来源问题

日光温室辣椒越冬栽培中,应用秸秆生物发酵措施的栽培效果是非常显著的。但如何提供充足的秸秆是一个问题,由于在当地铺设秸秆大多在8-9月份,主要农作物(玉米)还未成熟,秸秆难以获取,只能用上年的秸秆。而上年的秸秆除了大部分用作燃料烧掉外,少部分喂了牲畜,剩下的就很少了。用上年的秸秆涉及到保存问题,因为经过夏季雨淋后秸秆会发生腐烂,不能用作发酵或效果差。因此,秸秆来源成为制约该项栽培措施在当地日光温室辣椒越冬栽培中应用推广的因素之一,充足的秸秆是保障该措施推广应用的基本条件。

3.2.2?地表土下沉问题

秸秆发酵分解后,原有体积逐渐缩小,导致地表土下沉。地面下沉容易损伤辣椒根系,在影响根部吸收的同时增加染病的机会,进而影响辣椒的生长发育。如何缓解秸秆发酵后地表下沉,是值得考虑的问题。

3.2.3?土壤酸化问题

秸秆发酵过程中产生的腐殖酸会逐渐酸化土壤,致使土壤偏酸产生负效应。在应用该措施的同时怎样配合施肥,是进一步要研究的问题。

秸秆生物发酵措施仅在当地日光温室越冬栽培辣椒上成功应用,对象单一,代表性较差,缺乏说服力。相关试验表明,在黄瓜和番茄上应用效果良好[6-8],该技术具有很高的应用推广价值。

总之,日光温室辣椒越冬栽培应用秸秆生物发酵措施是利大于弊的。在北方冬季最寒冷时期,通过应用该措施,使日光温室辣椒越冬栽培的温度、气体、土壤及水分条件得到充分的改善,创造更适合冬季日光温室栽培辣椒的生长发育环境条件,可有效解决日光温室辣椒越冬栽培障碍问题。不但使辣椒抵御低温冷害的能力得到提高,增加了辣椒的抗逆性,而且可改善辣椒产品品质,促进辣椒产品提早上市,增加辣椒产量,提高经济效益,最终使日光温室辣椒越冬栽培的整体质量得到提升。同时,为农作物秸秆的转化利用提供了一条有效途径。

参考文献

[1] 马增奇,王静学.农作物秸秆的综合利用[J].现代化农业,2005(3):32.

[2] 杨孝海.秸秆禁烧与综合利用的问题与对策[J].甘肃农业,2003(8):28-30.

[3] 邹海明.农业秸秆资源化利用途径探讨[J].农业与技术,2005,25(5):78-80.

[4] 张世明,徐建堂.秸秆生物反应堆新技术[M].北京:中国农业出版社,2005.

[5] 林淑敏.设施园艺秸秆生物反应堆技术(二):秸秆生物反应堆的后期管理[J].蔬菜,2011(12):33.

温室效应的解决方法篇(10)

一、引言

政府间气候变化委员会(ipcc)第四次评估报告指出(2007a),近百年来,全球表面的气温升高了0.74℃。如果在2000年到2030年间依然保持目前的能源消费结构,全球温室气体的排放将增加25—90%,预计未来20年间,气温将每10年增加0.2℃。科学证据表明燃烧化石燃料排放的二氧化碳的累积以及人类活动排放的其他温室气体如甲烷和氧化亚氮等是导致气候变化的重要原因。气温升高可能导致极端气候事件(如热浪)发生的频率加大、风暴的密集度增加、大气降水模式的改变以及海平面上升等。这些自然系统的变化反过来又会对生态系统的功能产生根本的影响,从而威胁生物的生存能力和人类财富的安全。

经济学家williams nordhaus1982发表了题为“how fast shall we graze the global commons”的文章,开始应用经济学研究气候变化,从此气候变化经济学就将焦点落在分析气候变化的影响和提供积极的针对面临的气候问题的政策分析。虽然和环境经济学的其他领域有重叠,但气候变化经济学更多的是利用气候变化的鲜明特点,即温室气体影响的长期性、气候问题产生和影响范围的全球化、政策的效益和成本的不平衡的分布等,来理解气候变化问题的多个侧面。通过模拟经济发展和温室气体排放增长的趋势,检验和分析技术选择对气候变化进程和减排成本的影响,选择控制气候变化的具体措施(如碳税和碳交易等)。

气候变化经济学已经建立了其研究领域和基础要素,并在经济学界达成了共识。1997年,美国2500名经济学家,包括9位诺贝尔经济学奖得主共同发表了一项声明,指出最有效的减缓气候变化的方法是通过基于市场的政策。他们认为如果没有控制措施,温室气体继续排放将导致世界随着气候系统的变化经历根本性的变革。他们相信经济学家和决策者能够利用大量的证据和量化的风险评估提供的信息来帮助形成应对气候变化的措施。

二、气候变化的损失和减缓的效益

气候变化可能导致一系列的后果,如平均气温升高、极端天气现象频率发生、降水模式的变化、海平面上升和生态系统的改变等,这些生物物理系统要素的变化将对人类的福利产生不同程度的影响。经济学家通常将气候变化对人类福利的影响分为两类:市场和非市场的损失。

市场的损失(market damages)来源于气候变化导致的市场产品的价格波动和数量的变化给福利带来的影响,主要是因为生产量的变化受气候变化要素的约束。研究者通常应用气候依赖型的生产函数来模拟气候变化的福利影响。例如,小麦的产量是气候要素气温和降水的函数,因此可以直接估算由于气候要素变化导致的小麦产量的变化。生产函数法还被用在森林、能源服务、水资源利用以及海平面上升导致的洪水等产生的经济损失。有学者认为生产函数法忽视了产品之间替代的可能性。于是享乐价格法(hedonic approach)则成为估算气候变化损失的另一选择。例如mendelsohn et al.(1994)将享乐价格法应用到农业,基于选择最大化地租的假设,利用跨部门的数据检验自然、物理和气候变量对土地价格的影响。

非市场的损失(no—market damages)包括由于不利的气候变化导致的直接效用的损失、损失的生态系统的服务以及生物多样性减少导致的福利的减少。这些损失的价值不能够在市场上直接观察到。例如,生物多样性的损失没有和价格的变化有任何明显的直接联系,也观测不到需求的变化。条件价值评估法(contingent valuation method)是最有争议也是最为广泛被采用的评估非市场损失的方法。berk and fovell(1998)利用支付意愿法研究了美国加州不同地域的公众为阻止当地的气候变化每月愿意支付的价格。结果表明冬季人们为阻止当地气候变得暖湿/暖干的支付意愿分别是每月9.74和16.70美元,而为阻止气候变得冷湿/冷干的支付愿意分别是每月11.10和18.18美元。

评估气候变化的经济影响,更多的研究利用包括市场和非市场部门的经济模型,估算全球或是区域气候变化的经济损失。总体上,基于模型的实证性研究报告了三种不同的气候变化经济影响的评估和结果。第一种是计算在特定的全球平均气温升高的情况下,气候变化的影响占gdp的百分比。mendelsohn et al.(2003)估算了气候变化对农业、林业、水、能源和海岸地带五个市场部门的影响,结果表明全球气候变化的影响非常的小。如果气温比工业化前升高4℃或是以上,在此情况下气候变化对上述五个部门的影响都是正的。tol(2002)的估算包括市场(农业、林业、水、能源、海岸地带)和非市场的部门(生态系统以及疾病造成的健康影响),结果发现如果气温比工业化前升高0.5℃时,气候变化带来的效益占全球gdp的2.5%。如果全球气温升高2-2.5℃,气候变化的损失占全球gdp的0.5-2%。dordhaus(2000)除了考虑更多的市场部门、与气候相关的疾病、污染造成的死亡以及生态系统外,其模型还包括了气候变化导致的灾害的经济损失。

第二种研究气候变化的经济影响则是按照特定的排放情景,在特定的经济发展、技术变化和适应能力的假设前提下,经济影响被按照时间的发展综合,然后被贴现到现在的值。一些估算是在全球的尺度上进行的,有些估算是综合一系列地区或是当地的影响以得到全球的总和。stern(2006)应用综合评估模型,设计了基准和高气候变化的不同情景。模型估算的结果表明,在“照常营业”(business—as—usual)的情景下,即如果我们现在不采取措施或是行动的话,气候变化对市场部门的影响加上灾害的风险损失,每年至少占全球gdp的5%;如果将市场部门、灾害的风险和非市场的损失都计算在内的话,气候变化影响的损失估计每年占全球gdp的20%或是更多,而且损失将一直持续。jorgenson et al.(2004)应用一般均衡模型(cge)估算气候变化对美国投资、资本的存量、劳动力和消费的影响。结果显示,如果温室气体排放导致气温升高3℃,在最佳的适应状态和潜在的危害较低的情况下,气候变化的净收益为gdp的1%;如果很少采用适应气候变化的措施,损失为gdp的3%。不管是哪种情景,70-80%的气候变化影响是由农业产品的价格变化引起的,少部分是由能源价格和死亡率的变化导致的。

第三种气候变化影响研究的是估算社会碳成本(social cost of carbon,scc)。在任何时间段或是任何时间内,scc是每增加一个单位的碳排放(co2)造成的以经济价值来估算的额外(边际)影响或是损害,也可以理解为每减少一个单位的碳排放的边际效益。scc的计算尽可能将每一吨额外保存在大气中的co2的边际影响加起来,此过程需要一个温室气体在大气中停留的时间模型和将经济价值贴现到排放年限的方法。2005年社会碳成本的平均估算值为每吨碳(tc)43美元(即每吨二氧化碳12美元),但该平均值的变化范围很大,如在100个估算中,每吨碳从10美元(每吨二氧化碳3美元)到高达每吨碳350美元(每吨二氧化碳95美元)(ipcc,2007c)。社会碳成本大幅度的变化在很大程度上是由于估算的假设上存在的差异造成的,如气候敏感性、响应时间滞后、风险和公平的处理方式、经济的和非经济的影响、是否包含潜在灾难损失和贴现率选择等。

三、温室气体减排成本的估算

美国国家环保局的研究(us epa,2006)分析了全球和不同地区以及不同部门的非二氧化碳温室气体的减排成本,指出如果减排成本是$10/tco2eq,2020年全总的非二氧化碳的减排潜力大于2000mtco2eq(二氧化碳当量);如果减排成本为$20/tco2eq,则减排潜力为2,185mtco2eq。由于二氧化碳是最大的温室气体来源,而且其在大气中的累积对气候系统产生巨大的影响,目前国内外主要的研究大都集中讨论二氧化碳的减排成本。

1、减排成本估算的方法和模型

二氧化碳的减排成本取决于多种边际替代的可能性,例如不同燃料的替代以及替代能源密集型产品的能力等。替代的潜力越大,则满足特定的减排目标的成本也就越低。研究者主要应用的模型采用两种不同的方法来评估可替代性的选择和减排成本:“自上而下”和“自下而上”的模型。

“自下而上”的能源技术模型,提供了非常详细的有关具体的能源过程或是产品的技术信息。模型趋于集中在一个部门或是一组部门,对于一般能源替代的能力提供较少的信息,也不能反映能源密集型产品价格的变化对这些产品的中期和最终需求的影响。自下而上的研究一般是针对行业的研究,所以将宏观经济视为不变。比较常用的模型有斯德哥尔摩环境研究所开发的leap,日本环境研究所的aim/enduse以及在国际能源署框架的markal模型等。许多研究机构都根据研究需要和解决的问题开发不同的模型。

“自上而下”的研究是从整体经济的角度评估减排成本的经济模型,包括“可计算一般均衡”(computable general equilibrium,cge)模型。这些模型的优势在于能够追踪燃料的价格、生产方式以及消费者选择之间的关系。然而,这类模型包涵了较少的具体的能源过程或是产品的信息,能源之间的替代通过平稳的生产函数来体现,而不是详细的可选择的不连续过程。自上而下的研究是从整体经济的角度评估减排成本,使用全球一致的框架和有关减排的综合信息,并抓住宏观经济反馈和市场反馈。自上而下的结果很大程度上依赖于模型建造的假设。repetto & duncan(1997)的综合分析发现,广泛应用的估算气候变化减排成本的模型,都包括了以下主要假设:低碳或是无碳技术的可得性以及成本,经济对于价格变化反应的有效性,能源和能源产品可替代性程度,达到具体的二氧化碳减排目标需要的年限。是否减少二氧化碳排放就可以避免一些气候变化的经济成本,是否减少化石燃料的燃烧就可以避免其他的空气污染的损害,碳税税收如何在一个经济体内循环等。如果假设条件不同,得出的减排成本的差异是比较大的。

综合评估模型(integrated assessment models,iam)模拟人类活动导致的气候变化的过程,从温室气体的排放到气候变化的社会经济影响进行综合的分析。这类模型将温室气体排放、温室气体在大气中的集中程度、气温、降水等要素联系起来,同时还考虑这些要素的变化如何反馈到生产和效用系统。综合模型也多为优化模型,以解决随着时间的变化如何将减排的利益最大化。综合模型利用气候变化经济分析的方法,比较减缓温室气体排放的政策成本和消除或是减弱气候变化的效益。这类模型如麻省理工学院的igms模型和stern报告中应用的page2002等。

2、减排成本的实证研究

ipcc(2007c)第四次评估报告指出,实现中期减排(2030年),全球将温室气体稳定在445和710ppm co2-eq之间的宏观经济成本处于全球gdp降低3%和gdp增长0.6%这一范围内。实现长期减排目标(2050年),大气中温室气体稳定在710和445ppm co2-eq之间,全球平均的宏观经济成本是gdp增加1%到gdp损失5.5%。大多数研究的结论是随着温室气体稳定目标的严格,减排成本加大。模拟也表明,假设排放交易体系下的碳税收入或拍卖许可证的收入用于促进低碳技术或现有税制的改革,将会大幅度降低减排成本。全球减排二氧化碳的宏观经济成本的估算主要是利用自上而下的模型,模型的总体假设是在全球排放交易的前提下,寻找全球最低的减排成本。

区域减排成本在很大程度上取决于假设的温室气体的稳定水平和基准情景。对于相同地区减排成本的估算,由于采用了不同的模型和假设,最后得出的结果也有很大的差异。虽然计算结果在具体的数据上有所不同,但是模型所解释的总体特征还是具有一致性。chen(2004)利用中国的markal—macro模型,预测中国2050年的一次能源的消费为4818mtee,碳的排放量为2395mtc,从2000到2050年之间,中国单位gdp的碳强度将平均每年降低3%。在此情景下,如果co2的减排幅度为基准水平的5-45%,估算的碳的边际减排成本在12美元/吨碳到216美元/吨碳,减排的经济成本相当于在基准基础上损失0.1%到2.54%的gdp。王灿等(2005)采用综合描述中国经济、能源、环境系统的动态cge模型,分析了2010年实施碳税政策的减排情景。结果发现,在基准排放水平下co2减排率为0-40%时,gdp损失率在0-3.9%之间,减排边际社会成本是边际技术成本的2倍左右。当在基准排放水平下co2削减10%时,碳排放的边际成本约99元/吨,gdp仅下降0.1%左右,如果减排率上升到30%时,碳排放的边际成本约475元/吨,gdp将下降1%左右。

英国公共政策研究所(lockwood et al.,2007)报告了一项基于不同模型对于英国减排成本的估算。其中,anderson的自下而上的模型结果表明,在2050年,如果减排目标是在1990水平上减排80%,在基准没有控制飞行的排放的情境下,减排的成本为gdp的2.49%;如果控制飞行的排放,减排成本是gdp的1.06%;在能效提高的情景下,减排成本为gdp的0.76%;而如果有新核能的投入,则减排成本为gdp的0.94%。markal—macro模型的结果显示,在2050年,基准的情景下减排成本为gdp的2.81%;加速技术革新的减排成本为gdp的2.58%;高燃料价格的情景下,减排成本为gdp的2.64%;而能源效率加速提高的减排成本为gdp的2.04%。不管哪类模型,结果均显示提高能源效率是降低减排成本的关键因素。这两个模型的结果也被用在英国能源白皮书中,强调提高能源效率是英国的能源政策的优先考虑。

研究还发现估算co2的减排成本,基于不同的理论和方法的变量是关键的要素,例如贴现率的选择、市场有效性的假设、外部性的处理、价值评估的问题和技术、气候变化相关的政策的影响、交易成本等,这些经济要素的不同都会导致估算成本的差异。

3、技术变化与减排成本

气候是由存储在大气中的温室气体决定的。有些温室气体在大气中能够存在上百年,使得气候变化成为一个长期性的问题,因此技术条件的假设对于减排成本的估算就非常的重要。温室气体的减排成本和技术变化的速率、技术替代以及新技术的应用是直接相关的。和没有考虑技术进步的模型比较,将技术变化包括在模型中估算出来的温室气体减排成本明显的减低(ipcc,2007c)。这些成本下降的幅度关键取决于减缓气候变化的技术研发支出的回报率、行业和地区之间的溢出效应、其它研发的推广以及边干边学的模式和学习的速度等。

目前应用的技术进步模型已经有了极为显著的改进,超越了早期的传统模型中将技术看作是外部变化因子的模式。最近的几个模型允许技术进步的速率或是方向对内在的政策干预做出反应。一些模型(如popp,2004;nordhaus,2002)则集中在研究和开发基础上的技术变化,结合政策干预、激励研发的政策以及知识的进步。其他的模型则强调基于学和做的技术变化,考虑累积的产出是和学习相关的,随着产出的不断累积而降低生产成本。相对于那些将技术认为是外部因素的模型,政策介入所产生的技术变化的模型能以比较低的减排成本达到规定的减排目标。

四、气候变化经济学与不确定性

气候变化最大的特点是不确定性,在科学上和经济学上均具有不确定性。科学上的不确定性表现在我们还缺乏对一些科学问题的认识,例如排放的温室气体在大气中积累的量,温室气体集中程度的改变对全球气候的影响,气候变化在全球范围内分布以及出现的速度,区域气候变化对海平面、农业、林业、渔业、水资源、疾病和自然系统的影响等。经济上的不确定性表现为我们不确定世界人口和经济的增长速度,人类活动的能源强度和土地强度,控制温室气体排放或是鼓励技术发展政策对温室气体在大气中累积的影响以及政策的成本等。

1、不确定性与气候政策的选择

不确定性分析的目的一是辨别出一系列可管理的变量,二是估计每一个重要的参数可能的分布,三是估计参数的不确定性对所解决的重要问题的影响。一些成熟的数学模型已经被学者用来分析和成本效益相关的不确定性,如一些学者采用monte carlo模拟分析减排模型输出的不确定性,决定那些缺乏知识的随机的参数或是误差如何影响被模拟的系统的敏感性和可信度。此方法提供了给定政策的一系列结果或是一系列的优化政策。王灿等(2006)利用monte carlo模型对cge的二氧化碳减排模型的不确定性进行了分析,他们对cge模型的50个自由参数进行随机采样,考察模型输出的不确定性。敏感性分析也被用来确定减排成本评估中对估算结果产生重要影响的因素。还有一些研究者利用其他的模型来处理不确定性。例如nordhaus(2007)利用综合的气候-经济模型dice同时分析不确定性。

2、不确定性与贴现率的选择

温室气体在大气中的存在要持续一个世纪或是更长的时间,因此减缓气候变化的效益必须在不同的时间尺度上被度量,这样就提出了贴现率在气候变化研究中的重要作用。通常讨论两种贴现的方法,但这两种方法均存在明显的不确定性。一种是应用社会时间偏好率,即纯粹的时间偏好率和福利的增长率之和。另外的方法考虑市场的投资回报率,使项目的投资能够得到这种回报。也有专家指出,应该选择比预期价值低的贴现率,以反映贴现的要素以及贴现率和贴现的时间间隔之间的关系。针对减缓气候变化的行动,一个国家必须将其决策建立在让贴现率能够反映资本的机会成本的基础上。发达国家一般采用4-6%的贴现率是合理的(这个贴现水平被欧盟国家用来评价公共部门的项目),而发展中国家的贴现率可能会高达10-12%(ipcc,2001)。在stern的报告中,基于对气候变化公平性的强调,选择了近似于零的0.1%的贴现率,致使其气候变化影响的估算受到了经济学界的批评。nordhaus(2007)用相似的方法和3%的贴现率重新模拟stern的估算,发现气候变化的经济影响远远低于stern的结果。

3、不确定性与减缓气候变化的行动

除了对减缓气候变化的成本估算有影响,不确定性同时也提出了非常重要的问题:是否应该现在就采取行动减缓气候变化?现在行动应该投入多少?还是等待至少是一些不确定性得到解决?经济学原理建议,在缺乏固定的成本和不可逆转性的情况下,社会现在就应该采取减缓气候变化的行动,温室气体的减排量应该是在预期的边际成本和边际效益相等的那个点。然而,无论是在成本侧的低碳技术的投资还是在效益侧的温室气体排放的累计,气候变化和固定成本和不可逆的决策存在着固有的联系。这些特征导致或是采取更为积极的行动来减缓气候变化或是没有行动,分别取决于各自沉没成本的大小。实证性的分析和数学模型建议现在就应该开始采取措施减缓温室气体的排放,以获得显著的环境效益。stern的研究报告(2006)显示,如果现在采取行动控制温室气体的排放,气候变化的损失会控制在每年损失全球1%的gdp。所以他呼吁世界应该立即行动,大幅度的削减温室气体的排放,以避免气候变化带来的严重损失。

上一篇: 交通发展的原因 下一篇: 节约资源的目的
相关精选
相关期刊