大气污染主要因子汇总十篇

时间:2023-08-03 16:46:29

大气污染主要因子

大气污染主要因子篇(1)

1仪器及分析方法

分析仪器分别为:PE-AAnalyst原子吸收分光光度计,砷化氢发生装置。砷采用二乙氨基二硫代甲酸银光度法,镍、铜、铅、镉采用原子吸收分光光度法。

2数据处理与质量控制

数据统计分析采用均值型污染指数法,评价标准采用清洁对照点监测值进行评价。质量控制是保证监测结果准确可靠的必要措施。在监测过程中,根据质控程序对所用仪器参数进行校准。对实验室分析采用带国家标准样品和加标回收措施进行准确度控制。结果表明,曲线斜率b、截距a和相关系数r均在规定的范围内,标准样品和加标回收率实验均符合要求。

结果与分析

1蔬菜基地环境空气中重金属污染特征

按照环境空气综合污染指数法,对环境空气中重金属污染分级(分级依据为国家环境监测总站环境质量报告书编写技术规定)。即:P<4轻污染;4<P<6中污染;6<P<8重污染;P>8严重污染。环境空气质量分级见表1。环境空气中重金属污染区域特征为:西湾、东湾、下四分、中盘一带远郊区(蔬菜种植区)为轻污染区;白家嘴一带近郊区为中污染区;高崖子近城区为重污染区。环境空气中重金属监测指标污染特征主要以Ni、Cu污染为主,Cd、Pb污染为辅,并且Ni、Cu污染为重污染,Cd为中污染,Pb为轻度污染,As无污染。

2蔬菜基地土壤中重金属污染特征

依据中国文化书院《环境影响评价》中关于土壤环境质量评价方法中的土壤分级方法,由于土壤本身尚无分级标准,所以土壤的分级一般都按综合污染指数而定。P<1定为未受污染,P>1为已污染,P值越大,污染越严重。根据这一分级规则,由表2可见,新华、东湾、西湾一带的土壤未受重金属污染,土壤环境质量较好;其余测点均为轻度污染。土壤重金属污染特征表现为以Cd污染为主,其次为Ni,两项指标均为轻度污染,其它三项指标无污染,但Cu却处于将要污染的临界值。由此可见,金昌市土壤中重金属污染表现出很强的地域特征,即以冶炼厂为座标,沿东南方向,从高崖子至西湾、东湾,污染程度依次减轻。

3蔬菜中重金属污染特征

由于蔬菜中无重金属评价标准和分级标准,故本次评价是参照土壤的分级方法,采用对照点新华测点监测值作为评价标准的,其污染特征具有一定的区域性。根据土壤的分级规则,城郊蔬菜种植区西湾与东湾所采集的四种最常见蔬菜中,重金属含量相对新华而言均属轻度污染,且污染水平基本相当,其中西红柿相对而言污染偏高,辣椒与豆角偏低。蔬菜的区域污染特征为:离市区较近的西湾蔬菜中重金属污染重于离市区较远的东湾,即离市区越近,重金属污染越重。蔬菜中各项重金属指标的污染特征为:各项指标中重金属污染特征不十分显著,表现为As污染略高于其它指标,Cd污染略低于其它指标,其余指标污染水平相当。

污染原因分析

1环境空气

从环境空气中重金属污染特征分析,可清楚地看到,环境空气中重金属污染地域特征很明显是以冶炼厂为中心,向东南、西北两个方向展开,并且呈逐渐减弱之势,由此也说明造成环境空气中重金属污染的原因,主要是冶炼烟气中排放的大量金属粉尘。其次气象因素也是很重要的原因之一,这两个方向区域的环境空气中重金属污染严重,是因为金昌市夏季的主导风向为西北风与东南风,因此,导致这部分区域环境空气中重金属污染加重。

2土壤

根据土壤中重金属污染特征,再加上这一带灌溉用水为金川峡水库地表水,而金昌市地表水中重金属指标均达到《地表水环境质量标准》GB3838-2002中二级标准,不会对土壤造成污染,由此可以得出造成高崖子一带土壤中重金属污染的主要原因是金川公司冶炼烟气所致。

3蔬菜

根据蔬菜中重金属污染特征,各区域蔬菜中重金属监测结果同清洁对照点相比,相差不是很大,但还是表现出了地域特点,即离冶炼厂越近,蔬菜中重金属污染越重,可以说造成蔬菜中重金属污染的原因是由冶炼烟气造成的。

结语

通过对金昌市蔬菜基地环境空气、土壤、蔬菜中重金属污染特征研究,得出蔬菜基地环境空气已不同程度受到重金属的污染,且表现为离城区越近重金属污染程度越重;而土壤、蔬菜未受重金属污染,但仍表现出很明显的污染地域特征,即离市区较近区域土壤及蔬菜中重金属含量高于离市区较远的区域。表明金川公司冶炼烟气对金昌市蔬菜基地环境质量造成了不同程度的影响,应引起各方面的关注。

防治措施

1制定污染防治规划

金昌市有关部门应结合市区环境空气中重金属污染现状,划定重金属污染规划区,制定规划区重金属污染防治规划,确定目标,逐年实施,控制污染。

2形成各部门齐抓共管机制

污染防治工作涉及部门广泛,如环保、城建、林业、水利等部门,应建立起由政府对规划区环境空气质量负责,环保部门统一组织协调、监督管理,各部门通力合作,齐抓共管的管理运行机制。

3建立制度,规范管理

环境空气中重金属污染防治工作,技术难度大,没有成熟的管理经验可以借鉴。因此,要建立切实可行的管理制度,使污染防治工作有章可循,有法可依,逐步走上法制化轨道。

4强化源头管理,推行清洁生产

金昌市的环境污染与生产工艺技术落后、管理不善密切相关。冶炼过程的采掘率和金属回收率较低,这样,既浪费了资源,又污染了环境。因此,要依靠科技进步,积极探索研究冶炼烟气中重金属回收利用的新途径,推行清洁生产工艺,以减少污染物排放。

5加强“菜篮子”产品产地环境管理

在所划定的“菜篮子”产地设置必要的防治污染的隔离带或缓冲区,在其周边要严格控制工业污染源的排放,对已经投产的有污染且不达标的建设项目,必须严格监管,依法停产治理,对逾期不能达标的企业,建议政府对其关闭。加强对“菜篮子”产品产地的环境监督管理力度,及时调查处理“菜篮子”产地环境污染事故与纠纷,并对“菜篮子”产品产地环境质量实施动态监测与评价,为政府选择划定“菜篮子”产品产地提供依据。

6充分发挥环境监测的技术监督作用

大气污染主要因子篇(2)

收稿日期:2012-02-02

作者简介:金 雪(1984―),女,浙江嘉兴人,助理工程师,主要从事环境监测工作。

中图分类号:X517

文献标识码:A

文章编号:1674-9944(2012)02-0135-03

1 引言

酸雨是指pH值小于5.60的雨雪或其他形式的降水,主要受人为向大气中排放大量酸性物质的影响。20世纪70年代开始,酸雨已逐步成为世界的公害。嘉兴市区是酸雨重污染区,本文主要分析嘉兴市区的酸雨污染特征,并对污染原因做了简要分析。

嘉兴市的降水监测点位有2个,分别设置于监测站和嘉北街道。降水的采样频率为逢雨、雪必测,降水量使用同步监测数据。降水的分析项目为pH值、降水量和电导率以及SO2-4、NO-3、Cl-、F-、K+、Na+、Ca2+、Mg2+、NH+4共9项离子,分析方法、分析用水等均按照HJ/T165-2004的要求执行;在准确度控制上,进行实验室内密码样的分析,分析结果全部合格,无问题值和离群值。

2 酸雨污染特征

2.1 酸雨污染现状及污染类型

2.1.1 降水pH值范围及酸雨频率

2010年嘉兴市共采集水样品146个,降水的pH均值(雨量加权均值,下同)为4.36,pH值范围在3.33~6.87之间,酸雨频率为69.2%。pH值≤4.50的样品占样品总数的30.1%,4.50<pH值<5.60的样品占39.1%;5.60≤pH值≤7.00的样品占30.8%;没有大于7.0的样品。2个降水点位均出现了不同程度的酸雨,相比之下,嘉北街道的酸雨频率较高,而pH值均值较低,说明该处的酸雨污染较监测站所在区域严重(图1)。

2.1.2 降水离子组分分布

2010年嘉兴市降水阴离子中硫酸根离子浓度最大,占阴离子当量浓度总和的比例为59.3%,其次为硝酸根离子占20.5%,两项离子总和占阴离子当量浓度总和的79.8%;SO2-4/NO-3为2.9,表明嘉兴市酸雨污染以混合型污染为主,但硫酸根对酸雨的贡献较大。阳离子中钠离子浓度最大,但由于8月份其离子浓度异常偏高,达到其他月份平均值的近12倍,可能受到台风降水中带来的海盐的影响。在不考虑8月钠离子异常值的情况下,阳离子中铵离子浓度最大,占阳离子总量的51.9%,其次为钠离子,占25.3%,两项离子之和占阳离子浓度总和的77.2%,见表1。

2.2 酸雨季节变化

2.2.1 降水pH值及酸雨频率季节变化

季节降水pH值和酸雨频率的变化见表2。尽管2个测点均出现酸雨,但季节变化仍然明显,夏、秋季节的pH值高于其他季节,酸雨污染程度相对较轻,春、冬季的酸雨污染程度明显较高,这与嘉兴市区夏、秋季大气污染轻、雨水较为充沛,而春、冬季大气扩散不利、雨量相对较少有直接关系。酸雨频率变化中冬季最为严重,其他季节2个测点的变化不一致。

2.2.2 降水离子组分季节变化

2010嘉兴市降水中4种主要离子(SO2-4、NO-3、NH+4、Na+)浓度在1月和11月均较高,这主要由于冬季大气污染严重,降水很少,空气中气溶胶浓度较较大,降水在下落的过程中吸收和捕获了大气中气溶胶,导致降水中离子浓度增高(图2)。

2.3 酸雨污染趋势

2.3.1 降水pH值及酸雨频率变化趋势

2006~2010年降水pH均值和酸雨频率统计结果见表3。酸雨pH均值与酸雨频率均呈现波动变化,但2010年pH均值较2006年上升,而酸雨频率下降,根据秩相关系数进行检验,酸雨污染变化趋势不明显。这5年间,酸雨pH年均值均小4.5,说明嘉兴市区一直处于酸雨重污染区。

2.3.2 离子浓度变化趋势

根据秩相关系数进行检验,2006~2010年降水中各项离子浓度变化趋势不明显,降水中(Ca2++NH+4)/(SO-24+NO-3)在置信度(单侧)为0.05时其上升趋势显著,主要阳离子对阴离子的中和能力升高,因此总体来看5年间酸雨频率降低,酸雨pH值上升。SO2-4/NO-3比值有所下降,酸雨类型由原来的燃煤型过渡到混合型。

3 嘉兴市区酸雨成因分析

3.1 大气中二氧化硫和二氧化氮浓度的影响

降水酸度与环境空气中致酸物质有一定的关系,二氧化硫与二氧化氮是致酸前体物,在空气污染较重的季节降水质量较差,酸雨污染就会比较严重。从图3可以看出,二氧化硫和二氧化氮浓度均值与降水酸雨率基本呈正相关,而与pH值呈负相关,说明嘉兴市区酸雨污染很大程度上受大气中二氧化硫和二氧化氮浓度的影响(图4)。

3.2 气象条件的影响

从各季度降水监测结果来看,夏、秋季pH值高于其他季节,酸雨污染程度相对较轻,而春、冬季的酸雨污染程度明显重于夏季,这与降水量稀少有密切关系,因为降水量偏小会导致溶解在降水中的SO2-4、NO-3离子浓度增高,酸度增大。由此可见,气象条件对酸雨污染的影响也很大。

图4 嘉兴市区大气中SO2和NO2浓度与降水pH值的关系

3.3 污染物排放的影响

酸雨的形成被认为是向大气排放的二氧化硫和氮氧化物逐年增加的结果,在云滴、雨滴内或在大气中二氧化硫被臭氧等氧化剂氧化生成硫酸,氮氧化物最后被氧化转化成硝酸或硝酸盐,而使降水呈现较大的酸性。尽管2010年嘉兴市区的酸雨类别已为混合型污染,但硫酸根对酸雨的贡献最高。酸雨的时空分布与其大气污染的时空分布相一致,说明受大气污染物浓度的影响较大,而大气中的酸性气体,如二氧化硫又主要与区域排放量相关。从“十一五”期间嘉兴市二氧化硫排放量的变化情况来看,总量下降39.3%,工业废气中二氧化硫排放量下降38.8%,生活及其它二氧化硫排放量下降48.9%,这与“十一五”期间大气中二氧化硫浓度的变化趋势不一致,说明大气污染物的来源更多的是受到整个区域的影响,而不仅仅是某局部地区的影响,这也表明嘉兴市区的酸雨污染受到区域性大气污染的影响。

4 结语

2010年降水pH值的均值为4.36,pH值的范围为3.33~6.87,酸雨频率为69.2%,属重度污染。2006年~2010年市区酸雨污染总体有所改善,春、冬季的酸雨污染相对较为严重。降水中主要阴离子为硫酸根和硝酸根离子,即致酸污染物主要为二氧化硫和氮氧化物,酸雨污染为混合型污染,但硫酸根对酸雨的贡献最高。嘉兴市降水中对酸雨起中和作用的离子主要为铵离子及钠离子。2006~2010年降水中(Na++NH+4)/(SO-24+NO-3)的上升趋势显著,说明对酸雨程度有改善作用得到增强。嘉兴市区大气中二氧化硫和氮氧化物浓度与降水pH值和酸雨频率有一定相关性,但与局地污染物排放关系不明显,说明市区酸雨污染受区域性大气污染的影响。

大气污染主要因子篇(3)

大气颗粒物中的重金属进入人体的途径主要有呼吸作用[6]、吞食作用[7]和皮肤接触。大气气溶胶是影响辐射传输的一个重要因素,它不但吸收和散射太阳辐射,影响大气的光学性质,改变大气能见度,而且对地气系统的辐射能量平衡也有重要影响。PM2.5细粒子污染对城市灰霾的形成及能见度的恶化有极大贡献。气溶胶粒子数浓度日际变化,主要受降水、风速、风向及相对湿度等气象条件的影响。偏东风有助于气溶胶浓度的增加[8]。能见度和细粒子质量浓度呈现较好的负相关,而与PM10质量浓度的相关性就差一些。细粒子质量浓度的高低是决定能见度好坏的主要因子。可以尝试利用细粒子质量浓度的观测结果来估算大气能见度。1999年6月持续高温期间即使细粒子质量浓度很高,能见度并不很低,而2000年1月细粒子质量浓度在并不高的情况下,能见度却较低。这可能是因为细粒子中的成分不同的缘故,因为能见度的细粒子中主要的化学组分具有密切关系。活跃的光化学可能是前者的主要来源,燃煤可能是后者的主要来源,二者在化学成分上具有很明显的差别[9]。有研究表明:全球变暖会导致地表水分蒸发的增加,从而引发全球干旱化的发展和加剧,干旱半干旱区问题将变得更为严重。对1970-1990年中国大气水分的变化研究表明:大气水分在20年中是增长的,其中增长多在对流层低层,主要增长地区在东北、西南和南部沿海地区,在华北和中南部分地区却呈下降趋势。大气水分与地面气温的关系取决于地区与季节。在东北地区,大气水分的增长与地面气温增暖相一致,华北地区则不然;在西南地区只有秋、冬两季的大气水分与地面气温有明显的相关关系。大气水分与降水具有密切的正相关关系。美国的相对湿度也呈下降趋势,与水滴蒸发成负相关关系。蒸发增加40%,相对湿度减少25%~45%,湿度减少是造成干旱的原因之一[10]。

乌鲁木齐市由于其特殊的地理位置、气象因素等条件使得其冬季采暖期风速变为全年最小,极易出现阴雾天气。此种气象现象经常持续数天使得大气污染物不易水平运动和扩散稀释,随大气污染物不断累积,阴雾范围也随之扩大,导致采暖期内的乌鲁木齐市经常笼罩在烟雾之中[11]。可吸入颗粒物又是乌鲁木齐市最为严重的大气污染物。过去几年,政府采取了一系列污染治理措施,但是到后期可吸入颗粒物浓度变化不明显。到目前为止,关于乌鲁木齐市大气颗粒物中可吸入颗粒物的污染特征和源解析研究较少,而对于与人体健康和大气能见度密切相关的细粒子(PM2.5)的研究则更少。本实验通过采集乌鲁木齐市一年的可吸入颗粒物并对其进行分析研究,探讨了大气可吸入颗粒物中重金属在采暖期和非采暖期的变化规律,并对不同的重金属的来源进行了解析,同时还对其污染水平进行了评价。

1材料和方法

1.1样品采集

本研究从2009年7月-2010年4月,在新疆大学5号楼楼顶(北纬43°77′、东经87°61′)采集大气可吸入颗粒物样品。采样设备有日本产NL20型撞击式大气颗粒物采样头、转子流量计、真空泵组成。采样头设定流量为20L/min,样品的采集时间设定为24h,总共81个样品。该采样头共有3层构成,第一层放有2500QAT-UP型环形滤膜可以截留dp>10μm的颗粒;第二层放有2500QAT-UP型环形滤膜可以截留2.5~10μm的颗粒(PM2.5~10);最底一层放有QR-100型滤膜,可以截留dp<2.5μm的颗粒,采样介质为玻璃纤维膜,采样前后滤膜均恒温恒湿48h(温度25℃,湿度50%)并称重以确定可吸入颗粒物的质量浓度。

1.2样品的前处理

将1/2的样品滤膜剪碎,放入消解瓶内,加人6mLHNO3,3mLHClO4。瓶口放置小玻璃漏斗,放置过夜后在电板上加热至近干,取下小玻璃漏斗。电板上再加热至HClO4耗尽,取下样品冷却。用10mL左右的1%HNO3淋洗瓶壁,继续于电板上加热,保持微沸10min,取下冷却,微孔滤纸过滤,用1%HNO3定容至25mL容量瓶中,摇匀待测。取同批号,等面积空白滤膜按样品超声波提取及消解过程消解,测定空白值[12]。

1.3重金属测定

待测样品中Mn、Cr、Pb、Ni和Cu,Fe采用原子吸收分光光度法测定;Hg、As检测用双道原子荧光光谱法检测定。

2结果与讨论

2.1PM2.5~10和PM2.5质量浓度的分析

PM2.5和PM2.5~10样品的质量浓度变化如图1所示,PM2.5-10质量浓度范围为12.3~138.9μg/m3平均值为79.85μg/m3,PM2.5质量浓度的变化范围为36.6~406.6μg/m3,平均值为222.40μg/m3,超过美国EPA1997年颁布的PM2.5日平均值35μg/m3的6.4倍[13]。由2010年7月-2011年4月采样的可吸入颗粒物的日平均值可知,乌鲁木齐市PM2.5的月平均浓度最高的是2011年1月为406.25μg/m3;最低是2010年9月为36.7μg/m3。PM2.5~10的月平均浓度最高的是2011年1月为138.9μg/m3;最低是2010年9月为12.3μg/m3。由于乌鲁木齐市雾天气集中出现在冬季,从而导致颗粒物浓度较高,特别是由于可吸入颗粒的富集作用,导致1月的浓度最高。乌鲁木齐从12月开始进入深冬季节,光照较弱、日照时间短、逆温出现频率增大及大气对流不活跃等不利于空气中污染物质扩散的因素较多,因此空气质量维持在严重污染的水平。乌鲁木齐市的6、7、8月是较典型的夏季季节,温暖、湿润雨量充,雨水的冲刷及其他气象因素使得大多时候的空气质量较好[14]。

2.2PM2.5~10和PM2.5季节性变化

图2表示的是不同季节的PM2.5~10、PM2.5的浓度和气象因素的关系,从图2中可以看出在冬季浓度较大,这可能是由于在冬季风速低和湿度高于其他的季节(易发生相际反应);夏季可吸入颗粒物浓度较小,这可能是夏季的温度高、湿度低、风速较高,粒子干燥。环境对粗颗粒的贡献比在其他的两个季节中的要高[1]。

2.3PM2.5和PM2.5~10中重金属的浓度分布特征

2.3.1采样期间PM2.5和PM2.5~10中重金属的总浓度分布特征

图3给出了PM2.5~10、PM2.5中重金属在采样期内的总平均含量。由图3可知:乌鲁木齐市PM2.5~10和PM2.5中7种金属元素的浓度顺序排列为Cr>Pb>Mn>Cu>Ni>As>Hg。Cr、Pb和Mn的含量也较高,平均浓度分别为195.43、120.15、100.03ng/m3和327.57、295.89、145.31ng/m3;Ni、Cu、As和Hg的含量较低,平均浓度分别为57.74、47.96、35.22、0.99ng/m3和59.55、81.88、30.78、2.03ng/m3,而且重金属在PM2.5中的含量均高于PM2.5~10中的含量,特别Mn、Cr、Pb、Hg、Cu和As。说明对人体危害较大的金属元素主要富集在小于2.5μm的细颗粒上,即重金属在细离子中易于富集。

2.3.2采暖期、非采暖期PM2.5和PM2.5~10中重金属的总浓度分布特征

由表1、2可知,除Ni之外其他重金属的浓度采暖期均高于非采暖期。

2.4重金属污染水平的评价

为了进一步了解乌鲁木齐市采暖期可吸入颗粒物中重金属污染水平及其对人体的危害,本研究采用评价沉积物重金属污染常用的地积累指数法,对重金属污染进行了评价。Mull污染指数Igeo的数学表达式为:Igeo=log2(Cn/1.5Bn)式中,Cn表示元素n在沉积物中的含量(mg/kg);本研究中为各重金属元素在颗粒物中的含量;Bn表示沉积物中该元素的地球化学背景值。这几种重金属取其在乌鲁木齐市土壤背景平均值,其值分别为Mn688.00、Cr47.40、Ni28.95、Pb11.20、Ni28.95、Cu26.70、Hg0.06、As10.78mg/kg,Fe3.60(百分数)为中国土壤背景平均值[15]。Igeo≤0被列为无污染,0≤Igeo≤1为无污染到中等污染,1≤Igeo≤2为中等污染,2≤Igeo≤3为中等至重污染,3≤Igeo≤4为重污染,4≤Igeo≤5为重污染至严重污染,Igeo≥5为严重污染[16]。

2.4.1采暖期、非采暖期PM2.5~10中重金属污染水平的评价

由图4污染指数可以看出,无论是采暖期还是非采暖期,污染指数的最高点及最高平均值都落在了Pb、Hg上,两者采暖期的污染指数均高于非采暖期且为严重污染;Cr、Ni、As、Cu在非采暖期污染指数分别为5.42、4.64、4.5、4.48,在采暖期分别为5.48和4.06、4.89,4.08为重污染至严重污染,其中Cr采暖期及非采暖期的污染指数相当,Ni、Cu在非采暖期的污染指数高于采暖期,而As与Pb、Hg相同采暖期高于非采暖期;Mn的最小为非采暖期时的0.5,在采暖期时的0.90为无污染。

2.4.2采暖期、非采暖期PM2.5中重金属污染水平的评价

在PM2.5中Hg和Pb的最大值仍出现在采暖期,在非采暖期污染指数分别为6.36和6.44,采暖期分别为8.41和6.61并为严重污染;Cr和Ni、As在非采暖期的Igeo值分别为5.31和5.20、4.80,在采暖期分别为4.64和3.62、3.65判断为重污染至严重污染,并且这3种金属在非采暖期的污染水平高于采暖期;Cu在非采暖期的Igeo值为4.54判定为重污染至严重污染,而在采暖期为3.15,为重污染;Mn的污染指数最小,非采暖期为0.15,采暖期为-0.29,无污染(图5)。

2.5PM2.5~10和PM2.5中重金属的来源分析

富集因子(EFs)是一个反映人类活动对自然环境扰动程度的重要指标。它是通过样品中元素的实测值与元素的背景含量进行对比来判断表生环境介质中元素的人为影响状况。富集因子计算公式为:EF=(Ci/Cn)样品(/Ci/Cn)土壤背景式中,Ci表示重金属元素i的质量百分数(W/W);Cn表示标准化元素Fe的浓度(W/W)。如果元素富集因子接近于1,可以认为该元素相对于土壤来源基本没有富集,主要来自于土壤颗粒;如果元素富集因子大于10,则表明元素除土壤来源外还受人类活动影响[17]。由图6、7可知在PM2.5~10还是PM2.5中不论是采暖期还是非采暖期,除Mn之外,所测金属的EF值均大于1,均受出土壤之外的外部环境的影响。对于Cr、Ni、Cu、As而言非采暖期和非采暖期的EF值相当,既有相同的污染源;而Pb、Hg采暖期的富集因子远高于非采暖期,即乌鲁木齐市冬季的环境条件有利于2种金属的富集。

3结论

(1)乌鲁木齐市冬季大气颗粒物PM2.5~10的平均质量浓度超过了国家二级标准的1.07倍,PM2.5污染比较严重超过美国EPA1997年颁布的PM2.5日平均值的6.4倍。

(2)重金属在PM2.5中的含量均高于PM2.5~10中的含量,特别Mn、Cr、Pb、Hg、Cu和As。说明对人体危害较大的金属元素主要富集在小于2.5μm的细颗粒上,即重金属在细离子中易于富集。

大气污染主要因子篇(4)

1 研究背景及目的

自我国改革开放以来,国民的生产力和民生活水平有了很大提高,经济得到了快速地发展,但是经济增长同时却带来了严重的环境污染问题,其中废气污染就是其中之一。曾经有报告指出,全球的空气污染情况最严重的10个城市中,中国就有7个上榜。我门都知道SO2是形成酸雨的主要污染物,在我国大部分城市SO2染保持在较高水平,全国一共形成了华中、华东、华南多个酸雨区,其中以华中酸雨区最为严重为重,这对于我国农业的长久发展极为不利的。城市机动车尾气排放总量增加,氮氧化物污染明显增多,而NO2会造成二次污染。据不完全统计仅仅有害雾霾致使中国在医疗方面耗费十亿美元,而由于我国空气中的烟尘颗粒物每年大约致使几十万人感染上慢性支气管疾病。城市大气污染问题早已经成为全世界各国共同面临的难题之一,受到了各国政府的高度关注,解决这一问题需要全世界人们的共同努力。

在这种背景下,对于主要城市废气中主要污染物排放进行研究,是掌握我国城市大气污染的现状,找到城市大气污染原因,探索解决的办法的必要经历。另外也对于建设中国特色的社会主义有着非常重大的意义。

研究目的如下:通过对主要城市废气中主要污染物的各项指标进行分析,第一,找到主要污染物之间是否具有某些必然联系。第二,努力发现影响大气污染的因素。第三,分析不同城镇之间大气污染物水平的差异,为针对不同的污染程度的城市制定合适的治理办法提供可靠依据。

2 研究方法

地球上,人类的呼吸都离不开氧气,但是如果我们赖以生存的空气遭到了污染,那么人类的身体健康必然受到威胁。由此我们采用的数据指标有:“工业二氧化硫排放量”“工业氮氧化物排放量”“工业烟粉尘排放量”“生活二氧化硫排放量”“生活氮氧化物排放量”和“生活烟尘排放量”6个指标。以下本文出现的变量分别对应用“X1”、“X2”、“X3”、“X4”、“X5”和“X6”表示。本研究采用的数据是《主要城市废气中主要污染物排放情况(2013年)》,数据摘自《中国统计年鉴2014》816。

采用数据分析的方法主要有回归分析、相关分析、因子分析。基本思想是:首先使用回归分析、相关分析等分析方法研究用“X1”、“X2”、“X3”、“X4”、“X5”和“X6”所有构成主要城市废气中主要污染物的变量之间的关系;其次使用因子分析对构成主要城市废气中主要污染物的各个变量提取公因子;最后依据提出的公因子,运用所学的SPSS知识,加上一些数学处理工具对各城市总分进行排序。

3 研究结论

本文运用了多种统计学的方法对各城镇废气污染物进行了统计分析,加入了偏相关分析,这样有利于控制其他变量对相关性的影响。我们利用逐步回归法对各种指标进行了筛选,虽然没有考虑异方差和多重共线性的问题,但利用因子分析对经济综合指标进行了降维处理,这样就可以大大降低共线性的问题,接着利用各因子得分进行计算综合成绩,对各城市进行综合排名。

经过以上分析研究,我们从中可以了解到我国主要城市的空气质量是否存在较大的问题,这些数据是监控人类生存环境一把利器,对于我国的可持续发展具有重大的意义。例如由回归分析可得到,要想空气中工业二氧化硫排放量有所减少,可以通过降低工业烟粉尘排放量或者工业氮氧化物排放量。由因子分析和单变量扩展排序表(附表2)可知,重庆得分最高,肺气污染比较严重,这是因为重庆工业废气排放量多导致的;哈尔滨地处我国最北端,居民对煤炭的需求比较严重,所以居民生活废气排放增多,废气中染物相对较多;上海是我国的经济大市,企业众多,运输量高,居民消费水平比较高,汽车尾气是主要的废气污染。以北京为例的北部平原等内陆城市地形平缓,扩散条件相对较差,沙尘频繁,可吸入颗粒物污染严重,大气系统滞留频繁,不利条件和污染源较强导致污染。南方城市却排在了最后,处于沿海,污染源一般较少,大气扩散条件较好。改善我们的生活环境要从节能减排做起,倡导绿色的消费方式很生活习惯。

参考文献:

大气污染主要因子篇(5)

1、引言

随着人们生活水平的日益提高,人们对生活质量的要求也越来越严格,对自己的生活环境的要求也越来越高,现代人生活90﹪的时间在室内度过,因此,近年来人们也更加关注占人们活动大多数时间的室内环境质量问题。

1.1 影响室内环境的主要因素

影响室内环境的主要因素有室外空气质量和室内污染源及室内通风状况三个方面。

1.2 室内环境污染的主要来源

明确了对室内环境的主要影响因素还要弄清室内空气污染物的来源。污染的主要来源是交通污染、室内人为活动、各种室内办公机器、尤其是室内装修污染已经成为现代家庭生活的一个主要污染途径

1.3 室内环境污染的特点

室内环境污染由于其来源广泛种类繁多主要表现在一下几个方面:

1.3.1 影响范围广

室内环境包括人类活动的一切室内空间,设计生活工作等各个领域,所以涉及人群广涉及空间范围大。

1.3.2 持续时间长

现代人生活的绝大部分时间在室内度过,如果室内环境造成污染,人类处于其中必将深受其害并且不能短时间内脱离,所以室内环境污染是一种长时间的破坏行为。

1.3.3 污染物浓度高

很多室内环境,特别是刚刚装修完的室内环境,从各种装修材料中释放出来的污染物浓度均很大,并且在通风换气条件不充分的情况下污染物不能排放到室外,大量的污染物滞留在室内,造成室内污染物浓度十几倍甚至几十倍的超标。

1.3.4 污染物种类多

除甲醛、氨气、苯、总挥发性有机物(TVOC)和氡这五项重点污染物指标外还有二氧化碳、二氧化硫、可吸入粒子等500多中化学性污染物质,污染物的的种类繁多性质复杂。

1.3.5 污染物排放周期长

从室内环境污染的主要来源看,排放的污染物释放的周期较长,尤其是室内装修污染,以甲醛为例,甲醛的释放可能达3-15年,某些放射性的污染排放周期会更长。

明确了影响室内环境的主要因素、室内环境污染的主要来源和室内环境污染的特点我们就可以有的放矢的提出一些防治室内污染的方法措施。

2、室内环境污染的防治措施

关注室内环境污染刻不容缓,必须采取适当的防治措施,改善室内环境质量,营造更加舒适的生活环境。那么室内环境污染主要的防治措施又有哪些呢?下面我们就来简要的分析一下。

2.1 合理规划城市布局

合理规划城市布局,尤其是合理的工业区位置确定是减少居室污染的关键。

城市工业区位选择应该注意的几项原则:便捷的交通,减少对生活居住区的污染:基本无污染的企业可以布置在城内居民区内;污染较大的企业应尽可能布置在远离城市的地方;可能污染空气和水体的工业应当布置在城市的下风向和水源的下游;工业区和生活区之间设置防护带。

2.2 个人日常应采取的有效防治措施

室内环境大多是个人活动空间,因此从主观上采取措施才是保证室内环境良好的根本。

(1)可根据居室、厨房、卫生间的不同污染物选用具有不同功能的空气净化装置,如空气净化器、抽油烟机、臭氧消毒器等;

(2)购买和装饰新居后,不要急于居住,应该先找室内检测部门进行监测,听取专家的意见;

(3)尽量减少在室内吸烟的机会,做到少吸烟最好不吸烟;

(4)装修时选择有资质、正规的装饰公司;选用无毒无害、无污染的有环保标志的建筑装饰材料;

(5)购买家具是要选择那些正规厂家产品,可有效的控制室内空气污染地程度;

(6)有选择的放置一些绿色盆景植物,对减轻室内空气污染有一定好处。

(7)做好室内的通风换气,保持室内空气新鲜。

2.3 污染物自身消散机制

室内空气污染物不论在其来自室内或者室外,可能会由于某些消散机制而被去除。这些机制包括:(1)大气转换作用;(2)粒状物质沉淀作用。

2.4 利用中介媒吸附、中和治理

目前市场上流行竹炭、活性炭、负离子、光触媒等多种室内空气污染治理方法。不同的治理方法会产生不同的利弊,需要根据具体情况做出选择。

(1)光触媒。该方法是从国外引入、应用较多的一种,对中度污染具有治理见效快的显著特点,但是价格偏高。光触媒在进行光和作用、发生化学反应过程中,可能产生轻微的二次污染,对壁纸、木制家具的油漆表面会有影响。此类清除剂对甲醛去除效果为70%左右,对苯、TVOC的去除效果在80%以上。

(2)臭氧。属强氧化性,是国际上公认的常用、安全的物理治理方法,使用于中度、轻度污染。其最大特点是不产生任何残留物及二次污染。单采用该技术治理时,人要暂时离开房间,以免中毒,其对甲醛的去除效果为40%,对苯的去除效果在90%以上,对TVOC的去除效果在50%左右。

(3)负离子。用一种产生高压电的仪器分解有害气体,使苯、甲醛等有害气体快速氧化成负离子,与空气结合后,还原成氧气、水和二氧化碳。这种方法见效快、无污染,不留死角,可定期采用,作为集中治理室内空气污染超标问题的一种选择。此类方法对甲醛、苯、氨、TVOC的去除效果可达70%左右。

(4)炭 竹炭、活性炭等都是利用炭吸收异味、吸附有害气体的原理来治理室内空气污染。他具有成本低、无毒副作用的特点,单见效较慢。此法可作为室内空气污染轻微超标的长期治理方法。起对甲醛的去除效果为50%左右,对苯的去除效果在90%以上,对TVOC的去除效果在50%左右。

(5)其他方法。从植物中提取出来的纯植物性清除剂为天然产品,对环境不会产生二次污染,是理想的空气污染清新剂。对甲醛、苯、tvoc的去除效果在50%左右。

大气污染主要因子篇(6)

中图分类号:X22 文献标识码:A 文章编号:1007-3973(2011)005-109-03

1. 前言

随着工业化发展进程的加快和人们对于环境需求的不断提升,环境空气污染已经成为目前城市发展所面临的最为突出的难题之一,环境空气质量的好坏不仅直接影响到城市居民的健康,而且给周边动植物的生长和文物古迹的保护等都有直接或者间接的影响。为此,王宏等结合气象条件对福州市的环境空气质量情况进行了特征分析,并得出了气象与环境空气质量之间的一些相关性,而刘新玲等和杨书申等分别对比分析了山东五城市和北京、上海两城市之间的大气污染特征,均认为由于不同城市之间气象因素、企业类型、企业规模等方面的不同会有不同的环境污染特征和成因。

北仑区作为一个临港大工业基地,集中了包括北仑电厂、宁波钢铁厂、台塑化工、吉利汽车、申洲织造公司等在内的众多大型企业,这些大型企业对北仑的环境空气影响究竟如何已经成为北仑区政府和老百姓关注的焦点,也是北仑区进一步打造适合移居城市的必要参数之一。本文通过深入分析2010年度北仑区域内三套环境空气自动站的监测数据,对北仑区的环境空气质量特征和污染来源进行了系统的研究,并针对现状提出了一些相关的建议。

2. 实验方法

2.1 监测点位及监测项目

2.1.1 监测点位

北仑区域目前共设置三个大气环境空气质量自动监测点位,分别位于城中(监测站),城东(宁波钢铁厂宿舍区),城西(青峙变电所),其中城东和城西位于工业区周边。

2.1.2 监测项目

可吸入颗粒物(PM10),二氧化硫(SO2,氮氧化物(NOx)。

2.2 监测仪器和方法

采用三个固定的环境空气自动站(美国热电环境仪器有限公司)进行连续24小时自动监测,并对小时均值、日均值、月均值、年均值进行数据统计分析。其中仪器设各原理和型号为:(1)PM10的测定:β射线法。仪器为FH62C-14型可吸入颗粒物分析仪。(2)SO2的测定:紫外脉冲荧光法。仪器为43C型二氧化硫分析仪。(3)NOx的测定:化学发光法。仪器为42C型二氧化氮分析仪。

3. 结果与讨论

3.1 污染物浓度的季节变化规律

图1、图2、图3清楚的显示了城中、城东、城西点位的SO2、NO2、PM10的月均值浓度情况,显然,每个点位的SO2、NO2、PM10的浓度随着季节的变化,始终呈现出一、四季度高,二、三季度低的变化趋势,这一结果与董蕙青等对广西主要城市的研究结果基本一致,但是与刘新玲等的对于山东五城市的大气特征研究结果(主要是SO2浓度)则略有差异,这种差异主要来自于北方典型的冬季燃煤采暖因素的影响,故南方地区冬季的污染物浓度基本与春季差别不大,而且相比于北方城市总体上浓度要低的多;此外,北仑区地属亚热带季风气候区,又临东海,四季分明,受到这样季节性气候变化的影响,北仑区域气候情况总体上表现为一、四季度空气比较干燥,昼夜温差明显,大气逆温现象频率较高,不利于污染物的传输扩散,此外,较低的湿度和无植被覆盖的地面也加剧了污染,尤其是可吸入颗粒物在环境空气中的高浓度,而二、三季度太阳辐射强度强,逆温层的生成时间缩短,大气对流活动旺盛,污染物扩散较好,此外,夏季较多地降雨也使得污染物得到了溶解和冲刷作用,因此,总体上环境空气质量较好。

3.2 污染物浓度的日变化规律分析

为了考察三个污染因子在一天当中的浓度变化情况,随机抽取了2月、4月、6月、8月、10月和12月的一天对这三个因子的浓度变化情况进行分析,结果如图4、图5、图6所示,显然SO2在08:00~12:00范围内呈现出一个浓度的最高峰,凌晨和夜间浓度最低;而NO2和PM10情况则基本一致,均呈现出两个波峰和一个波谷的情况,具体的来看,NO2的两个波峰分别出现在09:00和17:00左右,波谷则出现在13:00左右,而PM10的波峰和出现时间分别为08:00左右、18:00左右和14:00左右,总体上两者每天浓度的波动情况相似,这个结果与马彬等对深圳市环境空气的研究结果基本一致,只是在出现峰谷值的时段略有差异,环境空气污染日变化趋势不仅和人们的生产/生活等活动有关而且还和每天的气象变化存在一定的相关性,即早上08:00~09:00左右是上班的高峰期,而下午17:00~18:00是下班的高峰期,这两个高峰期内均显示了较高浓度的NO2和PM10,而中午13:00~14:00以及凌晨和夜间均为休息时间,这一时段机动车少,企业生产和排放的污染物也较少;而SO2的波峰则与不利气象条件有关,即08:00~12:00,是太阳照射地面,地面温度上升,空气对流加强,夜间形成的逆温层遭到破坏,高空排放的二氧化硫向低层注入,而导致这一时段二氧化硫浓度峰值。

3.3 污染物的来源分析

为了考察北仑区域SO2,NO2、PM10三个污染因子的污染源情况,表1、表2、表3分别列出了这三个污染因子在不同点位的年均浓度、节假日浓度以及非节假日浓度情况,显然除了城西点位的PM10外,三个点位各个污染因子之间的差别不大,这可能是由于北仑区域的污染主要来自于机动车尾气和大工业企业的污染物排放,机动车本身的流动性和大工业企业的高空排放都有利于污染物在北仑区域的快速扩散,从而使得污染物浓度在三个点位基本分布均匀,而城西点位的PM10浓度偏高则可能是由于城西点位附近土地正处于开发建设阶段,由其导致的建筑施工扬尘引起了局部的可吸入颗粒物浓度偏高。

为了进一步的考察工业企业和机动车对SO2、NO2、PM10三个污染因子的贡献程度,对三个点位在节假日和非节假日的污染物浓度情况进行了对比研究,显然,三个污染因子在三个不同点位上均都显示了非节假日浓度要高于节假日的趋势,由此可以看出,北仑区域的工业企业对于这三个污染物的浓度均存在一定程度的贡献,但是从比例的数据上来看,高出的浓度并不显著,其中相差最大的是SO2的节假日/非节假日浓度比例,其节假日比非节假日浓度高20%~30%,这说明工业企业对于污染物的贡献并不是北仑区域SO2、NO2、PM10三个污染因子的主要来源,其对污染的贡献是相对有限,更多的污染主要还是来自于北仑区域越来越多的机动车所产生的尾气,这个结果和王淑云等所提出的许多城市的机动车尾气是污染的次要因素不一致,此外,SO2企业贡献比例相对较高可能与北仑区域的宁波钢铁厂、北仑电厂等大燃煤企业有关,其燃煤产生的SO2对于区域SO2污染存在较大贡献。

4. 结论与建议

北仑区的环境空气质量存在典型的季节性特征和日变化特征。受典型季节气候的影响,存在典型的季节性污染物浓度变化,总体上表现为一、四季度污染严重,二、三季度空气质量较好;受日气象条件变化和人们生产活动的影响,SO2、NO2和PM10三个污染因子浓度在一天中分别表现为一个波峰,两个波峰一个波谷和两个波峰一个波谷的变化趋势。

北仑区的污染物主要来自机动车尾气的排放,其次是区域内大工业企业的排放主要表现为北仑电厂等大燃煤企业对SO2的贡献。

通过对污染物来源的分析,建议进一步加强做好以下几个方面的工作:

(1)由于污染物的主要来源是机动车尾气的排放,故一方面需要倡议政府部门和公众公车或私车的使用频率,做到尽量坐公交车;而另一方面要加强机动车的准入制度,对于不符合国家相关排放标准的机动车禁止使用,提倡低能耗、低排放的清洁车。

(2)要提高对于北仑区的三座环境空气自动站数据的反应敏感性,尤其是城东和城西点位,要加强实时监控,对于异常情况,及时通知监察大队和重大项目监管科等相关科室,并对异常情况进行实时跟踪。

(3)除了常规的几项污染因子外,作为一种监控手段,有必要对一些周围具有特征排放因子的污染物实行实时监控。随着城东和城西两个自动站在线色谱项目的开展,这两个环境空气自动站无疑会成为对周围台塑、化工码头、宁波钢铁等等产生有机物特征污染因子的企业异常情况监控的排头兵,通过这样的一种监控手段,结合北仑区环境监测站的应急监测车和实验室分析,并与其它职能科室相配合,可以建立一套完整、可靠、有效的环境预警机制,这对于北仑区这样一个临港大工业基地是必要的也是必需的。

参考文献:

[1]郭二果,王成,彭镇华,等,城市空气悬浮颗粒物理化性质及其健康效应[J],生态环境,2008,17(2):851-857.

[2]黄虹,李顺诚,曹军冀,等,空气污染暴露评价研究进展[J],环境污染与防治,2005,27(2):118-121.

[3]车汶蔚,郑君瑜,邵英贤,等,珠海市大气污染时空分布特征及成因分析[J],中国环境监测,2008,24(5):82-87.

[4]张菊,苗红,欧阳志云,等,近20年北京市城近郊区环境空气质量变化及其影响因素分析[J],环境科学学报,2006,26(11):1886-1992.

[5]陈晶,张礼俊,钟流举,珠江三角洲空气质量现状及特征[J],广东气象,2008,30(4):15-17.

[6]王宏,林长城,蔡义勇,等,福州市空气质量时空变化及其与天气系统关系[J],气象科技,2008,36(4):480-484.

[7]刘新玲,王晓明,李小明,2004-2008年山东中西部五城市大气污染变化特征[J],科学技术与工程,2008,8(12):3390-3396.

[8]杨书申,邵龙义,杨园园,北京、上海两地2004和2005年大气污染特征对比分析[J],长江流域资源与环境,2008,17(2):323-327.

[9]董葸青,谢宏斌,郑凤琴,2003广西主要城市空气质量评价及空气污染物浓度与气象条件关系[J],广西气象,2004,25(1):36-39.

大气污染主要因子篇(7)

室内空气污染是指因建筑材料、装饰物、家具、日常用品和生活等排放有害的化学因子、物理因子和生物因子聚集室内达到对人体身心健康产生直接、间接、或者潜在危害,从而改变室内某些原有成分的含量和增加某些有毒有害物质,导致室内空气质量下降并威胁人体健康的现象。

如果将交通工具也算在室内环境中的话,一天在室内环境中度过的时间将会超过85%。因此,可以说室内环境对人体影响最大的是大气环境,直接关系到我们的健康。污染的危害日益彰显,了解污染物的种类及其来源和它对人体健康的危害,提高人们的防范意识,采取必要的措施已显得非常必要。

一、室内主要污染物及污染源

1.有害气体的污染

(1)甲醛。甲醛是―种挥发性有机化合物,无色,具有强烈的刺激性气味。室内甲醛有多种来源,可来自室外的工业废气、汽车尾气、光化学烟雾等。室内来源主要有两方面:a.来自燃料和烟叶的不完全燃烧;b.来自建筑材料、装饰物品及生活用品、化工产品,但主要来自家具和室内装修材料的胶粘剂―― 一脉醛树脂,以及作为保温隔声建筑材料的脉醛泡沫塑料。此外,某些化纤地毯、塑料地板砖、油漆涂料等也含有一定量的甲醛。

(2)苯及苯系物。苯被国际癌症研究机构确认为是有毒的致癌物质,苯、甲苯、二甲苯是室内主要污染物之―。苯及同系物甲苯和二甲苯都为无色、有芳香气昧、易挥发、易燃、燃点低的液体。苯、甲苯和二甲苯是以蒸汽状态存在于空气中,中毒作用一般是由于吸入蒸汽或皮肤吸收所致。苯属中等毒类物质,急性中毒主要对中枢神经系统有毒害,慢性中毒主要对造血组织及神经系统有损害。

(3)总挥发性有机物(TVOC)。TVOC在室内空气中作为异类污染物是极其复杂的,而且新的种类不断被合成出来。由于它们单独的浓度低,但种类多,一般不予以逐个分别表示,以TVOC表示其总量。TVOC中除醛类外,常见的还有苯、甲苯、二甲苯、三氯乙烯、三氯甲烷、二异氰酸酷类等,主要都来源于各种涂料、粘合剂及各种人造材料等。

(4)氨。氨为无色而有强烈刺激气味的气体,氨气可通过皮肤及呼吸道引起中毒,嗅阈0.1mg/m3-1.omg/m3,引起嗅觉反应的最低浓度为2.7mg/m3。氨气因极易溶于水,对眼、喉、上呼吸道作用快,刺激性强,轻者引起充血和分泌物增多,进而可引起肺水肿。长时间接触低浓度氨,可引起喉炎、声音嘶哑。重者,可发生喉头水肿、喉痉挛而引起窒息,也可出现呼吸困难、肺水肿、昏迷和休克。

2.浮游粒子的污染

浮游粒子中危及人类健康的主要是粒径小的所谓飘尘。浮游粒子的发生源主要有:(1)人体头皮、皮肤屑、衣物上的污垢和人体活动如室内步行、扫除等;(2)燃料燃烧煤烟;(3)建筑材料和设备石棉纤维、玻璃纤维、螨虫等;(4)吸烟烟雾烟尘、焦油等;(5)其他空调系统产生的粉尘等。

3.香烟烟雾的污染

香烟烟雾是室内空气的主要污染源,烟雾中既有气态分子状污染物(占91.8%),又有浮游粒子状污染物(占8.2%)。这些粒子状污染物还会吸附在墙壁等地方,随着低沸点成分的挥发和气态污染物一起构成室内的臭气源。香烟烟雾中的污染物有一氧化碳、氧化硫、尼古丁、各种苯并比、醛类、酚类、亚硝酸胺、氟和镍的化合物、放射性元素等2000多种,其中已证明有致癌性的物质至少有40多种。

4.放射性污染物及其危害

室内放射性污染物主要是氡。氡是一种惰性气体,多用做保护气,它是自然界中唯一的天然放射性气体,室内空气中的氡来源于建筑水泥、矿渣和装饰石材。世界上每年发生的肺癌病例中,6%到15%是由氡气引起的,氡对吸烟者的危害尤重。

5.生物性污染物及其危害

生物性污染主要是细菌。细菌主要来源于地毯、毛绒玩具和被褥等。室内空气质量标准(GB/T18883―2002)规定室内菌落总数为2500cfu/m3。

二、预防室内空气污染的主要措施

1.污染源控制――消除或控制室内污染源

首先装修设计时要进行预评价,充分考虑板材的种类和用量。其次改进施工工艺。在施工工艺的选择过程中主要应考虑三点:a.注意所用材料的最优组合(包括板材、涂料、油漆等),既要使材料的质量符合国标要求,又要最经济最实惠;b.提倡接近自然的装修方式,尽量少用各种化学及人工材料,尽量不要过度装修;在施工过程中,通过工艺手段对建筑材料进行处理,以减少污染。

2.通风控制――提高新风的稀释效应

首先,开窗通风换气,通风换气是改善室内空气质量最简单、经济、有效的措施,当室内平均风速满足通风率的要求时,可减少甲醛的蓄积。其次,合理使用空调。所谓空调器的附加功能,如负离子发生器、高效过滤等功能,对改善室内空气品质有一定的作用,但所起的作用有限,不能完全依赖。

3.净化处理――用物理、化学、植物法降低室内污染

(1)物理法:用活性炭的吸附性,吸附室内有毒、有害气体。

(2)化学法:利用化学反应,使用化学试剂进行化学吸收室内有毒、有害气体。

大气污染主要因子篇(8)

近年来重金属污染健康损害事件此起彼伏,仅2009年就相继发生了陕西凤翔铅污染、湖南武冈铅污染等多起重大环境健康事件。

1我国当前环境健康的基本形势

1.1我国居民疾病负担中环境因素的比重呈上升趋势

影响人体健康的因素包括营养条件、生活习惯、遗传因素和环境因素等。根据世界卫生组织(WHO)对伤残调整期望寿命年(disability-adjusted life-years, DALYs)计算,我国居民疾病负担中有21%是由环境污染因素造成的,尤其是与环境因素密切相关的慢性病如慢性阻塞性肺部疾患(COPD)和癌症等的发病率近年来呈明显的上升趋势 。

1.2化学性环境污染成为影响我国居民健康的主要环境因素

WHO认为环境对健康的影响叫以分为传统型和现代型。传统型环境健康问题是由于缺乏安全饮水、基础设施不良和发展不足等而引发的,环境因素以生物性污染为主,疾病类型主要是传染病和寄生虫病等;现代型环境健康问题指在工业化、城市化发展中不注意环境和生态保护,走不可持续发展的道路而产生的,环境因素以化学性污染为主,相应的疾病类型主要是慢性病(如肿瘤、心血管疾病、糖尿病、慢性阻塞性肺疾患等)。

2我国当前面临的主要环境健康问题

2.1大气污染与健康

近年我国城市大气环境质量状况的恶化趋势得到了很好的控制,并呈现逐步好转的趋势,但总体形势仍然不容乐观。中国环境质量报告表明,2007年我国有21.9%的城市可吸入颗粒物(即PM10)的年均浓度超过了国家二级标准(0.1 mg/m3),14.40%的城市SO2年均浓度超过二级标准(0.06 mg/m3)魏复盛等研究了空气污染对儿童肺功能的影响,结果表明,空气污染可使儿童呼吸道阻力增加或产生通气功能紊乱。金银龙等的研究表明,重度污染区成人发生呼吸系统症状和阻塞性肺部疾病的危险性分别是相对清洁区的1.7倍和1.5倍,重度污染区小学生非特异免疫指标和体液免疫指标均明显低于相对清洁区。Guo等研究了北京市空气污染与心脑血管病急诊率的关系,结果显示,PM2.5、 SO2、 N02等污染的升高可导致心脑血管疾病急诊门诊率的升高,具有统计学意义。

2.2室内空气污染与健康

在城市,由于建筑装修污染导致的室内空气污染对人群健康的影响问题成为关注的焦点。阎华等测定并比较两组以及不同装修程度(毛坯房、简装修、精装修)居室空气中甲醛的浓度,分析两组儿童哮喘的症状和体征,结果表明,病例组室内空气中甲醛浓度明显高于对照组;病例组儿童哮喘刺激性干咳、大量白黏痰、呼吸困难、烦躁不安、被迫坐位、伴腹痛、听诊有哮鸣音的发生率明显高于对照组(P

2.3饮水污染与健康

饮用水污染对健康的影响包括介水传染病、消化系统和生殖系统疾病等,如肝癌、食管癌等,也叫导致出生缺陷高发。王志强等对福建省11个县饮用水水质与胃癌死亡率的关系研究认为该地区饮用水受有机物污染是引起胃癌高发不可忽视的重要因素。余新华等对粤北某农村地区居民饮用水水质污染与该地肿瘤高发的相关性研究认为研究区周边矿山废水已污染附近农村居民饮用水,并与该村人群的肿瘤高死亡率具有一定的相关性。关于饮用水健康风险的科学评价方法应当引起重视。

2.4土壤污染与健康

相比大气污染和水污染,我国土壤污染与健康的关系研究。尚琪研究了云南个旧砷污染区人群砷累积暴露量与砷中毒的关系,当地暴露人群砷中毒发生率己达10.4%;王福琳等的研究表明济南小清河污灌区长住居民血液、唾液与尿液中的免疫球蛋白水平均低于非污灌区居民,污灌区居民标化死亡率、标化癌症死亡率分别为0.67%和0.16%,显著高于对照区居民的0.55%和0.07%;骆永明等对长江三角洲某地区电子废物污染与健康的关系进行了研究,由于当地长期露天拆卸废旧变压器、电子洋垃圾及焚烧废弃电缆电线等,局部农田土壤表现出较高的二噁英类化合物积累,并且易经食物链而被人体吸收,当地居民二噁英的暴露量已超过WHO制定的日允许摄入量(TDI)标准最大值的16倍以上,成为威胁健康的重要危险因子。

2.5有毒有害污染物与健康

重金属和无机非金属污染仍是影响人体健康的主要因素之一。镉、汞、砷、铅等重金属污染在我国各环境介质中广泛分布,并在人体的体内富集,对人体健康产生不良影响。中国疾病预防控制中心环境与健康相关产品安全所2001年对我国9省19个城市3-5岁儿童血铅水平的调查结果显示6502名被调查儿童血铅均值为88.3ug/L,其中有 29.91%的儿童血铅>100ug/L,明显高于发达国家儿童血铅水平;其中兰州市、海口市、洛阳市、新乡市、郑州市儿童血铅>100ug/L的比例均>50%。

3主要科研方向

3.1有毒有害污染物的初步筛选和评估

由于我国当前各环境介质中均不同程度地存在着各类污染物的污染,究竟哪些介质、哪些区域、哪些污染物对哪些人的健康风险最应当引起关注,尚属末知。当务之急,应当采用健康风险评价的方法,结合污染物毒性、我国各地区及各介质中的污染程度、各类人群暴露水平等,对当前我国环境中现存的有毒有害有机污染物进行全面的评估和分析,筛选出我国现阶段应当主要关注和优先控制的污染物名录,为污染控制、环境管理等政策措施提供依据。

3.2污染物毒性和生物标志物评价方法的研究

在环境毒理研究方面,从器官、组织、细胞、亚细胞到分子和基因水平研究外来化学物的毒性机制,研究环境毒物对人类基因组的结构和活性(包括基因组决定和控制的细胞分子产物如mRNAs,蛋白质及其调控和代谢)的影响;开展环境有害因素对健康危害的生物监测研究,建立灵敏度高、操作简便、适合于现场使用的监测方法和以生物传感器为探测元件的在体检测;筛选出具有价值的环境污染所致健康危害生物标志物,主要包括暴露标志物、易感标志物和效应标志物;研究基因多态性和健康危害的环境污染因子之间的关系。

3.3新型环境健康问题的研究

城市复合污染的健康效应、气候变化对健康的影响等都是当前环境与健康领域的新问题。此外,随着科技的发展,新材料和新化学物的应用也越来越多。有许多新材料和新化学物都已显示出明显的健康危害和广泛的环境存在,如纳米材料的大气污染问题,以全氟辛酸胺(PFOA)和全氟辛烷磺酸(PFOS)为代表的氟化有机物(FOCS) ,五溴双酚醚(PBDE)等具有POPS特性新环境污染物。从毒理学的研究中已发现这些新材料和新物质均具有较严重的健康隐患,如引起试验动物的中枢神经系统毒性 ,甲状腺毒性、胚胎毒性、遗传毒性、发育毒性、雄性动物生殖细胞毒性等,但这些物质材料的人群健康危害研究目前均处于空白状况,将是我国环境与健康科研领域的新挑战。

大气污染主要因子篇(9)

摘要:在做橡胶制品工业项目环评时,要理解和掌握《橡胶制品工业污染物排放标准》,对于规定的水污染物排放标准,重点要理解直接排放限值及间接排放限值标准的区别及要求,从而提出相应的水污染物处理措施;对于大气污染物排放,关键是正确确定污染物源强、废气收集率、有组织及无组织排放量、环境质量标准以及基准排气量及基准排气量排放浓度,并根据标准限值要求提出有效地废气治理措施。

关键字:橡胶制品工业;环境影响;评价;标准

中图分类号:X822文献标识码:A文章编号:1008-9500(2015)02-0045-03

收稿日期:2014-12-11

作者简介:李吉龙(1977-),男,吉林长春人,本科,从事环境影响评价工作。

橡胶制品是以橡胶为主要原料经过一系列加工制得的成品的总称。它们的共同特点是具有特殊的高弹性,优异的耐磨、减震、绝缘和密封等性能。橡胶制品工业指以生胶(天然胶、合成胶、再生胶等)为原料、各种配合剂为辅料,经练胶、压延、压出、成型、硫化等工序,制造各类产品的工业。主要包括轮胎、摩托车胎、自行车胎、胶管、胶带、胶鞋、乳胶制品以及其他橡胶制品的生产企业。由于橡胶制品种类和规格繁多,而且随着经济的发展及人们需求的旺盛,新上橡胶制品工业项目会越来越多,这些新上及技术改造的橡胶制品工业项目均需要进行环境影响评价。在进行这类项目环评时主要依据的标准及如何掌握标准是关键。

1橡胶制品工业项目环评的主要依据

对橡胶制品工业项目进行环境影响评价时除了依据国家和地方法律、法规如《中华人民共和国环境保护法》、《中华人民共和国大气污染防治法》、《中华人民共和国海洋环境保护法》、《中华人民共和国固体废物污染环境防治法》、《中华人民共和国环境影响评价法》等法律、法规外,环评依据的标准在2012年1月1日前主要为2008年颁布实施的《橡胶工厂环境保护设计规范》(GB50469-2008)。

2008年颁布实施的《橡胶工厂环境保护设计规范》(GB50469-2008)规定:对橡胶加工过程胶浆制备、浸胶浆和胶浆喷涂等工序的有机溶剂挥发气体、橡胶加工过程产生的热胶烟气和硫化烟气、橡胶加工酸洗过程产生的酸雾、再生胶脱硫罐产生的废气中的非甲烷总烃和其他废气(复合臭气除外),宜采取有组织排放措施,并应符合现行国家标准《大气污染物综合排放标准》GB 16297的有关规定。还规定:橡胶工厂排出的生产废水和生活污水,其水质应符合现行国家标准《污水综合排放标准》GB 8978的有关规定。

可见,在2012年1月1日前,大气污染物排放主要依据《大气污染物综合排放标准》(GB16297-1996)、《恶臭污染物排放标准》(GB14554-93);水污染物排放主要依据《污水综合排放标准》(GB8978-1996)。

2011年9月21日,国家环境保护部《橡胶制品工业污染物排放标准》(GB27632-2011)颁布,该标准于2012年1月1日起实施。因此从2012年1月1日起,橡胶制品工业项目环评时,主要污染物排放即水污染物、大气污染物排放执行《橡胶制品工业污染物排放标准》(GB26732-2011)。其中,标准没有规定的大气污染物中除氨以外的其他恶臭污染物排放仍然执行《恶臭污染物排放标准》(GB14554-1993)。

2《橡胶制品工业污染物排放标准》的主要内容及适用范围

《橡胶制品工业污染物排放标准》(GB27632-2011)规定了橡胶制品工业企业或生产设施水污染物和大气污染物的排放限值、监测和监控要求,以及标准实施与监督管理等相关规定。该标准从行业特点出发,规定了该行业主要污染物即水污染物、大气污染物排放标准。标准的适用范围包括:现有橡胶制品生产企业或生产设施的水污染物和大气污染物排放管理,以及橡胶制品工业企业建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的水污染物和大气污染物排放管理。

2.1水污染物排放标准

该标准对于现有企业不但规定了水污染物排放标准限值,而且还规定了执行期限,即从2012年1月1日起至2013年12月31日前止;从2014年1月1日起现有企业水污染物也执行新建企业水污染物排放标准限值。

标准中还规定在国土资源开发密度已经较高、环境承载能力开始减弱,或水环境容量较小、生态环境脆弱,容易发生严重水环境污染问题而需要特别保护措施的地区,应根据环境保护工作的要求,严格控制企业的污染排放行为,为此标准规定了现有和新建企业水污染物特别排放标准限值。

其中除规定了主要污染物排放浓度限值外,还规定了基准排水量。基准排水量是指用于核定水污染物排放浓度而规定的消耗单位胶料的废水排放量上限值。这里的胶料是指包括生产原料中所用的天然胶、合成胶及再生胶,其中乳胶制品企业耗胶量按60%的乳胶计算(不折算为干胶)。

水污染物排放浓度限值适用于单位胶料实际排水量不高于单位胶料基准排水量情况,若单位胶料实际排水量超过单位胶料基准排水量,须按规定将实测水污染物排放浓度换算为水污染物基准排水量排放浓度,并以换算后的水污染物基准排水量排放浓度与水污染物排放浓度限值进行对比,评价是否达标准。

在水污染物排放标准中,还规定了每种污染物的直接排放限值、间接排放限值及污染物的监控位置。直接排放就是指企业直接向环境排放水污染物的行为。从标准可以看出,直接排放限值不分水体功能,即不管是几类水体,只要不是《污水综合排放标准》(GB8978-1996)规定的禁止排放的水体,均执行该标准值。在环评时要注意,其他项目清净下水中悬浮物可能符合《污水综合排放标准》(GB8978-1996)标准限值,允许直接排放。而橡胶制品工业项目清净下水悬浮物可能不满足《橡胶制品工业污染物排放标准》(GB27632-2011)中悬浮物标准限值,需要进行沉淀处理后才能排放。

橡胶制品工业项目废水一般包括生活污水、生产废水及设备冷却系统排污水等。如果是直接排放,则项目废水一般均需要处理后才能达标;设备冷却系统排污水建议经沉淀处理后直接排放;生产废水采用混凝法预处理后与生活污水一同经生化法处理后排放。如果是间接排放,即项目废水可以依托区域城市污水处理厂处理。环评时建议将生产废水经混凝法预处理后与生活污水、设备冷却系统排污水一同通过企业总排放口排放。

2.2大气污染物排放标准

大气污染物排放标准规定了现有及新建企业大气污染物排放浓度限值及现有企业大气污染物排放浓度限值适用期限。现有企业大气污染物排放浓度适用期限与现有企业水污染物排放浓度适用期相同。在新建企业大气污染物排放浓度限值中,规定了4种污染物的排放浓度限值,即颗粒物、氨、甲苯与二甲苯合计、非甲烷总烃,同时还规定了颗粒物、氨及非甲烷总烃的基准排气量。基准排气量的定义为用于核定大气污染物排放浓度而规定的消耗单位胶料的废气排放量限值。

在工程设计及实测中,往往实际排气量要远大于基准排气量。因此,在环评及验收时,需要将实测(环评时通过排污系数法或类比法及其他方法确定的源强)大气污染物排放浓度换算为基准排气量排放浓度,利用换算后的基准排气量排放浓度与标准限值进行对比,从而判定是否达标。

该标准中的基准排气量是指有组织排放,而橡胶制品生产过程中产生的废气不可能完全被集气罩收集,有一部分是以无组织形式排放的。在环评时废气收集率的确定及无组织排放的废气的评价是此类项目大气污染物环境影响评价应该重点关注的。

环评时确定废气集气罩的废气收集率是环评的难点。因为废气收集率与多种因素有关,如车间结构、空间大小、封闭程度、采用的排风系统类型、设计的风速等,均影响集气罩收集率。一般我国北方地区的车间封闭程度比南方地区要好一些。在排风系统运行时,车间内易形成一定的负压,从而抑制了无组织排放。因此,环评时确定废气收集率,北方应较南方高一些。废气收集率一般不能用类比法确定。因相同的生产工艺、相同的生产规模、相同的废气收集设施,废气收集率也不一定相同。因此,在确定此类项目废气收集率时,建议与建设单位沟通,了解车间结构、空间大小、封闭程度、所采取的排风系统类型及废气处理设施的设置、设计风速等资料,合理确定废气收集率。如果缺少相关资料,则取经验数据,取值范围在80%~95%之间。

废气收集率有一个基本的确定方法,即首先根据胶料用量及污染物排放系数确定评价因子的源强,然后设定一个最低废气收集率,根据该设定的收集率计算评价因子的无组织排放量,利用计算的无组织排放量采用面源估算模式计算评价因子厂界无组织监控点的浓度,最后将计算的结果与《橡胶制品工业污染物排放标准》中规定的现有和新建企业厂界无组织排放限值进行对比。如果达标,则该设定的废气收集率合理,否则应提高废气收集率。

在评价颗粒物、氨、甲苯与二甲苯合计、非甲烷总烃等评价因子的环境影响时,应首先确定氨、甲苯、二甲苯、非甲烷总烃的环境空气质量标准。二甲苯及氨执行TJ36-79《工业企业设计卫生标准》中居住区大气中有害物质的最高容允浓度0.3 mg/m3、0.2 mg/m3的标准;甲苯与非甲烷总烃取前苏联居住区大气污染物最高允许浓度标准0.6 mg/m3、2.0 mg/m3的标准。而《橡胶制品工业污染物排放标准》中规定的甲苯、二甲苯排放浓度是二者的合计。建议在环评时应将二者的排放浓度分别计算,将二者的合计与标准进行对比,从而有利于计算最大落地浓度占标率。如果没有将甲苯、二甲苯分开计算,而用二者的合计计算最大落地浓度,则在计算最大落地浓度占标率时,应本着从严控制的原则,取环境质量标准最严的二甲苯空气质量标准作为计算依据。

在确定排气筒高度时,本标准与《大气污染物综合排放标准》GB 16297有区别。《大气污染物综合排放标准》GB 16297规定:排气筒周围200 m范围内有建筑物时,排气筒高度还应高出最高建筑物高度5 m以上;而《橡胶制品工业污染物排放标准》规定的是排气筒高度应高出最高建筑物高度3 m以上。

《橡胶制品工业污染物排放标准》也对污染物监测提出了一般要求,并规定了水污染物、大气污染物测定方法。对于污染物监测与其他项目环评要求基本一样,需要提出监测因子、监测点位、监测频次、采样时间等。

大气污染主要因子篇(10)

环境污染是人类生存的严峻问题,受到当今世界各国普遍关注和重视,随着经济发展和社会的进步,燃烧矿石、发电、合在成千上万的化学物质等工业活动以及汽车尾气的排放,使城市大气中一些有毒气体的浓度成倍甚至几百倍地增高,大气污染已经成为城市的一个主要环境问题,研究表明:大气污染浓度的增加,不仅会引发人的呼吸道疾病,心脏病、甚至还会导致死亡,园林植物可以改善人类生活质量,保护城市生态环境,在城市大气污染的生态平衡中起着“除污吐新”的作用,利用生物监测和评价大气污染状况,一直是生物监测的主要内容之一。

一、园林植物对大气污染的监测作用:

(一)植物监测的概念:

工业革命以来,环境污染日益严重,及时有效地进行环境污染的监测,既能了解情况,又能采取有效措施控制污染,通常的监测方法有仪器监测和生物监测。在生物监测中,植物监测应用最为广泛,植物监测是指利用对环境中的有害气体特别敏感的植物的受害症状来监测有害气体的浓度和种类,并指示环境被污染的程度。该类植物称为监测植物或指示植物。如,地衣苔藓对环境因子的变化十分敏感,常用来监测大气污染。

(二)园林植物监测城市大气污染的特点:

不同植物对城市大气污染的反应不同,可用来监测城市大气污染。园林植物监测城市大气污染具有以下几个特点:(1)能够早期发现大气污染。(2)能够反映几种污染物的综合作用强度。环境污染物成分复杂,各种分子和各种离子之间既有协同作用,又有拮抗作用,以及相加作用等。如二氧化硫与乙醛共存时,对植物的危害增强,表现出协同作用;而有些污染物共存时,则表现出相互减弱作用,即拮抗作用,如二氧化硫与氨气。同时,污染物毒性还受到环境因子,如PH值、酸碱性、水温等的影响,这是理化监测所不能反映的,而园林植物接受的是综合影响,不光是个别离子的综合作用,因而园林植物监测反映了整个环境中各种因素综合作用的结果。(3)能够初步监测污染物的种类和估测污染物的浓度。(4)能够反映革一地区的污染历史和污染造成的累积受害。由于树木寿命长,而许多污染物会沉积在树木的年轮中,通过对年轮中有害物浓度进行分析可推测环境污染的历史状况。所以,用多年生的树木作监测植物,能够反映某一地区的污染另史和污染造成的累积受害等。(5)具有长期、连续监测的特点。在植物的生长周期内,可以连续不断地监测环境污染状况,而且,植物监测还可监测污染物在环境中的迁移、蓄积、转化等动态变化过程,为污染后的治理等提供理论依据。(6)具有经济、简便的特点,用植物监测环境污染经济、简便、在生产实际中具有很大的应用价值,适合大面积推广。

二、园林植物对城市大气污染的反应及监测植物:

大气中的污染物主要通过气孔进入叶片并溶解在汁液中,通过一系列的生物化学反应对植物产生毒性,所以园林植物对城市大气污染的反应也首先表现在叶片上,大气污染在空气中达到一定的含量且持续一段时间后,不同植物就表现出不同程度的伤害特性,目前我们主要采用观察植物外观有无伤害症状(通常观察植物叶片)来判断植物的受害程度,有些植物对污染物很敏感,其叶片在不同种类的较低浓度污染物作用下短时间内就表现出不同特点的伤害症状,植物在不同的大气污染作用下对植物叶片的可见伤害因伤斑的部位、形状、颜色和受害叶龄等特征的不同而互相区别。一些常见有害气体的对大气污染反应及监测植物如下:

(一)SO2 SO2的浓度达到1ppm至5ppm时人才能感到其气味,浓度达到10ppm至20ppm时,人就会有受害症状:咳嗽、流泪。敏感植物在其浓度为0.3ppm时经几小时就可在叶脉间出现点状或块状的黄褐斑或黄白色斑,而叶脉仍为绿色。对SO2敏感的植物有:地衣、紫花苜蓿、凤仙花、翠菊、四季海棠、天竺葵、锦葵、含羞草、落叶松、向日葵、梨、雪松、苹果、复叶槭等。

(二)FH F是黄绿色气体,有烈臭,在空气中迅速变为HF;后者易溶于水成氢氟酸。慢性氟中毒症状为骨质增生、骨硬化,肾、肝、心血管、造血系统、生殖系统也受影响。F及HF的浓液在0.002ppm至0.004ppm时对敏感植物即可产生影响。叶片伤斑最初表现在叶端和叶缘,然后向中心部扩展,浓度高时整片叶子枯焦脱落。对FH反应敏感的植物有:唐菖蒲、玉簪、郁金香、万年青、萱草、榆叶梅、葡萄、杜鹃、樱桃、月季、雪松、菖兰、杏、紫薇、复叶槭等。

(三)Cl2 Cl2是黄绿色气体,有臭味,比空气重。HCl为可溶于水的强酸。Cl2有全身吸收性中毒作用,人从呼吸道吸入5ppm至10ppmCl2,即可溶解于粘膜,从水中夺取H变成HCl。氯中毒可引起粘膜性肿胀、呼吸困难、肺水肿、恶心、呕吐、腹泻等。Cl2及HCl可使植物叶片产生褐色点斑或块斑,但斑界不明显,严重时全叶褪色而脱落。对Cl2反应敏感的植物有:圆柏、垂柳、加拿大杨、油松、紫薇、栾树、波丝菊、金盏菊、凤仙花、天竺葵、蛇目菊、硫华菊、一串红、落叶松、油松等。

(四)NO2 它所引起的主要症状为黄化现象。主要发生在叶脉间或叶缘处,成条状或斑状不一,幼叶在黄化现象产生之前就可能先脱落。但与其他原因所产生的黄化现象较难区分开。对NO2反应敏感的植物有:榆叶梅、连翘、复叶槭等。

上一篇: 高校教学资源建设 下一篇: 高校教学管理知识
相关精选
相关期刊