光谱学与光谱学分析汇总十篇

时间:2023-05-30 14:50:20

光谱学与光谱学分析

光谱学与光谱学分析篇(1)

1 光谱分析法概念及优缺点

采用光谱学的基本原理与实验的方法来确定物质的基本结构与化学的组成成分的这一种分析方法我们习惯上称之为光谱分析法。具有各种各样结构的物质都具有自身的特征性光谱,光谱分析法就是采用特征光谱来研究物质的结构或者测定化学主要组成成分的一种方法。光谱分析法主要包括有原子发射光谱法、原子吸收光谱法、紫外和可见吸收光谱法以及红外光谱法等等诸多类型。按照电磁辐射的原理,光谱又可以分成分子光谱与原子光谱。光谱分析的方法开创了化学与分析化学的新的纪元,很多化学元素类型是凭借光谱分析的方法才被人们所发现的。该方法已经广泛地被用于地质、冶金、石油、化工、农业、医药、生物化学以及环境保护等等很多方面。光谱分析法也是近几年来发展比较迅速的痕量分析的一种方法,该种方法具有操作简单、快速、灵敏度高、精密度以及准确度好的特点,而且线形的有效范围很宽,检出限比较低。光谱分析法属于是一种经常被采用的具有灵敏、快速和准确优质特点的近代仪器分析的方法。它与其他分析的方法相比较起来有很多自身优点,分析的速度比较快,原子发射的光谱运用在炼钢炉之前的分析,能够在一到两分钟内,同时分析出二十几种元素的精确的分析结果;同时操作比较简单,有些样品都不用经过任何类型的化学性的处理,就能够直接对其进行光谱的分析,如果结合采用计算机技术的话,有的时候只需要简单地按一下键盘就可以自动进行相关的分析、数据性的处理以及打印出分析的精确结果。在采用毒剂报警或者大气污染相关检测等等方面,运用分子光谱法进行遥测,不需要采集样品,在短短的几秒钟时间内,就可以发出警报或者检测出污染的严重程度;不需要纯样品,只需要利用已知的谱图,就可以进行光谱的定性分析。这是光谱分析法的一个非常突出的特点;能够同时测定出多种元素或者化合物,省去了比较复杂的分离性操作的过程;选择性比较好,能够测定出化学性质相似的元素与化合物。比如测定铌、钽、锆、铪与混合性的稀土氧化物,它们的光谱线能够分开然而不受任何干扰,已经成为了分析这些种类化合物的非常得力的工具;灵敏度比较高,能够利用光谱分析法进行痕量的分析。现在,它的相对灵敏度能够达到千万分之一到十亿分之一;样品损坏比较少,能够用在古物或者刑事侦察等等相关领域当中;伴随着新的技术的广泛采用,进行定量分析的线性的范围变宽了,这样就使得高低含量各异的元素能够同时进行测定。还能够进行微区的分析。光谱定量的分析是建立于进行相对比较的基础之上的,一定要有一整套标准的样品来作为基准,并且要求的标准样品的组成与结构状态应该和被分析的样品要基本上一致,这在很多情况下都是比较困难的。

2 光谱分析法在化学发展中的重要作用

2.1 方法论意义

光谱分析法属于是对物质进行全面认识的一种全新的方法。在对物质进行光谱分析以前,人们主要是通过容量与质量分析的方法来对物质进行分析。然而这两种方式在发现稀有元素和对微量元素的含量进行有效分析等方面都显得无能为力,化学如果想要发展的话,亟待需要进行研究手段与方法的改革。1859年,著名物理学家基尔霍夫与化学家本生进行合作,建立起了第一台把光谱分析作为主要目的的分光镜,这就宣告了光谱分析方法的最终诞生。从此以后,初步上解决了对于化学物质进行细微的微观认识并且进行精确研究的这一难题,从而开创了采用物理的方法来研究化学相关内容的仪器分析的新的时期。

2.2 认识论意义

光谱分析法的最终出现体现了分析领域开始从单纯的经验上升到理论层面的开始,并且以此开创了光谱学。在这之后将近二百多年的时间内,人们对光谱进行深入研究的目的仅仅局限在发现光谱的扩充谱图,但是很少涉及到光谱和物体的结构之间的某些问题,所以能够认为这种对于光谱的相关研究还仅仅处于经验的认识阶段。自从基尔霍夫和本生发明了光谱分析的方法之后,这样就使得研究光谱的动力已经不单单限于来发现新的光谱,并且更加重要的是能够凭借分析光谱的方式来发现新的元素,从而使得光谱学从以往比较盲目的经验认识水平逐渐上升到比较系统的理论层面的研究,从而把认识的水平提高到了理性的新阶段。

2.3 辩证法意义

光谱分析的方法使得揭示物质相互之间的联系有了很大的可能性。由于光谱分析的方法能够深入到物质的内部,这直接反映出了原子结构、组成以及性质,而且准确度比较高,适用的范围比较广。所以,在我们鉴别元素的时候,它大多被用在发现新的元素。这样的话,随着新的元素的不断得被发现从而为揭示出物质的联系提供了很大的可能性。在光谱分析法被发现十年之后的1869年,门捷列夫可以提出元素的周期律,制订出元素的周期表,这在某种意义上能够说是得益于光谱分析法的广泛应用。光谱分析法使得经验的研究与理论的研究实现相互联系。科学的发现一定要以经验事实作为基本依据,但是单单依靠经验不能够达到科学研究的更高的阶段,要凭借理论思维。光谱学起源于对于光谱的经验进行广泛研究,基尔霍夫与本生归纳出了大量的实验结果,把发现的光谱和分析的物质结构和性质相互联系,这才创立了光谱分析的方法。除此之外,基尔霍夫侧重于对理论进行研究,然而本生侧重于对于经验进行研究,两人之间的合作本身就体现出了经验和理论间具有的必然联系,能够说光谱分析的方法搭建起了联系经验和理论之间的桥梁。光谱分析法同时也揭示出了微观世界和宏观世界的相互联系。凭借对光谱进行分析,不单单能够从宏观的物质当中分析出它所包含的微观方面的内容而且还能够把这种微观的内容用宏观的形式来表现出来,反映出了宏观和微观物质相互之间的统一性。光谱分析法很好地沟通了物理学、化学以及天文学之间的相互联系。一方面,光谱分析的方法是由物理学家基尔霍夫与化学家本生两人共同发明的,这也同时说明物理学和化学两类学科相互之间具有着天然的密切联系,值得两个学科的科学家们来共同配合进行研究。另一方面,在地球上存在的物体与天空当中的物体都已经发现了光谱,并且它们当中有很多都是相同的,这也就说明了地球和天空的物体并没有本质上的区别。所以,研究地球的物体性质的物理学和化学与对天体性质进行研究的天文学三者之间都存在着内在的统一性。

参考文献

[1]吴汉福.光谱分析技术的应用[J].六盘水师范高等专科学校学报, 2006.

光谱学与光谱学分析篇(2)

关键词:拉曼光谱;化学计量学;纤维检测

1 拉曼光谱的简介

印度物理学家C.V.Raman于1928年发现拉曼光谱并因此荣获诺贝尔物理奖。自此以后,拉曼光谱作为一种分子级别的物质结构分析手段被广泛应用。特别是在20世纪60年代后,随着高通量激光光源的产生、微弱信号检测技术的提高、化学计量学的高速发展和计算机的普及,拉曼光谱分析技术在很多领域得到了大力发展[1]。

拉曼散射是光照射到物质上发生的非弹性散射所产生的。单色光的入射光子与分子相互作用时可发生弹性碰撞和非弹性碰撞。弹性碰撞中,光子与分子之间没有能量交换,碰撞的发生只改变了光子的方向而不改变光子的频率,这种碰撞方式也称为瑞利散射。而非弹性碰撞过程中,光子不仅仅改变运动方向,同时光子的一部分能量传递给分子,或者分子的振动、转动能量传递给光子,从而改变了光子的频率,这种散射过程称为拉曼散射[2]。拉曼散射光和瑞利光的频率之差值称为拉曼位移。拉曼位移就是分子振动或转动频率,与入射频率无关,而与分子结构有关。拉曼光谱与红外光谱类似,同属于散射光谱中的一种,其信号来源于分子的振动与转动。但红外光谱与分子振动时的偶极矩变化相关,而拉曼散射则是分子极化率变化的结果。分子结构分析中,拉曼光谱与红外光谱是相互补充的[2, 3]。

拉曼光谱是一种振动光谱,与物质自身的结构相关,拉曼光谱技术对样品无接触、无损伤,测试前无须特殊前处理过程,可提供快速、简便无损伤的定性定量分析。在分析研究领域,拉曼光谱与其他分析方法相比,还具有以下的突出优点[4-6]:

(1)无损、快速、无污染。拉曼光谱是一种纯粹的光学检测方法,其分析过程无须制样、不破坏样品、不产生污染;分析过程快速,重现性好。

(2)检测灵敏度较高。新开发的激光拉曼分析技术和多种联用拉曼光谱技术,如显微拉曼光谱技术、表面增强拉曼光谱技术等,大大提高了拉曼光谱的探测灵敏度。

(3)不受水的影响。由于水的拉曼散射很微弱,适合含水样品的测试,对含水样品来说是非常理想的分析工具。

(4)高分辨率。拉曼光谱谱峰清晰尖锐,适合定量研究、数据库搜索以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。

2 国内外拉曼光谱技术发展状况及其在纺织纤维检测中的应用

随着拉曼光谱技术的迅速发展以及与化学计量学的紧密结合,拉曼光谱越来越多地被应用于过程监控、反应机理研究、材料分析等方面[7]。拉曼光谱技术除了应用于众多的科研项目外,还被广泛应用于医药、环境、食品、宝石鉴定等快速分析检测领域。康颐璞等[8]利用电解法制备银膜,使用在氯霉素拉曼光谱中,可快速检测出食品中残留的对人体骨髓有重大伤害的氯霉素。陶家友等[9]直接测量居室环境中的甲醛分子产生的拉曼光谱,快速测定了密闭环境中的甲醛浓度,为挥发性有机物的快速、准确检测提供了一种新方法。马寒露等[10]使用便携式拉曼光谱仪,结合化学计量学的方法,较好地鉴别了苹果汁中掺入梨汁的造假行为,建立了鉴别方法,为其他掺伪问题的解决提供了借鉴。

除了上述的分析检测领域,纺织品纤维成分定性鉴别和定量分析也是拉曼光谱分析技术应用的另一热点。棉、麻、毛、丝等大多数天然纤维及再生纤维素纤维等都具有较显著的吸湿性能,一小部分合成纤维的吸湿性能也较显著,若应用红外光谱法进行检测,须进行一定的前处理才能得到较好的结果,而由于拉曼光谱对水分子不敏感,且拥有上述优点,拉曼光谱不需要繁琐的前处理过程,被视为未来纺织纤维材料检测的一种新手段。乔西娅等[11]通过直接测取织物、纱线或纤维的激光拉曼光谱,结合光谱预处理技术与特征峰提取、匹配识别方法定性鉴别了涤纶、腈纶、锦纶、粘胶等纤维,并利用94份测试样品验证了其算法的有效性。吴俭俭[12]等针对当前纤维定性鉴别方法存在的缺点,开发拉曼光谱定性鉴别方法,通过对纺织纤维原始拉曼谱图的特性分析、光谱预处理等得到了信噪比更高的标准拉曼谱图,建立了拉曼谱图特征表数据库,初步验证了拉曼光谱定性分析纤维纺织材料的可行性。

3 化学计量学在拉曼光谱中的应用

拉曼光谱技术引入分析化学领域以来,以其独特的优势吸引了分析化学家的注意。拉曼光谱虽从实验中较易得到,但其反映的分子振动信息是以一种复杂的形式加和在一起,因此给拉曼光谱的解析带来了很大困难。随着化学计量学的引入,大大地降低了提取物质相关信息的难度,使拉曼光谱分析技术的应用范围得到了拓宽。为了得到有效的拉曼光谱,使所建的模型稳健可靠,有足够的预见性,在进行数据分析前须对实验所得到的拉曼光谱进行预处理,预处理过程包括信号平滑和背景扣除两部分。

3.1 拉曼光谱的信号平滑算法

拉曼光谱获取的过程中,由于拉曼散射效应信号微弱、仪器自身设计和操作者水平等原因,采集得到的拉曼光谱或多或少都会存在噪声。噪声是无用信息,还会对有效信息造成干扰。噪声可分为三类:第一类是没有规律的,与测量技术和环境影响相关,多次测量叠加后取平均值时噪声没有线性增加,可通过增加测量次数提高信噪比;第二类是有规律的,随着测量次数的增加,噪声也增加;第三类是前两种的结合,即无规律噪声。拉曼光谱中某些样品的光谱漂移就是第三类情况。化学计量学上常用信号平滑来消除随机噪声,提高信噪比。信号平滑算法主要有窗口移动多项式最小二乘拟合[13-16]、窗口移动中位数[17, 18]、快速傅里叶变换、惩罚最小二乘[19]、小波系数收缩[20]等算法。

3.2 拉曼光谱的背景扣除算法

对拉曼光谱影响最大的背景,就是荧光响应,为了有效地提取数据信息进行多变量定性定量分析,在预处理时要先将无用的背景扣除。扣除背景分为硬扣除和软扣除两种。硬扣除指的是改进实验仪器性能或操作条件,如更换波长更大的激发光源、对不同的样品采取不同的试验条件等;软扣除指的是利用化学计量学方法扣除拉曼光谱的荧光背景,常用于扣除背景的算法有手动线性背景拟合法[21]、不对称最小二乘法[22]、全自动背景扣除算法[23]和自适应迭代重加权惩罚最小二乘算法[24]等。

3.3 聚类与分类算法(定性鉴别)

在光谱预处理完成后,就对数据进行分类,也就是常说的定性鉴别,在化学计量学上称这种方法为聚类与分类法。聚类是研究样品分类问题的一种统计分析方法。拉曼光谱数据通过化学计量学方法进行聚类或者分类分析建立模型,对新测定的样品数据进行已知类样本模型比对,以预测位置样品的类归属。聚类与分类算法常有以下几种算法:主成分分析[25]、偏最小二乘线性判别式分析、偏最小二乘判别分析[26]等。

3.4 回归分析(定量分析)

在定性鉴别完成后,可以进一步对样品进行定量分析。化学计量学常用回归分析算法进行定量计算,就是根据聚类与分类的结果,对数据信号进行深入处理,建立一个数据回归规律模型,以对其他未知数据进行定量分析,概括来讲就是用一个函数来表示应变量和自变量之间的关系。回归分析按照其自变量的多少,可以分为一元回归分析和多元线性回归分析;按照自变量和应变量的关系可以分为线性回归和非线性回归。不论是何种回归分析,基本都包含以下步骤:回归模型的建立、模型参数的求解、模型的评价、能很好模拟实测数据的模型选择、根据自变量对新样品的进一步预测。常用的回归算法有主成分回归[27, 28]、偏最小二乘回归[29]和支持向量回归[30]。

4 应用前景及研究进展

当前,分析测试技术受到越来越多的关注与重视,随着各种新型材料的出现,传统的检测手段在一定程度上难以适应新的要求。目前行业内常用的纤维鉴别方法有显微镜观察法、燃烧法、化学溶解法等,但这些方法耗时长,不适宜现场快速鉴定。而拉曼光谱是反映分子极化率变化与振动信息的一种散射光谱,不同的纺织纤维具有不同的拉曼光谱特征,可以利用这些特征结合其他定性鉴别的方法区分纤维种类。

本单位以开发床上用品纤维成分现场检验鉴定技术为目的,利用美国必达泰克公司(B&W Tek, Inc.)的便携式拉曼光谱仪i-Raman EX对超过1000个纯棉、纯涤样品进行测试。全部样品谱图通过Matlab进行信号平滑和背景扣除的数据预处理。通过对各种预处理方法的比较,我们认为运用自适应迭代重加权惩罚最小二乘算法对样品数据进行预处理可以得到最大限度保留样本光谱有效信息的数据,棉和涤纶的拉曼光谱图如图1和图2所示。

图1 预处理前(左)后(右)纯棉样品拉曼谱图

图2 预处理前(左)后(右)涤纶样品拉曼谱图

预处理之后的光谱包含有织物的特征信息,我们将大量的数据混合后通过主成分分析、偏最小二乘线性判别式分析、偏最小二乘判别分析等聚类与分类计算,尝试将它们分类,也就是我们常说的纤维成分定性。我们发现运用主成分分析法能很好地将纯棉和纯涤的混合光谱聚类分离,如图3所示,红色表示纯棉样品,黑色表示纯涤样品。结果表明,运用主成分分析方法,能将光谱的有效信息充分区分,并直观显示出来。主成分分析非常适合用对纺织纤维进行定性分析。

图3 300个纯棉、纯涤混合样品主成分分析图

化学计量学方法是拉曼光谱检测技术应用发展的重要推动力量,其与拉曼光谱检测技术的结合对纺织纤维的快速、无损检测有着至关重要的作用。随着数据分析的进一步深入,拉曼光谱技术将从纺织纤维的定性鉴别应用阶段跨入定量检测应用阶段,估计在不久的将来,以拉曼光谱为核心技术的纺织纤维定性定量分析标准将会诞生。

参考文献:

[1]朱自莹, 顾仁敖,陆天虹.中国拉曼光谱研究十年(1981~1991)[J].光谱学与光谱分析, 1993,(01):49-84.

[2]田国辉, 陈亚杰,冯清茂.拉曼光谱的发展及应用[J].化学工程师, 2008:(01): 34-36.

[3]乔西娅. 拉曼光谱特征提取方法在定性分析中的应用[D].杭州:浙江大学,2010.

[4]程光煦.拉曼、布里渊散射: 原理及应用[M].北京: 科学出版社,2001:120.

[5]白利涛, 张丽萍,赵国文.拉曼光谱的应用及进展[J].福建分析测试, 2011,(02): 27-30.

[6]宫衍香, 吕刚,马传涛.拉曼光谱及其在现代科技中的应用[J].现代物理知识, 2006,(01): 24-28.

[7] 黄海平, 田英芬, 何尚锦, 等. 拉曼光谱在高分子中的应用新进展[J]. 热固性树脂, 2001, (02): 38-44.

[8]康颐璞, 司民真,刘仁明.氯霉素在电解法制备纳米银膜上的表面增强拉曼光谱的研究[J].光散射学报, 2009,(01): 25-28.

[9] 陶家友, 黄鹰, 廖高华,等. 甲醛浓度的激光拉曼光谱检测研究[J]. 光散射学报, 2008, (04): 346-349.

[10] 马寒露, 董英, 张孝芳, 等. 拉曼光谱法快速检测掺入梨汁的浓缩苹果汁[J]. 分析测试学报, 2009, (05): 535-538.

[11]乔西娅, 戴连奎,吴俭俭.拉曼光谱特征提取在化学纤维定性鉴别中的应用[J].光谱学与光谱分析, 2010,(04): 975-978.

[12] 吴俭俭, 孙国君, 戴连奎, 等. 纺织纤维拉曼光谱定性分析法[J]. 纺织学报, 2011, (06): 28-33.

[13]Gorry, P.A. General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method[J]. Analytical Chemistry, 1990, 62(6): 570-573.

[14]Madden, ments on the Savitzky-Golay convolution method for least-squares-fit smoothing and differentiation of digital data[J]. Analytical Chemistry, 1978, 50(9): 1383-1386.

[15]Savitzky, A. and M.J.E. Golay.Smoothing and Differentiation of Data by Simplified Least Squares Procedures[J]. Analytical Chemistry, 1964,36(8): 1627-1639.

[16]Steinier, J., Y. Termonia, and J. Deltour, Smoothing and differentiation of data by simplified least square procedure[J]. Analytical Chemistry, 1972,44(11): 1906-1909.

[17]尼珍, 胡昌勤,冯芳.近红外光谱分析中光谱预处理方法的作用及其发展[J].药物分析杂志, 2008,(05): 824-829.

[18] 夏俊芳, 李培武, 李小昱,等. 不同预处理对近红外光谱检测脐橙VC含量的影响[J]. 农业机械学报, 2007, (06): 107-111.

[19]Eilers, P.H.C.. A Perfect Smoother[J]. Analytical Chemistry, 2003,75(14): 3631-3636.

[20] Daubechies, I.Ten lectures on wavelets[M]. SIAM, 1992.

[21]陈珊. 拉曼光谱背景扣除算法及其应用研究[D]. 长沙: 中南大学, 2011.

[22]Eilers, P.H., H.F. Boelens. Baseline correction with asymmetric least squares smoothing[J]. Leiden University Medical Centre Report, 2005.

[23]Carlos Cobas, J., et al., A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data[J]. Journal of Magnetic Resonance, 2006,183(1): 145-151.

[24]Zhang, Z.-M., S. Chen, Y.-Z. Liang. Baseline correction using adaptive iteratively reweighted penalized least squares[J]. Analyst, 2010, 135(5): 1138-1146.

[25]Wold, S., K. Esbensen, P. Geladi.Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987,2(1–3): 37-52.

[26]Geladi, P., B.R. Kowalski. Partial least-squares regression: a tutorial[J]. Analytica Chimica Acta, 1986. 185(0): 1-17.

[27]罗文海, 万巧云,高永.主成分回归分析与多元线性回归的对比研究[J].数理医药学杂志, 2003,(02): 140-143.

[28]Jolliffe, I.T. Principal Components in Regression Analysis[J]. Principal Component Analysis, 2002: 167-198.

光谱学与光谱学分析篇(3)

中图分类号:TS207.3 文献标识码:A 文章编号:1009-914X(2016)11-0258-01

近红外光具体指波长在780-2526nm范围内的电磁波,近红外光谱分析技术则是光谱测量技术同化学计量学的有机结合。近红外光分析技术应用范围不断拓展,在食品行业中应用于调味品、酒制品、肉类等成分鉴别以及真伪鉴别,近年来其在牛奶制品化学分析中也得到了较为广泛的应用。分析近红外光谱技术在牛奶及其制品分析检测中的应用,实施对牛奶及其制品的质量安全控制,有着重要的现实意义。

一、近红外光谱分析技术原理

近红外光谱分析技术是近几十年来发展最为迅速的高新分析技术之一。我国从上世纪80年代开始应用近红外光谱分析技术,并逐渐拓展到食品、农业、石化等多个领域,近红外光谱是分子振动光谱倍频与合频吸收光谱,主要为X-H键吸收。由于不同基团(例如苯环,甲基等)所生成的光谱在吸收峰的强度以及位置上有差异性,结合朗伯-比耳吸收定律,光谱特征将锁着样品成分含量的变化而变化。近红外光谱分析技术具体有以下几个优点:传输性能良好,近红外光在光导纤维中传输性能较好,能够实现对生产工艺流程的在线检测;检测手段无损。近红外光谱分析技术检测不对样品产生损伤,特别是在活体检测上有着非常大的优势;分析速度快捷。近红外光谱分析技术不用对样品进行预处理,对于样品的测量通常在1分钟之内可以完成,其分析速度较快,效率较高;绿色环保。近红外光谱分析技术在检测中不对环境产生污染,因而其也被称作绿色检测技术。

二、近红外光谱分析技术在牛奶化学分析中的应用

牛奶是由多种物质所组成的混合物,其具体包括真溶液、胶体悬乳液、高分子溶液以及乳浊液等。而牛奶成分中蛋白质分子、脂肪等对于近红外光有着吸收作用,因而近红外光谱分析技术在牛奶化学分析测定中能够得到良好应用。近红外光谱分析技术在牛奶制品上的应用主要体现在在线检测与离线检测两个方面。在线检测是指借助光纤探头直接在生产线中对样品进行检测;离线检测指用红外反射仪对样品杯或者试管中的样品实施全反射检测。其具体应用包括定性分析牛奶及其制品的产地来源与品种,以及定量分析牛奶及其制品的微生物与理化指标等。

1.在线检测

牛奶生产过程中,因出厂产品一致化的要求,通常需要保证原料成分含量的一致性,而现实生产当中不能使生产停止来满足在线检测。近红外光谱分析技术的应用则实现了对生产过程的实时监控。在线检测中,利用近红外光谱分析技术对牛奶成分中的蛋白、乳糖、脂肪、蔗糖以及水分进行测量,能够取得良好的效果,可广泛应用与鲜奶成品生产以及奶粉生产过程中的质量监控。并且如今近红外光谱技术应用也已经拓展到了牛奶中病菌数以及牛奶体细胞数测定方面。吴静珠等提出了建立包括不同种类奶粉样品集中的脂肪、乳糖、蛋白等的红外模型,并采取全谱分析结合模型优化的方法,简化了近红外技术在奶粉定量分析的步骤。刘蓉(2005)通过最小半球体积法以及半数重采样法来对牛奶成分近红外光谱实施奇异点剔除实验,这两种算法的有效结合有着快速简单的特征,能够适应牛奶成分等的在线检测,可大大提升分析模型的精度与稳定性。朱俊平(2003)通过多元线性回归法构建用近红外光谱分析技术检测儿童高钙奶粉蛋白、乳糖、脂肪的测定模型。其近红外法测定结果与标准法测定结果相一致。但总体来看,目前近红外光谱分析技术在牛奶及其制品在线检测中的应用尚停留在实验室的阶段,要真正实现牛奶及其制品生产的在线检测还需要做更多的工作。

2.离线检测

营养成分检测。牛奶制品营养成分检测主要是指利用近红外光谱分析技术对牛奶中的蛋白质、乳糖、脂肪等营养成分进行快速定量的分析。联邦德国的R.T.Carl早在1991年就利用近红外光谱分析技术以及偏最小二乘法分析牛奶中的脂肪含量,结果也表明利用近红外光谱分析技术分析牛奶中脂肪含量是非常可行的。

掺假物质鉴别。牛奶制品中有许多掺假物质,例如植物蛋白、植脂末、乳清粉乃至三聚氰胺等。奶制品掺假成分检测主要依赖传统方法,而近红外光谱分析技术的应用也能够起到有效作用。韩东海(2006)具体应用近红外光谱分析技术来鉴别纯牛奶中的还原奶,结合判别分析方法构建起还原奶鉴别模型,并利用偏最小二乘法构建起原料奶的ph值以及酸度预测模型,具体误差

致病菌分析。李守军(2007)对利用近红外光谱技术检测牛奶中致病菌方法进行了分析。具体采用最小二乘法、余弦相似度聚类等方法建立利用近红外光谱检测原料乳大肠杆菌、总菌落数的模型,结果表明能够在50分钟内完成,可有效预测原料乳大肠杆菌以及总菌数。

三、近红外光谱分析技术应用展望

我国的奶制品质量水准在食品市场中一直备受关注,牛奶产品的质量也一直是弱项,例如我国奶粉产品质量与西方国家有着巨大差距。究其原因,在于生产监控以及原材料质量控制上的差距。近红外光谱分析技术有着准确、快速、便捷等特性,得到了越来越广泛的应用。而这项技术在牛奶及其制品中的应用,则能够更有效地实施对牛奶制品的质量监控。其对于提升生产质量控制,降低生产成本等发挥着重要的作用。但同时,目前近红外光谱技术在牛奶分析检测中的应用仍存在着诸多问题有待解决:牛奶为多分散体系,由于测量条件以及测量方法等诸多因素影响,测定结果的准确率有待提升,因而需要开发专用的数学模型以及相关配件来提升检测精确度;近红外光谱分析技术定性与定量分析的关键因素在构建准确的校正模型,因而需要进行多种建模方法的对比来获取最优化的模型;此外,近红外光谱分析技术虽然分析成本较低,但其仪器本身较为昂贵,对于我国一些牛奶加工企业、牛奶养殖场所以及牛奶收购站而言,缺乏经济实力与生产规模。因而需要开发出更简便,价格更低的近红外仪器,拓展其在牛奶检测中的应用范围。

结束语

总而言之,近红外光谱分析技术有着简便、快速、绿色等特征,随着我国乳制品工业的快速发展以及社会对于乳制品质量的关注,近红外光谱分析技术有着广阔的应用前景。目前我国乳品市场质量安全方面仍然存在着诸多问题,新形势下,我们应当进一步加快对近红外光谱分析技术在牛奶化学分析应用的研究,促进其在乳品生产检测中的高效应用,从而提升我国乳制品的质量安全水平。

参考文献

光谱学与光谱学分析篇(4)

中图分类号:TG308 文献标识码:A 文章编号:1009-914X(2014)35-0253-01

一 引言

拉曼光谱是一种散射光谱,其作为物质结构的分析测试手段被广泛的应用。随着科学技术的进步与发展,拉曼光谱技术已经应用于石油、化工、材料、生物、环保、地质等领域,为相关行业的发展提供了更多分子结构方面的信息。结合化学计量学,拉曼光谱技术广泛的应用于石油产品组成分析、燃料质量指标测定、输油管线油品监控等方面,因其具有分析速度快、操作简单、结果准确、不破坏样品等有点,在石油化工行业取得了不错的成效,具有广阔的市场发展空间。本文就拉曼光谱技术在石油化工领域中的应用进行了简单分析,从而更好的确保石油产品的质量,促进石油化工企业健康、可持续发展。

二 拉曼光谱技术的特点

近年来,我国科学技术日新月异,使用比较广泛的光谱技术有三种,即近红外光谱技术、中红外光谱技术、拉曼光谱技术。与前两种光谱技术相比,拉曼光谱技术具有以下特点:

(1) 特征性强

从光谱特征性来看,拉曼光谱峰形为尖峰,特征性较强,可以直接通过特征峰判断某种官能团和某种物质的的存在,比如观察醇类或者醚类物质特征峰,可以判断汽油中是否存在醚类和醇类化合物等。但是其光谱信息质量相对较差,拉曼光谱信号小、噪音高、信噪比小,往往影响拉曼光谱信号的因素包括扫描时间、热效应、光源稳定性以及荧光干扰等。表面增强拉曼技术可以有选择性的增强拉曼信号,目前已用于微量物质检测中,大大扩大了拉曼光谱技术的应用。同时荧光干扰消除技术是拉曼光谱技术的研究重点之一,将会在石油产品质量检测中发挥出重要的作用。

(2)分析精度高

在拉曼光谱技术应用中,光谱进行预处理后,借助化学计量学,分析其精度和近红外光谱技术和中红外光谱技术基本相当,更好的满足于现场使用要求。上世纪90年代末,相关学者利用FT―Raman、FT―IR、NIR三种技术对汽油氧含量和BTEX组分进行了分析比较,发现撒种技术精度相当,具有高精度的检测性能。

(3)环境适应性强

拉曼光谱技术采用样品池和光纤等方式对光谱进行采集,其速度快、操作简便,属于无损操作。随着低分辨率拉曼光谱仪的问世,大大增强了无移动部件的抗震性以及拉曼光谱环境适应性。

(4)易实现标准化

拉曼光谱与红外光谱都属于特征光谱,采用内标法进行光谱的标定,使同一类型、不同仪器的拉曼光谱基本相同,实现不同仪器之间的模型共享。同时采用特征峰强度进行定量分析,进一步规范化了拉曼光谱方法,有利于拉曼光谱技术的推广与应用。

三 拉曼光谱技术在石油化工领域中的应用分析

我国是能源大国,石油、天然气、煤炭等资源比较丰富,但是对具体产品质量的检测技术研究较少。就拉曼光谱技术在石油化工领域中的应用研究及报道较少,主要体现在国外研究、国内鲜有报道。近年来我国社会生产生活对石油的需求量不断增加,同时也对石油产品质量提高了更高的要求,下文主要针对拉曼光谱技术杂石油化工领域中的应用进行了分析。

(1) 柴油质量检测

20世纪90年代,相关学者采用FT―RAMAN对某石油企业柴油样品的十六烷值和十六烷值指数进行了分析,发现其精度和标准方法基本相当,分析出该柴油样本有一定的荧光干扰。15年后,科学家采用PLS和神经网络方法对柴油的十六烷值指数、粘度、密度、总硫含量等进行分析,发现其精度与FT―IR和FT―NIR相当。

(2) 航煤质量检测

利用拉曼光谱技术对航煤的组成和微量组分进行分析,主要针对航空燃料的添加剂和烃族组成等,发现用高于488m的激发光源可以获得无荧光干扰的光谱。21世纪初,将拉曼光谱技术与PLS方法进行结合,定量测定航煤闪点、初馏点、终馏点等,发现其具有一定的偏差,比较符合分析要求。同时对预处理、光源电压、样本位置对结果的影响进行了分析,发现峰强与电压具有一定的线性关系,光源电压对信噪比有影响,且300mW最适宜。

(3)输油管线油品混油监控

将混输方式应用于燃料运输中,能大幅度节省输油管线。混输方式是针对不同种类、不同牌号的燃料,通过同一管线进行输送,往往采用密度法和介电常数来判断输油管线中是否存在混油。拉曼光谱技术利用不同燃料拉曼光谱特点不同进行判断,比如可以根据荧光干扰确定燃料类型,锅炉燃料的荧光干扰最强,柴油、航煤越来越小。比较燃料的拉曼光谱与内置相关化合物以及反映荧光干扰级别的标准样本的差异,可以更好的确定输送油的种类和牌号。比如燃料与内置相关标准化合物样品的拉曼光谱有相似的特征峰,那么燃料为汽油;反之按照荧光判断是否为锅炉燃料、航煤或者柴油等。

(4)油品在线调和

在1999年,John将拉曼光谱技术应用于Ashland炼油厂在线汽油调和中,对汽油辛烷值进行了检测,更好的控制了汽油产品的调和,进一步优化了汽油的生产,使其获得了最大化的经济效益和社会效益。由此可见,在石油化工领域中应用拉曼光谱技术具有十分深远的意义。

结束语

近年来,我国科学技术日新月异,为我国经济发展带来了机遇和挑战。随着社会生产生活对石油能源需求量逐渐增大,人们对石油产品质量提出了更高的要求。为确保石油产品质量,将拉曼光谱技术应用于石油化工领域中,因其具有分析速度快、操作简便、检测精度高等优点,在石油产品质量分析检测中得到了广泛的应用。随着表面增强技术和荧光干扰技术的应用,拉曼光谱技术将会在石油化工领域中得到进一步的推广与使用。

参考文献

[1]刘燕德,刘涛,孙旭东,欧阳爱国,郝勇. 拉曼光谱技术在食品质量安全检测中的应用[J]. 光谱学与光谱分析,2010,11:3007-3012.

[2]唐黎明,郝敏. 撞击流技术在石油化工领域应用研究进展[J]. 化工进展,2009,S1:35-37.

光谱学与光谱学分析篇(5)

关键词:中药鉴别;谱学,近红外线;光谱分析,拉曼;红外光谱分析

红外光谱分析是一门历史悠久并且还在不断发展着的实用技术科学,由于红外光谱具有特征性强、取样量小、简便迅速、准确等特点,各国药典都将红外光谱作为法定的药物鉴别的主要方法。中药材组成十分复杂,其红外光谱是其中多个组分红外光谱的叠加,光谱的吸收峰强度与峰形是相同或不同的官能团互相作用的结果。中药中各种化学成分只要在质和量方面相对稳定,并且样品处理方法按统一要求进行,中药材的红外光谱就应该具有一定的客观性和可重复性[2]。因此,近年来红外光谱也越来越多地应用于中药材的鉴别研究。

1 红外光谱鉴别中药材的前处理方法

11 粉末直接压片法

闫景芳等[5]采用中药粉末溴化钾直接压片法测定丹参和栽培丹参粉末的红外光谱,结果表明各种不同中药的图谱都有自身明显的差异性,尤其是在1750~1000cm-1处特征性明显。华文俊等[6]采用中药粉末溴化钾直接压片法对常用中药石斛、天竺黄、牛蒡子与伪品进行红外光谱鉴别,结果表明,3种中药与伪品的图谱都有明显的差异性,尤其是在1750~1000cm-1处特征性明显。周红涛等[7]采用药材粉末直接压片法利用傅立叶变换红外光谱仪测定不同产地的赤芍样品,结果赤芍野生品与栽培品的红外吸收频率、吸收峰的相对强度都存在比较大的差异。孙静芸等[8]采用中药粉末溴化钾直接压片法对不同来源的10个省20批商品药材,16批家种或野生药材和6个混淆品种的桑白皮进行了红外光谱分析,归纳其特征。结果表明,利用红外线指纹谱特征和相对透射率的大小较容易鉴别正品与混淆品,从而建立了简便、可靠、专属性强的红外光谱指纹图谱。王永金[9]等用溴化钾压片法测定红外光谱,对熊胆进行了鉴定。

12 溶剂提取法

溶剂提取法就是选择几种极性不同的溶剂,在适当的实验条件下,把真伪品或易混淆品药材中的化学物质按不同的极性提取出来。药材的极性一般都会在某一种或几种溶剂浸出物中出现,从而反映到红外光谱上,对药材作出鉴别。姜大成等[10]用体积分数为50%乙醇、丙酮、氯仿、石油醚4种溶剂和直接粉末压片5种处理方法对16组54种动物进行处理,实验结果表明16组药材的5种处理条件下的样品,80%的红外光谱比较都有鉴别意义,并且每组药材至少有一种条件可以达到鉴别的目的。何淑华等[4]应用50%乙醇、丙酮、氯仿处理了126种中药材,其中118种的红外光谱都有明显的差异。田进国等[11]应用石油醚、乙醚和水提取灵芝、苦地丁等30种药材样品,并分别测定其提取物的红外光谱。结果表明其红外光谱具有较高的鉴别价值。后又用同样的方法鉴别了平贝母、浙贝母、湖北贝母、伊贝母、川贝母5种贝母,苍耳子与东北苍耳子,功劳木及同属6种药用植物,北五味子野生和栽培品种,南五味子和北五味子,人参和西洋参,不同产地、品种的当归,不同产地的赤芍和白芍,延胡索和全叶延胡索[12-20]。

张文惠等[21]利用溴化钾压片法和涂膜法对南、北葶苈子的粉末及甲醇、丙酮、正己烷的浸提物分别进行了红外光谱鉴别,实验结果表明,甲醇和丙酮浸提物的红外光谱在3344、2285、2038、1515、870、792、581、460cm-1处峰形不同。因此可利用葶苈子粉末溴化钾压片法及其以丙酮、甲醇为溶剂浸提物的涂膜法配合红外光谱作为葶苈子的鉴别依据。

13 借助OMNI采样器直接测定

借助OMNI采样器直接测定药材的红外光谱,可以排除萃取法和红外制样时的不确定因素。程存归等[22]采用傅立叶变换红外光谱法,借助OMNI采样器直接测定了中药材威灵仙及其伪品华东菝葜、山木通和毛柱铁线莲的红外光谱,结果表明威灵仙及其伪品的红外光谱的特征吸收峰的差别较大,说明他们之间的主要化学成分不同,特别在指纹区,可以作为红外光谱区别鉴定的依据。程存归[23]利用此方法对艾、野艾及细叶艾进行了红外光谱测定,结果艾、野艾及细叶艾的红外光谱吸收差别较大,从而进行鉴别;对川贝母、珠贝和小东贝也进行了鉴别[24]。金文英等采用傅立叶变换红外光谱法[25],借助OMNI采样器直接测定了中药材地骨皮及其伪品鹅绒藤和黑果枸杞的红外光谱,结果发现正伪品的红外光谱差别较大。

2 红外光谱分析

21 直观判断红外光谱的异同

主要根据红外光谱的峰数、峰位、峰形和峰的强度,以及某一波数吸收峰的有无,指纹区的面貌等进行判断。总的原则是比较红外光谱的全貌,而不是对吸收峰进行归类。曹先兰等[26]对95种矿物药280多个样品进行红外光谱的测定,结果表明,应用红外光谱法可鉴别不同种的矿物药及矿物炮制品,还可鉴别矿物药的真伪。邱泽雨等[27]对不同产地的珍珠、蟾蜍、蛤蟆油、冬虫夏草和五灵脂的红外光谱进行比较,结果表明不同产地的样品的红外光谱一致性很好,重现性也好,在特征区均有明显的宽峰吸收。对冬虫夏草和其伪品地蚕、五灵脂和其伪品泥灵脂、熊胆和其伪品以及麝香和掺假麝香的红外光谱进行比较,结果表明根据其特征区特征吸收峰可判断中药的真伪。由于牛黄制剂的增加,牛黄的需求量越来越大,而天然牛黄来源紧缺,因此,市场上不断出现假冒的天然牛黄。张汉明等[28]对猪胆结石、人胆结石、假牛黄(大黄、黄芩、黄连和黄柏制成)进行红外光谱测定,可以看出红外光谱能有效地将天然牛黄与人工牛黄、猪胆结石和人体胆结石区分开;以大黄等植物药材掺入少量面粉制成的伪品牛黄的红外光谱与天然牛黄相比更有明显的区别。王永刚等[29]利用红外光谱法鉴别羚羊角、山羊角及绵羊角。它们在1500~1000cm-1的峰形与峰位具有很大的相似性,羚羊角在1411cm-1左右有一比较尖锐的峰,而山羊角、绵羊角的红外光谱在该处无峰显示,在1384cm-1处则有一共同峰,可以准确地将羚羊角与其他两者加以鉴别。曾明等[30]对不同产地10个野葛、3个粉葛、2个食用葛及2个苦葛进行了测试,结果表明,不同产地的同种植物的红外光谱特征几乎一致,具有良好的重现性。陈黎等[31]采用红外光谱法对何首乌及其混伪品的氯仿和乙醇提取液分别进行鉴别,实验表明,在与药材对照品相同的实验条件下,红外光谱中吸收峰的位置、峰形、峰强度等特征具较强的种属特异性,可作为鉴别何首乌与混伪品的依据。

22 化学模式识别法

中药的化学成分十分复杂,每一种中药材的质量又受产地、采收期、生长年限等诸多因素的影响,所以单凭经验或专业知识来定性的分类远远不够的,随着数学与电子计算机在中药中的应用日益广泛,化学模式识别法逐步成为了中药研究中不可缺少的手段。

董彬等[32]利用聚类分析法对野生、栽培和不同产地的赤芍进行了快速的分类研究。结果表明,对赤芍的红外指纹图谱进行聚类分析,可以对野生、栽培和不同产地的赤芍进行快速鉴别。

张亮等[33]将人工神经网络用于中药材雷公藤和昆明山海棠的分类识别研究。应用误差反向传播学习算法可以对中药材雷公藤和昆明山海棠浸出物的红外光谱进行分类识别。

徐永群等[34]借助红外光谱的指纹谱特性,用主成分分析法对主产区的赤芍进行了产区聚类,用径向基函数人工神经网络法预测了赤芍的产区。结果表明,聚类结果与地理位置和气候条件有一定的相关性,与传统中医对赤芍质量的经验评价一致,说明所分产区有一定的合理性,产区预测结果较理想。

二维相关光谱可以提高分辨率,简化含有许多重叠峰的复杂光谱,是研究功能基团动态结构变化和分子内、分子间的相互作用的一种强有力手段。曹峰等[35]采用红外光谱法结合二维相关分析技术,利用真伪天麻化学成分的差异研究在热微扰过程中所引起药用植物结构变化的规律,凭借高分辨的二维谱图,用来鉴别药材的真伪,揭示两者相应各官能团的变化规律。在正品天麻和伪品芭蕉芋880~1500cm-1区域的二维相关红外谱同步谱中,正品天麻在对角线上出现了2个较强的自相关峰,它们所对应的基团振动峰的位置分别是在1237cm-1和1415cm-1处,说明这些吸收峰所对应的基团随着温度的升高变化较明显。同时,正品天麻在对角线上出现2个正交叉峰,1415cm-1处的吸收峰和1237cm-1处的吸收峰正相关。而伪品芭蕉芋则在对角线上出现了4个较强的和1个次强的自相关峰,它们所对应的基团振动峰的位置分别是在1024、1055、1194、1225、1162cm-1处,说明这些吸收峰对应的基团随着温度的升高变化较明显。伪品芭蕉芋与正品天麻不同,在对角线两边出现了许多较弱的正交叉峰。

根据中药材粉末快速鉴别的需要,徐永群等[36]提出了阵列相关系数比对法,并设计了比对程序,将其与红外光谱数据库结合起来,以增强谱图比对的置信度,用于药材的快速鉴别。他们对桔梗和白术的红外光谱进行了比对,将4000~400cm-1的红外光谱分为10段,分别计算各段吸光度的相关系数和总体相关系数,这样在两光谱的一次性比对中,既可获得整体相关系数的信息,又可获得各波段相关系数的信息,可较好地显示不同药材之间的差异,为药材的鉴别提供了一个数字化的具有可比性差异的依据,凭借这些差异就可以进行药材的鉴别和分类。

3 近红外光谱在中药鉴别中的应用

近红外光谱(NIRS)是近年迅速发展起来的一种有效简便的分析方法,其波长范围为780~2526nm(波数范围为12820~3959cm-1),该谱区主要是含氢基团(CH、NH、OH)的倍频与合频吸收,其吸收强度低,不需对样品作任何化学处理,可直接进行分析,而漫反射技术可直接测定固体样品,无需破坏样品及制样,操作简便、快速。何淑华等[38]将近红外光谱技术与计算机结合,采用漫反射光学检测方法,对吉林省产的西洋参、人参及其炮制品红参进行分析,应用系统聚类法获得分类结果,结果令人满意。刘国林等[37]利用近红外光谱结合非线性映射技术对不同种和不同产地的蛇床子进行鉴别,显示出不同地域的蛇床子在近红外光谱上也存在一定的差异性。刘荔荔等[39]用近红外漫反射光谱法对部分羊蹄类生药进行鉴别,采用聚类分析和判别分析,分析结果与传统植物分类学结果基本一致。白芷类中药具有很高的药用、经济价值,但其鉴别比较困难,吴拥军等[40]选用8种白芷及其近缘植物的叶进行近红外光谱测定,并结合聚类分析和非线性映射技术对其进行分类。结果两种分类方法获得了相同的分类结果,与植物学分类和实际应用情况相符。刘福强[41]等用人工神经网络――近红外光谱法非破坏监测芦丁药品的质量,成功地分出合格药品和不合格药品。 转贴于  4 红外光谱与拉曼光谱配合鉴别中药

红外光谱与拉曼光谱可给出互补的信息。红外光谱检测的是分子振动时产生的偶极矩变化,因此它对极性基团较为灵敏,而拉曼光谱则对分子的形态以及极化度变化较为敏感,因此它对于非极性基团是一个很好的探头,两者结合对于中药鉴别将是非常有效的。同时,红外光谱无法测定水溶液的光谱,水在中红外区有许多吸收,严重干扰试样的测定,拉曼光谱则不受限制,以玻璃或石英为容器的水溶液试样同样可以得到满意的结果。孙素琴等[42]利用傅立叶变换近红外光谱和变换近红外傅立叶拉曼光谱对大黄(西宁大黄)与伪品大黄(华北大黄、山大黄、水根大黄)进行了无损快速鉴别。结果表明,尽管正品大黄与伪品大黄差别较小,大部分的化学成分有很大的相似之处,但在红外、拉曼谱图中各自的特征峰较突出,根据谱峰的强度和位置可将它们区别开来。

综上所述,中药红外光谱鉴别法是一种专属性强的鉴别方法,现已应用于植物药、动物药、矿物药的鉴别研究中。但是中药材是一个复杂的混合物体系,所含各化合物吸收强度的叠加,使其具有难以解析的复杂性,又因大多数药材的主体成分相似,故谱图又具有一定的相似性,如何区分这些相似而又复杂的谱图,这是方法学研究中一个关键的技术难点[36]。因此,各种解析复杂红外光谱的软件,例如化学计量学软件、比对软件等的开发和推广将会极大地推进红外光谱在中药鉴别中的应用。与此同时,正如国家药典委员会委员王健所讲,国家药典委员会最好能组织有关专家制定出一套规范的实验方法,选定合适的品种,进行系统深入的研究,使这一鉴别技术更加成熟,最终为各地药学工作者利用红外光谱进行中药质量控制提供依据。

总之,随着计算机和化学计量学在中药研究中的广泛应用,红外光谱法必将成为中药鉴别的主要方法。

参考文献:

[1]张淑良,易大年,吴天明.红外光谱分析与新技术[M].北京:中国医药科技出版社,1993.10.

[2]姜大成,何淑华,张洁.红外光谱鉴定中药材的原理与方法[J].中药材,1993,16(7):42.

[3]白雁.红外光谱在中药研究中的应用[J].山东中医药杂志,1997,16(9):413.

[4]何淑华,张洁,曲连颖,等.中药材红外光谱鉴定方法[J].吉林大学自然科学学报,1999,4(10):103.

[5]闫景芳,周传昌.红外光谱法鉴别丹参的实验研究[J].枣庄师专学报,2000,17(5):53.

[6]华文俊,周洪雷,孙勇,等.石斛、天竺黄、牛蒡子与伪品的红外光谱比较[J].中医药研究,2000,16(2):53.

[7]周红涛,胡世林,冯学锋,等.不同产地赤芍的FTIR指纹图谱对比分析[J].中草药,2002,33(9):834.

[8]孙静芸.桑白皮与易混淆品种红外光谱指纹谱的分析[J].中草药,2002,33(4):355.

[9]王永金,杨泽民.红外光谱鉴定熊胆的研究[J].沈阳药学院学报,1989,6(3):157.

[10]姜大成,张洁.16组54种动物药材的红外光谱鉴别研究[J].中草药,1999,30(2):137.

[11]田进国,娄红祥,任健,等.三十种药材对照品红外光谱的研究[J].中国药科大学学报,1996,27(1):24.

[12]田进国,任键,娄红祥,等.五种贝母药材的红外光谱鉴别[J].中药材,1996,19(6):292.

[13]田进国,任键,娄红祥,等.苍耳子与东北苍耳子的红外光谱鉴别[J].中药材,1997,20(8):393.

[14]田进国,任键,娄红祥,等.功劳木及同属6种药用植物的红外光谱研究[J].中国中药杂志,1998,23(5):263.

[15]田进国,任键,娄红祥,等.北五味子野生和栽培品种的红外光谱鉴别[J].中药材,1996,19(8):396.

[16]田进国,娄红祥,任键,等.南、北五味子的红外光谱鉴别[J].中药材,1995,18(6):284.

[17]田进国,娄红祥,任键,等.人参和西洋参的红外光谱鉴别[J].中药材,1996,19(2):70.

[18]田进国,娄红祥,任键,等.不同产地、品种当归的红外光谱鉴别[J].中药材,1995,18(9):451.

[19]田进国,娄红祥,任键,等.不同产地白芍和赤芍的红外光谱鉴别[J].中药材,1995,18(4):176.

[20]田进国,陈永林,任键,等.延胡索与全叶延胡索的红外光谱鉴别[J].中国中药杂志,1999,24(6):327.

[21]张文惠,汪国华,吴毅,等.葶苈子的红外光谱鉴别[J].江西中医学院学报,2001,13(2):68.

[22]程存归,韩涛,腾云龙,等.威灵仙及其伪品的FTIR法直接鉴定[J].光谱实验室,2002,19(2):177.

[23]程存归,刘鹏,陈宗良,等.艾、野艾及细叶艾的FTIR直接鉴别[J].中药材,2002,25(5):315.

[24]程存归,郭水良,陈宗良,等.FTIR直接测定法对川贝母和珠贝、小东贝的区别鉴定[J].中草药,2002,33(3):262.

[25]金文英,程存归,吴兰菊,等.FTIR直接鉴别地骨皮及其伪品的研究[J].四川中医,2003,21(2):21.

[26]曹先兰,李维贤,李非,等.矿物中药鉴定的新方法[J].中成药,1990,12(10):11.

[27]邱泽雨,郭允珍.中药红外光谱鉴别方法的研究[J].中成药,1989,11(8):16.

[28]张汉明,李松林,王勇,等.真伪牛黄的红外光谱鉴别[J].第二军医大学学报,1991,12(4):376.

[29]王永刚,张文惠,吴毅.红外光谱法鉴别羚羊角、山羊角及绵羊角[J].中药材,2001,24(9):639.

[30]曾明,张汉明,郑水庆,等.葛根及同属植物根的红外光谱鉴定[J].中药材,1998,21(8):392.

[31]陈黎,陈吉炎,何建国,等.何首乌及其混伪品的红外光谱鉴别[J].中药材,1999,22(4):182.

[32]董彬,孙素琴,周红涛,等.红外光谱和聚类分析法无损快速鉴别赤芍[J].光谱学与光谱分析,2002,22(2):232.

[33]张亮,蓝要武,韩英,等.人工神经网络用于中药材雷公藤和昆明山海棠的分类识别研究[J].药学学报,1995,30(2):127.

[34]徐永群,英昊,周群,等.红外指纹图谱和聚类分析法在赤芍产域分类鉴别中的应用[J].分析化学,2003,31(1):5.

[35]曹峰,周群,孙素琴.真伪天麻二维相关红外光谱法的鉴别研究[J].现代仪器,2002,4:19.

[36]徐永群,诸建,秦竹,等.中药材红外光谱阵列相关系数比对程度的设计与检验[J].计算机与应用化学,2002,19(3):223.

[37]何淑华,孙瑞岩,任玉秋,等.近红外漫反射光谱法对吉林人参的分类探讨[J].吉林大学自然科学学报,2001,1:96.

[38]刘国林,蔡金娜,李伟,等.近红外光谱技术在中药蛇床子分类中的应用[J].计算机与应用化学,2000,17(2):109.

[39]刘荔荔,原源,陈万生,等.近红外漫反射光谱法在羊蹄类生药分类中的应用[J].中草药,2001,32(11):1024.

光谱学与光谱学分析篇(6)

关键词:中药鉴别;谱学,近红外线;光谱分析,拉曼;红外光谱分析

红外光谱分析是一门历史悠久并且还在不断发展着的实用技术科学,由于红外光谱具有特征性强、取样量小、简便迅速、准确等特点,各国药典都将红外光谱作为法定的药物鉴别的主要方法。中药材组成十分复杂,其红外光谱是其中多个组分红外光谱的叠加,光谱的吸收峰强度与峰形是相同或不同的官能团互相作用的结果。中药中各种化学成分只要在质和量方面相对稳定,并且样品处理方法按统一要求进行,中药材的红外光谱就应该具有一定的客观性和可重复性[2]。因此,近年来红外光谱也越来越多地应用于中药材的鉴别研究。

1 红外光谱鉴别中药材的前处理方法

11 粉末直接压片法

闫景芳等[5]采用中药粉末溴化钾直接压片法测定丹参和栽培丹参粉末的红外光谱,结果表明各种不同中药的图谱都有自身明显的差异性,尤其是在1750~1000cm-1处特征性明显。华文俊等[6]采用中药粉末溴化钾直接压片法对常用中药石斛、天竺黄、牛蒡子与伪品进行红外光谱鉴别,结果表明,3种中药与伪品的图谱都有明显的差异性,尤其是在1750~1000cm-1处特征性明显。周红涛等[7]采用药材粉末直接压片法利用傅立叶变换红外光谱仪测定不同产地的赤芍样品,结果赤芍野生品与栽培品的红外吸收频率、吸收峰的相对强度都存在比较大的差异。孙静芸等[8]采用中药粉末溴化钾直接压片法对不同来源的10个省20批商品药材,16批家种或野生药材和6个混淆品种的桑白皮进行了红外光谱分析,归纳其特征。结果表明,利用红外线指纹谱特征和相对透射率的大小较容易鉴别正品与混淆品,从而建立了简便、可靠、专属性强的红外光谱指纹图谱。王永金[9]等用溴化钾压片法测定红外光谱,对熊胆进行了鉴定。

12 溶剂提取法

溶剂提取法就是选择几种极性不同的溶剂,在适当的实验条件下,把真伪品或易混淆品药材中的化学物质按不同的极性提取出来。药材的极性一般都会在某一种或几种溶剂浸出物中出现,从而反映到红外光谱上,对药材作出鉴别。姜大成等[10]用体积分数为50%乙醇、丙酮、氯仿、石油醚4种溶剂和直接粉末压片5种处理方法对16组54种动物进行处理,实验结果表明16组药材的5种处理条件下的样品,80%的红外光谱比较都有鉴别意义,并且每组药材至少有一种条件可以达到鉴别的目的。何淑华等[4]应用50%乙醇、丙酮、氯仿处理了126种中药材,其中118种的红外光谱都有明显的差异。田进国等[11]应用石油醚、乙醚和水提取灵芝、苦地丁等30种药材样品,并分别测定其提取物的红外光谱。结果表明其红外光谱具有较高的鉴别价值。后又用同样的方法鉴别了平贝母、浙贝母、湖北贝母、伊贝母、川贝母5种贝母,苍耳子与东北苍耳子,功劳木及同属6种药用植物,北五味子野生和栽培品种,南五味子和北五味子,人参和西洋参,不同产地、品种的当归,不同产地的赤芍和白芍,延胡索和全叶延胡索[12-20]。

张文惠等[21]利用溴化钾压片法和涂膜法对南、北葶苈子的粉末及甲醇、丙酮、正己烷的浸提物分别进行了红外光谱鉴别,实验结果表明,甲醇和丙酮浸提物的红外光谱在3344、2285、2038、1515、870、792、581、460cm-1处峰形不同。因此可利用葶苈子粉末溴化钾压片法及其以丙酮、甲醇为溶剂浸提物的涂膜法配合红外光谱作为葶苈子的鉴别依据。

13 借助OMNI采样器直接测定

借助OMNI采样器直接测定药材的红外光谱,可以排除萃取法和红外制样时的不确定因素。程存归等[22]采用傅立叶变换红外光谱法,借助OMNI采样器直接测定了中药材威灵仙及其伪品华东菝葜、山木通和毛柱铁线莲的红外光谱,结果表明威灵仙及其伪品的红外光谱的特征吸收峰的差别较大,说明他们之间的主要化学成分不同,特别在指纹区,可以作为红外光谱区别鉴定的依据。程存归[23]利用此方法对艾、野艾及细叶艾进行了红外光谱测定,结果艾、野艾及细叶艾的红外光谱吸收差别较大,从而进行鉴别;对川贝母、珠贝和小东贝也进行了鉴别[24]。金文英等采用傅立叶变换红外光谱法[25],借助OMNI采样器直接测定了中药材地骨皮及其伪品鹅绒藤和黑果枸杞的红外光谱,结果发现正伪品的红外光谱差别较大。

2 红外光谱分析

21 直观判断红外光谱的异同

主要根据红外光谱的峰数、峰位、峰形和峰的强度,以及某一波数吸收峰的有无,指纹区的面貌等进行判断。总的原则是比较红外光谱的全貌,而不是对吸收峰进行归类。曹先兰等[26]对95种矿物药280多个样品进行红外光谱的测定,结果表明,应用红外光谱法可鉴别不同种的矿物药及矿物炮制品,还可鉴别矿物药的真伪。邱泽雨等[27]对不同产地的珍珠、蟾蜍、蛤蟆油、冬虫夏草和五灵脂的红外光谱进行比较,结果表明不同产地的样品的红外光谱一致性很好,重现性也好,在特征区均有明显的宽峰吸收。对冬虫夏草和其伪品地蚕、五灵脂和其伪品泥灵脂、熊胆和其伪品以及麝香和掺假麝香的红外光谱进行比较,结果表明根据其特征区特征吸收峰可判断中药的真伪。由于牛黄制剂的增加,牛黄的需求量越来越大,而天然牛黄来源紧缺,因此,市场上不断出现假冒的天然牛黄。张汉明等[28]对猪胆结石、人胆结石、假牛黄(大黄、黄芩、黄连和黄柏制成)进行红外光谱测定,可以看出红外光谱能有效地将天然牛黄与人工牛黄、猪胆结石和人体胆结石区分开;以大黄等植物药材掺入少量面粉制成的伪品牛黄的红外光谱与天然牛黄相比更有明显的区别。王永刚等[29]利用红外光谱法鉴别羚羊角、山羊角及绵羊角。它们在1500~1000cm-1的峰形与峰位具有很大的相似性,羚羊角在1411cm-1左右有一比较尖锐的峰,而山羊角、绵羊角的红外光谱在该处无峰显示,在1384cm-1处则有一共同峰,可以准确地将羚羊角与其他两者加以鉴别。曾明等[30]对不同产地10个野葛、3个粉葛、2个食用葛及2个苦葛进行了测试,结果表明,不同产地的同种植物的红外光谱特征几乎一致,具有良好的重现性。陈黎等[31]采用红外光谱法对何首乌及其混伪品的氯仿和乙醇提取液分别进行鉴别,实验表明,在与药材对照品相同的实验条件下,红外光谱中吸收峰的位置、峰形、峰强度等特征具较强的种属特异性,可作为鉴别何首乌与混伪品的依据。

22 化学模式识别法

中药的化学成分十分复杂,每一种中药材的质量又受产地、采收期、生长年限等诸多因素的影响,所以单凭经验或专业知识来定性的分类远远不够的,随着数学与电子计算机在中药中的应用日益广泛,化学模式识别法逐步成为了中药研究中不可缺少的手段。

董彬等[32]利用聚类分析法对野生、栽培和不同产地的赤芍进行了快速的分类研究。结果表明,对赤芍的红外指纹图谱进行聚类分析,可以对野生、栽培和不同产地的赤芍进行快速鉴别。

张亮等[33]将人工神经网络用于中药材雷公藤和昆明山海棠的分类识别研究。应用误差反向传播学习算法可以对中药材雷公藤和昆明山海棠浸出物的红外光谱进行分类识别。

徐永群等[34]借助红外光谱的指纹谱特性,用主成分分析法对主产区的赤芍进行了产区聚类,用径向基函数人工神经网络法预测了赤芍的产区。结果表明,聚类结果与地理位置和气候条件有一定的相关性,与传统中医对赤芍质量的经验评价一致,说明所分产区有一定的合理性,产区预测结果较理想。

二维相关光谱可以提高分辨率,简化含有许多重叠峰的复杂光谱,是研究功能基团动态结构变化和分子内、分子间的相互作用的一种强有力手段。曹峰等[35]采用红外光谱法结合二维相关分析技术,利用真伪天麻化学成分的差异研究在热微扰过程中所引起药用植物结构变化的规律,凭借高分辨的二维谱图,用来鉴别药材的真伪,揭示两者相应各官能团的变化规律。在正品天麻和伪品芭蕉芋880~1500cm-1区域的二维相关红外谱同步谱中,正品天麻在对角线上出现了2个较强的自相关峰,它们所对应的基团振动峰的位置分别是在1237cm-1和1415cm-1处,说明这些吸收峰所对应的基团随着温度的升高变化较明显。同时,正品天麻在对角线上出现2个正交叉峰,1415cm-1处的吸收峰和1237cm-1处的吸收峰正相关。而伪品芭蕉芋则在对角线上出现了4个较强的和1个次强的自相关峰,它们所对应的基团振动峰的位置分别是在1024、1055、1194、1225、1162cm-1处,说明这些吸收峰对应的基团随着温度的升高变化较明显。伪品芭蕉芋与正品天麻不同,在对角线两边出现了许多较弱的正交叉峰。

根据中药材粉末快速鉴别的需要,徐永群等[36]提出了阵列相关系数比对法,并设计了比对程序,将其与红外光谱数据库结合起来,以增强谱图比对的置信度,用于药材的快速鉴别。他们对桔梗和白术的红外光谱进行了比对,将4000~400cm-1的红外光谱分为10段,分别计算各段吸光度的相关系数和总体相关系数,这样在两光谱的一次性比对中,既可获得整体相关系数的信息,又可获得各波段相关系数的信息,可较好地显示不同药材之间的差异,为药材的鉴别提供了一个数字化的具有可比性差异的依据,凭借这些差异就可以进行药材的鉴别和分类。

3 近红外光谱在中药鉴别中的应用

近红外光谱(NIRS)是近年迅速发展起来的一种有效简便的分析方法,其波长范围为780~2526nm(波数范围为12820~3959cm-1),该谱区主要是含氢基团(CH、NH、OH)的倍频与合频吸收,其吸收强度低,不需对样品作任何化学处理,可直接进行分析,而漫反射技术可直接测定固体样品,无需破坏样品及制样,操作简便、快速。何淑华等[38]将近红外光谱技术与计算机结合,采用漫反射光学检测方法,对吉林省产的西洋参、人参及其炮制品红参进行分析,应用系统聚类法获得分类结果,结果令人满意。刘国林等[37]利用近红外光谱结合非线性映射技术对不同种和不同产地的蛇床子进行鉴别,显示出不同地域的蛇床子在近红外光谱上也存在一定的差异性。刘荔荔等[39]用近红外漫反射光谱法对部分羊蹄类生药进行鉴别,采用聚类分析和判别分析,分析结果与传统植物分类学结果基本一致。白芷类中药具有很高的药用、经济价值,但其鉴别比较困难,吴拥军等[40]选用8种白芷及其近缘植物的叶进行近红外光谱测定,并结合聚类分析和非线性映射技术对其进行分类。结果两种分类方法获得了相同的分类结果,与植物学分类和实际应用情况相符。刘福强[41]等用人工神经网络――近红外光谱法非破坏监测芦丁药品的质量,成功地分出合格药品和不合格药品。  4 红外光谱与拉曼光谱配合鉴别中药

红外光谱与拉曼光谱可给出互补的信息。红外光谱检测的是分子振动时产生的偶极矩变化,因此它对极性基团较为灵敏,而拉曼光谱则对分子的形态以及极化度变化较为敏感,因此它对于非极性基团是一个很好的探头,两者结合对于中药鉴别将是非常有效的。同时,红外光谱无法测定水溶液的光谱,水在中红外区有许多吸收,严重干扰试样的测定,拉曼光谱则不受限制,以玻璃或石英为容器的水溶液试样同样可以得到满意的结果。孙素琴等[42]利用傅立叶变换近红外光谱和变换近红外傅立叶拉曼光谱对大黄(西宁大黄)与伪品大黄(华北大黄、山大黄、水根大黄)进行了无损快速鉴别。结果表明,尽管正品大黄与伪品大黄差别较小,大部分的化学成分有很大的相似之处,但在红外、拉曼谱图中各自的特征峰较突出,根据谱峰的强度和位置可将它们区别开来。

综上所述,中药红外光谱鉴别法是一种专属性强的鉴别方法,现已应用于植物药、动物药、矿物药的鉴别研究中。但是中药材是一个复杂的混合物体系,所含各化合物吸收强度的叠加,使其具有难以解析的复杂性,又因大多数药材的主体成分相似,故谱图又具有一定的相似性,如何区分这些相似而又复杂的谱图,这是方法学研究中一个关键的技术难点[36]。因此,各种解析复杂红外光谱的软件,例如化学计量学软件、比对软件等的开发和推广将会极大地推进红外光谱在中药鉴别中的应用。与此同时,正如国家药典委员会委员王健所讲,国家药典委员会最好能组织有关专家制定出一套规范的实验方法,选定合适的品种,进行系统深入的研究,使这一鉴别技术更加成熟,最终为各地药学工作者利用红外光谱进行中药质量控制提供依据。

总之,随着计算机和化学计量学在中药研究中的广泛应用,红外光谱法必将成为中药鉴别的主要方法。

参考文献

[1]张淑良,易大年,吴天明.红外光谱分析与新技术[M].北京:中国医药科技出版社,1993.10.

[2]姜大成,何淑华,张洁.红外光谱鉴定中药材的原理与方法[J].中药材,1993,16(7):42.

[3]白雁.红外光谱在中药研究中的应用[J].山东中医药杂志,1997,16(9):413.

[4]何淑华,张洁,曲连颖,等.中药材红外光谱鉴定方法[J].吉林大学自然科学学报,1999,4(10):103.

[5]闫景芳,周传昌.红外光谱法鉴别丹参的实验研究[J].枣庄师专学报,2000,17(5):53.

[6]华文俊,周洪雷,孙勇,等.石斛、天竺黄、牛蒡子与伪品的红外光谱比较[J].中医药研究,2000,16(2):53.

[7]周红涛,胡世林,冯学锋,等.不同产地赤芍的FTIR指纹图谱对比分析[J].中草药,2002,33(9):834.

[8]孙静芸.桑白皮与易混淆品种红外光谱指纹谱的分析[J].中草药,2002,33(4):355.

[9]王永金,杨泽民.红外光谱鉴定熊胆的研究[J].沈阳药学院学报,1989,6(3):157.

[10]姜大成,张洁.16组54种动物药材的红外光谱鉴别研究[J].中草药,1999,30(2):137.

[11]田进国,娄红祥,任健,等.三十种药材对照品红外光谱的研究[J].中国药科大学学报,1996,27(1):24.

[12]田进国,任键,娄红祥,等.五种贝母药材的红外光谱鉴别[J].中药材,1996,19(6):292.

[13]田进国,任键,娄红祥,等.苍耳子与东北苍耳子的红外光谱鉴别[J].中药材,1997,20(8):393.

[14]田进国,任键,娄红祥,等.功劳木及同属6种药用植物的红外光谱研究[J].中国中药杂志,1998,23(5):263.

[15]田进国,任键,娄红祥,等.北五味子野生和栽培品种的红外光谱鉴别[J].中药材,1996,19(8):396.

[16]田进国,娄红祥,任键,等.南、北五味子的红外光谱鉴别[J].中药材,1995,18(6):284.

[17]田进国,娄红祥,任键,等.人参和西洋参的红外光谱鉴别[J].中药材,1996,19(2):70.

[18]田进国,娄红祥,任键,等.不同产地、品种当归的红外光谱鉴别[J].中药材,1995,18(9):451.

[19]田进国,娄红祥,任键,等.不同产地白芍和赤芍的红外光谱鉴别[J].中药材,1995,18(4):176.

[20]田进国,陈永林,任键,等.延胡索与全叶延胡索的红外光谱鉴别[J].中国中药杂志,1999,24(6):327.

[21]张文惠,汪国华,吴毅,等.葶苈子的红外光谱鉴别[J].江西中医学院学报,2001,13(2):68.

[22]程存归,韩涛,腾云龙,等.威灵仙及其伪品的FTIR法直接鉴定[J].光谱实验室,2002,19(2):177.

[23]程存归,刘鹏,陈宗良,等.艾、野艾及细叶艾的FTIR直接鉴别[J].中药材,2002,25(5):315.

[24]程存归,郭水良,陈宗良,等.FTIR直接测定法对川贝母和珠贝、小东贝的区别鉴定[J].中草药,2002,33(3):262.

[25]金文英,程存归,吴兰菊,等.FTIR直接鉴别地骨皮及其伪品的研究[J].四川中医,2003,21(2):21.

[26]曹先兰,李维贤,李非,等.矿物中药鉴定的新方法[J].中成药,1990,12(10):11.

[27]邱泽雨,郭允珍.中药红外光谱鉴别方法的研究[J].中成药,1989,11(8):16.

[28]张汉明,李松林,王勇,等.真伪牛黄的红外光谱鉴别[J].第二军医大学学报,1991,12(4):376.

[29]王永刚,张文惠,吴毅.红外光谱法鉴别羚羊角、山羊角及绵羊角[J].中药材,2001,24(9):639.

[30]曾明,张汉明,郑水庆,等.葛根及同属植物根的红外光谱鉴定[J].中药材,1998,21(8):392.

[31]陈黎,陈吉炎,何建国,等.何首乌及其混伪品的红外光谱鉴别[J].中药材,1999,22(4):182.

[32]董彬,孙素琴,周红涛,等.红外光谱和聚类分析法无损快速鉴别赤芍[J].光谱学与光谱分析,2002,22(2):232.

[33]张亮,蓝要武,韩英,等.人工神经网络用于中药材雷公藤和昆明山海棠的分类识别研究[J].药学学报,1995,30(2):127.

[34]徐永群,英昊,周群,等.红外指纹图谱和聚类分析法在赤芍产域分类鉴别中的应用[J].分析化学,2003,31(1):5.

[35]曹峰,周群,孙素琴.真伪天麻二维相关红外光谱法的鉴别研究[J].现代仪器,2002,4:19.

[36]徐永群,诸建,秦竹,等.中药材红外光谱阵列相关系数比对程度的设计与检验[J].计算机与应用化学,2002,19(3):223.

[37]何淑华,孙瑞岩,任玉秋,等.近红外漫反射光谱法对吉林人参的分类探讨[J].吉林大学自然科学学报,2001,1:96.

[38]刘国林,蔡金娜,李伟,等.近红外光谱技术在中药蛇床子分类中的应用[J].计算机与应用化学,2000,17(2):109.

[39]刘荔荔,原源,陈万生,等.近红外漫反射光谱法在羊蹄类生药分类中的应用[J].中草药,2001,32(11):1024.

光谱学与光谱学分析篇(7)

0.引言

常言道:“民以食为天,食以安为先”,食品的质量与安全问题与广大人民群众的身体健康与生命安全息息相关,同时对经济的发展、社会的稳定也有着重要的影响。然而近年来,食品安全问题却总是在困扰着人们,带来的后果就是对我国的食品检测机制逐渐失去了信心。一个个令人恐惧的例子依然清晰:苏丹红、地沟油、瘦肉精、毒奶粉等等,这些都是被曝光出来的,引起了社会广泛的争议,可还有很多并不被人们所知的,正在悄然危害广大人民群众的身心健康。人们有理由怀疑我国的食品检测,有理由对食品失去信赖。亡羊补牢,为时未晚。由于检测方法、标准、法规都与先进国家有一定的差距, 目前寻求一种理想、安全、经济、准确、方便的检测方法势在必行。红外光谱技术应用于食品安全检测虽然较短, 但其特点显著:低成本高效率, 操作便捷, 环保等等, 这些都使其在这一领域将有很大的前景。

1.红外光谱分析技术简介

食品分析检测在食品生产加工过程中占有重要地位。化学测定法使用简便,但其中含有污染环境的成分;而高成本、高素质要求则使得现代检测难以大众化。针对此困境,红外光谱技术应运而生,它凭借快速、简便、环保等突出特点在食品行业得到广泛应用。

红外光谱技术,即利用红外光和分子作用所产生的分子振动的原理, 来记录分子吸收红外光之后所呈现的振动模式。记录吸收光的相对强度对红外光波长所得的谱图,就是红外光谱。红外光谱根据波长分为3个区域,分别是近红外(Near Infrared),波长为0.75~2.5μm,波数为13334~4000cm-1;中红外(Middle Infrared),波长为2.5~25μm,波数为4000~400cm-1;远红外(Far Infrared),波长为25~1000μm,波数为400~10cm-1。研究和应用最多的区域,是中红外区域,所以正常情况提到的红外光谱即为中红外区的红外光谱。

2.红外光谱技术检测原理

红外光谱技术检测的原理,就是运用红外光谱法检测有机物,通过红外光谱仪发出红外光线,并将其照射到待检测物体的表面。有机物由于吸收特性就会吸收红外光,从而产生红外光谱图。根据光谱图,技术人员就可以找到电脑内存中与吸收峰相对应的化学基团数据库。红外光谱中谱峰的位置、数目、吸收强度、形状均与化合物的结构和所处状态有关,结构、状态不同,谱峰则不同。因此,根据有机化合物的结构或官能团,与红外光谱之间的关系,可以定性分析有机化合物。

不仅如此,红外光谱还可用于定量分析,在郎伯-比尔(Lambert-Beer)定律的理论基础上,红外光谱含有可供选择的特征波长,因此,不管是气体、液体,还是固体,都可通过红外光谱进行定量分析。

3.食品检测中红外光谱技术的运用

3.1定量检测

凭借高效、便捷、环保等优势,红外光谱技术在食品行业有广泛的运用。然而仅仅依靠红外光谱是不能完成对样品的分析和检测的,还需要通过化学计量学方法,对其进行提取特征,并建立恰当的模型,最终才能实现定性、定量分析。

针对食品中反式脂肪酸含量测定,余丽娟等人找到了一种测定方法。使用盐酸酸解处理含有脂肪酸的食品,经过有机溶剂的萃取后,使用傅立叶变换红外光谱仪,定量反式脂肪酸的特征峰,吸收峰的面积与反式脂肪酸含量之间的关系是呈线性相关的,根据此可以快速测定,回收率为89.26%~106.51%,相对标准偏差为2.29%。

对于同样的测定内容,肖飞燕等人寻找出了另外一种方法。运用氯仿-甲醇提取法或索氏提取法,对食品中的脂肪进行提取,甲醇-BF3会将其快速甲酯化,然后采用Avatar370傅立叶变换红外光谱,定性定量分析反式脂肪酸,回收率达到89.5%~103.3%,相对标准偏差1. 80%。这种方法对一般食品营养标签的测定都适用。

根据上面介绍的方法,抽取我国市场上的饼干、巧克力、涂抹奶油、冰淇淋、派和蛋糕、薯片和薯条等六大类食品中的20种样品,测定其中的反式脂肪酸。测定结果显示,其中有16种检出样品,其反式脂肪酸的含量在0.18%~10.34%之间,而在抽取的样品类别中,反式脂肪酸含量较高的食品类别则是涂抹奶油、蛋黄派和威化饼干。

3.2检测食品中有毒有害成分

食品中的添加剂的使用情况,一直是人们所关心和重视的。尤其是一些对人体健康有害的添加剂,其使用情况必须得到严格的控制。

测定奶粉中防腐剂苯甲酸钠的含量,回瑞华等人想到采用红外示差光谱对其进行定量分析。将溴化钾-奶粉的红外谱图,从溴化钾-苯甲酸钠红外谱图中减去,从而得到特征分析峰,波数为1555cm-1, 在该条件下测定浓度等梯度变化的标准固态溶液的吸光度。以浓度为横坐标, 吸光度数值为纵坐标,绘制工作曲线,结果发现,浓度在0~2.5mg/g 范围内时,苯甲酸钠的吸光度与浓度之间是线性相关的, 由此根据标准曲线法,可以对其进行定量分析。测定出回收率是103.6%,RSD小于1.2。对于这样的便捷操作过程,能够有这样的数据结果,准确度、精确度都是让人满意和欢喜的。

史永刚等人对水中有机污染物的近红外光谱进行讨论分析, 发现有机污染物不同,则其在近红外光谱区表现出的特征也是不同的。结合化学计量学技术,抓住该特征,则可以快速鉴别出有机污染物。

3.3评定食品内部质量

通过红外技术,就可以对这些参数进行快速准确的测量。例如苹果中的水心病,这在苹果中是常见的一种生理失调症状,多发在果核周围, 呈辐射状。通过近红外光对其进行检测, 就得到了连续光谱,将苹果的病变程度清晰直观的展现出来。

何东健等人运用近红外分光法,对水果内部品质的基本原理和检测流程进行检测。检测结果显示,不仅水果的糖度、酸度被清楚检测, 并且其内部缺陷也难以藏身, 这些正是符合在线检测水果内部品质的要求。这些技术,对果农的采摘、销售,顾客的权益,都起着非常重要的作用。

4.结语

现代红外光谱分析,集众家之所长:光谱测量技术、化学计量学技术、计算机技术以及基础测试技术。红外光谱在工业领域中的应用全面展开,有关红外光谱的研究越来越多,红外光谱技术已经成为发展迅速、前景光明的一门独立的分析技术。随着科学技术与分析方法的进一步发展,红外光谱分析技术在食品安全检测领域将会具有更加广阔的前景。 [科]

【参考文献】

[1]姚家彪,赵颖.红外光谱在食品安全检测中的应用[J].现代仪器,2006,12(2).

[2]刘崇华,黄宗平.光谱分析仪器使用与维护[M].北京: 化学工业出版社,2010.

[3]余丽娟,郑建明,姚维武,孙袁先,艾明.傅立叶变换红外光谱法测定食品中反式脂肪酸[J].山东化工,2011(40).

[4]肖飞燕,袁慧君,傅红.傅立叶变换红外光谱法分析市售食品中反式脂肪酸[J].福建分析测试,2013,22(6).

[5]何东健等.水果内部品质在线近红外分光检测装置及试验[J].农业工程学报,2001,17(1).

光谱学与光谱学分析篇(8)

一、光谱分析的基本原理

光是一种电磁波,具有波粒二相性。光的干涉、衍射与偏振等现象显示它的波动性,而光电效应、康普顿效应和黑体辐射等则显示它的粒子性。光的波动性常用三个基本参量,即波长(λ)、频率(ν)和光速(c)来描述,三者的关系是:λν= c,c 为光在真空中的传播速率。整个电磁波包括无线电波、微波、红外光、可见光、紫外光、X 射线、γ射线等,各种电磁波谱的波长和频率以及所具有的能量各不相同,而且产生各种谱域电磁波谱的机理也不相同,由此就产生了不同的光谱分析方法。光谱的波长、强度和谱型是光谱分析的三要素,根据特征谱线的波长可进行定性分析,利用光谱的强度与浓度的定量关系可进行定量分析,而根据谱型可了解主要量子跃迁类型和光谱产生的内在规律。

二、光谱分析法的分类和特点

根据电磁波与物质的相互作用不同,光谱法可以分为三种基本类型:吸收光谱法、发射光谱法和散射光谱法。

吸收光谱是物质吸收相应的辐射能而产生的信息,其产生的必要条件是所提供的辐射能量恰好满足该吸收物质两能级间跃迁所需的能量。具有较大能量的γ射线可被原子核吸收,X 射线可被原子内层电子吸收,紫外和可见光可以被原子和分子的外层电子吸收,红外光可产生分子的振动光谱,微波和射频可产生转动光谱。所以,根据物质对不同波长的辐射能的吸收,可以建立各种吸收光谱法。总的来说,根据其所在光谱区不同,吸收光谱法可以分为穆斯堡尔谱法、紫外和可见分光光度法、原子吸收光谱分析法、红外分光光度法、顺磁共振法、核磁共振法等。发射光谱可分为三种类型:光致发光、以及化学(生物)发光有关以上发射光谱的特点总结于表 1 中:

三、光谱分析法在土壤污染监测中的应用

1.光谱分析法用于分析监测土壤中的重金属污染物

测定土壤中镉和锌等重金属通常的方法包括火焰原子吸收光谱法(FAAS),电热原子吸收光谱法(ETAAS),电感耦合等离子体原子发射光谱法(ICP-OES)和电感耦合等离子体质谱法(ICP-MS)。在这些方法中,ICP 和ETAAS 技术是最灵敏的方法,FAAS 是最常用的方法之一,因为相对来说,它的分析成本更低。通常的样品消解方法主要是干灰化或者湿法酸加热。有很多加热体系都可以用于样品消解,比如说沙浴、电热板加热和微波加热等。在样品分析中,像湿法消解和干灰化等消解程序是最耗时的步骤。这些程序既费时又耗力,而且很容易引入其它污染物质。采用密闭微波消解时,分析时间大大缩短,试剂用量减少,引入污染的风险减小,而且能够很好地避免挥发性待测物的损失。

值得注意的是土壤的化学和物理结构极其复杂,所以测定其中的痕量元素比较困难。土壤中各种高含量的难溶硅酸盐物质给溶样和随后的测定工作带来很大的不便。用 FAAS 和 ICP-OES 分析土样最大的困难就是溶样问题。很多种酸都有被尝试用来消解土壤样品,比如说 HNO3、HClO4、HF、HCl 等,消解时间通常很长,有时甚至需要 30 个小时之多。幸运的是,土壤中的很多元素(比如锌、铅、锰等)没有与硅酸盐结合在一起或是结合力很弱,这样的话只要普通的酸(不需要 HF)就足以将这些元素从土壤中萃取出来。通常萃取过程需要超声]或者微波辅助。同时也需要指出,消解土壤的方法并不是一成不变的,对于不同元素的测定可以采用不同的消解方法,甚至并不需要将样品完全溶解。

2.光谱分析法用于分析监测土壤中的有机污染物

有机污染物作为土壤污染物的重要组成部分,对其进行实时监测正越来越受到人们的关注。近年来,随着光谱分析技术的提高以及一些联用技术的不断成熟与进步,将大大拓展光谱分析法在土壤中有机污染物分析监测中的应用研究,许多科研工作者已做了相关研究,取得了一定的成果。特别是杨仁杰等提出了快速直接对土壤中 PAHs 污染物进行荧光检测的方法-激光诱导荧光光谱技术,以多环芳烃蒽为研究对象,实验证明利用激光诱导荧光光谱技术快速检测土壤中蒽污染物具有可行性。采用 AvaSpec- 2048TEC型热电制冷式光纤光谱仪对土壤中的蒽进行直接测量,研究结果表明:当土壤中蒽浓度在一定范围内时,其诱导荧光强度与蒽的浓度呈线性关系(其相关系数 R 为 0.929),这就表明了激光诱导荧光光谱技术直接对土壤中多环芳烃污染物测量是可行的。该光谱分析技术可无需对样品进行复杂预处理即可进行测试,这对实现土壤中PAH污染物实时、在线、现场测量具有重要的意义。

参考文献:

[1] 高焱.杨海霞.于卫荣. 氢化物发生原子荧光光谱法同时测定海洋沉积物中的砷和汞. 海洋水产研究. 26(4). 2005. 53-58

光谱学与光谱学分析篇(9)

[中图分类号] G642

[文献标识码] A

[文章编号] 2095-3712(2014)22-0058-03[ZW(N]

[作者简介]张焕君(1982―),女,河南许昌人,硕士,郑州轻工业学院教师;程学瑞(1982―),男,河南安阳人,博士,郑州轻工业学院副教授,研究方向:材料物理。

拉曼光谱的强度、频移、线宽、特征峰数目以及退偏度与分子的振动能态、转动能态、对称性等特性有紧密的联系,即与分子的结构紧密相关。而且拉曼光谱具有制样简单,分析快速、无损,所检测的样品仅需微量即可满足测量要求等诸多优点,因而成为研究分子结构的强有力工具,广泛地应用于分子的鉴别、分子结构的研究、分析化学、石油化工催化和环境科学等各个领域[1-2]。然而,相对于气相、液相色谱法的较高精度而言,较大的分析误差率限制了拉曼光谱定量分析的应用。在实际应用中,拉曼光谱分析技术多用于样品的定性分析,尤其是在实验教学当中,更多的是强调其定性分析的作用,而忽略其定量分析的功能[3-4]。尤其是对具有强荧光背景物质,如乙醇及其混合溶液的定量分析,更是拉曼光谱定量分析中的难点问题。

为帮助学生克服这样单一的认识,我们在教学实验环节增加了相关实验内容,采用拉曼光谱对乙醇溶液的浓度进行定量分析。在教学过程中,我们向学生介绍了拉曼光谱定量分析的理论依据、分析过程,并着重分析了误差来源,以加深学生对拉曼光谱的认识,尤其是让学生对其定量分析功能有了进一步的了解。

一、理论依据

拉曼光谱定量分析的理论依据为:

I=KΦC∫b[]0e([WTBZ]ln[WTBX]10)(k+k)zh(z)dz

在上式中,I为光学系统所收集到的样品表面拉曼信号强度;K为分子的拉曼散射截面积;Φ为样品表面的激光入射功率;k、k′分别是入射光和散射光的吸收系数;Z为入射光和散射光通过的距离;h(z)为光学系统的传输函数;b为样品池的厚度。由上式可以看出,在一定条件下,拉曼信号强度与产生拉曼散射的待测物浓度成正比,即I∝C。

二、实验过程

实验样品材料为国药集团化学试剂有限公司生产的浓度不低于99.7%的分析纯乙醇、四氯化碳和去离子水。把不同体积的去离子水加入乙醇样品中,配制成不同浓度的乙醇-水二元体系溶液;用激光功率为50mW(100%)的拉曼光谱仪采集纯乙醇溶液、水、四氯化碳溶液的拉曼光谱图;用拉曼光谱仪采集不同浓度的乙醇溶液的拉曼光谱图,对每种浓度的样品重复扫描3次,试验结果取三次扫描的平均值。

三、结果讨论

把配制好的不同浓度的乙醇溶液加入未受污染的样品池,把不同浓度的样品分别放在拉曼光谱仪上测出其拉曼光谱。荧光背底扣除后不同浓度的乙醇-水溶液的拉曼光谱图如图1所示。

图1荧光背底扣除后不同浓度的乙醇-水溶液的拉曼光谱图

表1中的数据进一步显示出,随着乙醇浓度的增加,特征峰强度的比值在不断增加。纯水的3200cm-1峰的强度I2与不同浓度乙醇的884cm-1峰的强度I1之比R1和面积比R2与乙醇浓度的关系见表1。拟合图如图2所示,R1和R2与乙醇浓度有较好的线性关系,其线性相关系数分别为0.98554和0.97558。

四、误差分析

激光功率、样品池、聚焦位置等因素会对定量分析结构有重要影响。

(一)激光功率的影响

不改变聚焦样品的位置,激光功率分别选取100%、50%、10%、5%、1%和0.5%(100%为50mW),对50%的乙醇-四氯化碳溶液进行测试,结果如表2所示。

由表2可以看出,随着激光功率的改变,两个特征峰(峰459cm-1和884cm-1)的强度比值基本上在2.3左右,面积比值基本上在3.0左右。然而可以看出,当激光功率很小时(1%或0.5%),由于激发光源本身很弱,导致散射的拉曼信号强度本身也非常弱,而且信噪比很大,所以相对误差比较大。而且当激光功率很强(100%功率)时,两个特征峰的强度比值和面积比值都稍微偏离2.3和3.0,其原因可能是,激光功率很强时,其信号强度和荧光信号也比较强,而荧光对拉曼散射的干扰非常大,导致在扣除荧光背底过程中出现较大的偏差。

(二)样品池的影响

如图4是毛细管样品池的拉曼光谱图,实验过程中用毛细管吸取待测溶液。毛细管作为样品容器,在激光激发下也存在拉曼光谱和荧光背底,在基线处理和背底扣除过程中难以完全消除其影响,进而产生误差。

图4毛细管样品池的拉曼光谱图

(三)聚焦位置的影响

在同一样品不同点进行多次测量,分析结果发现,混合溶液的特征峰强度的比值存在较大的偏差,主要原因可能是本次试验使用的是显微共聚焦激光拉曼光谱仪,3次测量的聚焦位置不同,以及数据处理过程当中荧光背底的扣除都会引起较大的误差。对同一浓度的溶液测量3次,所得强度之比的不确定度为0.117,相对强度之比与乙醇浓度拟合直线的不确定度为0.024,相对面积比与乙醇浓度拟合直线的不确定度为0.858。

综上所述,激光功率、样品池、聚焦位置等因素会对拉曼光谱定量分析结构产生一定的影响。另外,乙醇的挥发、激光功率的稳定性、实验仪器的固有误差等因素也会对测试结果带来影响。然而,拉曼光谱定量分析的结果仍然有较大的可信度,可以作为一种有效的定量分析方法。

参考文献:

[1]谭红琳,李智东,张鹏翔,等.乙醇、甲醇、食用酒及工业酒精的拉曼光谱测定[J].云南工业大学学报,1999(2).

光谱学与光谱学分析篇(10)

中图分类号:TP391.41;S513 文献标识码:A 文章编号:0439-8114(2016)21-5445-04

DOI:10.14088/ki.issn0439-8114.2016.21.002

Advance in Authenticity Detection of Corn Seed Based on

Hyperspectral Imaging Technology

WEI Li-feng1,2,JI Jian-wei1

(1.College of Information and Electrical Engineering,Shenyang Agricultural University, Shenyang 110866, China;

2.College of Economics and Management,Shenyang Aerospace University, Shenyang 100136, China)

玉米是中国三大农作物之一,在解决粮食短缺问题、保障国家粮食安全和经济发展过程中起到重要作用。玉米不仅产量大、经济效益高,而且还具有食用和饲用等多种工业用途[1]。但是,玉米种子的真伪直接影响到玉米种子的储藏、销售、育种和农业生产等各个方面,研究玉米种子的真伪问题已成为国内外研究的热点。随着现代科学技术的快速发展,计算机图像处理技术和光谱技术也越来越备受关注,采用机器视觉技术、近红外光谱技术在玉米种子检测真伪方面得到了较为广泛和深入的研究和应用,也取得了较好的成果。然而,传统的计算机视觉技术得到的是种子可见光的形态学特征信息,近红外光谱分析技术得到的是种子的光谱特征信息,两者获得的种子特征信息较少,制约着玉米种子真伪检测的后续分析以及研究[2]。近几年来,一些科研学者将高光谱图像技术应用于检测农作物种子真伪方面,并取得了较好的成果。高光谱图像技术可以同时获取研究对象的光谱信息和空间信息,是图像技术与光谱技术的完美结合,真正做到了“图谱合一”[3]。玉米种子的真伪可以通过表面的图像信息和光谱数据来进行分析和判断,从而能够为种子育种和农业生产提供有力和可靠的科学数据。所以,高光谱图像技术在玉米种子真伪检测方面的应用正逐渐成为研究的热点。

1 高光谱图像技术原理及采集系统

1.1 高光谱图像技术原理

通常认为,光谱分辨率在10-1λ数量级范围内称为多光谱(Multi-spectral),光谱分辨率在10-2λ数量级范围内称为高光谱(Hyper-spectral),光谱分辨率在10-3λ数量级范围内称为超光谱(Ultra-spectral)[4]。高光谱图像技术结合了图像技术和光谱技术两者的优点,可同时获得待测样品的图像信息和光谱信息。不仅可以对待测样品的外观表面特性进行检测,而且能对内部特性进行检测,同时也利用计算机图形与光谱技术两者的长处,对研究对象的内外部特征进行可视化分析[5]。高光谱图像技术获取的样品图像可以克服样品因化学信息分布不均造成的测试误差,同时样品的测试位置对测量的影响也会减少,其丰富的图像信息对玉米种子真伪的鉴定有很大帮助[6]。高光谱图像光源的波谱范围可以在紫外波段(200~400 nm)、可见光波段(400~760 nm)、近红外波段(760~2 560 nm)以及波长大于2 560 nm的波段获取大量窄波段连续光谱图像数据,为每个像素提供一条完整并连续的光谱曲线[7]。样本获取的图像是一个三维图像,二维是它的空间信息,三维是它的波长信息,其波长分辨率通常精度可达到2~3 nm[8]。高光谱图像技术获取三维图像的方法可以分为2种:一种是连续性采集一系列波段光谱图像完成三维立方图像;另一种是用一条线扫描完整光谱范围内的样本空间信息,即“推扫式”成像方法。高光谱图像具有样本的图像信息和光谱信息,图像信息可以反映样本表面特征信息,如特征不同,其对应的光谱信息也不同。在某个特定波长下,感兴趣区域(ROI)与正常区域之间的光谱值会有很大的差异,因此,可以根据光谱信息的不同来判断玉米种子的真伪。所以,利用高光谱图像技术这些优点,在检测玉米种子真伪方面具有很大的优势和研究空间。

1.2 高光谱图像采集系统

一个典型的高光谱图像采集系统装置如图1所示。整个系统是由高光谱成像光谱仪(ImSpector V10E,Spectral Imaging Ltd,Finland)、CCD相机(IGV-B1410M,IMPERX Incorporated,USA)、150 W的光纤卤素灯光源(3900 Illuminatior,Illumination Technologies Inc.,USA)、精密位移控制平台(IRCP0076-1 COM,Taiwan)、遮光暗箱和用于数据处理的高配计算机组成。高光谱摄像头的光谱范围为400~1 100 nm,光谱分辨率为2.8 nm,空间分辨率为0.2 mm。

1.3 高光谱图像数据处理

高光谱图像技术在信息量上有独特性和优越性,光谱响应范围广,光谱分辨率高,但高光谱数据众多,数据量巨大,由于相邻波段的相关性高,信息冗余度也增加,为应用和分析带来了很大不便。因此,如何获取高光谱图像有用的信息是首要关键问题。而数据降维是提取最佳波段的非常有效的方法,可以在不损失重要信息的前提下最大限度地反映原始信息。稻萁滴方法主要有主成分分析法、判别分析法、特征波段法等[9]。高光谱数据降维处理后,采用相关分析、主成分分析、独立分量分析、二次差分分析、逐步多元回归等方法来获取最优波段,最后选用支持向量机、人工神经网络、主成分回归分析法等方法建立基于光谱和图像信息的玉米种子真伪检测的识别模型,从而实现对玉米种子真伪的检测。

2 种子真伪的检测

2.1 玉米种子真伪的检测

种子真实性是指某一批种子实际所属品种与其标称的品种是否相符,即种子的真伪问题。种子检验鉴定起源于19世纪中期,直到上世纪90年代开始分子生物学技术及计算机模拟形态分析的应用。卢洋等[10]通过试验,综合PCA、LDA和BPR提出了一种基于近红外光谱短波段(833~1 087 nm)的玉米种子鉴别方法,针对37个玉米品种种子的近红外光谱数据,以833 nm波长作为起始波,选取了不同的截止波长,进而得到不同波段的数据。试验结果表明,在近红外光谱短波833~1 087 nm波段,识别率达到了97.6%,与全波段相比较,波段范围缩小了84.71%,这为后续大量数据的处理节省了存储和时间。但是该方法只是限定于部分地区的部分玉米种子,不能完全代表全部,所以还需后续大量的试验进行验证。

黄敏等[11]采用高光谱成像系统获取了9个玉米品种共432粒种子的高光谱反射图像,对获取的图像进行校正和预处理,提取每个样本图像在563.6~911.4 nm共计55个波段范围内的形状特征。分别利用单波段、多波段和全波段下的玉米种子形状特征结合偏最小二乘判别法进行模型分类。试验结果表明,全波段范围内训练集和测试集的平均正确识别率达到98.31%和93.98%,均优于多波段和单波段。该方法利用高光谱图像中可见光和近红外区域的有效特征信息,可较准确地鉴别玉米种子的品种,识别玉米种子真伪,为玉米品种真伪自动识别领域提供了一种新的方法。

朱启兵等[12]利用高光谱图像技术,针对17类玉米品种共1 632粒种子的高光谱图像,提取400~ 1 000 nm波长范围内233个波段的熵信息作为分类特征,又利用偏最小二乘(PLS)投影算法对玉米种子高光谱图像进行了最优波段的选择,共获得65个最优波段特征,最后结合偏最小二乘判别分析法(PLSDA)实现了对玉米种子准确识别分类的目的。试验结果表明,在仅为全波段27.90%的最优波段数情况下,其训练精度可达到99.19%,测试精度为98.90%,实现了高精度的玉米种子品种识别,为玉米种子真伪的快速检测提供了一个新方法。

冯朝丽等[13]对玉米种子的高光谱图像的光谱信息进行了深入的分析研究,利用波长范围为400~1 000 nm的高光谱图像采集系统采集11类共528粒玉米样本的高光谱图像,提取每个玉米样本上感兴趣区域并获取此区域的平均光谱信息,然后对光谱曲线进行分析,剔除了12个异常样本,并结合偏最小二乘判别分析法(PLSDA)对所选玉米种子样本进行识别分类。试验结果表明,在所选玉米样本的识别中训练集样本的识别精度可以达到99.22%,测试集样本的识别精度也达到了94.66%。研究结果表明,不同种类的玉米种子的光谱信息具有一定的差异性,利用高光谱图像技术对玉米种子品种进行无损识别分类是可行的,这为玉米种子真伪的检测提出了一个新思路、新方法。

杨杭等[14]利用地面成像光谱辐射测量系统(Field imaging spectrometer system,FISS)获取了5种玉米种子的图像光谱数据,在经过反射率反演、噪声去除和一阶微分预处理后,运用Wilk-lambda逐步判别法选择最佳波段并建立判别模型。交叉验证结果表明,玉米种子的平均识别精度为91.6%,随着选择波段数的增加,模型识别精度也逐步提高。因此光谱成像技术在玉米品种真伪的识别以及质量相关检测方面具有广阔的应用前景。

2.2 其他作物种子真伪的检测

高光谱图像技术不仅在玉米种子的真伪和品种检测领域中获得了比较理想的效果,而且一些学者利用高光谱技术的优越性和独特性对其他作物种子的品种识别、真伪检测也做了深入的研究。程术希等[15]提出了一种基于高光谱信息的大白菜种子品种分类识别方法,利用近红外高光谱图像采集系统采集了8种共239个大白菜种子样本,分别提取样本15pixel×15pixel感兴趣区域平均光谱反射率信息作为样本信息,采用多元散射校正预处理方法对光谱进行消噪处理,验证了Ada-Boost算法、极限学习机(Extreme learning machine,ELM)、随机森林(Random forest,RF)和支持向量机(Support vector machine,SVM)4种分类算法的分类判别效果。通过载荷系数分析选取了10个大白菜种子品种分类判别的特征波长。试验结果表明,4种分类算法基于全波段的分类识别对81个预测样本的正确区分率均达到90%以上,ELM和RF为最优的分类判别模型,识别正确率达到了100%。因此,以载荷系数选取的特征波长是有效的。利用高光谱图像技术结合机器学习对大白菜种子品种进行快速、无损分类识别是可行的,为大白菜种子批量化在线检测提供了一种新的方法。

梁剑等[16]采用MPA傅立叶变换近红外光谱仪研究了水稻种子的漫反射光谱特征,利用种子品种特有的光谱特性,结合不同光谱预处理方法建立了多个聚类分析模型,比较它们对杂交F1代种子“03S/0412”和其父本种子“0412”的鉴别效果。试验结果最终显示,选择4 000~8 900 cm-1光谱范围,通过无预处理、矢量归一化、二阶导数(25点平滑)和二阶导数(25点平滑)+矢量归一化建立的模型校正集正确率分别为52.4%、65.2%、75.2%和100%。通过试验可得,对比无预处理,经过各种方法预处理后正确率都有提高,其中“二阶导数(25点平滑)+矢量归一化”建立的模型取得的效果最好,用该模型对预测集预测,分类正确率为100%,具有很好的预测性能。这为近红外光谱技术用于单粒水稻种子品种真伪性鉴别提出了一个比较理想的新方法,但是还需要用更多的组合来进一步验证和完善。

张初等[17]采用近红外高光谱图像技术,通过提取西瓜种子的光谱反射率,并结合Savitzky-Golay (SG)平滑算法、经验模态分解算法(Empirical modedecomposition,EMD)和小波分析(Wavelet transform,WT)对提取的光谱数据进行去除噪声处理,采用连续投影算法(Successive projections algorithm,SPA)和遗传-偏最小二乘法(Genetic algorithm-partial least squares,GA-PLS)进行特征波长选择。最后基于全波段光谱建立了偏最小二乘判别分析(Partial least squares-discriminantanalysis,PLS-DA)判别模型,基于特征波长建立了反向传播神经网络(Back-propagation neural network,BP NN)判别模型和极限学习机(Extreme learning machine,ELM)判e模型。试验结果表明,基于特征波长的BP NN模型和ELM模型的结果优于基于全部波长的PLS-DA模型,而基于SG预处理光谱提取的特征波长建立的ELM模型具有最优的判别效果,建模集和预测集的判别正确率达到了100%。结果表明,应用近红外高光谱成像技术对西瓜种子品种鉴别是可行的,这为今后研究更多的西瓜品种种子,建立适用范围更为广泛的西瓜种子品种判别模型提出了一个新的思路与方法。

Tan等[18]利用高光谱图像技术对不同的大豆品种进行了识别试验测试。利用高光谱成像系统获取大豆样本1 000~2 500 nm范围的光谱反射数据,采用主成分分析法(Principal component analysis,PCA)对获取到的光谱数据进行数据降维并去除冗余数据,同时在分类算法中将得分高的主成分值作为输入特征,通过PCA方法从每个特征图像中提取4个特征变量(能量、熵、惯性矩和相关性),从16个特征变量中提取8个重要特征参数,根据所选择的特征变量和参数,应用神经网络方法构建分类器,训练精度达到97.50%,平均测试精度达到93.88%以上。结果表明,利用高光谱图像技术结合神经网络建模方法可以对大豆品种进行分类,该方法为检测大豆种子的真伪鉴别拓展了一个新的方向,为以后更为广泛检测种子的真伪提供了一个新的方法。

3 结论与展望

高光谱图像技术应用于农业领域的无损检测是20世纪90年代末在国外发展起来的,在中国近几年才备受关注[19]。然而,研究结果表明该技术在农业领域的无损检测已成为新技术、新趋势、新方向。所以,针对玉米种子真伪的无损检测还有许多方面有待进一步研究。

1)目前,采用高光谱图像技术检测玉米种子真伪只是在验室内实现的,其应用到实际生产上会有一定局限性。通常采用的方法是利用高光谱技术识别3~5个特征波段,然后基于这些波段构建成本比较便宜的多光谱图像系统,从而实现快速、有效的种子真伪在线检测。因此,进一步研究高光谱图像的特征波段和低成本的图像系统是将来的发展趋势之一。

2)利用高光谱图像技术在检测玉米种子真伪时,由于高光谱图像信息量巨大、冗余量多,不利于数据的降维和快速检测。所以,优化和改进传统的分析方法,诸如主成分分析(PCA)、独立成分分析 (ICA)、偏最小二乘法(PLS)、人工神经网络(ANN)、支持向量机(SVM)等,或提出一种集成有效的算法,可以提高预测模型与实际值之间的相关性和精准度[20]。

3)高光谱图像技术已在遥感监测上应用广泛。在农业种子检测方面,高光谱图像技术多用于谷类作物的种子真伪的无损检测。因此,对其他作物类型的种子(花生、豆类、菜子等)真伪检测的潜力很大。

4)高光谱图像技术可以同时获取研究对象的空间及光谱信息,但目前无论国内还是国外大多数研究学者主要是应用高光谱成像技术独立对农产品外部或内部进行检测,很少有文献报道联合其他技术产生一种更为先进的检测玉米种子真伪技术。因此,有效地利用高光谱图像技术检测玉米种子真伪无论是在理论研究还是在应用研究上,都有进一步研究的空间,有望在理论和应用方法方面不断创新,以促进该研究方向不断向前发展,取得更大的成果。

参考文献:

[1] 路立平,赵化春,赵 娜,等.世界玉米产业现状及发展前景[J].玉米科学,2006,14(5):149-151,156.

[2] 杨锦忠,郝建平,杜天庆,等.基于种子图像处理的大数目玉米品种形态识别[J].作物学报,2008,34(6):1069-1073.

[3] 王 雷,乔晓艳,董有尔,等.高光谱图像技术在农产品检测中的应用进展[J].应用光学,2009,30(4):639-645.

[4] 刘木华,赵杰文,郑建鸿,等.农畜产品品质无损检测中高光谱图像技术的应用进展[J].农业机械学报,2005,36(9):139-143.

[5] 田有文.现代图像识别技术诊断农作物病害[M].北京:中国农业出版社,2010.145-155.

[6] 贾仕强,刘 哲,李绍明,等.基于高光谱图像技术的玉米杂交种纯度鉴定方法探索[J].光谱学与光谱分析,2013,33(10):2847-2852.

[7] 马本学,应义斌,饶秀勤,等.高光谱成像在水果内部品质无损检测中的研究进展[J].光谱学与光谱分析,2009,29(6):1611-1615.

[8] 彭彦颖,孙旭东,刘燕德.果蔬品质高光谱成像无损检测研究进展[J].激光与红外,2010,40(6):586-592.

[9] 刘燕德,张光伟.高光谱成像技术在农产品检测中的应用[J].食品与机械,2012,28(5):223-226,242.

[10] 卢 洋,梁先扬,李卫军,等.基于近红外光谱短波段的玉米品种鉴别研究[J].河南大学学报(自然科学版),2012,42(3):239-243.

[11] 黄 敏,朱 晓,朱启兵,等.基于高光谱图像的玉米种子特征提取与识别[J].光子学报,2012,41(7):868-873.

[12] 朱启兵,冯朝丽,黄 敏,等.基于图像熵信息的玉米种子纯度高光谱图像识别[J].农业工程学报,2012,28(23):271-276.

[13] 冯朝丽,朱启兵,朱 晓,等.基于光谱特征的玉米品种高光谱图像识别[J].江南大学学报(自然科学版)2012,11(2):149-153.

[14] 杨 杭,张立福,童庆禧.采用可见/近红外成像光谱技术的玉米籽粒品种识别[J].红外与激光工程,2013,42(9):2438-2441.

[15] 程术希,孔汶汶,张 初,等.高光谱与机器学习相结合的大白菜种子品种鉴别研究[J].光谱学与光谱分析,2014,34(9):2519-2522.

[16] 梁 剑,刘斌美,陶亮之,等.基于水稻种子近红外特征光谱的品种鉴别方法研究[J].光散射学报,2013,25(4):423-428.

[17] 张 初,刘 飞,孔汶汶,等.利用近红外高光谱图像技术快速鉴别西瓜种子品种[J].农业工程学报,2013,29(20):270-277.

[18] TAN K,CHAI Y,SONG W,et al. Identification of soybean seed varieties based on hyperspectral image[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(9):235-242.

[19] 李江波,秀勤,应义斌.农产品外部品质无损检测中高光谱成像技术的应用研究进展[J].光谱学与光谱分析,2011,31(8):2021-2026.

上一篇: 合同管理问题 下一篇: 合同档案管理
相关精选
相关期刊