建筑防雷论文汇总十篇

时间:2023-03-20 16:08:17

建筑防雷论文

建筑防雷论文篇(1)

在建筑物施工过程中,防雷工程项目包括桩基础的焊接、柱筋引下线通长焊接及均压环、避雷网、避雷针、避雷器安装等,一直伴随着建设施工全过程。保证防雷工程项目施工质量的因素很多,如设计、材料、机械、地形、地质、水文、气象、施工工艺、操作方法、技术措施、管理制度等,环节很多,要对这些环节严格控制,才能保证最后的工程质量。

建筑物防雷包括防直击雷和防感应雷。防直击雷就是引导雷云与避雷装置之间放电,使雷电流迅速流散到大地中去,从而保护建筑物免受雷击。防雷电感应则通过建筑物内部的设备、管道、构架、钢窗等金属物的接地装置与大地作可靠的连接,将雷云放电后在建筑上残留的电荷迅速引入大地。目前建筑工程常用的防雷措施有接闪器、引下线、接地装置、避雷器、均压环及金属导体等电位连接等的施工和安装。

1防雷工程施工常见问题

通过实际检测测验和经验,施工过程防直击雷和防感应雷措施中常出现以下问题:一是避雷带、引下线、接地体、均压环搭接的连接长度不够,焊接不饱满,焊接处有夹渣、焊瘤、虚焊、咬肉和气孔,没有敲掉焊渣等缺陷。二是地钢筋网的连接点的错焊、漏焊;作为外引接地联结点或检测点预埋件的漏设。尤其是建筑结构转换层,因构造柱(墙)内主钢筋调整、防雷引下线钢筋错接错焊的情况发生。三是用结构钢材代替避雷针(网)及其引下线时,焊接破坏镀锌层不刷防锈漆;或螺栓连接的连接片未经处理,片与片接触不严密等。四是引下点间距偏大,引下线跨越变形缝处未加设补偿器,穿墙体时未加保护管。接地体安装埋设深度不够或引出线未作防腐处理。五是屋面金属物,如管道、梯子、旗杆和设备外壳等,未与屋顶防雷系统相连,或等电位联结跨接地线线径不足。六是电气设备接地(接零)的分支线未与接地干线连接,实行串联连接。多层住宅采用TN-S系统时,进线在总电表箱处没有重复接地,没有按要求在配电间作MEB。七是低压配电接地形式、电涌保护器(SPD)的设置及安装工艺状况、管线布设和屏蔽措施等与防雷设计要求不符。

2防雷工程项目施工质量控制的主要措施

加强对防雷工程关键部位和工序的质量控制,针对施工中易出现质量通病的几个环节,制定现场检测预控措施,做到预防为主,动态跟踪,保证防雷工程的施工质量。

2.1严格审查设计图纸

一是不仅要熟悉电气图,对建筑设计中的结构、设备的布置也要有初步认识,领会设计中有关说明,对有些特殊的建筑工程项目系统,如弱电系统中的智能化工程、信息通讯、计算机、监控等,因为这些地点和设置在设计平面图纸中一般都没有明确标注,是以规范要求为施工标准进行预留预埋的,要注意对照强制性标准、施工验收规范进行施工。如发现不符合现行施工规范要求或做法不妥,选用的防雷接地材料不当时,应及时与设计单位洽商确定,形成设计文件,以便依照执行及备案。二是一个建设项目,相关专业设计图纸较多,审核防雷图纸时,要对照建筑图、结构图、基础图。各项目衔接复杂,极易导致施工错误。若施工单位经验不足,易因工种(序)配合不当而造成施工错漏。对于施工中容易忽视和特别重要的问题应起草书面意见,以提醒施工单位执行。

2.2严格材料质量控制关,保证焊接质量

一是验材料三证;二是看材料规格;三是查在施工中是否使用设计和规范规定的镀锌材料。在施工监检过程中,作业人员往往随手拿普通结构用钢筋作帮条焊接,或用普通钢材代替镀锌材料,或以冷镀锌材质代替热镀锌材质,应及时纠正。防雷工程施工主要是焊接,焊接质量决定着工程质量。由焊接技术不过关的人员进行防雷接地,造成防雷工程不合格的情况时有发生,应严格审核专业防雷施工队伍的资质等级和施工人员资格证。

2.3查验地基接地焊接

地基接地焊接是接地施工中的第一环节。对于基础圈梁焊接或桩基钢筋与基础钢筋的焊接、基础钢筋与柱筋的焊接,都要严格按基础图和接地点逐一进行检查,尤其要对伸缩缝处基础钢筋是否跨接连通进行确认。当整个接地网焊接完成后,马上进行接地电阻值测试,确认是否符合设计要求。当电阻值不满足设计要求时,再次检验焊接质量或按设计要求补做人工接地装置。

2.4检查引上点和跨钢筋焊接质量

对以柱筋为引上线的接地网,要求施工人员采用每层按轴线标清每根柱子的位置及钢筋焊接根数进行施工,防止漏焊或错焊位置和焊接长度及质量不满足设计及规范要求等[1-2]。要对引上点和跨钢筋焊接质量仔细检查,并要求对焊接引上线进行定位标识,以防向上层焊错主筋造成接地中断错误。特别是对于结构的转换层,由于柱筋的调整,防雷引下线利用柱内主筋焊接引下容易错焊、漏焊,要进行反复核实。

2.5核实等电位焊接及其他接地部位

对于要进行等电位焊接、重复接地的部位,如设备间、变配电室、消防机房、空调机房、电梯机房、给水管、冷却塔、风机等部位的接地焊接要在施工日记上注明备查、核实。高层建筑45m高度以上,每向上3层在结构圈梁内敷设1条25mm×4mm的扁钢与引下线焊成一环形水平避雷带或用不少于2根圈梁主筋焊成均压环。楼内水平敷设的金属管道及金属物应与防雷接地焊接,垂直敷设的竖向金属管道,在其底部和顶部均应与防雷接地焊接。玻璃幕墙防雷等电位接地的施工,在对采用预埋铁做法时,注意在柱主筋上作可靠的焊接,如果是后增加的玻璃幕墙,要根据建筑面积、建筑物的各种特点,出具详细的防雷施工方案。屋顶上装设的防雷网和建筑物顶部的避雷针及金属物体应焊接成一个整体。

2.6按规范进行质量验收

防雷工程应按工程进度及时做好隐蔽验收。无论自然接地体还是人工接地体以及玻璃幕墙、避雷网格、避雷针等,在施工完后都要及时进行接地电阻值的测试。尤其是接地体或接地网施工完成后,应及时认定接地电阻值是否符合设计规定值。低压配电接地形式、电涌保护器(SPD)的设置及安装工艺状况、管线布设和屏蔽措施等应与防雷设计要求相符;查看设计、施工资料,检查SPD安装的位置、数量、型号规格、技术参数应与设计相符合[3-4]。

3参考文献

[1]中华人民共和国住房和城乡建设部.建筑物防雷设计规范GB50057-94[S].北京:中国计划出版社,2010.

建筑防雷论文篇(2)

目前,在感应雷的防护当中,电涌保护器的使用已日趋频繁;它能根据各种线路中出现的过电压,过电流及时作出反应,泄放线路的过电流,从而达到保护电气设备的目的。

根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.4条规定:电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳压,有能力熄灭在雷电流通过后产生的工频续流。即电涌保护器的最大钳压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。

现在,我们根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定的各类防雷建筑物的雷击电流值进行电涌保护器的最大放电电流的选择。

一、一类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为200KA,波头10us;二次雷击电流幅值为50KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计);首次雷击:总配电间第根供电线缆雷电流分流值为200*50%/3/3=11.11KA;后续雷击;总配电间每根供电线缆雷电流分流值为50*50%/3/3=2.78KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即11.11KA*30%=3.3KA及2.78KA*30%=0.8KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为11.11*8=88.9KA;即设计应选用电涌保护器SPD的最大放电电流为100KA,以法国SOULE公司产品为例,选用PU100型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

二、二类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为150KA,波头10us;二次雷击电流幅值为37.5KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为150*50%/3/3=8.33KA;后续雷击:总配电间每根供电线缆雷电流的分流值为37.5*50%/3/3=2.08KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即8.33KA*30%=2.5KA及2.08KA*30%=0.6KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为8.33*8=66.6KA;即设计应选用

电涌保护器SPD的最大放电电流为65KA,以法国SOULE公司产品为例,选用PU65型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

三、三类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为100KA,波头10us;二次雷击电流幅值为25KA,波头0.25us;根据附图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为100*50%/3/3=5.55KA;后续雷击:总配电间每根供电线缆雷电流分流值为25*50%/3/3=1.39KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即5.55KA*30%=1.7KA及1.39KA*30%=0.4KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为5.55*8=44.4KA;即设计应选用电涌保护器SPD的最大放电电流为40KA,以法国SOULE公司产品为例,选用PU40型,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

在供电线路中,电涌保护器的具体安装以较常用的TN-S系统,TN-C-S系统,TT系统为例,示意如下:

1)TN-S系统过电压保护方式

2)TN-C-S系统过电压保护方式

3)TT系统过电压保护方式

综上所述可见,在防雷保护设计中,总的防雷原则是采用三级保护:1、将绝大部分雷电流直接引入地下基础接地装置泄散;2、阻塞沿电源线或数据、信号线引入的过电压;3、限制被保护设备上浪涌过电压幅值(过电压保护)。这三道防线,缺一不可,相互配合,各行其责。目前通常作法是以下三点:

1)建立联合共用接地系统,形成等电位防雷体系

将建筑物的基础钢筋(包括桩基、承台、底板、地梁等),梁柱钢筋,金属框架,建筑物防雷引下线等连接起来,形成闭合良好的法拉第笼式接地,将建筑物各部分的接地(包括交流工作地,安全保护地,直流工作地,防雷接地)与建筑物法拉第笼良好连接,从而避免各接地线之间存在电位差,以消除感应过电压产生。

2)电源系统防雷

以建筑物为一个供电单元,应在供电线路的各部位(防雷区交接处)逐级安装电涌保护器,以消除雷击过电压。

3)等电位联结系统

国家标准《建筑物防雷设计规范》GB50057-94(局部修订条文)明确规定,各防雷区交接处,必须进行等电位联结;尤其建筑物内的计算机房等弱电机房,遭受直击雷的可能性比较小,所以在此处除采取电涌保护器进行感应雷防护外,还应采用等电位联结方式来进行防雷保护,本文不再叙述。

作为电气设计人员都非常清楚,建筑物的防雷保护设计是一项既简单又繁琐的内容,但对建筑物的安全使用,电气设备的正常运行有着至关重要的作用,所以还有待于各位电气设计人员作进一步的研究与探讨;同时必须严格按照国家规范,善为谋划,精心设计。本文仅此设计作了一点粗浅的探讨,所以文中不足之处,望同行不吝赐教。

参考文献

建筑防雷论文篇(3)

一、前言

在建筑物防雷设计中,设计人员对一、二级防雷建筑物的防雷设计比较重视,疏漏差错很少,但对大量的三级防雷建筑物的防雷设计却常有忽视。由于设计质量管理规定:对于一般工程的电气设计允许可以不要计算书,因此许多设计人员对三级防雷建筑物的防雷设计,不再进行设计计算,仅凭经验而设计。对于防雷设施的是否设置及防雷设施的各种安全间距未进行计算、验算,因此造成大量的三级防雷的建筑物的防雷设计、施工存在较大的的盲目性,使有些工程提高了防雷级别,增加了工程造价,而有些工程却未按规范设计、施工,造成漏错,带来很大隐患和不应有的损失。

二、建筑物防雷规范的概述及比较

现今建筑物防雷标准有1993年8月1日起实施的《民用建筑电气设计规范》?JGJ/T16-92?推荐性行业标准,1994年11月1日起实施的《建筑物防雷设计规范》?GB50057-94?强制性国家标准。GB50057-94使建筑物的防雷设计、施工逐步与国际电工委员会?IEC?防雷标准接轨,设计施工更加规范化、标准化。

GB50057-94将民用建筑分为两类,而JCJ/T16-92将民用建筑防雷设计分为三级,分得更加具体、细致、避免造成使某些民用建筑物失去应有的安全,而有些建筑物可能出现不必要的浪费。为更好的掌握IEC、GB50057-94、JCJ/T16-92三者的实质,特择其主要条款列于表1。且后面的分析、计算均引自JCJ/T16-92中的规定。

三、预计的年雷击次数确定设置防雷设施

除少量的一、二级防雷建筑物外,数量众多的还是三级防雷及等级以外的建筑物防雷,而对此类建筑物大多设计人员不计算年预计雷击次数N,使许多不需设计防雷的建筑物而设计了防雷措施,设计保守,浪费了人、材、物。现计算举例说明:

例1:在地势平坦的住宅小区内部设计一栋住宅楼:6层高?层数不含地下室,地下室高2.2m?,三个单元,其中:长L=60m,宽W=13m,高H=20m,当地年平均雷暴日Td=33.2d/a,由于住宅楼处在小区内部,则校正系数K=1。

据JCJ/T16-92中公式?D?2-1?、?D?2-2?、?D?2-3?、?D?2-4?得:与建筑物截收相同雷击次数的等效面积?km2?:Ae=?L?W+2?L+W?H?200-H?+πH?200-H??×10-6=?60×13+2(60+13)20(200-20)+3.14×20(200-20)?×10-6=0.02084?km2?

建筑物所处当地的雷击大地的年平均密度:

Ng=0.024Td1.3=0.024×33.21.3=2.28次/?km2?a?

建筑物年预计雷击次数:

N=KNgAe=1×2.28×0.02084=0.0475?次/a?

据JCJ/T16-92第12.3.1条,只有在N≥0.05?GB50057-94中:N≥0.06?才设置三级防雷,而本例中:N=0.0475<0.05,且该住宅楼在住宅楼群中不是最高的也不在楼群边缘,故该住宅楼不需做防雷设施。

根据以上计算步骤,现以L=60m,W=13m,分别以H=7m、10m、15m、20m四种不同的高度,K值分别取1,1.5,1.7,2,Ng=2.28?km2?a?进行计算N值,计算结果见表2。

从表2中的数据可知,在本区内:①当K=1时,举例中的建筑物均N<0.05,不需设置防雷设施。②当K=1.5时,即建筑物在河边、湖边、山坡下或山地中土壤电阻率较小处、地下水露头处、土山顶部、山谷风口等处的或特别潮湿的建筑物,在高度达15m或以上者,必须设置三级防雷措施。③当K=1.7时,即金属的砖木结构的建筑物,高度达7m及以上者,必须设置三级防雷措施。④当K=2时,即建筑物位于旷野孤立的位置,高度达7m?两层以上者,均设置三级防雷措施。

可见,有的建筑物在20m的高度,却不需设置防雷措施,而有的建筑物高度在7m,就必须设置三级防雷措施。关键因素在于建筑所处的地理位置、环境、土质和雷电活动情况所决定。

同时在峻工的工程中,我们也看到,例1中的民用建筑物,有许多类似的工程不该设置防雷却按三级防雷设计施工了,施工后的防雷接地装置如图1所示。

其中8组引下线均利用结构中的构造柱的4?12主筋,水平环路接地体埋深1m,距楼外墙1m。以上钢材均为镀锌件,则共需镀锌钢材0.192t,人工费2950元,定额预算工程直接费约0.75万元。类似这种三级防雷以外的住宅楼、办公楼及其他民用建筑,在我们地区1998年约竣工600~800栋,仅增设的防雷设施其工程直接费约为450~600万元。以此类推,在全省、全国因提高防雷等级而提高工程造价?浪费?的数字是巨大的。因此,设计人员对民用建筑物的防雷设计必须对建筑物年预计雷击次数进行计算,根据计算结果,结合具体条件,确定是否设置防雷设施。

四、防雷设施与人、金属管道等的安全距离

1.雷电流反击电压与引下线间距的关系

当建筑物遭受雷击时,雷击电流通过敷设在楼顶的避雷网,经接地引下线至接地装置流入地下,在接地装置上升高的电位等于电流与电阻的乘积,在接地引下线上某点?离地面的高度为h?的对地电位则为

Uo=UR+UL=IkRq+L?1?

式中Ik―雷电流幅值?kA?

Rq―防雷装置的接地电阻?Ω?

L―避雷引下线上某点?离地面的高度的为h?到接地装置的电感?μH?

雷电流的波头陡度?kA/μH?

?1?式中右边第一项?UR即IkRq?为电位的电阻分量,第二项?UL?即?为电位的电感分量,据GB50057-94有关规定,三类?级?防雷建筑物中,可取雷电流Ik=100kA,波头形状为斜角形,波头长度为10μs,则雷电流波头陡度==10kA/μs,取引下线单位长度电感Lo=1.4μH/m,则由?1?式可得出

Uo=100Rq+1.4×h×10=100Rq+14h?kV??2?

根据?2?式,在不同的接地电阻Rq及高度h时,可求出相应的Uo值,但引下线数量不同,则Uo的数值有较大差异。下面以例1中引下线分别为4、8根?假定每根引下线均流过相同幅度的雷击电流,且忽略雷电流在水平避雷上的电阻及电感压降?,计算出的UR/UL值列于表3。

由表3中可知,接地电阻?Rq?即使为零,在不同高度的接地引下线由于电感产生的电位?电感分量?也是相当高的,同样会产生反击闪络。

2.引下线与人体之间的安全间距

雷击电流流过引下线及接地体上产生的雷击电压,其电阻分量存在于雷电波的持续时间?数十μs?内,而电感分量只存在于波头时间5μs内,因此两者对空气绝缘作用有所不同,可取空气击穿强度:电感UL=700kV/m,电阻ER=500kV/m。混凝土墙的击穿强度等于空气击穿强度,砖墙的击穿强度为空气击穿强度的一半。

据表3计算的数据,下面计算引下线与人体之间的安全距离。因每组引下线利用构造柱中的4?12钢筋,可以认为引下线与人体、金属管道、金属物体之间为空气间隔,且认为引下线与空气之间间隔层为抹灰层,可忽略不计。

?1?当引下线为4组时,人站在一层,h1=3m,Rq=30Ω,则URI=750kV?UL1=10.5kV?人体与引下线之间安全距离L安全1>

?方可产生的反击。人站在5层,h2=15m,Rq=30Ω,则:UR2=750kV?U12=52.5kV?则安全距离L安全2>

1.575m<1.83m。在上述两个房间内,保持如此的距离是很难做到的,因此存在很危险的雷电压反击。

(2)当引下线为8组时,当站在一层房间内,h1=3m,Rq=30Ω,则UL1=5.25kV?UR1=3.75kV?则安全间距L安全1>

0.757m。人站在5层时,h2=15m?则UL2=26.25kV?UR2=375kV?则安全间距L安全2>

可见,引下线数量增加一倍,安全间距则减小一半。因此设置了防雷设施后,应严格按照规范设置引下线的数量及间距。同时建议可缩短规范内规定的引下线间距,多设一定数量的引下线,可减少雷电压反击现象。这样处理,对增加工程造价微乎其微。

3.引下线与室内金属管道、金属物体的距离

?1?当防雷接地装置未与金属管道的埋地部分连接时,按例一中数据:楼顶的引下线高度h=Lx=20m,Rq=30Ω时,据JCJ/T16-92第12.5.7条规定,Lx<5Rq=5×30=150m,则

Sal≥0.2Kc?Ri+0.1Lx?

式中Kc―分流系数,因多根引下线,取0.44

Ri―防雷接地装置的冲击电阻,因是环路接地体,Ri=Rq=30Ω

Sal―引下线与金属物体之间的安全距离/m

Sal≥0.2×0.44×?30+0.1×20?=2.816m。

?2?当防雷接地体与金属管道的埋地部分连接时,按式?12.3.6-3?,Sa2≥0.075KcLx=0.075×0.44×20=0.66

由以上计算的Sal≥2.816m,Sa2≥0.66m,在实际施工时,均很难保证以上距离,因为金属管道靠墙0.1m左右安装,又由于Sa2≤Sal,因此可将防雷接地装置与金属管道的埋地部分连接起来,同时,在楼层内应将引下线与金属管道?物体?连接起来,防止雷电反击。

4.引下线接地装置与地下多种金属管道及其它接地装置的距离Sed

据JCJ/T16-92第12.5.7条及公式?12.3.6-4?:Sed≥0.3KcRi=0.3×0.4×30=3.96m,而在实际施工中,地下水暖管道交错纵横,先于防雷及电气接地装置施工,等施工后者时,已经很难保证Sed≥3.96m了,也难于保证不应小于2m的规定,因此可将防雷接地装置与各种接地装置共用,即实行一栋建筑一个接地体。将接地装置与地下进出建筑物的各种金属管道连接起来,实行总等电位联结。

综上所述,在实行一栋建筑一个总带电位联结、一个共用接地体的措施后,在楼顶部应将避雷带?针?与伸出屋面的金属管道金属物体连接起来,在每层内的建筑物内应实行辅助等电位联结,即引下线在经过各个楼层时,将它与该楼层内的钢筋、金属构架全部联结起来,于是不论引下线的电位升到多高,同楼层建筑物内的所有金属物?包括地面内钢筋、金属管道、电气设备的安全接地?都同时升到相同电位,方可消除雷电压反击。

五、跨步电压与接地装置埋地深度

跨步电压是指人的两脚接触地面间两点的电位差,一般取人的跨距0.8m内的电位差。跨步电压的大小与接地体埋地深度、土壤电阻率、雷电位幅值等诸多因素。当接地体为水平接地带时,

?3?

式中ρ―土壤电阻率/?Ω.m?

L―水平接地体长度m

Ik―雷电流幅值kA

K―接地装置埋深关系系数,见表4

Ukmax―跨步电压最大值?kV?

按例一中的接地装置计算,接地体长度L=146m,取Ik=150k,土质为砂粘土,ρ=300Ω.m,则按埋深深度0.3m,0.5m,0.8m,1m时相应的K值取2.2,1.46,0.97.0.78。按?3?式计算:

其Ukmax值分别为107.97,71.66,47.61,38.28/kV。

世界各国根据发生的人身冲击触电事故分析,认为相当于雷电流持续时间内人体能承受的跨步电压为90~110kV。从计算结果可知,该工程的防雷接地体埋深0.8m时,跨步电压已在安全范围内。JCJ/T16-92第12.9.4规定接地体埋设深度不宜小于0.6m,第12.9.7条规定:防击雷的人工接接地体距建筑物入口处及人行道不应小于3m,当小于3m时,接地体局部埋深不应小于1m,或水平接地体局部包以绝缘物。包以绝缘物易增大其接地电阻,因此还是以埋深大于1m时为好。这样处理,只增加少量工程造价,却将接地装置处理得更加安全可靠,起到事半功倍的效果。

若采用基础和圈梁内钢筋作为环形接地体,但由于三级防雷的建筑物大多为毛石基础,毛石基础上的圈梁埋地一般为0.3m左右,较浅根本达不到防止危险的跨步电压需将接地装置埋深1m的要求,因此不宜采用圈梁做为环形接地体?指三级防雷建筑物?。

六、区别工频、冲击接地电阻

工频、冲击接地电阻两者的区别及关系,许多施工技术人员不能区别与明晰,使部分工程的防雷装置接地电阻已达到设计值,而仍然盲目采用降阻措施,增加了工程造价。

工频接地电阻是按通过接地体流入地中工频电流求得的电阻。可以认为是接地体20m以内土壤的流散电阻,距接地体20m以外的大地是电气上的零电位点。用接地电阻测量仪测量的电阻,即为工频接地电阻。

建筑防雷论文篇(4)

1.2外部防雷系统智能建筑的外部防雷主要是指防直击雷和防侧击雷,我们通过共用接地系统和泄流通路来保护建筑物自身不遭受雷击。①智能建筑需要建立综合的共用接地系统。因为在智能楼宇内存在着许多交流、直流设备,其中线路纵横交错,因此应该将智能楼宇建筑里的直流工作地、安全保护地、交流工作地与建筑施工过程中为防雷所用作的钢筋紧密连接,形成一个完整的共用接地体。这样就大大减少了在接地线之间存在着电位差的可能性,也消除了感应过电位的反击现象,从而保证了高科技设备的正常工作。②足够的泄流通路和均压措施通过在建筑物钢筋混凝土的钢筋来制作防雷引下线,并且从屋顶的部位就开始增多分路,用来分散各个导体上的雷电流的数量。而由于智能楼宇大多数为高层,还应该采取防侧击雷措施,在智能楼宇中间的部位将建筑的外圈梁钢筋焊接连通形成均压环,同时与防雷引下线相连。通过充分利用建筑物自身的柱钢筋、桩基钢筋、屋顶楼面钢筋、各圈梁钢筋等,将它们细致的焊接,形成良好的雷电流泄流通路以阻止侧击雷造成危害。

2.智能防雷新技术

一种新的技术的要求,必然催生出相应的处理技术,随着我国智能建筑物各项电气设备的日益复杂化,以及智能建筑物中电气设备的种类的繁杂化,大量的科研技术人员投入到了智能防雷技术的研发中去,目前已经研发出一种应用效果比较合理的新型防雷技术。该技术彻底克服了传统避雷技术中被动接闪、二次雷击效应严重的缺点,因此,受到广大建筑施工单位和群众的喜爱,发展前景非常好。它的基本原理是,发生闪电前的地面和云层之间有一个电势差可以作为避雷针的能源,在雷击即将发生的时候提前产生一个向上先导,形成一个雷电优先通路,克服了传统避雷针被动的迎接闪电的不足,从而大幅度的提高了防雷保护的范围。在智能建筑中的电子设备大部分采用了超大规模的集成电路,因此其本身很容易在高电压、高电流的情况下被烧毁。因此以前的避雷针防雷、电源防雷等方法已经不能适应当前社会建筑领域智能楼宇防雷的需求。当雷击发生的时候将会产生较大的电场,进而导致这个区域内的电位快速升高,大大高于其它区域,而作为电的良导体,很容易在电位不相等时对雷电产生影响形成感应,从而遭遇雷害。

建筑防雷论文篇(5)

0.引言

建筑幕墙是建筑的保护结构,在建筑结构中并不承担任何的建筑荷载,因此建筑幕墙的建设材料一般选用金属和板材。正是因为建筑幕墙建设材料的使用中包含了金属材料,建筑物很容易在雷雨天气中遭到雷击,给建筑物带来毁灭性的损毁,给人民带来不可估量的灾难。针对雷电的形成原理和雷电对人命的伤害,在设计建筑幕墙时根据这些理论可以有效地设计出安全的建筑幕墙。

1雷电的基本理论

1.1雷电的形成原理

在空中一定的高度中,云中的小水滴在气流的带动下,形成大水滴与小水滴两种。一般情况下,较大的水滴中带有正电荷,较小的水滴中带有负电荷。带有负电荷的水滴在气流的带动下会凝聚在一起,形成带有负电荷的雷云,而带有正电荷的水滴会在重力的作用下落向地面形成雨,有的则漂浮在空中。在带有负电的雷云影响下,经过静电作用,大地表面形成大量的正电荷聚集,雷云与大地之间形成了一个巨大的电容器,当电容器的电场强度达到一定零界点时,这个大电容器之间就会发生放电现象。

1.2雷电对建筑物的危害

雷电的形成有时会因为地面的建筑物的高低或形状的不同而起到促进的作用。地面附近的电场强度分布根据地面的建筑物的分布的不同而不同,在一些较高的建筑物表面形成的电场强度要比较低的建筑物表面形成的电场强度要强的多。建筑物自身的电场分布也是不均匀的,一般在建筑物的最高层以及边缘地带的电场分布较为密集,所以电场强度也建筑物的其它地方大的多,一般高层建筑物的屋顶有许多的金属制品,这就造成了较高建筑物容易被雷击的现象。

2建筑物的防雷设计

建筑幕墙是建筑物独立的保护结构,所以提及建筑幕墙防雷就不可避免的要联系到建筑物防雷,建筑幕墙防雷的装置要与建筑物的防雷设备相结合,形成一个整体的防雷系统。因此要设计建筑幕墙的防雷技术,首先要了解建筑物防雷的设计。

2.1建筑物防雷的基本原则

根据不同地区雷击的现象的发生频率,选择性的针对地区建筑物做防雷工作,对于雷击现象频发的地区所有的建筑物都应设计防雷,建筑物自身的用途和重要性也是防雷的考虑因素,要综合性的考虑建筑物防雷设计的必要性。

2.2建筑物的防雷装置

根据相关规定,所有的防雷建筑物要针对直接雷击和雷电波侵入采取相应的防雷措施。建筑物的防雷设备有三个主要部分分别为接闪器,引下线和接地装置。

3建筑幕墙的防雷设计

3.1幕墙防雷设计原则

建筑幕墙的防雷设计原则是:用导体将幕墙本身的横,竖龙骨连接到一起,建筑幕墙的网格尺寸要根据建筑物的防雷等级而定,通过网格自成一个防雷体系,在建筑幕墙网格制作好以后,将幕墙网格与建筑物自身的防雷装置连接到一起,形成一个完整的防雷体系。通过完整的防雷体系,建筑物受到雷击之后,雷击产生的巨大电流可以快速的通过防雷系统传送到大地,整个体系保护了幕墙和建筑物避免了雷击的破坏。

3.2幕墙的防雷设计

根据相关防雷规定,从建筑物的重要性,使用价值和发生雷击事故的概率将建筑物防雷分为三个等级,同样在同等级的建筑物上的幕墙也划分为一类防雷幕墙,二类防雷幕墙,三类防雷幕墙三种防雷幕墙。

3.3 建筑幕墙的防雷措施

建筑幕墙的防雷措施主要分为两种:一防顶雷;二防侧雷。

3.3.1 防顶雷的方法

高层建筑物在受到雷击时,建筑物的屋顶会有很大的雷击电流,一般施工单位建设建筑幕墙的顶部时通常采用金属材料对建筑幕墙封顶,这样,在超出女儿墙的建筑幕墙就很容易被雷击,尤其是在转角的地方是雷击发生的最高的地方,所以,在拐角处的防雷设施十分的重要。

施工中一般采用在女儿墙上布置防雷网,见图1。

3.3.2防侧雷的方法

一般情况,高层建筑幕墙顶部的防雷网只能防止顶部雷电的袭击,并不能解决电流在顶部侧面的绕击效果,所以,在高于建筑幕墙30米以上的建筑部分,依据建筑物层间高度在每隔2到3层采用直径为8毫米的圆钢装置一圈避雷网。并将避雷针引出线与避雷网进行连接构成一体。

一般情况下采用的防侧雷方法是:针对一类建筑防雷幕墙采取每隔4米或5米以内的幕墙立柱与避雷网进行连接;针对二类建筑防雷幕墙采取每隔8米或10米以内的幕墙立柱和均压环进行连接。在立柱与立柱之间连接的材料也是有规定的,一般采用的材料有电阻必须小于4欧姆的铜制编制线。

3.3.3钢结构建筑的幕墙防雷措施

现代建筑物结构中钢结构的应用越来越广泛,在一些体育馆,车站或高层建筑物中都广为应用。在钢结构体系中,所有的钢材都是连接在一起,使得钢结构本身就构成了一个完整的防雷网体系。因此,在给钢结构的建筑物做建筑幕墙时只需要将幕墙的骨架按照建筑物的防雷标准做好防雷网格,同时连接好钢架结构与的建筑幕墙的防雷网格。这样就能达到钢架结构的防雷标准。

4结束语

上文所述的是建筑幕墙的防雷设计方法和注意事项,值得提醒的是,在建筑幕墙工程施工结束以后要进行严格的工作验收,对建筑幕墙的防雷体系进行验收时,要特别注意防雷网格中各个节点处的施工是否满足上文所述的内容,要确保建筑幕墙整体的导电体系畅通无阻,并且其电阻应小于4欧姆。

参考文献:

[1]吴语晨,陈建东,李建超.玻璃幕墙工程技术规范应用手册[ M] .北

京:中国建筑工业出版社, 2010

[2]戴士军,苏邦礼.雷电与避雷工程[ M] .广州:中山大学出

建筑防雷论文篇(6)

Abstract: in recent years, as China's urbanization construction process accelerating, promoted the development of construction industry, all kinds of construction engineering grow. At the same time, building lightningproof grounding design with the importance of increasingly prominent. Well building lightningproof grounding design can not only effectively ensure building its own security, but also can ensure buildings personnel and important electrical equipment safety. Based on this point, this article elaborates the importance of building lightningproof grounding and design principles, and based on this, put forward building lightningproof grounding method of optimization design.

Keywords: building engineering; Lightningproof grounding; Optimization design

中图分类号:U224.2+5 文献标识码:A文章编号:

雷电本身属于一种自然现象,其在出现时常会伴有雷鸣和闪电,即放电现象。这种现象又分为直击雷、球形雷、电磁脉冲三种形式,其中直击雷和球形雷会对建筑物和人造成危害,而电磁脉冲则主要会对一些电子设备造成损坏。由于建筑物内既有人员存在,也有重要的电子设备存在,故此必须做好建筑防雷接地设计。

一、建筑防雷接地的重要性及设计原则

1.防雷接地的重要性

据相关文献资料显示,当雷击出现时,会伴随有强大的电流通过,这部分电流作用到建筑物上会产生出热效应及机械力,从而对建筑本身及其内部电子设备形成破坏。大部分建筑物内弱电设备的损坏都与雷击有关,而且在雷击事故发生时还有可能造成人员伤亡。由此不难看出,建筑防雷接地设计的重要性。然而,在建筑工程建设过程中,由于施工监理及各专业相关人员对建筑防雷接地的重视程度不够,常常认为该分项工程技术性不高、范围小、工艺简单,使得施工过程中经常会出现不按规范作业的现象,致使埋下了诸多安全隐患。为此,重视建筑防雷接地设计显得尤为重要。

2.设计原则

在进行建筑防雷接地设计时,应遵循以下原则:其一,必须按照《建筑物防雷设计规范》GB50057-94(2000年版)中的有关规定,在建筑外部加装防雷接闪装置;其二,防雷设计应充分考虑建筑所在地的地理因素、环境因素、雷电规律以及建筑内各类设备的重要程度等,并以此为依据确定建筑防雷分类,按具体类别采取相应的防护措施;其三,建筑防雷应始终坚持综合治理、全面规划、经济合理、技术先进等原则进行优化设计;其四,建筑防雷应按照防雷系统的具体要求进行设计,在设计开始前应做好现场雷电环境评估,并将安全第一、预防为主的理念贯穿于整个建筑防雷设计过程中;其五;应按照建筑所在地的雷暴等级对建筑内的弱电设备进行防雷设计。

二、建筑防雷接地的优化设计方法

1.做好实地勘测工作

在进行建筑防雷接地设计之前,必须对该建筑物所处于的地貌、环境进行实地勘测,确定建筑物所在地理区域、地质条件,并对土壤电阻率进行准确测量。按照实际勘测的地理位置设计和审核防雷类别,对于处于较为空旷宽广位置的建筑物必须相应的提高防雷类别。

2.加强建筑外部防雷设计

建筑外部防雷最主要的作用是防止直击雷和侧击雷对建筑本身的危害,一般常采用接闪装置、引下线以及接地装置等进行外部防雷设计。

2.1接闪装置。该防雷设备属于一种金属导体,在建筑防雷设计中应用较多的主要有避雷针或避雷带等。通常情况下,可以按照雷击作用在建筑外部的规律来设置避雷针或避雷带,这样可以有效地将雷击吸引到避雷装置上。建筑屋面装设的避雷网应以镀锌扁钢或圆钢为主要材料,敷设时应固定牢靠并确保平正顺直,接头部位的焊接应符合相关规范的要求。需注意的是避雷带在敷设到女儿墙位置处时,应尽可能沿女儿墙外侧敷设,这样能够有效地降低女儿墙外侧遭受雷击的几率。

2.2接地装置。主要是由接地体和接地线所构成的。接地装置质量的好坏与接地方式、接地电阻息息相关。为了达到与建筑物金属管道相连,降低跨步电压的目的,一般情况下,建筑物的防雷设计采用周圈式接地,并选用自然接地体作为防雷接地的装置。当基础周围土壤及其采用的硅酸盐水泥含水量高于4%,且基础外表面有沥青质防腐层或无防腐层时,防雷接地装置可选用基础内的钢筋。若不能满足上述条件,必须增设人工接地装置。2.3引下线。这一环节的主要目的是将避雷带与接地装置进行可靠连接,以此来形成一个电流通路。一般可利用建筑结构主体中梁柱的主筋或是剪力墙中的钢筋进行引下线。由于引下线的布设方式及数量对实际分流效果有着十分重要的影响。所以必须结合工程具体情况予以确定。

3.优化建筑内部防雷设计

建筑内部防雷设计主要包括防感应雷及雷电波入侵等,完善的内部防雷设计可以有效地降低雷电流及其电磁效应对建筑内部电子设备的影响。具体可采取如下措施来优化建筑内部防雷设计。

3.1等电位连接。等电位是指用过电压保护器或连接导线,将防雷空间内的建筑物金属构架与装置、防雷装置、外来异物体、电讯与电气装置等连接起来。为了有效避免建筑物内部产生带有危险性、反击性的跨步电压和接触电压,必须使建筑物墙板、地面以及线路、金属管等均在同一点位上。所以,在钢凝结构建筑物的防雷设计中,应将等电位连接板预埋于各层的适当位置,使其与建筑结构内部防雷导体相连,从而有利于与接地主干线相连。由于通信线路无法直接与地线相接,因此应使用电涌保护器实现电子设备和电气设备的等电位联结。

3.2合理屏蔽。在建筑内进行屏蔽设计的最终目的是为了保护微电子设备的安全。由于雷电中的电磁脉冲会对微电子设备造成干扰,所以必须对有大量微电子设备的房间进行屏蔽处理,以此来降低电磁脉冲对设备的干扰。为了确保建筑内电气线路在避雷装置接闪过程中不受影响,可以将线路布设在金属管中,这样能够有效地增强线路的雷电反击能力,并且对电磁脉冲也能起到一定的屏蔽作用。同时穿线金属管及线槽等均应与建筑内各个楼层中的等电位连接板及接地母线进行可靠联结,以此来提高屏蔽效果。

结论

总而言之,建筑防雷接地设计作为整个建筑设计中重要的组成部分之一,其有着不容忽视的重要性。近年来,随着建筑不断向高层化和智能化方向发展,建筑中的电子设备也随之不断增多,如果防雷接地设计的不到位,一旦建筑遭受雷击,那么很容易导致建筑内电子设备损坏,从而影响建筑的正常使用功能。为了尽可能避免雷击事故对建筑带来的危害,相关设计人员必须重视建筑防雷接地设计,并不断提高自身的专业水平,采取最为科学合理的方法进行优化设计。只有这样才能真正将雷电危害防范于未然。

参考文献

[1]王文君.关于几个民用建筑物防雷接地问题的探讨[J].晋城职业技术学院学报.2011(3).

[2]傅淑芬.浅谈建筑物防雷接地工程的几点注意事项[J].职业.2009(21).

建筑防雷论文篇(7)

设计严密、完整和良好的智能建筑防雷接地系统,可以很快的将雷电带来的雷电流泄入大地,实现分流,以减弱甚至消除雷电流对通讯信号和电气设备产生的破坏。从技术的角度来分析,智能建筑之所以会被雷电造成严重的伤害,很大一部分原因在于设备的脆弱,硬件设备的防雷布置较少,并且技术上的防雷效果较弱,一旦遇到雷电的灾害,势必会导致智能建筑的运营出现极大的问题。在此,本文主要对智能建筑若干有效防雷接地技术展开分析。

1 智能建筑综合防雷技术

对于智能建筑而言,综合防雷技术是今后的应用重点。我国现阶段的发展正处于重要阶段,智能建筑是建筑行业日后的重点类型,防雷技术则在客观上决定了智能建筑能否获得理想的运营结果。从客观的角度来看,综合防雷技术,主要是根据智能建筑的运营重点和自身的薄弱环节,制定“一专多能”的综合技术,防止雷电侵害的同时,不断的加强自身的质量和性能,以此为智能建筑的运营提供更多的帮助。在此,本文主要对智能建筑综合防雷技术展开论述。

1.1 外部防雷

智能建筑的防雷接地,为了能够在客观的防雷工作上取得较大的突破,首先应在外部防雷上努力。当雷电灾害发生后,雷电首先袭击的就是智能建筑的外部设备,包括各种导电设备和磁场。通过建立健全外部防雷技术,以此来实现智能建筑保护体系的健全。本文认为,外部防雷技术应在以下几个方面努力:第一,接闪器的应用。防雷接闪器是指能够直接截受雷电的金属导体,在多数情况下,防雷接闪器主要集中在三个形式当中,分别是避雷网、避雷带、避雷针。从现有的工作来看,由于接闪器的应用,很多智能建筑的雷电防护措施,都取得了较大的进步,即便是在雷电天气,智能建筑也能正常的运营。第二,引下线的应用。该种外部防雷措施,主要是从细节出发的一种防雷接地方案。引下线属于避雷装置的中断部分,在大多数的情况下,会将建筑物主体结构的柱主筋作为暗装引下线,以此来完成较好的防雷接地效果。同时,由于目前的很多智能建筑都比较重要,还会利用建筑物本身的一些金属构件作为相应的引下线。由此可见,智能建筑的外部防雷是非常重要的,日后应进一步努力。

1.2 内部防雷

由于目前的天气比较多变,部分地区的环境较为特殊,夏季的雷电天气比较常见。此时,不仅要在外部防雷上努力,还要在内部防雷的工作上持续提升,巩固多方面的防雷接地体系。智能建筑内部防雷系统,是针对建筑物内部的比较容易受过电压或者过电流破坏的弱电设备,尤其是雷电磁脉冲辐射对电子设备带来的影响,所采取的增装过电压保护装置,这样可以提高设备过电压和抗电磁干扰的功能,使电气设备免受损坏。首先,内部防雷需要在屏蔽措施上努力。在雷电天气发生的时候,利用屏蔽能够更好的减少雷电电磁没冲辐射对电子设备的干扰。其次,利用等电位联结进行内部的防雷保护。相对而言,等电位联结与智能建筑的本身息息相关,主要是利用导线或者是过电压保护器,更好的将建筑内的金属物相互联结起来,促使整体的智能建筑形成一个优良的导电体,实现优异的防雷接地效果。第三,电涌保护。该项方法,主要是在智能建筑的内部,应用电涌保护器来完成。现阶段的智能建筑,必须采用电涌保护器,该设备是必要性的设备。第四,均压环的应用。均压环是高层建筑物为防侧击雷而设计的环绕建筑物周边的水平避雷带。在建筑设计中当高度超过滚球半径时(一类30米,二类45米,三类60米),每隔6米设一均压环。在设计上均压环可利用圈梁内两条主筋焊接成闭合圈,此闭合圈必须与所有的引下线连接。要求每隔6米设一均压环,其目的是便于将6米高度内上下两层的金属门、窗与均压环连接,以此来实现较强的防雷效果。

2 解决防雷接地技术问题的措施

从现有的工作来看,防雷接地技术在很多方面都实现了较大的提升,固有工作的水平不断进步。但是,由于各个地区的智能建筑发展存在差异,技术上的体系也有不同,此时,应照顾到部分地区的防雷接地技术问题,采取针对性的解决措施,更好的实现防雷接地效果。值得注意的是,客观条件的差异和主观诉求的改变,防雷接地技术的问题的解决措施,应具有持续性的特点,仅仅对现阶段的问题进行压制,根本无法得到理想的效果。在此,本文主要对解决防雷接地技术问题的措施展开论述。

2.1 对地位反击问题的措施

防雷接地技术的各项问题,是技术本身的问题,也是对客观现实的反应,在今后的工作中,应结合多方面的因素来解决地位反击问题。首先,应设计并确保合理的安全距离。智能建筑之所以在现阶段受到了广泛的欢迎,原因在于其建设精度较高。防雷技术问题的解决,应较好的控制安全距离,否则很难保证各种防雷措施的效果得到较好的落实。

2.2 应对变压器损坏问题采取的措施

变压器是很容易受到雷击的设备,并且对智能建筑造成的影响比较严重。今后的防雷接地技术问题的解决,还要对变压器的损坏问题进行重视,通过一系列的措施来解决,从而实现防雷接地技术的良性循环。另外,自然接地体也是很重要的,用可有效的解决地电位升高的影响,合格的地网是有效防雷的关键。联合地网通常由建筑物基础(含地桩)、环形接地(体)装置、工作(电力变压器)地网等组成。接地系统的良好与否,直接关系到防雷的效果和质量。如果地网不合要求,应改善地网条件,适当扩大地网面积和改善地网结构,使雷电流尽快地泄放,缩短雷电流引起的高过电压的保持时间,以达到防雷要求。综上所述,智能建筑,必须采取有效的防雷接地技术,在各个方面完成较强的防护工作。

3 总结

建筑防雷论文篇(8)

引言

在科学技术日新月异的新时代,随着社会经济的发展,现代人们的生活物质水平也得到了大幅度提高,因此在现代的房屋建筑中,电气设备也越来越多,从而为人们创造美好生活奠定了坚实的基础。然而由于近几年来经报道的雷电灾害屡见不鲜,由于雷电的袭击给人们的生活和生命财产安全造成了极大地影响,甚至给社会带来巨大的损失。尽管随着科学技术的日新月异和建筑行业的高速发展,现代建筑的防雷措施都非常完善,然而由于电子科技的高速发展和智能化建筑的不断涌现,从而使得现代建筑必须要进行电气工程防雷,从而才能提高建筑的防雷水平,确保用户的生命财产安全,与此同时,随着建筑行业的高速发展,建筑行业中各种先进的技术层出不穷,从而为建筑电气工程防雷创造了有利的条件。但是,就目前建筑电气工程防雷的实际情况而言,传统的防雷方式和技术已经不能够满足现代建筑的需要,因此,为了提高建筑电气工程防雷水平,还必须要加大对建筑电气防雷的分析研究力度,从而才能够总结出更加科学完善的建筑电气工程防雷技术,进而才能够为社会的安居乐业和经济的高速发展奠定坚实的基础。本文从雷电的形成及其危害出发,对建筑电气工程防雷进行了深入的分析,然后对建筑电气工程防雷问题进行了详细论述。希望能够起到抛砖引玉的效果,使同行相互探讨共同提高,进而为我国今后的建筑电气工程防雷起到一定的参考作用。

一、雷电的形成及其危害

1雷电的形成

雷电是一种大气放电现象。当太阳把地面晒得很热时,地面的热空气携带大量的水汽不断地上升到高空,形成大范围的积雨云,积雨云的不同部位聚集着大量的正电荷或负电荷,形成雷雨云,而地面因受到近地面雷雨云的电荷感应,也会带上与云底相反极性的电荷。当云层里的电荷越积越多,达到一定强度时,就会把空气击穿,打开一条狭窄的通道强行放电。当云层放电时,由于云中的电流很强,通道上的空气瞬间被烧得灼热,温度高达6000—20000℃,所以发出耀眼的强光,这就是闪电,而闪道上的高温会使空气急剧膨胀,同时也会使水滴汽化膨胀,从而产生冲击波,这种强烈的冲击波活动形成了雷声。

二、建筑防雷

1外部防雷装置与内部防雷装置

国际电工委员会编制的标准(IEC1024-1)将建筑物的防雷装置分为外部防雷装置和内部防雷装置。外部防雷装置由接闪器、引下线和接地装置三部分组成。接闪器是指避雷针、避雷带和避雷网,它位于建筑物的顶部,其作用是引雷或叫截获闪电,即把雷电流引下。引下线,上与接闪器连接,下与接地装置连接,它的作用是把接闪器截获的雷电流引至接地装置。接地装置位于地下一定深度之处,它的作用是使雷电流顺利流散到大地中去。内部防雷装置的作用是减少建筑物内的雷电流和所产生的电磁效应以及防止反击、接触电压、跨步电压等二次雷害。除外部防雷装置外,所有为达到此目的所采用的设施、手段和措施均为内部防雷装置,它包括等电位连接设施(物)、屏蔽设施、加装的避雷器以及合理布线和良好接地等措施。

2防雷电感应和雷电波侵入

雷电放电时,在附近导体上产生的静电感应和电磁感应,它可能使金属部件之间产生火花。因此被保护建筑物内的金属物接地,是防雷电感应的主要措施。首先,是做好等电位联结。对一、二类防雷建筑物内平行或交叉敷设的金属管道,其净距小于100mm时,应采用金属线跨接,是防止电磁感应所造成的电位差能将小空隙击穿,而产生电火花,每隔≤30m做好接地。

由于雷电对架空线或金属管道的作用,雷电波可能沿着这些管线侵入屋内,危及人身安全或损坏设备。因此,做好进线端的防雷保护,做好均压环及防侧击雷是防雷电波侵入的主要措施。 一、二类防雷建筑低压进线全线采用直埋地引入,将线路架空引入户内时不少于15m的一段应换电缆(金属铠装电缆直埋地,护套电缆穿钢管)进户,并在架空与电缆换接处做好避雷保护。二类防雷建筑当架空线直接引入时,除在入户处加装避雷器,并将进户装置铁件做好接地外,靠近建筑物的两根电杆上的铁件也应做好接地,且冲击接地电阻≤30Ω,所有弱电进线的保护应同强电进线。防雷建筑要做好均压环及防侧击雷保护。均压环从三层开始,环间垂直距离≤12m,所有引下线、建筑物的金属结构和金属设备均与环可靠连接,均压环可利用结构圈梁内的钢筋(钢筋必须贯通成环路)。一类防雷建筑30m以上,二类防雷建筑45m以上,三类防雷建筑60m以上,要做好防侧击雷保护,沿建筑物外墙做一周水平避雷带,带与带间垂直距离≤6m,外墙上所有金属栏杆,门窗均与避雷带可靠连接,避雷带再与引下线可靠连接。竖直敷设的金属管道及金属物的顶端和底端与防雷装置可靠连接,目的是在于等电位,并且由于两端连接使其与引下线形成并联线路,使雷电流更讯速的入地。

3防雷电流经引下线和接地装置时产生高电位对金属设备或电气线路反击的措施

建筑防雷论文篇(9)

1施工图类型

施工图由不同部分组成,其中建筑施工图、结构施工图以及设备施工图三种。

1.1建筑平面施工图

建筑平面施工图即针对施工过程中建筑的内部外部造型、固定设施以及房屋各部分的施工进行平面规划以及设计的一种图纸类型。目前,平面施工图已经成为了房屋建筑施工过程中应用的一种主要图纸类型。

1.2结构施工图

在房屋建筑过程中,对房屋结构的设计属于非常重要的一部分内容,合理的结构设计能够使房屋的稳定性得到提高,对于房屋建筑整体效果也能够产生重要的影响。在建筑施工过程中,提高结构施工图的合理性十分重要。

1.3设备施工图

房屋中的设备多种多样,其中取暖设备、通风设备均属于非常重要的设备类型。在房屋建筑具体施工过程中,针对上述设备的安装位置以及安装高度等进行设计的图纸,便称为设备施工图。

2建筑施工图在防雷设计中的应用

受雷击影响,建筑的结构很容易受到破坏,严重时甚至会对居民的生命以及财产安全造成不良影响,因此,在建筑施工过程中,往往需要做好防雷设计工作。在防雷设计过程中,建筑施工平面图以及结构施工图均可以被应用,具体应用手段如下:

2.1建筑施工平面图在防雷设计中的应用

建筑施工平面图主要包括各部分平面图以及总平面图两种。

首先,为使防雷设计工作的合理性能够得到保证,首先必须针对目标建筑物长、宽、高等方面的尺寸进行测量,在获取上述几方面准确数值的基础上,才能真正展开设计工作。建筑平面图能够很好的反应建筑在长、宽、高等方面的尺寸,因此可以将其应用到防雷设计过程中,以为设计过程的顺利开展提供保证。

其次,防雷设计工作的完成还需要参考建筑总平面图来实现,在对单个建筑进行防雷设计时,其设计效果往往会受到建筑周围环境的影响,因此,为提高防雷设计效果,仅仅以目标建筑本身的平面设计图为参考存在片面性,必须做好总片面图的设计工作,将小区以及目标建筑周围建筑群的整体情况反映到图纸当中,这样才能使避雷针的安装高度以及安装位置的安排更加合理。

2.2结构施工图在防雷设计中的应用

建筑配筋图是结构施工图中的主要部分,在防雷设计过程中,需要将建筑的钢筋配置情况考虑在内,如有可能,需要将建筑物内的主筋作为防雷装置的一部分进行应用,这对于防雷水平的提高能够起到较大的促进作用。

具体而言,施工过程中可以将建筑物基础内的钢筋焊接成为一个地网,利用这一手段进行防雷设计的意义在于能够使施工材料得到节约,进而在保证防雷效果的基础上,使施工成本得到控制。对结构施工图的设计能够提高地网的建设水平以及合理性,同时,将结构设计图与建筑平面图互相配合,还能够使地网的位置得到确定。

3提高设计合理性的措施

提高防雷设计的合理性能够使建筑物的防雷水平得到提高,文章本部分主要从尺寸问题、单位问题以及字体问题三个角度出发对这一问题进行了分析。

3.1尺寸问题

做好尺寸的标准是建设施工图设计过程中的一个主要部分,在防雷设计过程中同样标注好各部分的尺寸。总的来说,防雷设计中尺寸标注的要点主要包括尺寸线、尺寸界限、尺寸起止符以及尺寸数值三种,为提高避雷针安装的合理性,必须将上述四方面要素完整的体现在设计图纸中。在上述过程中需要注意的是,图纸中上述数值的标准均不需要将单位体现出来。

3.2单位问题

防雷图纸的设计需要按照GB/T50104,2001标准为主来完成,为使防雷设计精确度得到提高,需要将单位确定为mm,但在图纸设计过程中,一般不应将尺寸的单位体现在内。除此之外,等高线也是图纸设计过程中的重点,对等等高线进行绘制的目的在于体现目标建筑物与小区各部分建筑物之间的高低关系,考虑建筑物高度的实际情况,可以将等高线的单位设置为m。对建筑物立面图的设计也属于防雷设计过程中的一个主要部分,其中,房屋窗子等的高度单位同样需要设置为m。

3.3字体问题

为提高图纸的清晰度,在设计过程中必须对字体问题进行控制。保证字迹的整齐能够使图纸的设计内容一目了然,对于避雷针安装过程的顺利完成具有重要作用。通常情况下,图纸中不应添加字迹,如必须添加字迹以对某些问题进行解释,坚持不压线的原则十分重要。若存在特殊情况,即需要添加的字数较多,则可以将图纸中的线擦去,继而实现对字迹的添加。

4结论

将建筑施工图纸应用到防雷设计中对于防雷效果的改善能够起到积极的促进作用。受种种因素影响,防雷设计手段各不相同,建筑施工平面图以及结构施工图在防雷设计中的应用均具有不同的表现形式,在具体设计过程中需要对此加以重视。除此之外,为进一步提高设计效果,还必须保证尺寸等方面数据的合理性,这一点十分重要。

参考文献:

[1]和丽霞.谈建筑图纸在防雷设计中的应用[J].科技资讯,2010(10):65.

建筑防雷论文篇(10)

中图分类号:C29文献标识码:A 文章编号:

Abstract: in the guarantee of the construction enterprises of building lightningproof grounding construction quality this premise below, improve the economic efficiency of enterprises has become the housing construction enterprise, the most fundamental purpose of their own management, this paper, the author to building lightningproof grounding construction erroneous zone and its control are analyzed and discussed.

Keywords: building enterprise; Buildings; Lightningproof grounding construction; Construction erroneous zone; Control; The measure; analysis

房屋建筑企业生命就是效益和质量,在整个市场经济浪潮里面,要求房屋建筑企业必须要从过去单纯的对生产速度和规模追求转变成为提升企业自身经济效益以及保持企业自身可持续性发展作为根本的出发点,然而,提升房屋建筑企业的经济效益,更加重要的就是要加强房屋建筑企业的施工管理,将房屋建筑企业的防雷接地施工误区出现概率大大降低,建筑企业建筑物防雷接地施工的管理工作必须要运用一种科学管理的方式方法,建立起一个健全的目标施工工作,还要建立起一系列的包括建筑企业防雷接地施工控制、考核以及分析在内的制度,用以进行实际施工的评价,根据不同管理的项目和内容,运用不用种类的方式方法,来进行房屋建筑企业目标施工管理的工作。下面,笔者就对建筑物防雷接地施工误区及其控制进行讨论。

一、提升建筑物防雷接地施工设备使用效率

在建筑企业进行防雷接地的施工过程里面,大量需要机械设备来对生产进行辅助,在这些设备里面,有一部分设备必须要从外部的市场里面进行租用,在企业租用设备的时候,我们必须要考虑房屋建筑企业机械设备技术的性能,考虑其是否能够为房屋建筑企业带来一定的效益,对承租的价格进行合理的分析,并且和出租人员签订一个合同,对于企业需要长期使用机械,我们必须要多找几家机械出租的单位,俗话说,货比三家,我们要承租那些对房屋建筑企业最为有利价格的机械,对于自有的机械更加要充分的使用,合理的进行任务的安排,配备一名合格操作的人员,健全和建立设备的保养、维护以及使用的规章和制度,对操作人员必须要进行一定的教育,使其能够对机械设备进行爱护,这样也就能够将机械设备使用的寿命进行提高,最终将建筑物防雷接地施工的误区很好的避免,对其质量进行严格的控制。

二、加强建筑物防雷接地现场管理和材料收发

建筑施工企业材料很多都是进行露天堆放的,在建筑企业的材料仓库地址选择的时候,我们必须要注意所选择的地址必须要有利于施工材料的存放和进出,房屋建筑企业施工材料在进场的时候必须要对其进行认真的检验和计量,要求我们必须要做好相对应的检验和验收的标识,对材料使用的制度进行严格的实施,建筑企业的材料管理人员应该要对建筑企业材料使用的情况进行一定的监督,真正做到场清、料净以及工完,在建筑物防雷接地施工的过程中要求企业的施工人员必须要及时的对材料消耗情况进行掌握,要根据这一个月某一个项目的材料消耗和实际价格计算出这一个月的消耗,将其计入到工程的施工里面,在发现问题以后,要求施工人员必须要及时的进行反馈,最终保证生产的目标能够实现。

三、建筑物防雷接地施工必须要遵循目标管理原则

在我们进行建筑物防雷接地施工的过程中,也就是房屋建筑企业提出施工的项目管理原则的时候,我们必须要使得目标分解的十分得当,决策也十分科学,实施过程中要坚持一定的方法,我们要对先进管理的制度进行利用,采用一个网络规划时间优化的方法,还要加强建筑企业防雷基地工程项目施工的管理,科学、合理的进行建筑企业防雷接地施工进度的计划,这样能够很好的将建筑物防雷接地施工质量进行很好的保证,这样能够对建筑企业防雷接地工程的质量以及安全施工进行确保,最终将建筑企业的工程施工大大降低,只有这样,我们才能够做好建筑物防雷接地施工误区的控制工作。

结语:总而言之,在建筑企业中,我们想要实现自身的目标,就要求建筑企业必须要遵循建筑物防雷接地施工管理相关的要求,运用一种科学、全面的管理方式方法,做好一系列建筑企业业务技术的工作,建筑企业的发展和生存,最为根本的措施就是要在竞争的过程中获得更多更好的工程施工的项目,并且要通过对这些项目进行管理、实施以及组织,带来一定可观的社会效益和经济效益,本文中,笔者就对建筑物防雷接地施工误区及其控制进行了分析和探讨。

参考文献:

[1] 张东福,游火龙,黄发明,余春华,幸卫斌,王珊珊. 建筑物防雷施工常见问题的分析与解决[J]. 黑龙江科技信息, 2009,(11).

[2] 李益民,刘啸峰. 变电站电缆沟基建施工新工艺[A]. 第十六届(2008年)华东六省一市电机(电力)工程学会输配电技术研讨会论文集[C], 2008.

[3] 李霞,魏建苏,朱贵刚,肖稳安,王潇宇. 苏州地区雷电分布规律及对农村安全的影响[A]. 粮食安全与现代农业气象业务发展――2008年全国农业气象学术年会论文集[C], 2008.

[4] 张晓东. Experimental and Mechanism Research on Biomass Gasification and Catalytic Tar Cracking[D]. 浙江大学, 2003.

上一篇: 美术艺术欣赏论文 下一篇: 用工管理论文
相关精选
相关期刊