2桥梁架构坚固性设计出现的情况
2.1安全意识和坚固性的缺失。一般情况下,设计人员在设计桥梁时,大多考虑的都是经济方面的利益,而往往忽视相应安全性和坚固性的考量,从而降低桥梁整体性能。设计人员在制定具体的方案之后,碍于安全性和坚固性等的缺失,继而会引发一系列的操作施工缺陷,例如混凝土的开裂、腐蚀和损坏等,钢筋也会出现锈化和断裂的情况,这些情况的出现会使得整个工程的使用期限大大缩短[2]。2.2桥梁架构解决措施的不科学。从市政道路桥梁的策划方来看,安全性和坚固性的缺失不仅是由于设计人员的相关意识的淡薄,更在于相应的方案和策划不科学。大多的设计人员在进行具体的设计时,只是单纯的注重规范性质的需求,然而在市政道路桥梁的设计架构、材料等方面通常出现的都是人为的部分失误,并且这些很难引起相关设计人员的重视,因而使得设计的解决措施不科学。此外,在市政道路桥梁的策划中,大多设计人员只关注科学理论的应用,而且所考虑问题的角度都比较片面,也没有具体的考虑相应的实际情况。最后,部分设计人员会由于缺少一定的实践经验,而不能健全设计举措。这些的因素累积,会造成市政道路桥梁设计举措的不科学,最终危害桥梁的安全性和坚固性[3]。
3桥梁架构坚固性的优化处理
3.1科学选择科学的道路桥梁设计方案。作为工程操作决断的重要步骤,制定科学的设计方案的作用巨大,因此建设业主需综合考虑,经过对照分析,寻求最恰当的设计方案。在制定设计方案时,应根据项目所在地的实际勘察情况,通过对具体参数的分析和相关具体要求,并经过一定的对照分析,随之选择最合理的设计方案。工程建设的经济性,同样也是道路桥梁设计方案中必须要考虑的内容,通常最完美的方案却不一定是最好的方案,最完美的方案要求的资金输入必定高于其他的方案。建设业主应以实际情况全面考虑和分析,从而选择出既能最大化的满足各种需求又能达到节约资金目的的方案。所以,道路桥梁设计人员在进行工程设计过程中,既要把当时的实际情况、科学技术状态等现状考虑在内,也要注意结合国际的尖端理念。经过立足当前,畅想未来,抛去传统过时方案的不利束缚,进而必能设计出不仅契合工程标准还能满足现实需求的合理化工程方案。3.2桥梁整体架构的设计。3.2.1上部架构的精细部位设计。上部架构作为全桥的主要承接部分,通常在设计中需根据整体和局部充分分析,对其关注度很高,但从理论层面上来看皆能符合相应标准。然而在具体的操作中,主梁主体内存水的情况却经常发生,严重的还有积水漫灌箱体的情况,这极大地破坏了主梁的预应力筋和普通钢筋,造成了主梁的安全坚固性降低。分析其原因,主要是由于主梁细节设计的不尽合理,主梁的相关基础设施不够完善等,由于桥面积水长时间的累积,继而渗入孔隙进入到箱体中,最终箱体不断累积形成积水[4]。同样,伸缩缝也是桥面的重要组成部分,它与桥梁的伸缩性、舒展性等密切相关。主梁伸缩性的不够周详,一般会出现类型选择不适,引发梁端或是在最高温度时因挤压而破坏,也或者在最低温度时,拉坏梁体架构。伸缩缝的功能在于不仅能保证纵向性的伸缩,而且也注重了防水的设计和考量。在大多数的设计方案中,通常采用的是直线型的伸缩缝,这样做虽然使得设计比较方便,但也在桥梁的两端护栏区域形成了主要的漏水场所。所以,建议选择横向型的两端有翘头的伸缩缝,这样能有效避免桥面积水渗入到排水盲区当中。3.2.2下部架构的精细化处理。上部架构设定的伸缩缝,使得桥面水经常性地通过伸缩缝通道渗入到分联墩盖梁分联墩区域,特别是使用除冰盐的区域,其承受着腐蚀性物质的侵蚀。所以,分联墩盖梁顶面应设置为有助于排水的结构,而且要在盖梁保护区域厚度方面着重考虑防侵蚀的需求。此外,考虑到对墩身和墩基的保护,在设计中可以设置滴水槽加以防护。桩顶桥梁桩基的安全性是决定桥梁全局安全的重要因素。桩基顶部和承台或是墩身相接,受制于截面突变的缘故,从属于应力集中的区域。通常情况下,桥梁桩顶设置于接地线的附近,受制于地面自然情况的束缚,经常会处于干湿交织和腐蚀性的环境之中,对桩基等部位的钢筋结构会造成极其不利的后果。所以,在对桩基特别是桩顶的操作中要依据桩顶处的水位状况、土质形态等科学分析环境类别,选取相应合适的设计方案,最终确保一定的标准[5]。3.3培养和提升设计人员的技术化水准。桥梁设计不仅关系着广大人民的生命财产安全,也直接关系着当地经济的快速发展,所以务必要充分全面的,提升桥梁设计人员的综合素质和业务水平。另外,设计人员也要养成超强的责任意识,自觉提升自身的专业化水平,积极学习和探讨相关内容,不断更新和健全自己的知识架构,增加自己的知识储备,适应创新的设计理念,以与时俱进。放眼未来、求真务实、谨小慎微等原则打造处一套具备长远发展能力的桥梁设计方案,另外要确保维护道路桥梁基础作用的施展。
4结语
当前桥梁建设所面临的主要问题,是桥梁的安全性和坚固性等的不足和缺失,由于在实际的操作中,影响桥梁架构坚固性的内外因素很多,所以在具体的工程操作中,要不断总结经验和教训,借鉴其他先进的设计理念和具体方案。作为设计一线的设计人员应认真综合之前的设计理念,并结合当地的具体实际情况,认真实践总结经验,制定科学、合理的桥梁设计方案。
作者:周运琥 杜继辉 单位:吉安市公路勘察设计院
参考文献:
[1]甄玉军,张艳丽.国内桥梁设计存在的主要问题[J].中国新技术新产品,2010(1):75-76.
[2]胡建强.桥梁设计施工常见缺陷[J].交通世界(建养机械),2015(1):135.
桥梁美学设计。美学是人们对于美和丑的认识,虽然不同人拥有不同的看法,但是美学还是有其一般性的规律。在桥梁美学设计当中,首先介绍了东西方美学的哲学基础,提出了桥梁美学的五个基本原则———“多样与统一”“、比例与匀称”“、平衡和和谐”以及“韵律与协调”。并针对桥梁,提出了概念设计中的美学考虑和处理方法。最后,介绍了桥梁美学设计的实例。
设计构思和总体布置。设计构思和总体布置是《桥梁概念设计》中最为关键的环节,是生成概念方案所必须有的过程。设计构思主要是分析桥位处的自然条件、技术条件、人文条件、社会条件,进而对桥梁总体设计进行设计。①自然条件。自然条件主要包括河势、水文、气象气候、地形地貌、地质水质和地震这七个方面。在概念设计阶段,这些资料的应用一般有两个方面:一方面,在理解消化这些资料的基础上,抓住核心要素和控制条件,形成构思和布局的雏形;另一方面,用于总体和关键构件的宏观、控制性的计算和分析,来验证和调整先前的构思和布置。②技术条件。经过近200年的发展,桥梁的上部结构和下部结构已发展形成了一些较为成熟的形式,在当今技术条件下,这些不同类型的上部结构和下部基础都有着各自的适用范围,在桥梁概念设计的初始阶段,我们应当尽可能地根据桥梁所处的自然条件,选择最为合适的上部结构和下部基础。③人文条件。人文条件主要是指桥梁所处地区的历史文化背景和该区域的桥梁使用者对于美的诉求。桥梁作为一种永久建筑物,除了跨越功能之外,其景观功能也是其功能的一个重要方面,在某些情况下,尤其是城市桥梁当中,桥梁的景观功能可能是其最为重要的一个方面。只有在这些准备工作做好之后,才能够根据“变化与统一”、“比例与匀称”、“平衡与和谐”,“韵律与协调”这些基本的美学基本原则,设计出满足人们人文诉求和美学要求的美的桥梁。④社会条件。社会条件主要是指桥梁的使用功能、桥梁的经济性。使用功能包括交通功能、航运功能。交通功能方面,对于公路桥梁、铁路桥梁和城市桥梁,其荷载标准和建筑界限不同;不同的航道等级和通航标准对应的通航净空也不相同。经济性方面,不同的桥型、总体布置、基础方案和施工方案对于桥梁的经济性能均有影响。
4.结构安全验证。在结构安全验证中,介绍了桥梁的荷载,讲解了结构分析的一般方法和结构的强度、刚度、稳定性、动力特性的验算,然后介绍了桥梁耐久性设计的一般原则和耐久性验算的方法。5.工程案例分析。通过分析《桥梁概念设计》的工程实例,来完整的介绍桥梁概念设计的流程,以及各个步骤当中应当注意的问题,使学生在掌握全局的同时不忽略细节。
概念设计教学特色
同济大学桥梁系在国内土木工程专业首先开展了概念设计的课程,作为桥梁工程教学改革的一部分,这门课程尝试了一些新的教学方法。具有以下几个方面的特点。
1.强调桥梁创新和美学设计。通过概论,首先强调《桥梁概念设计》中创新的重要性,从总体布局、结构体系和局部构造三个层次引入创新理念。并分别配以工程实例,深入浅出,强化了创新和美学设计在桥梁设计中的重要性,引导学生在创新和美学方面进行思考。如在讲解从总体布局的角度创新桥梁设计时,列举了某高新区中央岛的桥梁概念设计。由于该区域是交通道路上的重要视觉节点,连岛的两座桥梁需要表现出磅礴的气势和很好的视觉冲击力,常规桥梁无法表现这一特征。虽然可以通过大跨度悬索桥、斜拉桥凸显气势,但是桥位处没有大跨度斜拉桥的要求,同时,大跨度桥梁经济上也不合理。通过总体布局的创新,采用建筑学上借势造景的技法,将一座常规大跨度桥梁一分为二,分别放在南北两个河道处,中间道路形成虚拟的桥梁中跨,远处观看,如同一座十分宏伟的大跨度悬索桥,既凸显了气势,又满足了经济合理的要求。
2.注重讲解概念性的原理。传统的桥梁工程注重从力学计算方面推导出一些公式,通过公式里的参数分析来讲解桥梁工程中的基本力学原理。在《桥梁概念设计》的教学当中,复杂的力学计算不是重点,因为其与概念设计注重概念的理念背道而驰。相反,概念性的原理才是重中之重,一方面,概念性的原理便于理解性记忆;另一方面,如果概念设计不合理,将直接导致后续力学计算结果出现问题,进而需要返工或者通过额外措施解决出现的问题。例如,在讲解桥梁结构体系对于桥梁受力性能的影响时,列举了作者设计的昆山玉峰大桥的外部约束、内部链接和刚度分配处理方法的例子。%%昆山某区域需建立一座城市桥梁,通过概念分析,拟建立一座斜靠拱桥。由于该区域为软土地基,无法承担水平推力。因此,主拱圈采用无水平推力的系杆拱(外部连接),主拱圈承担主要的恒载,主拱圈斜靠拱共同承担活载(刚度分配),进而解决了软土地基的问题。在讲解主拱圈和主梁之间的内部连接方式时,同样也采用了重视概念、简化计算的教学思路。由于主梁为双边箱钢箱梁主梁,在纵横梁上搭设混凝土预制桥面板,桥面板之间通过现浇段和横纵梁上的剪力钉连接,因此在拱梁交接处存在着负弯矩区段,会导致桥面板开裂。为了解决这个问题,主拱圈和主梁之间采用铰接的连接方式,释放了负弯矩;同时,等主梁支架拆除后再浇筑现浇段,通过让混凝土桥面板和钢主梁在不同的阶段参与受力,也减小了拱梁连接处的桥面板拉应力,防止了桥面板开裂。由于一般的系杆拱桥主梁为混凝土箱梁,可以张拉预应力,因此拱梁交接处主梁拉应力不是设计的关键因素,但是在玉峰桥中,在混凝土桥面板中张拉预应力较为困难,因此采用了释放拱梁之间弯矩的铰接的连接方式。
3.教学结合工程实际。以上两个例子,只是《桥梁概念设计》课程教学当中所举的众多例子的一个缩影。为了改变传统桥梁工程教学时,学生只知其然,不知其所以然的状况,在《桥梁概念设计》教学中加入了众多的工程实例,讲解出原因,让学生加深理解,加深印象。例如,在介绍悬索桥抗风问题时,列举了著名的“塔科马大桥风毁”事故,并从悬索桥的计算理论发展的角度,解释了塔科马大桥发生风毁的背景。在线弹性理论当中,不考虑结构变形对于平衡的影响,因此主梁高度很大;随着挠度理论的诞生,人们发现主梁的刚度对于悬索桥的整体刚度贡献不大,最终,从曼哈顿桥到金门大桥,悬索桥主梁高度越来越小。到塔科马大桥时,主梁高跨比只有1/350,主梁形式为抗扭性能差的双边主梁开口断面,最终导致主梁发生风致颤振破坏。这种结合工程事故发生的理论发展背景的讲解思路,让学生的理解更为深入。
4.整合知识体系。通过一个完整的桥梁概念设计流程,学生明白了本科所学课程在桥梁概念设计中的作用以及各个课程之间的关系,进而达到了整合学生的知识体系的目的;同时,概念设计当中历史文化、美学诉求方面的人文内涵需要学生提高综合素质,耐久性、环保以及全寿命设计思想要求学生进一步学习相关知识,从这个角度来说,概念设计也起到了引导学生学习方向的目的。
5.注重学习与实践相结合。让学生更深入地理解《桥梁概念设计》,最好的方式是让学生参与到真实的桥梁概念设计当中。在教师指导下,学生参加桥梁方案竞赛是一个很好的方式。从同济大学桥梁系开设《桥梁概念设计》课程以来,历届学生分别参加了广东省虎门二桥、北京长安街西延永定河桥、北京通州运河区北运河桥和通惠河桥的国际方案竞赛。在参与竞赛的过程中,学生对桥梁概念设计的流程有了更深入地理解,同时也增强了实践能力。下面介绍了长安街西延永定河桥梁的概念设计。桥位位于首钢工业改造区,该区域规划功能定位为北京西部综合服务中心和后工业文化创业产业区。桥位北部为被誉为“燕都第一仙山”的石景山,西岸为门头沟滨水商务区,功能以商业服务,文化娱乐为主。
大桥跨越永定河莲石湖,该湖注水后,形成湖滨绿色生态走廊。概念设计当中,石景山、永定河和首钢是不可或缺的三个元素,桥梁应当与这三个元素相互融合,构建出“一山、一水、一桥,一部钢铁史”的和谐篇章。①跨径布置。桥位处控制桥梁跨径的主要因素有:路线与河道及两侧道路斜交53度;东侧跨越丰沙铁路和东滨河路(红线宽度40米);西侧跨越河堤路(红线宽度30米);河堤处不能设置桥墩。因此,采用东侧一跨跨越丰沙铁路、东滨河路和东河堤,西侧采用一跨跨越西河堤及西河堤路,最小跨径均为120米。河道中桥墩设置不受通航影响,但需要考虑排洪的作用,桥位处上下游桥梁跨径均为40米左右。②桥型选择。
桥型选择考虑结构的外形与周边环境相符,控制结构的高度,是的结构与石景山和山下的首钢厂区高度协调,不遮挡永定河自南向北的视觉走廊。根据跨径布置,梁桥、拱桥、斜拉桥、悬索桥都是可行的。③横断面布置。桥位处道路规划红线宽度为80米,若采用单层桥面布置,桥面宽度约为60米;若采用双幅桥面布置,桥型选择限制较多,如采用横向四片拱肋的拱桥,景观效果不佳;如采用双层桥边,可以使桥宽变为30米左右,同时具有许多优点。非机动车道、人行道和车行道分离,为互通立交的实现提供了很好的条件;双层桥面的下层人行道、非机动车道可以与东滨河路实现平交,方便了行人。④概念生成图3创新总体布局的悬索桥效果
(a)效果图
(b)结构简图
图4玉峰桥与选择。梁桥、拱桥、斜拉桥、悬索桥都是可选桥型,根据上述分析,概念生成了十四个比选方案。从安全适用、结构布置的合理性与经济性、与环境的协调和美观、可设计性和可施工性、耐久环保五个方面进行综合比选打分,最终概念选择了五跨连续桁架拱桥方案、斜拉桥和梁桥组合方案、斜拉桥和拱桥组合方案,进行下一步的设计。以下为三个方案———锦绣河山(五跨连续桁架拱桥方案)、日月同辉(斜拉桥和梁桥组合方案)、龙凤呈祥(斜拉桥和拱桥组合方案)的效果图。⑤概念设计。下面简略介绍锦绣河山方案极其概念设计。
美学处理方面,五跨连续桁架拱桥方案主梁和拱肋均采用钢桁架形式,厚实的金属质感让人们感受到首钢改造区曾经辉煌的钢铁文化。桥面以上主拱圈的高度近似按照黄金分割比设计,犹如连绵起伏的山峦,突出了锦绣河山的主题。桥头堡外形也同样进行了美学优化,参照石景山上宝塔的形象进行了处理。主桥为采用双层桥面的梁拱组合体系,各跨拱脚均采用固定铰支座约束。主梁宽度为32.6m,高度为6.5m。上下桥面每隔6m设置一道横梁,梁高1.5m。采用正交异性钢桥面板,主梁上吊杆间距为6m。除拱肋的风撑与弦杆,腹杆与弦杆采用高强螺栓连接外,其他钢构件采用焊接连接。基础采用钻孔灌注桩。
永定河大桥概念设计是国际方案竞赛,有六家国际知名设计单位的十八个方案参加竞争,最终有六个方案入围。作者指导学生所完成的三个方案均得以入选。部分竞争者的方案因采用大跨、奇异的造型来标新立异而被淘汰,而学生们所完成的方案思路清晰、考虑的因素较为全面,创新性、经济性均较好,设计方案外形也比较优美,因此得以入围。在前面提到的另外两个国际比赛中,学生们的方案也获得了第二和第一名。参加比赛既提高了学生的学习积极性,也达到了《桥梁概念设计》的教学目的。
学生反应
设计方案
一方面不设置钢轨伸缩调节器,对桥梁固定支座位置进行优化,尽量减小桥梁温度跨度,以减小钢轨伸缩附加力;另一方面同时优化钢轨伸缩调节器数量和桥梁固定支座布置,释放钢轨伸缩附加力峰值,并减少钢轨伸缩调节器数量。本文选取以下两种方案进行对比分析,各方案的结构设计图。方案一:通过调整固定支座位置,尽量减小桥梁的最大温度跨度,并使各温度跨度分布较为均匀。调整后固定支座位于各连续梁中间桥墩处,最大温度跨度为416m,各温度跨度分别为312m+6×416m+240m。连续梁边跨采用小阻力扣件,全桥不设钢轨伸缩调节器。方案二:该方案同时优化钢轨伸缩调节器数量和桥梁固定支座位置,优化后连续梁固定支座设置在边跨,最大温度跨度为736m,各温度跨度分别为72m+536m+96m+736m+96m+736m+96m+736m+80m。连续梁边跨采用小阻力扣件,全桥每线各设置4组单向钢轨伸缩调节器。调节器设于各长大温度跨度(1个536m、3个736m)梁端处,以释放梁端钢轨温度力及钢轨附加力峰值。
计算结果及分析
一、前言
在大跨径桥型方案比选中,连续梁桥型仍具有很强的竞争力。连续梁桥型在结构体系上通常可分为连续梁桥、连续刚构桥和刚构一连续组合梁桥。后者是前两者的结合,通常是在一联连续梁的中部一孔或数孔采用墩梁固结的刚构,边部数孔解除墩梁团结代之以设置支座的连续结构。在结构上又可分为在主跨跨中设铰、其余各跨梁连续和全联不设铰的组合梁桥两种形式,通常称后者为刚构一连续组合梁。在我国已建成的该桥型的比较典型的例子有东明黄河大侨,跨径比之更大的该类型桥现已初见尝试。
二、刚构一连续组合梁桥的结构受力特点及应用
1结构特征及受力特点
在连续梁桥中,将墩身与主梁团结而成为连续刚构桥。由于墩身与主梁形成刚架承受上部结构的荷载,一方面主梁受力合理,另一方面墩身在结构上充分发挥了潜能,因此该桥型在我国得到迅速的应用和发展[2]。具有一个主孔的单孔跨径已达270m,具有多个主孔的单孔跨径也达250m,最大联长达1060m。随着新材料的开发和应用、设计和施工技术的进步,具有一个主孔的单孔跨径有望突破300m的潜力。而对于多跨一联的连续刚构是不是也能在联长上有更大的发展呢?众所周知,墩身内力与其顺桥向抗推刚度和距主梁顺桥向水平位移变形零点的距离密切相关。抗推刚度小的薄壁式墩身能有效地降低其内力,但随着联长的加大,墩身距主梁顺桥向水平位移变形零点的距离亦将加大,在温度、混凝土收缩徐变等荷载的作用了,墩顶与主梁一道产生很大的顺桥向水平和转角位移,墩身剪力和弯矩将迅速增大,同时产生不可忽视的附加弯矩,致使刚构方案无法成立。在结构上将墩身与主梁的团结约束予以解除而代之以顺桥向水平和转角位移自由的支座,这样就变成刚构一连续组合梁的结构形式。于是边主墩墩身强度问题得以解决,且在一定条件下联长可相对延长。可见,刚构一连续组合梁是连续梁和连续刚构的组合,它兼顾了两者的优点而扬弃各自的缺点,在结构受力、使用功能和适应环境等方面均具有一定的优越性。
2.在我国的应用情况
东明黄河大桥开创了刚构一连续组合梁桥在我国应用的先例。
由于放松了多跨连续刚构桥对边主墩高度的要求,因此刚构一连续组合梁桥适用于不同的地形、地质条件、通航要求等。下面将介绍的武汉军山长江公路大桥初步设计刚构一连续组合梁桥方案就是一个典型的设计实例。目前国内在建的典型的大跨径刚构一连续组合梁有杭州饶城公路东段钱江六桥,其技术设计阶段主桥为127+3X232+127=950m的五跨预应力混凝土刚构一连续组合梁体系,中、边主墩均为双壁墩,中主墩墩身与主梁固接,边主墩墩身与主梁分离,分别设置4个65000kN的支应与主梁连接,悬臂施工中墩梁通过预应力粗钢筋临时固接。受地形影响解除边主墩墩身与主梁固结的刚构一连续组合梁桥还有黑河大桥,该桥布跨为6016+6×100+60=720m,墩身为单箱墩,最外边墩设支座。
刚构一连续组合梁桥还适合于某些特殊布跨情形。如厦门海沧大桥西航道桥,布跨为70+140十70十42+42(m),其中两孔42m跨锚碇,避免了设两孔连续或简支梁,并减少了伸缩缝。像这样将边墩设支座的小边跨与连续刚构主体相连而成为非典型的刚构一连续组合梁桥的桥还有很多。
三、设计实例
武汉军山长江公路大桥初步设计作了斜拉桥和连续刚构两个方案同等深度的经济技术比较。其中连续刚构方案最初的跨径布置为138+24O+240+240+138(m),三个主跨的四个主墩均为双薄壁墩,墩身与主梁固结。设计中发现两个边主墩由于高度较矮,受力很不合理,因此,将其与主梁的固结约束予以解除,桥型变为刚构一连续组合梁的结构形式(后出于总体布跨考虑,将跨径布置调整为138+240+240+240+138+56(m))。现以布跨138+240+240+240+138(m)的大跨径刚构一连续组合梁桥的设计为例对其结构设计加以介绍和探讨。其结构设计简介如下:
1.结构体系
桥梁分左右两幅,采用138+240+240+240+138(m)五跨一联三向预应力混凝土刚构一续梁组合梁桥型方案,双壁墩结构,中主墩墩身与主梁固结,边主墩及边墩墩顶设支座。边主跨比L边:L主=0.575:1,纵坡3%,纵曲线要素为T=5l0m,R=17000m,E=7.65m。横坡2%,由箱梁顶板坡度形成。桥面铺装为6cm钢纤维混凝土垫平层加6cm沥青混凝土。
2.下部构造
主墩墩身为普通钢筋混凝土结构,采用50号混凝土,双壁墩结构。P2,P5号墩为边主墩,墩高28m,左右幅每片墩墩顶各设两个吨位为60000kN的球形钢支座,墩身为矩形实心断面,断面尺寸320cmX800cm,顺桥向外缘距12m;P3,P4号为中主墩,墩高39.9m,墩身与主梁固结,墩身为矩形实心断面,断面尺寸280cmX750cm。,顺桥向外缘距12m。承台采用30号混凝土,均为整体式,厚5m。P2~P5两号墩桩基础采用25号水下混凝土,均为18根直径2.5m的钻孔桩,桩长分别为55m,35m,40m,37.5m,均按支承桩设计。下部构造平面布置.P3,P4及P5号墩基础拟采用双壁钢围堰方案施工,P2号墩拟采用钢管桩平台加钢套箱方案施工。为有效抵抗偶发的巨大船撞荷载,各主墩均设计为整体式基础和承台。防撞构造立足于墩身自身防撞,因此墩身按实心断面设计。
3上部构造
主梁为分离式单箱单室直腹板箱梁,采用50号混凝土。根部梁高h根=13.2m,h根:L主=1:18.18;跨中梁高h中=4.0m,h中:L主=l:60;箱梁底线变化曲线y=4.0+(9.2/114)×X。箱梁拟采用对称悬臂现浇施工工艺,施工梁段长度分为3m,4m,5m三种类型,0号块现浇段17m,合龙段3m。1/2标准跨的分块布置为:(l/2)x17m+10x3m+10x4m+8x5m+(1/2)x3.0m=120m。最大悬臂施工长112.5m,共28对施工块件,块件重量在140.8~234.5t之间。箱梁顶宽16.45m,底宽7.5m,翼缘板悬臂长4.475m(含承托),外侧厚15cm,根部厚50cm。0号块顶板厚45cm,其他位置顶板厚28cm。0号块腹板厚100cm。向跨中分70cm,60cm,40cm三个梯段变化。根部底板厚130cm。;跨中底板厚28cm,中间按y=0.28+(1.02/114)×x变化。箱梁仅在墩项及梁端设横隔板,墩顶横隔板位置及厚度与每片墩身相对应。为增强箱梁整体性,还在墩顶设置了箱外横隔板。
箱梁纵向预应力体系采用15-22,控制张拉力4296.6kN,横向预应力体系采用15-4,控制张拉力781.2KN。纵、横向预应力均采用φ15.24mm预应力超强、低松弛钢绞线,极限抗拉强度为1860MPa,计算弹性模量E=1.95x10''''MPa。竖向预应力体系采用φ32mm轴轧螺纹粗钢筋,控制张拉力542.8kN.箱梁典型断面纵向预应力钢束布置。
4.结构分析
(1)计算模式
顺桥向总体结构静力分析采用平面杆系综合程序进行。接施工阶段将结构分为328个单元325个节点,共63个施工阶段。由于地质条件相对较好,因此未按等刚度原理将桩基础进行模拟,即不计桩基础的影响,近似按承台底固结考虑。中主墩与主梁固结,边墩为单向交承,计算中计入了边主墩。
(2)计算荷载
汽车:半幅桥横向按布置4个车队数考虑,横向折减系数为0.67,纵向折减系数为0.97,偏载系数1.15。
挂车:按全桥布置一辆考虑,偏载系数1.15。
满布人群:3.5KN/平方米
二部恒载:7t/m。
温度:结构体系温差考虑升温20℃,降温20℃;梁体温差考虑了由于太阳辐射和其他影响引起上部结构顶层温度增加时产生的正温差及由于再辐射和其他影响,热量由桥面顶层散失时产生的负温差,参照BS5400荷载规范取用;箱内外温差为5℃;桥墩墩体考虑日照不均匀温度差:升温时,两片墩身的一侧比另一侧和中间高5℃,降温时,两片墩身的一侧和中间比另一侧高5℃。温度效应考虑两种组合:体系升温十正温差十升温时墩体温差,体系降温十反温差十降温时墩体温差。
静风荷载:施工风速按30年一遇,成桥风速按100年一遇计。横桥向风力按规范公式计算。
船撞力:横桥向18400kN,顺桥向9200kN。作用点位置按规范或专题确定。
(3施工方法及主要工况
拟采用悬臂浇注法施工。为确保施工阶段单T的顺桥向抗弯及根桥向抗扭稳定性,将P2、P5号墩墩顶与主梁临时固结,在次边跨合龙施工完成后予以解除,完成体系转换。主要工况为;①施工基础及墩身,悬臂浇筑至最大悬臂状态,形成单T;②满堂支架浇筑边跨现浇段,配重施工;③边跨合龙,现浇段支架拆除;④次边跨合龙;⑤中跨合龙,形成结构体系对施加二部恒载;⑦运营。
(4)计算参数及荷载组合
混凝土:徐变特征终级值2.3,弹性继效系数0.3,徐变速度系数0.021,收缩特征终级值0.00015,收缩增长速度系数0.021。
预应力:松弛率0.03,管道摩阻系数0.22,管道偏差系数0.001,一端锚具变形及钢束回缩值0.006m。
考虑五种组合:①恒十汽;②恒十汽十温度;③恒十挂;④恒十满人;⑤恒十汽十温度+船撞力。
(5)计算结果
主梁次边跨跨中汽车活载挠度为0.111m,中跨跨中为0.096m。
主梁应力:成桥状态混凝土应力最大约155kg/平方厘米,最小约26kg/平方厘米,组合①混凝土应力最大约17Ikg/平方厘米,最小约10kg/平方厘米,组合②混凝土应力最大约215kg/平方厘米,最小约一6kg/平方厘米。
五、几个问题的探讨
1.结构方案比较
在维持主跨规模不变的前提下,为寻求一个受力合理、结构安全、适用美观的方案,对结构形式及主墩厚度作了计算比较。比较的方案有138+3X240+138(m)连续刚构方案,墩厚2.5m;138+3x240+138(m)连续刚构方案,墩厚2.1m;138+3x240+138(m)刚构一连续组合梁方案,固接墩厚2.5m;138+3x240+138(m)刚构一连续组合梁方案,固接墩厚2.lm。经过计算分析得出如下结论:
(1)相同布跨和墩厚的两种方案,主梁的内力和位移相差较小,中主墩由于高度较大,且距顺桥向变形零点较近,内力相差也不大,而边主墩受力则相差悬殊。在连续刚构方案中,由于高度较矮,且距变形零点很远,因此,尽管在设计上采取了措施,在恒载、活载及温降组合工况下,墩身两端仍产生了很大的弯矩,而且靠外侧的墩身轴力难以提高,而在刚构一连续组合梁方案中,墩底弯矩是由支座最大静摩阻力决定的,因此相对较小,另外墩顶轴力通过配重措施可以得到很好的解决。
(2)墩身厚度的降低,迅速降低了墩身刚度,从而迅速减小了温度产生的墩身的荷载效应,对边主墩效果更为明显。但墩身厚度同时受截面应力状态和稳定性的限制,存在一个低限。
2边主墩合理型式的选择
对于规模较小的桥梁,最不利组合下的墩顶竖向力相对较小,支座数量少且容易布置,而且最大悬臂状态下的稳定性问题显得次要的情况,采用单柱式墩是合适的。但对于大跨径刚构一连续组合梁桥,从以下几方面的研究可见,采用双柱式墩是边主墩的合理型式。
(1)结构受力比较
设单柱式墩的截面尺寸为BX2H,双柱式墩为BXH,中心距2r,墩高相同。在其他条件相同的前提下,经计算,边主墩若采用单位式墩,与采用双柱式墩相比较:
主梁内力:中跨跨中的M,Q,N略有减小,边跨跨中和次边跨跨中的M,Q,N均略有增大;边主墩顶和中主墩顶的N,Q均略有增大,变化值不大,但M却增大很多,对边主墩顶:成桥状态增大81%,最不利组合增大45%,对中主墩顶:成桥状态增大1.3%,最不利组合增大6.l%;
中主墩墩身内力:N,Q略有增大,M成桥状态增大9%,最不利组合增大8%;
主梁挠度;次边跨跨中汽车荷载挠度增大36%,中跨跨中汽车荷载增大8%。
可见,边土墩采用双柱式可减小上部结构的计算跨径,降低箱梁截面内力和挠度。
(2)采用双柱式墩有利于施工阶段最大悬臂状态下的安全性
施工阶段,由于墩身与箱梁临时固结,因此,采用双柱式墩的顺桥向抗弯惯性矩为
而采用单柱式墩的顺桥向抗弯惯性矩为
对于本桥,前者为后者的5.92倍。
(3)能保证桥梁横向抗风的要求
施工期间,桥梁处于悬臂状态,其横向抗风稳定性尤为重要。此时墩顶与主梁固接,对于单柱式墩,当其受到横桥向扭矩后,柱身产生扭转角,从而产生抵抗扭矩,对于双柱式墩,桥墩的抗扭能力由两部分组成:一是两片柱身扭转产生的抵抗扭矩,二是由于柱身产生横桥向水平力Q,从而产生抵抗扭矩,其值为Q与2r的乘积,它是双柱式墩的主要抵抗扭矩。从数值上看,后者远大于前者,因此能保证大跨径桥梁横向抗风稳定性的要求。
(4)构造和美观要求
最不利组合下墩顶的竖向力决定了支座的数量,大尺寸的大吨位支座的布置及在施工期间墩身与主梁的临时固结构造决定了墩身的最小平面尺寸。对本桥而言,若采用单柱式墩,其墩身厚度在6m以上,显得过于厚重,与轻巧的中主墩不协调,在材料用量上与双柱式墩相差很少。
3边主墩支座力的平衡措施
由于边主墩距桥梁中心线较远,加上特定的合龙顺序和边中跨比,在不采取措施的前提下,两片边主墩墩身的竖向力会相差较大,这样一会导致支座吨位很大且规格相差悬殊;二来增加基础的工程量。为解决此问题,在边跨合龙前在外侧悬臂端施加配重能较好的解决。
本桥的设计措施是在边跨合龙前在外侧悬臂端施加90t的永久配重,其与不配重计算结果。
可见,配重对平衡边墩墩顶轴力的效果是明显的。
最大悬臂状态下顺桥向施工稳定性取决于该状态下的最大不平衡荷载,其由箱梁已浇筑梁段的自重偏差、挂篮等机具的安装偏差、正浇筑梁段的自重偏差、浇筑时的动力系数偏差、两端挂篮装拆和移位的不平衡和墩身两侧的风压不平衡等其中的几种相组合得出,其值往往达100t以上。因此,配重施工前采取的有效措施并在良好的施工环境下,配重施工时顺桥向的施工稳定性是可以得到保证的。
4计算模式的处理
中主墩墩身与主梁固结,两者相连接的部位可用综合程序系统的带刚臂杆件单元来处理,能比较准确而简单地模拟构件交汇点的刚域效应。对于边墩,其对结构总体受力影响很小,一般不计入总体结构计算中,而从中分离出来,其对结构的效应用该处的约束(单向支承)来代替。而对于边主墩,其对结构总体受力影响较大,宜计人总体结构计算模型中。为此,综合程序增设了两个特殊杆件元,来解决实际结构中非刚性中间节点的约束模拟问题。
在本桥计算中,将P2,P5号墩与主梁间的支座连接约束用两端铰接刚性杆(А∞,I0)来处理,使计算图式归为全部刚结的形式。
5其他方面
建筑工程中的盖梁,也有帽梁的说法,是一种用钢筋混凝土简支梁桥中的构件,主要受力是在下部结构,是梁板的支撑平台,一般情况下是设在墩柱顶部。如在墩柱顶盖梁上采用现浇施工,混凝土配合比与浇灌方法以及采用的支架很大程度上决定着施工质量。选择了正确的支架,能使操作人员能安全地进行各种施工作业,确保施工质量和安全,为施工过程中支架能抵抗混凝土自重和施工荷载,杜绝因支架变形发生模板漏浆、结构变形、混凝土开裂等的质量通病,避免了因模板支架引发的安全事故等提供有力保证。
1施工方案的讨论
目前,盖梁现浇施工的支架形式多种多样,但多数情况下所在施工过程用所采用的不外是自落地支架式、埋设托架式和抱箍挑架式等这几种施工方案。
1.1三种常见施工方案
自落地支架式施工方案即把钢管支柱立在盖梁下部的地面上,通过搭成满堂支架作辅助,从而在支架上设调托盘、方木及模板。而埋设托架式施工方案,待墩柱混凝土拆模并有一定的强度后,向预留孔中穿入钢锭一般采用钢棒,这样就可以在墩柱顶部预留水平孔,搭设纵梁、横梁、铺设模板都通过使用型钢两端悬臂部分。,在盖梁下的墩柱顶上套钢抱箍,拧紧抱箍连接螺栓,然后利用抱箍牛腿搭设支架纵梁、横梁、铺设模板,这就是所谓的抱箍挑架式施工方案。
1.2对施工方案的讨论
各种支架形式方案的选择,应考虑盖梁的高度以及现场施工条件,同时在工程造价较高的今天,还应考虑经济成本,尽量能就地取材以节约运输成本。为了适应墩柱施工方法,在柱顶安装自制的吊架,完成贝雷桁架的吊装工作的同时,盖梁的施工确定为在距柱顶2m处预埋工字钢牛腿。1号墩和8号墩又在半山坡上,桥址处在深沟内。加上征地范围较小,仅为桥面投影面积,所需支架数量大,杆件变形、地基变形难以掌握等这样是不合理的。由于关系到现浇盖梁的施工质量、操作安全和经济性,因此正确选择支架方案,实现施工最大优化,是在简支梁桥施工过程中的一项重要的任务。
在讨论选用桥盖梁施工具方案时,有明显的两个不利因素:一方面受地形条件限制,另一方面由于墩柱高度大,不利工作的开展。这样就由于地形条件所限大型起重设备,在施工过程中难以到达墩位。为化解以上制约,在讨论盖梁的施工方案时,我们首先考虑的是利用墩柱施工的爬升平台提模施工工艺,改造爬升平台为盖梁施工平台,当墩柱施工到距柱顶2m时预埋工字钢牛腿,随后转换承重装置于牛腿支承。这一施工方案免去了吊装贝雷桁架这一作业,比较安全且质量可以更加保证。但其缺点是墩柱每次只能浇注2m左右,使得墩柱施工工期加长。虽对盖梁施工有利,因下部工期所限,这也不是一个最秀的方案。另外,墩柱利用支架提升模板施工的方案可保证墩柱每次浇注高度达6m,墩柱施工进度明显加快。
2计算要点在各种支架中表现不同
2.1计算托架钢锭的要点
在施工过程中,桥梁的支架要充分结合现场设备,考虑现场的施工条件,掌握盖梁的高度。在确保选用现浇盖梁的操作安全和施工质量的前提下,根据施工设备的具体条件,自落地支柱可以选用多种材料,例如钢管、型钢或门式架等;在施工时,不要综合考虑各方面的因素,按计算挠度值,并应搭设足够宽度的操作面,不管是采用哪种支架,在工程的实践中,一般周高度不小于1.2m且每边不小于1m。各种支架做好防止高空坠落工作,设置护栏边以及满挂密目安全边护栏。结合施工现场的设备和各种不同的条件,考虑到盖梁的高度,支架型式选用时应当准备各种因素。而且除考虑经济成本,提高效益外,还应对现浇盖梁的施工质量以及施工的操作安全作出保证。
2.2计算抱箍的要点
从物理学角度看,摩擦力的计算是:F=Nμ。而在式中,“N”表示抱箍对墩柱的垂直压力,这个压力是由螺栓的拧紧程度来确定。而式中的“μ”表示摩擦因数,作为一个重要的参考指标,由墩柱的表面决定的,一般情况下,摩擦因数μ=0.3~0.5是最常用的取值范围。考虑抱箍与墩柱之间的摩擦力处于一种相对的平衡,就要求在设计时应选择拧紧螺栓的数量,并且检验抱箍所能承受的荷载。在设计时,还应该验算抱箍钢板的局部抗剪强度,保证建筑的质量。而抗挤压强度的验算也是一个重要的参考因素,比较有实践的意义。
2.3计算自落地支柱的要点
自落地支柱可以先初选构件类型,如钢管、型钢或门式架等,然后根据最大轴力的数据要求,按公式A=N/a来计算值选择构件型号及截面,构造要求设计扫地杆、剪刀撑、间距抛撑和缆风绳。对两端简支的轴心受压构件计算,应当考虑盖梁的高度问题,同时还要考虑当地的常年的气候特点等。如果地区常年的风力较大,可以考虑风荷载。同样的方法用于对两端简支的轴心受压构件计算。最后通过公式H=πEI/Aδa来验算抗压稳定性和水平联系杆的竖向间距。
3各种支架的优缺点以及改进方法
3.1各种支架的优缺点
在工程实践中,采用抱箍挑架式作为支架,方便在盖梁施工中下人员的流通,而且有比较宽松的地面工作空间,对于工程管理是很有利的,但这种方法也存在它的缺点与不足,主要表现在抱箍挑梁中施工中钢箍与墩柱之间存在着摩擦,而且摩擦系数的取值也很难掌握,依墩柱表面的平整度和粗糙度都存在着较大的差异,而且在施工的实践过程中,常常有抱箍滑脱的事故发生,一般支架都不能承受过高的荷截。自落地支架式作为支架,这种方式结构简单,但与采用抱箍挑架式相比,这种方式的缺点更突出,主要有支架在荷蒙的作用下,变形较大,消耗大量的材料,而且施工过程中比较难达到文明施工的要求,管理困难。还有一种方式叫埋设托架式,这种方式下部可以通行,可以离开地面的工作面,节省空间,能承受较大的荷载,而且文明施工管理也比较方便,但是埋设钢锭和施工受载比较大时,墩柱需要具有一定强度的混凝土,工程结果后会在墩柱中残留一些小孔,需要再用混凝土填塞小孔以避免对外观的影响。
3.2各种支架的改进方法
经过多年的施工经验,系梁的强度必须经过计算,根据施工现场需要,可以加大系梁截面和加配钢筋。在埋设托架式中,改用型钢如槽钢等必须经过计算,可以代替实心钢锭。为预防施工荷载过大造成钢板箍滑脱,在使用抱箍挑架式时,宜采用高强度螺栓和双螺母拧紧抱箍,也在抱箍底部预埋钢筋或者采用两层抱箍互相支撑的方法,以协助支撑。但预埋的钢筋在使用后应割除,并妥善处理,以免影响墩柱外观质量。
施工过程中常常遇到水上与土质条件都比较差的地面上,加上盖梁与系梁的高度相关不大,实施起来比较有难度。这种情况下,可以采用系梁作为受力底座的方法,因为一般简支梁桥中,在桩基与墩柱间都设计有水平系梁。根据具体的施工条件提出不同的要求,对于如土质条件较差的地面现浇盖梁,可采用自落地支架;对于水上现浇盖梁,可利用万能杆件拼装成桁式支架,这样可以减少沉降,大大提高支架承受荷载的能力。另一种桁式支架可设计也称为满堂式设计,在施工荷载比较小的情况下可以使用。它一个比较突出的特点是要保证操作平台的稳定性和沉降量满足要求,一般可以在墩柱中埋设型钢,充分利用埋设的型钢来搭设支托架。
参考文献:
[1]周水兴,何兆益,邹毅松,等1路桥施工计算手册.M.北京:人民交通出版社,2001.12
1.1设计标准不高
我国道路桥梁设计对规范标准的要求并不高,进行施工就会对道路交通产生诸多不便或产生安全隐患,还会对桥型的美观程度造成一定的负面效应。所以设计时应充分的考虑这个方面,结合现场环境,很多时候都需要在桥梁的主梁或梁侧部分预留一定空间,为日后的施工打下良好的基础。
1.2管道预留空间不足
专用桥梁管道是每一座桥梁设计中必须要考虑到的方面,但在具体的设计和施工中往往是忽略这一点的。产生的原因主要是城市化所带来的人口压力过大或城市改造工程。城市改造工程很有可能产生管道预留空间不足的情况,而在很多时候我们只能采用少量的扩容处理,将桥梁管道在桥体之外,这样做的直接后果就是会对交通线产生不利影响,还可能影响到桥体的美观。遇到桥梁管道预留空间不足的情况时,再次开挖是比较适宜的方法,但一大弊端就是会加大工程的资金投入力度,同时也不利于交通情况。
1.3绿化带专项防水设计缺陷
桥梁工程必须具有一定的使用功能,除此之外还要有一定的美观性。所以桥梁绿化带专项防水设计应运而生。在设计桥梁结构的过程中,绿化美观需要在设计的考虑范畴内。通盘考量了所有的影响因素后,必须要保证桥梁结构使用性和美观性。
1.4结构设计选型问题
桥梁工程结构选型问题在设计中是比较重要的一个方面,满足视距和净空的要求的同时,还要具有美观的外形和科学合理的结构,这也视为桥梁结构设计的基本标准和原则,尽可能的打造出功能和美观于一体的桥梁工程,为城市平添一抹亮色。但在具体的设计时,关注实用功能的比较多,而忽视结构选型,结构选型不合理也就不足为怪了。
1.5装饰结构设计问题
我国的桥梁工程结构设计中安全材料不合标准的情况是比较常见的。一项工程要想成为精品,所使用的材料可以说是最为关键的,其是保障桥梁结构的安全运行根本。所以必须要保证装饰材料的可靠性,可以采用材料取样试验的方式来严把材料的质量关,为桥梁工程的安全运行保驾护航。
2道路桥梁结构设计要点
2.1主梁设计
不同于整体式简支梁结构,装配式简支梁结构最为重要的特点是可将预制独立构件进行运输与吊装,并且通过现场安装、拼接制梁。对于自动化、机械化施工技术的应用在设计中就可以完成,这样就大幅度的节省了施工成本,劳动生产力也有显著的提高,季节变化也无法对施工造成实质上的威胁。桥梁上部结构的主要承重构件就是主梁,一般的设计型式有T型和箱型,箱型结构主梁大多在预应力混凝土结构梁中应用。设计采用箱型结构主梁需要对主梁结构的间距与片数作要求,主梁间距与片数两者相互制约,即间距小则片数多、间距大则片数少。而主梁的高度及细部尺寸是以荷载的计算方法加以确定的,若主梁对称布置,梁身的荷载也是呈对称分布,此时要用杠杆法来计算,如若不然就要以偏心受压来计算。上述两种情况的相同之处是控制设计的标准是内力的最大值,要注意的是此标准不可作为主梁结构各个截面的最不利状况的受力计算,主要是因为很多不安全的因素夹杂在计算结构中。
2.2型式的选择应为桥台设计桥台结构设计的重点
在桥台结构的选择上,装配式简支桥梁主要有轻型桥台、钢筋混凝土薄壁桥台、埋置式桥台三种。轻型桥台结构型式体积较小,比较适合挡土的翼墙结构设计。钢筋混凝土薄壁桥台可设计将台身埋置于桥梁护坡中,这样不仅能够降低桥台结构受上部荷载的作用力,还能够使桥台留有足够的空间。但护坡容易受到洪水的侵袭使台身,所以设计时不可缺少的是对强度和稳定性的计算。
2.3桥墩型式选择
双柱式墩、十字墩或矩形薄壁墩是装配式简支桥梁结构设计的主要型式,单幅双柱式是最为常见的。鉴于以往的经验教训,设计时应谨慎选择桥墩结构型式,在岩溶性地质、桩基础施工难度比较大的地方应以实际情况为前提,减少桩基的设计,单柱单桩的设计是比较适合的。而在施工在河谷或容易受滚石威胁的地方时,设计的重点应该放在如何加强桥墩结构的整体抗撞击能力上,也比较适合单柱单桩设计。对于高位墩柱长桥,设计时应重点考量桥梁上部结构荷载累积变位的问题,这是双幅两柱整体下部构造设计是比较理想的。
2.4定线原则
(1)在1:10000比例尺的地形图上在起、终控制点间研究路线的总体布局,找出中间控制点。根据相邻控制点间的地形、地貌分布情况,尽量选择地势平缓地带,确定各种路线方案。
(2)山岭重丘地形,定线时应以纵坡度为主;而平原微丘地区地面自然坡度较小,纵坡度不受控制的地带,选线以路线平面线形为主,最终合理确定出公路中线的位置。
引言
中国钢结构桥梁的发展,近年来取得了骄人的成绩,南京三桥、苏通大桥、昂船洲大桥的建造,表明在大跨径桥梁上钢结构的优势越来越明显。桥梁是为满通功能的建筑物,现代桥梁钢结构由结构钢加上单元经焊(栓)连接组成为复杂的受力系统,有明确的承载安全和服役耐久性要求。
一、钢结构桥梁整体设计理念概述
钢结构的特点是质量轻,强度高,并且具备其抗压以及抗拉等相关优点,对于混凝土结构而言,其外观更为直观,强度等级更高。在我国,钢结构桥梁应用十分广泛。因为作为钢结构的施工而言,其施工周期短。钢结构桥梁主要应用在:①城市立交桥段,尤其是交通要道处,如果采用混凝土桥,必然增加施工周期,对于现场交通不能较好地维护。②大跨径海、江、河桥梁(长江大桥、杭州湾大桥等),因为大跨径的要求下,只能考虑钢结构,因为如果采用混凝土结构,根本满足不了大跨径要求。
1.1钢结构整体设计目标我国桥梁钢结构的设计使用年限为100年,与国际标准(BS5400,EUROCODE)基本一致。完整性设计的目标是确保结构在使用年限内的可靠与安全。桥梁钢结构的完整性设计由荷载、材料性能、结构细节构造、制造工艺、安装方法、使用环境及维护方式等多种因素所确定。设计除对结构、构件连接及构造细节按常规考虑强度、刚度要求外,尚需对损伤与损伤容限、断裂与抗断裂作出评定。
1.2钢结构损伤及损伤容限钢结构从材料加工过程到服役期不可避免的会在内部和表面形成和发生微小缺陷,在一定外部因素(荷载、温度、腐蚀等)作用下,这些缺陷不断扩展与合并形成宏观裂纹,导致材料和结构力学性能劣化。对桥梁钢结构而言,完整性和损伤是相对应的,损伤程度将会对结构的完整性带来影响,损伤极限则是结构的失效。而损伤容限是指钢结构在规定的使用周期内抵抗由缺陷、裂纹或其他损伤而导致破坏的能力。损伤容限概念的使用是承认钢结构在使用前存在有初始缺陷,但可通过结构完整性设计方法评判带缺陷或损伤的钢结构在服役期限内的安全性。
国内桥梁钢结构因损伤导致局部破坏的实例近几年时有发生,结构损伤构成了对桥梁安全与耐久最大的威胁。在引起设计者对焊接结构损伤、损伤扩展以及结构系统失效过程关注的同时,也引发了人们对如何保证桥梁钢结构系统整体完整性的思考。
二、桥梁钢结构整体设计策略
2.1横向抗倾覆稳定设计钢结构的桥梁普遍比较轻而且强度非常高,然而,在小半径以及多车道设计时,其横向抗倾覆是当前研究的热点内容。早前的桥梁施工中,由于设计原因,导致在施工过程中或者桥梁使用过程中发生桥体倾覆。因为连续钢梁的半径比较小,所以相对而言,其跨度显得较大,如果再加上桥面宽于钢梁,这一必定显得活载不是最优,弄不好横梁外侧支座受力增大,而内侧支座出现不受力,这样横梁受力极其不均匀,发生梁体的倾覆。在设计过程中,通过合理的计算,来设计横梁的偏心受力情况,这样即可满足桥梁的荷载要求,也能似的桥体均匀受力。在横梁处采取灌砂措施,并在满足规范的条件下,增加多车道时的桥梁整体稳定度。
2.2焊接结构完整性设计要点桥焊接结构的完整性设计是保障桥梁整体稳定性的重要因素,其焊接的接头形式因受力的不同而各有差异,其接头部位的应力作用导致了母材结构以及受力性能的不同,同时,在焊接过程中不能100%消除应力,焊接应力通常导致焊接接头的变形,造成焊接接头形成大量缺陷,不能满足桥梁整体性设计要求。所以在桥梁整体设计中,必须考虑焊接接头的设计,在满足相干规范的前提下,必须做到:①因地制宜地选择形式,并通过焊接性检测要求来获取静力和疲劳等级,来决定焊缝相关形式。②在焊接设计中,必须详细设计其关键细节,达到焊接中受力均匀,尽可能降低应力。③在设计中必须考虑焊接检测相关要求,必须以无损检测等相关控制指标来检测焊缝质量。2.3加劲肋设置加劲肋是在支座或有集中荷载处,为保证构件局部稳定并传递集中力所设置的条状加强件。加劲肋的设计,通常很多人都认为这方面是可有可无的,实际上必须通过设计计算才能决定是否加劲肋。加劲肋与否,是有腹板的h0/δ的值来决定。如果确定需要加劲肋,则优先考虑竖向加劲肋,并且其设置距离由腹板厚度以及相关剪应力来决定。当竖向加劲肋仍然不能满足要求时,可设置水平加劲肋,水平加劲肋是竖向加劲肋的补充形式。加劲肋的设置是因为原有构件截面的不足而用来增强抵抗弯矩和剪力的,因为设置加劲肋可以缩小原构件截面大小,从而有效的降低用钢量,压缩成本,所以在工程中,一般设置在原有构件上起到增强抵抗弯矩和剪力的作用。
2.4钢箱梁横梁设计当桥梁主道设计过宽时,必须优化车道钢结构宽箱梁,在设计中,重点满足其竖向计算要求,对于横梁的跨径,需要从支座间双悬臂简支梁的计算中得知,在支座处可采取竖向加劲肋相关措施,当竖向加劲肋不能满足要求时,考虑横向加劲肋,其计算措施与纵向计算措施相仿。
2.5施工人孔的设置桥梁的整体设计中,其不可忽视的一环是人孔的设置,通常情况下,人孔是为了方便施工,在桥梁箱梁顶板和腹板上开设。顶板施工人孔的具置可设置在1.5跨径处,而腹板的施工人孔的具置必须设置在应力相对薄弱的地方,比如简支梁,其腹板施工人孔可设置在跨中,而连续梁,必须精确计算剪力,选取剪力最小处。有时候人孔的设计不止一个,不能将所有人孔分布在相同断面,采取错开设置。当应力较大的地方必须加设施工人孔,必须采取加强措施。
2.6结构内力计算结构内力计算是以边孔采用单悬臂,中孔采用简支挂梁作为结构的计算模式。将桥梁纵向划分为多个单元,并对每个单元截面进行编号,然后进行项目原始数据输入。输入的数据信息有:项目总体信息、单元特征信息、预应力钢束信息、施工阶段和使用阶段信息。按全预应力构件对全桥结构安全性进行验算,计算的内容包括预应力、收缩徐变及活载计算。桥台处滑动设支座,桥墩处设固定支座,碇梁与挂梁间存在主从约束,挂梁一端设置固定支座,另一端设滑动支座。牛腿计算是对预先设计好的牛腿尺寸和配筋分4个步骤进行验算:①牛腿的截面内力。求出截面内力后对各种危险截面进行强度校核;②竖截面验算。按偏心受压杆件验算抗弯和抗剪强度或按受弯杆件验算强度;③最弱斜截面验算。求得最弱斜截面位置后,按偏心受拉构件验算此斜截面的强度;④45°斜截面的抗拉验算。:
三、结语
我国基础建设的加快,带动了桥梁技术的长足发展,在当前形势下,桥梁钢结构的整体应用也十分广泛,主要是在设计过程中的优化,才能确保桥梁钢结构的整体性、稳定性。必须从整体性角度出发,全面分析桥梁受力情况,加强焊接形式的优化设计,才能保障桥梁钢结构的整体质量。
参考文献:
注重耐久性设计桥梁的设计、施工建设和使用中,必然会受到来自环境、化学物的侵害,同时,桥梁的主要作用是要承担车辆、行人的重量,地震、疲劳和超载等也必将成为影响桥梁耐久性的必然因素,加之桥梁自身结构和材料的损伤、劣化都无形中造成了对耐久性的影响,虽然目前以拉索的形式来解决此类问题,但依旧不是最完美饿解决办法。从一定程度上说,影响桥梁耐久性最主要的原因还在于耐久性的设计,因此,在现代桥梁设计中,对耐久性的考虑应当被提到首要位置。
1.在桥头引道没有软土地基的情况下,若5cm的路桥过渡段的不均匀沉降差异是沉降控制标准,以0.4%来控制沉降坡差,则强度渐变段的长度至少不得低于13m。2.路桥过渡段的路基条件与地基条件在桥头引道路基填筑压实的作业过程中,采用的土工合成材料加筋路堤的做法,并不能起到有效阻止地基下沉的结果,也不能提高路基地基的承载力。而只有在地基有足够大的承载力的情况下,在行驶车辆荷载与路堤填土的自重荷载的共同作用下,没有造成结构破坏,而引起较大沉降的情况下,土工合成材料加筋路堤的效果才会显得明显。因此,公路路桥过渡段的地基条件要满足设计、施工规范的要求:要达到路基的工后沉降值保持在10cm以下,沉降差小于5cm,沉降坡差在0.4%的控制标准以内。3.公路桥梁过渡段的结构形式桥台台背路堤填铺土工格栅。在设计路桥过渡段路基施工时,要采取土工格栅工艺。当土体与土工格栅相结合,共同承受土体自身荷载以及行驶车辆荷载的同时,土工格栅能使土体充分发挥抗剪强度,并且能够使土体的侧向变形被约束,同时,路基填土的侧向位移现象也能被有效控制,因此,路基的整体稳定性大幅提升,也从而使路基的变形模量增大。在路基填土和土工木栅的摩擦作用下,上部荷载在路基中被重新分配,使桥台台背局部范围土中的垂直应力得到降低,从而提高了路基土体的承载力,也使路基的沉降量降低。因为水平填铺的土工木栅是有一定弹性的,即使有重大型荷载的车辆反复施压,而路基也几乎不会产生变形。由于路桥在过渡段施工途中,铺设的土工格栅起到了明显的效果。所以在路桥过渡段高填方路堤的施工中,可采用的是桥台台背回填加铺土工格栅的作业模式。
桥头软基施工
由于本工程施工工期较短,围堰高度较低,淹没基坑对总工期影响较小,经济损失较少,根据《水利水电工程施工组织设计规范》(SL303-2004),将本工程施工导流建筑物的级别确定为5级。当导流建筑物采用土石结构时,其洪水重现期为5~10年,当导流建筑物采用混凝土或浆砌石结构时,其洪水重现期为3~5年。根据本工程特点及施工进度安排,围堰使用时间为一个枯水期,围堰高度相对较低,导流时段较短。本工程施工围堰选用土石结构,相应导流标准采用5年一遇重现期洪水。本流域位于欧亚大陆东部中纬度地带,大陆性气候明显。工程所在区域多年平均降水量为566.1mm,降水量年际变化大,年内分配不均,主要集中在6~9月,占全年降水量的79.9%,最大年降水量为941.5mm(1977年),最小年降水量为299.9mm(1989年)。结合水文资料分析,确定导流时段为10月~次年5月。本工程施工导流涉及的河道有2条,分别为永定新河和新引河。根据河道水文资料和河道主要功能的不同,具体分析确定河道的导流流量。永定新河是天津市一级重要行洪河道,是人工开挖河道,沿河汇入的河流和排水河道都有闸门控制,本流域洪水由暴雨形成,洪水与暴雨发生的时间相一致,大多在7、8两个月。按照屈家店闸下泄流量系列,据此分析计算确定永定新河5年一遇洪水重现期流量为117m3/s,施工洪水位为1.60m。新引河也是人工开挖河道,主要是一条输调水河道,每年春季均要承担引滦向海河补水的任务,输水流量20m3/s,每次补水时间20d左右。分析新引河屈家店(闸下)水文站2008~2010年的逐日水位观测数据,2008年最高水位1.502m,最低水位-0.058m,平均水位0.812m。2009年最高水位1.412m,最低水位-0.278m,平均水位0.702m。2010年最高水位1.762m,最低水位-0.148m,平均水位0.812m。因此,本次新引河施工导流流量采用新引河输水流量20m3/s。由2008~2010年逐日水位观测数据可知,3年期间河道相应的水位值变化较小(最高水位1.412~1.762m,最低水位-0.278~-0.058m,平均水位0.702~0.812m),由于新引河均在非汛期输水,最高水位发生在本工程施工期。因此施工期围堰挡水水位取1.762m较为安全,相应围堰工程量增加较少,既经济又安全。
1.2导流方式
桩号3+100处漫水桥所处位置永定新河侧河床宽约194m,新引河侧河床宽约124m,具备分期围堰施工导流条件,而滩地较窄,宽约8m,无法利用滩地布置导流明渠,若布置导流明渠,则需拆除和恢复现有河道堤防。
1.3导流建筑物设计
本工程位于天津市北辰区境内,区域经济社会发展速度较快,工程建设项目较多,且老旧建筑的拆除工程相对较多,因此区域内建筑渣土的产量比较大,渣料料源比较丰富,而土料相对比较缺乏。本次导流建筑物的设计应既考虑本工程的具体特点及要求,又能充分利用周边现有资源条件。本工程施工围堰采用的是土石混合围堰型式,围堰填筑料利用区域内产生的建筑渣土。永定新河侧施工围堰采用土石混合围堰型式,纵向施工围堰为一、二期共用。围堰按枯水期5年一遇重现期洪水、导流流量117m3/s设计。根据水力计算,施工围堰挡水水位为1.6m,堰顶高程为2.2m,围堰最大堰高5.2m,围堰顶宽4.0m,边坡1∶3.0。一期上游围堰靠近双街泵站排水出口,为防止泵站排水对围堰堰体造成冲刷,采用编织袋土及彩条布对该区域围堰迎水侧进行防护。新引河侧施工围堰采用土石混合围堰型式,纵向施工围堰为一、二期共用。围堰按新引河输水期水位1.762m、导流流量20m3/s设计。根据水力计算,施工围堰挡水水位为1.762m,堰顶高程为2.3m。一期横向施工围堰最大堰高为4.8m,围堰顶宽4.0m,边坡1∶2.5。二期横向施工围堰最大堰高为3.5m,围堰顶宽均为4.0m,边坡1∶2.0。纵向施工围堰最大堰高为3.5m,围堰顶宽4.0m,边坡1∶2.0。本工程施工导流采用分期围堰导流方式,根据工程结构要求及特点,结合现场施工条件,共分2期围堰。本工程纵向围堰位置的选择首先能保证在一期围堰束窄河床后,剩余河道过水断面能够满足导流流量的过流要求,并避免在导流期间对河道造成冲刷。其次,尽量增大一期围堰围护的宽度,以节省导流工程量,加快工程进度。第三,最好不占压联接墩位置,避免在施工联接墩时产生深基坑问题。经水力计算,确定了本工程纵向围堰的位置,分期围堰采用矩形方式布置,纵向围堰为一期围堰和二期围堰共用。