1.从在教材中的地位与作用来看
“平行四边形的判别”紧接“平行四边形的性质”一节.综观整个初中平面几何教材,它是在学生掌握了平行线、三角形及简单图形的平移和旋转等平面几何知识,并且具备了初步的观察、操作等活动经验的基础上讲授的.这一节课既是前面所学知识的继续,又是后面学习菱形、矩形及正方形等知识的基础,起着承前启后的作用.
2.从教材编写角度看
教材从学生年龄特征、文化知识的实际水平出发,先让学生动手做,动脑思考,然后与同伴交流、探索、总结归纳,升华得出平行四边形的判别方法,再用这些方法去对四边形是否是平行四边形进行判定.这样的安排使学生更易于接受抽象的定理,并能在整个教学过程中真正享受到探索的乐趣.
3.教学重、难点
重点:平行四边形的判别方法.
难点:判别方法的灵活运用.
4.教学目标
知识目标:
经历并了解平行四边形判别方法的探索过程,使学生逐步掌握说理的基本方法;探索并掌握平行四边形的四种判别方法,能根据判别方法进行有关的应用.
能力目标:
在探索过程中发展学生的合理推理意识、主动探究的习惯.
德育目标:
体验数学活动来源于生活又服务于生活,提高学生的学习兴趣.
二、教法分析
针对本节课的特点,我准备采用“创设情境――观察探索――总结归纳――知识运用”为主线的教学方法.
在教学过程中引导学生通过观察、思考、探索、交流获得知识,形成技能,在教学过程中注意创设思维情境,坚持二主方针(学生为主体,教师为主导),让学生在教师的引导下自始至终处于一种积极思维、主动探究的学习状态.使课堂洋溢着轻松和谐的气氛、探索进取的气氛,而教师在其中当好课堂教学的组织者、决策者、创造者和参与者.同时借助多媒体进行演示,以增加课堂容量和教学的直观性.
三、学法指导
在本节课的教学中要帮助学生学会运用观察、分析、比较、归纳、概括等方法,得出解决问题的方法,使传授知识和培养能力融为一体,使学生不仅学到科学探究的方法,而且体验到探究的甘苦,领会到成功的喜悦.
四、教学过程
1.引入新课
在复习了平行四边形定义和性质之后创设教学情景.(例如装潢店要招聘店员,老板出了这样一道考题:“一位顾客要一张平行四边形的玻璃,你能否利用手头的工具制作一个平行四边形吗?并说明这张玻璃符合顾客要求的道理.”你能为招聘人员设计一个方案吗?)此问题可先提示学生用定义,但用定义不好测量时是否还有别的方法,这样就给学生提出一个问题:也就是说除了用定义外,还可以用什么样的方法去判定一个四边形是平行四边形呢?
[设计意图:从实际问题引入新课, 提出具有启发性的问题,能够调动学生的积极思维,激起学生的学习欲望.著名教育家苏霍姆林斯基曾经说过:如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲惫.]
2.判别方法的探索
提出问题后我安排了如下三组探索题:
探索一,将两根木条AC,BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形.你能说出这种方法的道理吗?并与同伴交流.
探索二,将两根同样长的木条AB,CD平行放置,再用木条AD,BC加固,则四边形ABCD就是平行四边形.你能说出这种方法的道理吗?与同伴交流.
探索三,用两根长40cm的木条和两根长30cm的木条作为四边形的四条边,能否拼成一个平行四边形?与同伴进行交流.
这三个问题,让学生分小组展开讨论,此时课堂上营造一种和谐、热烈的气氛,在小组讨论中教师可鼓励学生用度量、旋转、证三角形全等等多种方法来证明所得四边形是平行四边形.教师还要指导学生进行总结、归纳,在探索过程中鼓励学生力求寻找多种方法来解决问题,同时还可组织组与组之间的评比,这样也能培养他们的竞争意识.然后每组由一名学生代表发言,让学生锻炼自己的语言表达能力,让学生的个性得到充分的展示.最后教师和大家一起总结归纳,得出平行四边形的判别方法:
两组对边分别平行的四边形是平行四边形;
两组对边分别相等的四边形是平行四边形;
一组对边平行且相等的四边形是平行四边形;
两条对角线互相平分的四边形是平行四边形.
[设计意图:确保学生主体作用得到充分发挥,让学生从被动学习到主动学习、自主学习,让学生从接受知识到探究知识,从个人学习到合作交流.这样的活动教学将会真正焕发出课堂教学的活力,从而在课堂教学中注入一种新课程理念:给学生一个空间,让他们自己往前走;给学生一个时间,让他们自己去安排;给学生一个问题,让他们自己去找答案;给学生一个条件,让他们自己去锻炼;给学生一个题目,让他们自己去创造;给学生一个机遇,让他们自己去抓住.]
3.挑战自我
在四边形ABCD中,若分别给出四个条件: AB∥CD;AD=BC;∠A=∠C;AD∥ BC.现在,以其中的两个为一组,能识别四边形ABCD为平行四边形的条件是________.(只填序号.)
[设计意图:此题为条件型开放题,答案不唯一.设计此题的目的是:培养学生的发散思维,力求使学生不停留在重复与模仿的阶段.]
4.实际应用
生物实验室有一块平行四边形的玻璃片,在做生物实验时,小华一不小心碰碎了一部分.谁有没有办法把原来的平行四边形重新画出来?(A,B,C为三顶点,即找出第4个顶点D.)
[设计意图:目的是让学生了解数学问题来源于实际,同时又应用于实际,让学生充分体验经历困难探索结果而轻松用于实际的快乐感觉.]
五、布置作业
探索并掌握平行四边形的识别条件:一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
⒉能力目标:
⑴经历平行四边形判别条件的探索过程,使学生逐步掌握说理的基本方法;并在与他人交流的过程中,能合理清晰地表达自己的思维过程。
⑵在补全平行四边形的过程中,培养学生的动手画图能力及丰富的想象力,积累数学活动经验,增强学生的创新意识。
⒊情感目标:
⑴让学生主动参与探索的活动,在做“数学实验”的过程中,发展学生的合情推理意识、主动探究的习惯,激发学生学习数学的热情和兴趣。
⑵通过探索式证明学习,开拓学生的思路,发展学生的思维能力。
⑶在与他人的合作过程中,培养学生敢于面对挑战和勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,培养学生的合作意识和团队精神。
二、教学重点、难点分析:
教学重点:平行四边形的识别方法1、2。
教学难点:平行四边形识别方法的应用。
三、教学策略及教法设计:
【活动策略】
课堂组织策略:创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的识别”的方法。
学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下主动地从事观察、实验、猜测、验证与交流等数学活动,从而真正有效地理解和掌握知识。
辅助策略:借助实物投影仪及多媒体课件,使学生直观形象地观察、动手操作。
【教法】
探索法:让学生在补全平行四边形的活动过程中,积累数学活动经验。
讨论法:在学生进行了自主探索之后,让他们进行合作交流,使他们互相促进、共同学习。
练习法:精心设计随堂变式练习,巩固和提高学生的认知水平。
四、课前准备:
由老师、课代表根据学生不同特长每4人分成一个活动小组。
五、教学过程设计:
一、复习
复习回顾:前面我们学习了平行四边形的哪些特征?
二、新课
[1]小实验:
有一块平行四边形的玻璃片,假如不小心碰碎了部分,现如图所示,同学们想想看,有没有办法把原来的平行四边形重新画出来呢?
让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查。对个别差生稍加点拨,最后请学生回答画图方法。学生可能想到的画法有:1。分别过A、C作DC、DA的平行线,两平行线相交于B;2。过C作DA的平行线,再在这平行线上截取CB=DA;3。连结AC,取AC的中点O,再连结DO至B,使BO=DO,连结AB、CD。4。分别以A、C为圆心,以DC、DA的长为半径画弧,两弧相交于B,连结AB、CB;
提问:上面作出的图形是否都是平行四边形呢?请同学们猜一猜。这就是我们今天要研究的问题:《平行四边形的识别》
第一种方法,由平行四边形的定义可知,它是平行四边形。
第二种方法,CB∥DA,即把DA平移至CB,由平移特征,有
CB∥DA,AB∥DC,
根据平行四边形的定义,我们知道四边形ABCD是平行四边形。
一组对边平行且相等的四边形是平行四边形。
第三种方法,
由画图知,BO=DO,AO=CO,可以看到A与C、B与D是关于点O成中心对称的对应点,AB与CD、BC与DA是对应线段,∠BAC与∠DCA,∠BCA与∠DAC是对应角,根据中心对称的特征,有
∠BAC=∠DCA,∠BCA=∠DAC。
从而AB∥DC,CB∥DA,
由此可以确定这一四边形是平行四边形。
对角线互相平分的四边形是平行四边形
[2]实践乐园
1.给你一根细铁丝,你能很快折一个平行四边形吗?把你的方法告诉你的同伴。
2.做一做:如图为王老师家装潢是不小心打破的一平行四边形的玻璃材料,问利用哪一块玻璃可配一块与原来一样的玻璃,请利用所学的知识画出平行四边形。
[3]热身练习
1.下列两个图形,可以组成平行四边形的是()
A.两个等腰三角形B.两个直角三角形C.两个锐角三角形D.两个全等三角形
2.已知:四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,需添加一个条件
是:(只需填一个你认为正确的条件即可)。
3.下列给你的条件中,能判别一个四边形为平行四边形的是()
A.一组对边平行B.一组对边相等
C.两条对角线互相平分.D.两条对角线互相垂直
[3]例题讲解
如图,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE=CF,连结CE和AF。试说明四边形AFCE是平行四边形。
AED
BFC
[4]随堂练习
1.如图,AC∥ED,点B在AC上且AB=ED=BC,找出图中的平行四边形。
2.如图所示,在ABCD中,AC、BD相交于点O,点E、F在对角线AC上,且OE=OF.
(1)OA与OC、OB与OD相等吗?
(2)四边形BFDE是平行四边形吗?
⑶若点E、F在OA、OC的中点上,你能解决(1)(2)两问吗?
[5]思维训练
四边形ABCD中,对角线AC、BD交于点O,请你写出两个条件,据此能判断出四边形ABCD是平行四边形。如果把这样的两个条件当作一组,你能写出几组?(用符号
语言表示)
[6]课堂小结
平行四边形的识别条件:一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
[7]作业
见作业本
[片段一]
教师画出一个平行四边形,并给学生提供了一个用纸剪的一样大小的平行四边形,让学生测量长度,学生量出了长度:底边为7cm,邻边为5cm,高为3cm。教师设置疑问:现在要求出这个平行四边形的面积,你有什么办法?说说你是怎么计算的?学生提出了三种方案:方案1:(5+7)×2=24(cm2);方案2:5×7=35(cm2);方案3:7×3=21(cm2)。此时教师追问:(5+7)×2=24(cm2)是求什么?学生展开思考,发现这种方案是将两条边相加再乘2,这种做法求出来的是平行四边形四条边的和,也就是平行四边形的周长,而不是面积。此时教师追问:这种算法算出的结果是周长,那么计算结果单位应该用什么?学生指出,周长的面积单位应该是cm,而不是cm2。教师对方案1点评:如果是要求平行四边形的周长,这个方法是正确的。但现在我们要求的是面积,这种方法你认为可行吗?学生立刻否定了这种方案。教师随即将这种方案删掉。
[赏析]
在小学数学教学中,教师常用的教学策略便是提问。通过提问激发学生的好奇心,引发学生参与数学探究的积极性。朱老师在课堂之初就提出了疑问:如何求这个平行四边形的面积?学生在这个疑问的驱使下,找到了三种解决问题的办法,此时朱老师又引发了学生的疑问:到底哪种方案才是正确的呢?由此对方案一展开探究。朱老师进行了三次提问:这是求什么?如果求周长单位应该是什么?你认为这种方案求面积可行吗?这三个问题引导学生厘清了面积和周长两个不同的概念,并由此明确了这节课的主要内容:要求出平行四边形的面积,引导学生将注意力放在这个关键问题上,展开自主探究。这些有效的问题设置,让数学课堂节奏紧凑,为学生打开了思维之门。
二、以问探路。激活思维
[片段二]
教师继续引导学生讨论另外两种方案,并让学生交流:5×7=35(cm2)是求什么?为什么要这样求?学生指出,这是将平行四边形转化为长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底边乘邻边。教师出示一个可以拉动的平行四边形,让学生将其拉成一个长方形,而后让学生观察并思考:这个长方形和原来的平行四边形相比,有什么变化?哪个是平行四边形的底边,哪个是邻边?你发现了什么?学生认为,长方形的长就是平行四边形的底边,宽就是平行四边形的邻边。也有学生认为,平行四边形的面积变大了,宽并不是平行四边形的邻边,因为将平行四边形拉成一个长方形,不但形状变了,面积也变了。
[赏析]
有效的问题设置,能够引发学生的认知冲突,激活学生的思S,使之思路清晰。学生对底边乘邻边的算法存在疑问,此时朱老师通过活动演示,展开思辨性的探究,让学生发现问题的关键在于平行四边形的面积变大了,从而为下一步学生深入探究做好了铺垫。
三、巧妙设问,提升思维
[片段三]
教师演示将平行四边形拉动的过程,追问学生:现在平行四边形的什么变了,什么没变?学生发现平行四边形的周长没变,但面积变了。教师追问:该怎么求平行四边形的面积?学生认为,运用剪拼的方法,将平行四边形的高剪下来,然后移动到左边,这样就将平行四边形转化为一个面积相等的长方形。这个平行四边形的高就是长方形的宽,底边就是长方形的长。教师再追问:那么,平行四边形的面积怎么计算?哪种方案是正确的?学生指出,底边是7cm,高是3cm,平行四边形的面积等于底边乘高即7×3=21(cm2)。教师继续追问:同样是把平行四边形拉成长方形,为什么刚才的底边乘邻边不对呢?学生认为,将平行四边形拉成―个长方形,面积变了;将平行四边形剪拼为长方形时,面积没变。教师追问:在拉的过程中什么没变?剪拼的过程中什么变了?学生认为,平行四边形拉动为长方形,周长没变;拼接为长方形时,周长变了。
午休时间,一位五年级的数学教师和我交流:“‘平行四边形的面积’一课教学出问题了,有一道题目很多学生都做错了。”这位教师一脸的无奈,苦恼之情溢于言表。我说:“我们先问一问学生,再看看教学设计,分析讨论,查找原因。”
1.练习题:一个平行四边形相邻的两条边分别是10厘米和6厘米,其中一条边上的高是8厘米,这个平行四边形的面积是()平方厘米。
①48 ②60 ③80 ④480
2.练习对象:某班38名五年级学生。
3.统计结果如下表。
4.和学生交谈(没有向学生公布正确答案)。
师:这道题你选择哪个答案?为什么?
生1:我选答案③。因为平行四边形的面积=长×宽,10乘8等于80,所以选择答案③。
师:你为什么选择答案②?能说说当时你是怎么想的吗?生2:我也认为平行四边形的面积=长×宽,没看仔细,就直接把10和6相乘,然后就选择②了。
师:你为什么选择答案①?
生3:平行四边形的面积=底×高,如底是10厘米,邻边是6厘米,那么8厘米肯定不是10厘米这条边上的高,因为高肯定比斜边要短,所以应该选择用6和8相乘,答案是48平方厘米。
……
我和该教师交流:“能说说你的教学设计吗?”该教师说:“先出示教材中的主题图,让学生提出问题‘谁的面积更大’;接着用数方格的方法,引导学生得出求平行四边形面积的方法;再引导学生通过割补法将平行四边形转化成长方形,总结出平行四边形的面积计算公式;最后练习巩固,让学生应用所学知识解决问题。”听完该教师的教学设计,我们又重新研读教材,分析学情,并思考:(1)“平行四边形的面积”一课的教学起点是什么?(如面积的概念、平行四边形的特征、对垂直和平行的认识、长方形和正方形的面积公式推导过程等)(2)在“平行四边形的面积”教学中,知识要素有哪些?(正确理解平行四边形的底和高)(3)除了关注基础知识的教学外,培养学生的基本能力和获得广泛的活动经验的目标该如何落实?再反思原来的教学设计,学生练习为什么出错的原因就浮出了水面:学生缺乏空间观念,没有正确认识平行四边形的高,对平行四边形的底和高还停留在浅层次的认知表象上,没有整合成一个整体。
寻找到了学生的错误根源,我们重新设计此课的教学。
教学流程:
一、巧借对比,顺势导入
师(出示一个长方形框架):它的长是6厘米,宽是4厘米,面积是多少平方厘米?(根据学生的回答,师板书:长方形的面积=长×宽)
师:如果老师将长方形的两个对角顶点向外拉,现在变成了什么图形?
生:平行四边形。
师:你认为这个平行四边形的面积该怎么算?(预设:可能有些学生还认为是6×4,也有些学生认为不是6×4,初步感知到面积发生了变化)
师(进一步拉斜平行四边形):现在平行四边形什么发生了变化,什么没有变化?(预设:让学生进一步感知平行四边形的四条边没有发生变化,但它的面积却在不断地变化,直观感受到平行四边形的面积变小和它的高不断变小有关,培养学生的空间观念)
师(小结):用两条邻边相乘求平行四边形的面积是不可取的,因为平行四边形的面积和它的底与高有关,这就需要我们进一步研究平行四边形的面积与它的底和高有什么关系。
二、自主探索,逐步感悟
1.探索平行四边形(图1)的面积,底为6厘米,高为4厘米。
(1)师给学生提供方格纸、平行四边形:方格纸的每格长度是1厘米,平行四边形的面积是多少平方厘米?(学生独立尝试解决)
(2)师(小结):刚才大家用数方格的方法求出了平行四边形的面积,你们还有什么疑问吗?你能肯定它的面积就是24平方厘米吗?(预设:有些格子不是整格的,怎么处理?)
(3)师:刚才有的同学在数的时候采取把不够1格当半格的方法数出了平行四边形的面积,那有没有办法变成都是整格的呢?如果都是整格的就没有歧义了。(引导学生主动思考,建立前后图形的联系,尝试用割补法进行探究)
(4)师:将平行四边形沿着高剪下后拼成长方形,面积有没有变化?(没有)你是怎么知道的?(预设:大部分学生只关注转化后的长方形,并借助格子图数出长方形的面积,通过追问引导学生思考割补前后两个图形之间的联系)
2.探索平行四边形(图2)的面积,底为8厘米,高为4厘米。
(1)不提供格子图,让学生再次尝试探究。
(2)学生操作、交流,感悟方法。
师:现在没有格子图,你怎么知道拼成的长方形的长是8厘米、宽是4厘米呢?(预设:引导学生通过进一步操作,明白拼成的长方形和原平行四边形之间的关系,即长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高)
(3)观察思考割补后的长方形与原来的平行四边形之间的联系。(预设:①引导学生明白平行四边形的底与高和割补后的长方形的长与宽之间的关系;②观察原来另一条邻边割补后的位置,理解高小于邻边的原由)
3.师:有一个平行四边形很大,老师不能把它画下来,但它的底是12米,高是6.5米,你知道它的面积吗?(引导学生积极想象,抽象出平行四边形的面积计算方法,推导出平行四边形的面积计算公式)
三、层层递进,深化拓展
1.算一算。
层次(1):计算平行四边形的面积。
层次(2):出示隐去底和高的平行四边形,让学生量出有效的数据进行计算。
2.想一想。
活动(1):拉动细木条钉成的长方形框架,观察前后面积和周长的变化。
活动(2):将长方形框架与剪、拼、移后的平行四边形进行对比,总结规律。
……
反思:
第二次教学后,我们进行教学后测,发现学生解答原来错题的正确率有明显提高。通过两次教学的对比、分析,我们不禁思考:一节课的教学该从哪里开始?如何在课堂中有效落实“四基”,实现教学高效的目的呢?
1.找准起点,准确定位
“平行四边形的面积”教学是平面图形面积教学中的一个拓展内容,为学生思维的发展、基本活动经验的获得提供了有效的材料。本节课的教学应在发展学生空间观念的基础上,引导学生对所学知识进行理解和运用。因此,第二次教学中先让学生进行“平行四边形的面积和什么有关”的猜测,从而给学生的探究指明思考的方向,然后通过动手操作引导学生理解平行四边形面积与底和高的关系,为平行四边形面积计算找准学习的起点。
2.丰富感知,提升思维
1.使学生通过剪拼、平移、旋转等方法,探索并掌握三角形、平行四边形和梯形的面积公式,能正确计算它们的面积。
2.使学生通过列表、画图等策略,整理平面图形的面积公式,加深对各种图形特征及其面积计算公式之间内在联系的认识。
3.使学生经历操作、观察、填表、讨论、分析、归纳等数学活动过程,体会等积变形、转化等数学思想,发展空间观念,发展初步的推理能力。
教学重难点:
教学重点:平行四边形、三角形、梯形的面积计算公式。
教学难点:理解三种图形面积公式的推导过程,运用公式解决面积的计算问题。
第一课时:平行四边形面积的计算
教学目标:
1.在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。
2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。
教学重难点:
教学重点:理解并掌握平行四边形的面积公式
教学难点:理解平行四边形面积公式的推导过程
教学过程:
一、知识点复习与回顾
师:请大家说出你认识的一些平面图形。
生:正方形、长方形、三角形、圆形、平行四边形、梯形……(学生列举了各种常见图形)
师:哪些平面图形的面积你会算呢?
学生能够说出正方形和长方形的面积计算公式,过往的知识学习中这部分内容有学过。
师:今天我们就要再来学习一种最为常见的平面图形――平行四边形的面积计算方式。
二、新知导入
1. 教学案例1:教师出示两个底边长相同,高相等的长方形和平行四边形,随后问大家:这两个图形面积的计算方式是否相同呢,请大家在小组内进行讨论。
学生在小组内热烈地探讨起来,得到的答案各不一样。有的觉得是一样的,有的觉得这是两个图形,面积肯定不一样。
师:今天我们就要来进一步研究一下,这个平行四边形的面积应当如何计算,学会了计算方法后大家就可以很好地分辨这两个图形的面积计算方式是否一样了。
2. 教学案例2:
师:(教师出示一个平行四边形)大家想想可以通过怎样的转换将这个平行四边形变成我们学过的图形呢?
学生积极思考起来,大家想到了各种不同方案。
方案:①将平行四边形右边的那个三角形剪下来;②将这个三角形平移到它的左边;③将两个斜边相互重合,这样平行四边形就变成长方形了。
3. 组织学生相互讨论:①平行四边形变成长方形后,它的面积和原来的面积仍然一样吗?②平行四边的长和转换后的长方形的长有什么关系呢?③平行四边的宽和转换后的长方形的宽又有什么关系呢?
4. 知识归纳与总结:转换后平行四边形的长与宽都和长方形的长与宽一致,故得出:长方形的面积计算公式:S=长×宽,平行四边形的面积计算公式:S=底×高。
5.知识提问:
师:从上面的推导中让我们找到了平行四边形面积的计算方式,那么请大家思考,是不是所有的平行四边形都可以转换为长方形呢?并且进一步得出平行四边形的面积计算公式呢?大家请翻看教材的第113页,从中选取一个任意平行四边形,然后计算其面积。
三、巩固练习
1. 透过试一试练习让学生进一步明确,平行四边形面积的计算公式在应用时需要两个条件,即底和高,教师进一步给学生强调底和高的相互对应关系。
2. 教师给学生列举各种不同的平行四边形,并且分别给出图形的底和高,让学生来对它的面积展开计算。以此巩固学生对知识的理解与掌握。
四、知识总结
师:大家来说说,通过本堂课的学习,大家有哪些收获呢?
生:我知道了怎么将平行四边形进行转换,把它变成长方形就能够求它的面积了。
师:大家的总结都非常好。
关键词:教学方法;主动性;学效果
我们知道,在教学目的和教学内容确定之后,教学方法就成了实现教学目的,完成教学内容的关键。因为 教学方法是将教材的知识结构转变为学生头脑中的认知结构,培养学生能力、发展智力,培养学生学习态度、 意志、情感,进行思想品德教育的主要手段。正如国外一位教育学家所指出的那样:“选择对某节课最有效的 教学方法,是教学过程最优化的核心问题之一。”
一、优选教学方法或教学方法的优化设计注意的问题
理论和实践都告诉我们,要想充分发挥每一种教学方法在教学过程中的实际效能,达到优化教学过程的目的,首先要在优选教学方法或教学方法的优化设计上下功夫。前者指的是合理选择已有的教学方法,后者是指 自己创造新的教学方法。无论是“优选”还是“创新”,一般都应注意以下四点:
1、教学方法的选用或创新必须符合教学规律和原则;2、必须依据教学内容和特点,确保教学任务的完成;3、必须符合学生的年龄、 心理变化特征和教师本身的教学风格;4、必须符合现有的教学条件和所规定的教学时间。另外,在指导思想上,教师应注意用辩证的观点来审视各种教学方法。
其一,任何一种教学方法,都是人们在某种范围内根据特定的需要创造出来的。因此,每一种教学方法都 有其优越性和局限性。就拿较为简单的讲授法来讲,它利于教师发挥主导作用,在短时间内传授较多知识,系统性强,亦可引发学生进行一定的思考。但是,它不容易发挥学生学习的主动性、独立性和创造性,还需要学 生有较高的学习自觉性和听讲能力。因此,较适合于中高年级,而且宜用于教材系统性较强的内容。
其次,只有实现有关教法的优化组合,才能为提高教法的使用效率奠定良好的基础。经验告诉我们,教学任务的完成,教学质量的提高,依靠多种因素、多种方法的综合作用。巴班斯基曾指出:“不存在教学方法上的‘百宝箱’。”美国的富兰克尔也说:“不存在任何情况下,对任何学生都行之有效的,唯一的‘最佳方法 ’。”因此,简单否定某一种方法或把某种教学方法的作用加以夸大,都是片面的、不切实际的。
再次,应注意选择教法和使用效果的有机统一。选择教学方法,核心问题是最大限度地调动学生学习的主动性和积极性,使教与学在教学的动态发展中得以平衡,最终使预定的教学目标与教学的实际效果相一致。为此,就应充分考虑学生是怎样学习的,怎样才能学得更好。也就是说,应按照学生学习的一般程序来选择或设 计教学方法,切忌简单套用某种教学模式的做法。教学方法选择的程序,在一般的教学论中很少涉及。巴班斯基对这一问题的论述值得我们借鉴。按其基本 精神,选择教学方法的程序,大致包括三个步骤:(1)明确选择标准;(2)尽可能广泛地提供有关的考虑方法, 便于教师考虑和选择;(3)对各种供选择的教学方法进行各种比较。
二、优选教学方法或教学方法的优化设计的两个步骤:
第一步:学纲、分析教材,确定目标。由于教学方法始终受教学目标和教学内容的制约,因此,要选 择好教学方法,就必须首先了解大纲的精神,理解教材的特点和编写意图。
第二步:选择教法、综合比较,确定方案。选择教法既可直接考虑采用综合性的教学方法,也可采取将有 关基本的教学方法加以有机组合的办法。特别是后者,在实际教学中往往被绝大多数教师所采用,应作重点考 虑。一般来说,可以按照一节课中教材知识呈现的先后顺序,分阶段来考虑教学方法的选择。
下面,以“平行四边形”(第一课时)的教学为例,说明教法选择的做法和步骤。
《九年义务教育全日制小学数学教学大纲》中关于平行四边形概念教学的具体要求是“掌握平行四边形的 特征”。这部分教材可分为以下几个部分:(1)由的红领章引入,通过度量引出平行四边形这一概念;( 2)解释说明平行四边形有两组对边分别平行这一特征;(3)通过教具演示和插图等说明平行四边形具有可变性这 一性质,并举例说明它在实际中的应用;(4)分别介绍平行四边形的高和底;(5)用韦恩图说明平行四边形、长 方形和正方形的关系。教学的重点应该是使学生理解并掌握平行四边形这一概念及其特征。为此,该课时的教 学目标可确定为:使学生理解并掌握平行四边形的概念及其特征,理解平行四边形的可变性及其在实际中的简 单应用,知道平行四边形的高和底,了解平行四边形、长方形和正方形的从属关系;通过教学培养学生的抽象 概括能力和空间观念;结合教学进行热爱和端正学习目的的教育。
为了实现平行四边形的教学目标,我们可选择或设计四种不同的教学方案。当然教学方法的选 择和设计还远远不止这些。从表中四种教法的选择和设计中,我们不难看出,方案1主要采用的是阅读辅导法, 另配合练习法和讲授法,体现了一法为主、多法相辅的思想。方案2、3、4则是将一些最基本的教学方法加以有 机组合的结果,是一种被人们广泛采用的做法,体现了教学有法、但无定法的思想。在假定暂不考虑学生实际 和教学条件的前提下,我们认为选择其中的任何一种方案都是可以的。但若从有利于激发学生学习兴趣、充分 调动学生学习的积极性和主动性、减小学习的难度来看,采用方案4则更有利于教学目标的全面完成。?表中,方案2中的“直观演示”是指教师将一些外形是平行四边形的实物或教具直接呈现在学生面前。方案 3中的“操作演示”是指教师用两两相等的四根木条制成一个可形变的平行四边形教具。方案4中的“幻灯演示 和谈话法”是这样设计的:这两条线是什么线?为什么?这两条线平行吗?这个图形是几边形?上、下两边平行吗?为什么?左、右两条边呢?随即引出平行四边形这一 概念。表中的“练习法”是为了了解学生是否掌握了平行四边形的概念和特征而安排的一组图形判断题。
我们知道,在教学目的和教学内容确定之后,教学方法就成了实现教学目的,完成教学内容的关键。因为教学方法是将教材的知识结构转变为学生头脑中的认知结构,培养学生能力、发展智力,培养学生学习态度、意志、情感,进行思想品德教育的主要手段。
理论和实践都告诉我们,要想充分发挥每一种教学方法在教学过程中的实际效能,达到优化教学过程的目的,首先要在优选教学方法或教学方法的优化设计上下功夫。前者指的是合理选择已有的教学方法,后者是指自己创造新的教学方法。无论是“优选”还是“创新”,一般都应注意以下四点:一是教学方法的选用或创新必须符合教学规律和原则;二是必须依据教学内容和特点,确保教学任务的完成;三是必须符合学生的年龄、心理变化特征和教师本身的教学风格;四是必须符合现有的教学条件和所规定的教学时间。另外,在指导思想上,教师应注意用辩证的观点来审视各种教学方法。
其一,任何一种教学方法,都是人们在某种范围内根据特定的需要创造出来的。因此,每一种教学方法都有其优越性和局限性。就拿较为简单的讲授法来讲,它利于教师发挥主导作用,在短时间内传授较多知识,系统性强,亦可引发学生进行一定的思考。
其次,只有实现有关教法的优化组合,才能为提高教法的使用效率奠定良好的基础。经验告诉我们,教学任务的完成,教学质量的提高,依靠多种因素、多种方法的综合作用。简单否定某一种方法或把某种教学方法的作用加以夸大,都是片面的、不切实际的。
再次,应注意选择教法和使用效果的有机统一。选择教学方法,核心问题是最大限度地调动学生学习的主动性和积极性,使教与学在教学的动态发展中得以平衡,最终使预定的教学目标与教学的实际效果相一致。为此,就应充分考虑学生是怎样学习的,怎样才能学得更好。也就是说,应按照学生学习的一般程序来选择或设计教学方法,切忌简单套用某种教学模式的做法。教学方法选择的程序,在一般的教学论中很少涉及。巴班斯基对这一问题的论述值得我们借鉴。按其基本精神,选择教学方法的程序,大致包括三个步骤:(1)明确选择标准;(2)尽可能广泛地提供有关的考虑方法,便于教师考虑和选择;(3)对各种供选择的教学方法进行各种比较。
参考上面的说法,我们认为选择教学方法的程序可分两个步骤完成:
第一步:学纲、分析教材,确定目标。由于教学方法始终受教学目标和教学内容的制约,因此,要选择好教学方法,就必须首先了解大纲的精神,理解教材的特点和编写意图。
第二步:选择教法、综合比较,确定方案。选择教法既可直接考虑采用综合性的教学方法,也可采取将有关基本的教学方法加以有机组合的办法。特别是后者,在实际教学中往往被绝大多数教师所采用,应作重点考虑。一般来说,可以按照一节课中教材知识呈现的先后顺序,分阶段来考虑教学方法的选择。
下面,以“平行四边形”的教学为例,说明教法选择的做法和步骤。
师:请同学们观察这个等腰梯形,它有哪些特征?
(学生小组讨论。)
生1:两腰相等。
生2:是一个轴对称图形。
生3:底角相等。
(对于生2,教师拿出等腰梯形的纸片进行演示,让他说明对称轴的位置;对于生3,纠正应该是同一底边的两个底角相等。)
师:如何验证同一底边上的两个底角相等呢?
生4:在将等腰梯形对折时,发现了两个底角是相等的。
生5:通过测量可以得到。
师:你们都说得非常好,测量或操作是我们发现一些命题常用的方法,但并不能作为证明命题成立的方法。请同学们继续思考,如何证明出这个结论呢?
(一段时间后,学生举手回答。)
生6:过上底的两个顶点分别作下底的高,然后通过三角形全等进行证明。
生7:过上底的一个顶点作一腰的平行线,可以运用平行四边形和等腰三角形的知识来证明。
师:刚才两个同学给了我们一些有益的启发,你能根据他们的叙述,完整地将证明过程写下来吗?你还有其他的方法吗?这些证明方法都有什么共同点?请同学们拿出练习本写下你们的证明过程。
(学生书写证明过程,教师巡视。)
在整个教学过程中,教师不仅传授了知识,还在数学课堂活动中展示了“直觉发现、推理证明”的过程。直觉发现是培养学生发现命题的重要方式,针对八年级学生的心理特点,这个过程是非常重要且必要的。教师不仅让学生口述证明的过程,还让学生动笔写下证明过程,这样做能让学生在理解的基础上梳理思路、准确表达,突破几何证明在书写上的难点。
案例2:避免“零起点”教学,高效培养学生的证明能力。
师:(展示多媒体课件提出问题)
问题1:怎样的四边形是平行四边形?
问题2:平行四边形有哪些性质?
问题3:如何判断一个四边形是平行四边形?有几种判定方法?
生:口答(略)
师:李芳同学用“①边、直角;②直角、边;③边、直角;④直角、边”这样四步画出了一个四边形,她说这个四边形是矩形,对吗?李芳同学画得四边形不是矩形,大家想不想知道呢?好,只要我们认真学习了今天的内容,一定会找到答案的。
(引出课题――“矩形的判定”。)
师:矩形的边相对于平行四边形有特殊性质吗?
生:没有。
师:那我们从角的角度来探究“最少有几个直角的四边形是矩形”。
(教师指定一名学生板演,画出反例图形,然后教师点评。)
师:我们猜想,有三个角是直角的四边形是矩形。
(出示命题:有三个角是直角的四边形是矩形。)
师:如何证明一个文字命题呢?
教师叙述几何证明的一般过程:1.根据题意,画出图形;2.分清命题的题设和结论,结合图形,写出已知和求证;3.写出证明过程(有时需要写证明依据);4.归纳结论。
学生说出已知和求证,并尝试证明。
师:通过证明发现我们的猜想是正确的,李芳的画法也是正确的,所以我们把“有三个角是直角的四边形是矩形”作为矩形的判定定理1。
本案例是“矩形的判定”的第一课时。在前期,学生已经具有了平行四边形的研究经验,但本案例的教学忽视了学生的这些经验,让学生对矩形判定的学习回到“零起点”。
一、创设情境引入课题
出示图片,请你欣赏美丽的图案:壁砖、壁纸、地砖、图案;让学生观察
用地砖铺地,用瓷砖贴墙,都要求砖与砖严丝合缝,不留空隙,把地面或墙面全部覆盖.从数学角度去分析,这些工作就是用一些不重叠摆放的多边形把平面一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)的问题.(板书课题:平面镶嵌)
设计意图:多边形的镶嵌在日常生活中应用很广泛,家庭装修中出现这样图案很多,学生家中也有很多的这样的图案,用这四幅图片来引入,学生即熟悉又亲切,使得知识衔接较为自然,并为下一步探索多边形的镶嵌创设了条件。
二、设置问题动手操作探索结论
问题一:你能用正三角形、正方形、正五边形、正六边形中的一种图形镶嵌成平面图形吗?请你想一想,拼一拼,你有什么发现?
操作活动:先让学生想一想,然后拿出准备好正三角形、正方形、正五边形、正六边形纸片分小组开展拼图,在边实践、边思考的基础上,同学之间展开交流讨论。
探究1:如果只允许选择一种正多边形进行平面镶嵌,有哪些正多边形可以做到呢?
活动1:学生分小组用准备好的正多边形进行拼图试验。
结论1:正三角形、正方形和正六边形可以进行平面镶嵌。
问题二:只有以上三种正多边形能够平面镶嵌吗?还有哪些正多边形能单独镶嵌?例如正七边形、正八边形、正九边形、正十边形、正十二边形能单独镶嵌吗?为什么?你有什么结论?
引导学生用学过的多边形内角和的知识进行验证。
同学们通过计算,讨论、交流又发现:其它的正多边形都不能单独镶嵌。理由是:360度除以正多边形的一个内角的度数,若能整除可镶嵌,若不能整除不能镶嵌。
探索结论:同学们通过亲身实践,发现了两个结论:(1)边长相等的正三角形、正方形、正六边形都能单独镶嵌,正五边形不能单独镶嵌;(2)当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就能拼成一个平面图形。各小组将镶嵌的作品向同学们展示,教师边点评,边电脑演示以下几个图片。
设计意图:改变教材直接拿出拼成的图形做法,围绕问题,让学生经历动手实践、观察思考、交流讨论、归纳总结等过程,得出相关结论。学生自觉地运用计算的途径得出一般结论,学生的认知从感性认识上升到理性的认识,这是学生认知中的一个飞跃。加深学生对问题的理解和方法的掌握。即培养了学生实践能力,又培养了学生的探究精神;解决了正多边“镶嵌”的一般问题,顺利地突破教学中的难点。
三、延伸思考拓广探究
问题三:你能用正三角形、正方形、正五边形、正六边形中的其中两种图形镶嵌成一个平面图案吗?请你试一试。此时同学们的学习热情很高,很想再试试。
操作活动探索结论:四人合作边拼图,边计算,边讨论,边思考,争议激烈。最后四人达成共识。正三角形与正六边形、正三角形与正方形能镶嵌,而正方形与正六边形不能镶嵌。不同的组合可以得到不同的镶嵌效果。
意外发现:同学们通过计算,意外发现:1个正方形与4个正八边形、1个正三角形与3个正十二边形式形、2个正五边形与1个正十边形也能镶嵌。1个正三角形与2个正方形及1个正六边形这三种正多边形也能镶嵌。三种正多边形能镶嵌的还有:正三角形与正十边形与正十五边形;正六边形与正方形与正十二边形。
设计意图:多种多边形的镶嵌是较难的问题,思考时需要有丰富的想象力。本节课的教学让学生边动手,边计算,边讨论,边思考,让同学们争个够,争得明明白白,使问题突然明朗。只要几个正多边形的内角相加能达到3600,就能镶嵌。意外的发现也是让教师获得意外的惊喜。这是合理的教学设计与良好的学习平台所获。也是“独立思考、动手操作、合作交流、自主探索”新的教学模式所获。科学合理的探究方式能更好地培养学生的动手操作能力与探索思考的能力。
四、运用新知探究变式
问题四:能用若干个全等三角形镶嵌成一个平面图案吗?,用若干个全等的四边形能镶嵌成一个平面图形吗?
学生运用上述方法,经过拼图,思考,很快得出结论——能镶嵌。学生拼出的图形都是只有一个公共点的平面。教师接着问:你能拼出一大片的平面图形吗?有些小组说能继续拼,有些小组说不能继续拼,教师继续问:你们的拼图问题出在哪里?应该怎样拼才能继续?小组活动继续展开:有动手拼的,有画图的,有想象思考的,经过激烈讨论争议,总算达成共识。相等的边要拼在一起……
设计意图:问题四是特殊到一般的探索过程,前面的探险究过程只重视角的问题,忽视边长的问题。通过本例探究,引领学生的视角:镶嵌问题即要关注角能否拼成一周角,同时要求边长相等的拼在一起,这样才能镶嵌成一个平面图形。
五、图片欣赏升华课程
介绍荷兰艺术家埃舍尔和他的画作。埃舍尔在他的镶嵌图形中利用了基本的图案,并用几何学中的反射、平滑反射、变换和旋转来获得更多的变化图案。他也精心地使这些基本图案扭曲变形为动物、鸟和其他的形状。这些改变不得不通过三次、四次甚至六次的对称以便得到镶嵌图形。这样做的效果既是惊人的,又是美丽的。
设计意图:通过对一些神奇美丽的镶嵌图案的欣赏,让学生了解,不仅可以运用规则的几何多边形进行镶嵌图案的设计,一些不规则的图形也可以通过几何变换之后,形成令人惊叹的美丽镶嵌图案。同时,让学生学会欣赏,体会数学美的存在。
初中生对未知事物、社会问题或自然现象等具有强烈的好奇、质疑和探知情感。但由于初中学生在情感发展上具有特殊性,容易表现出情感状态上的反复性、波动性,不愿意参加教师组织的动手实践和探究操作活动。平行四边形章节内容与现实生活密切关联,生活中的很多方面都运用到平行四边形的知识。此时,初中数学教师要找准初中生畏惧探究、不愿探究的情感“焦点”,利用平行四边形的现实生活性、矛盾质疑性,设置激发学生主动探知知识情感的“切入点”,使学生产生认知和情感上的“共鸣”,带着积极情感,保持能动性,参与探究活动。
如在“平行四边形的综合应用”问题案例教学中,教师为调动学生主动探析问题、解答问题情感的积极性,在问题设置时就利用平行四边形的生活意义特点,设置出“用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,则每块地砖的长为多少?宽等于?”案例,通过生活性问题情境的铺垫,让学生情感发展的“活跃区”与主动探究情感的“发展区”有效共振,从而主动参与平行四边形问题案例的探析活动。需要注意的是,激发学生主动探究的方法多样,但教师使用时要贴近初中生情感发展特点,避免出现情境与情感上的脱节。
二、传授“突破点”,使学生能动
解题策略是解决问题的钥匙,是解题活动取得实效的关键。部分初中生探究和解决问题效能低下的重要原因就是未能找到和掌握解决问题的“精髓”。因此,初中数学教师要将探究技能的传授作为培养学生探究能力水平的重要前提,为初中生提供充裕的自主探究实践的活动空间和时间,强化对学生动手探知问题过程的指导,注重师生之间探析互动的交流活动,逐步获取“突破口”的方法和策略。
问题:如图所示,在ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F,1、求证:CD=FA,2、若使∠F=∠BCE,在ABCD的边长之间还需要添加一个什么样的条件?请你补充上这个条件,并进行说明。
学生探析:此时需要运用平行四边形的性质以及全等三角形的判定定理等知识内容。
师生互动解析:本题题意中告知四边形是平行四边形,利用平行四边形的性质,构建全等三角形的条件等式,从而求得第一小题。第二小题可以利用平行四边形的性质,进行等量替换,只要推导出BC=2AB就可得出。
解题过程略。
师生总结解题策略:题主要考查了平行四边形的基本性质,并利用性质解题。解题关键是利用平行四边形的性质结合三角形全等来解决有关的计算和证明。
三、增加“提升点”,使学生善于动