有线电视技术汇总十篇

时间:2023-02-13 07:28:25

有线电视技术

有线电视技术篇(1)

文章编号:1674-3520(2015)-10-00-01

一、视频点播系统的组成

(一)前端系统

1、视频服务器。视频服务器中,存在着丰富的压缩节目,借助网络的帮助,对用户进行服务,同时也可利用MPEG编码器对实况进行实时的转播。通过视频库管理软件模块,视频服务器能够对各项工作进行协调,且对友好的用户界面进行提供。视频服务器具备强有力的存储、I/O以及数据处理能力,其采用时间片调度算法,配置有SCSI硬盘,形成RAID磁盘阵列,且有两块并发码流输出卡配置在视频服务器中,工作方式为热备份。

2、播控服务器。播控服务器对SI统一生成,通过EPG电子节目指南,促使视频服务器播发控制、数字电视功能的完成。播控同时对上行请求进行接收,并通过解释,促使控制上行信息的传递、信息的传播、交互式视频节目的点播等功能的完成。

3、复用器。经MPEG-2压缩编码,音频数据、多路视会产生4―10Mbit/s的基本流数据,之后打包形成PES流数据,最后在TS包中对负载分割后的PES包进行插入,促成单路节目的TS流数据的形成。

4、QAM调制和混合器。经MPEG-2编码复用器,多路节目的TS流复用后,对单路复用TS流数据进行输出,并通过QAM调制方式进行调制。调制QAM后,经混合器对CATV网络上原有模拟电视信号与调制后的信号进行混合,完成CATV的网上传递。

(二)网络传输。传统的CATV以及视频信号等多媒体信号在前端系统上,通过调制和混合后,经过光纤传至各光节点,之后在利用电缆分配网络,使用户进行接收,用户端的控制信号通过反向信道,在处理之后,传达给播控服务器。

(三)用户端系统。通过用户端系统的使用,才能促使服务提供者操作的有效完成。计算机系统中,完成操作的PC终端是带有显示的设备;电视系统中,操作则是由机顶盒与电视机完成的。在用户端系统中,要对硬件问题进行处理,并且还要对相关的软件问题进行处理,只有对客户系统界面进行改造,才能有效实现用户的多媒体交互。另外,实施连续媒体演播时,都要注意声频与视频同步、演播中断与网络中断的协调等问题的处理。

二、有线电视视频点播系统的结构模式

通过对QAM调制器、数字压缩编码器、VOD系统的增设,在数字终端和数模双向传输系统的利用中,促使用户能够方便的通过计算机发出的指令对交互访问进行实施,并对VOD系统视频服务器中的节目源进行点播。用户数字机顶盒对用户指令进行负责,通过下行数字信号解密、解调与压缩编码的回传进行用户收视的提供,对于各种节目播出的控制与收费,VOD系统都能够自动进行。一般来说,视频点播系统的应用模式包括全数字双向传输系统中VOD的应用模式和数模双向传输系统中VOD的应用模式。

(一)数模双向传输系统中VOD的应用模式。数模双向传输系统中VOD的应用模式包括多功能数字机顶盒、双向HFC分配网和总前端数模数据平台。通过计算机将用户点播的上行回传信号指令输出至多功能数字机顶盒,机顶盒中包括了智能卡、解调、编码、上下行信号调制等功能,在机顶盒的输出下,进入5-65MHz上行信道,并传至HFC光节点光收发工作站,之后利用回传光发射机与光纤光缆接入,回传光接收机在前端数模数据平台中完成接收,后经光电转换,通过交换机进行视频服务器的接入,在双向HFC分配网和总前端数模数据平台的使用中,数字信号由视频服务器输出并传送至用户数字终端,使VOD上下行信号的传输得以完成,并促使视频点播的实现。

(二)全数字双向传输公用网络中的VOD应用模式。如果有线电视网络作为双向数字传输公用网络传输系统具备一定的自动化、网络化、数字化时,VOD的应用模式包括全数字机顶盒、双向数字传输公用网络和双向数字前端平台。通过对数字前端平台的信源的数字化采集、非编、录制、存储、检索,对视、音频数字信号进行输出,进入输入端,通过数字前端输入部分的编码、压缩、解调和各类服务器,在中央网络中心处理器进行ATM全数字平台交换以及网管、条件接收、节目选择等的处理,QAM-64调制输出部分后对下行信道的数字信号流进行混合输出,而路由器输出光数字信号流,通过全数字双向传输公用网络达到光收发工作平台,其数字信号流经光电转换输出,而全数字多功能机顶盒对信号的接收由双向FTLA结构的同轴电缆来实现,完成收视。由用户的上行信号和经全数字多功能机顶盒交换输出的数字信号分别通过上行信道,在收发工作平台混合输出后,利用光电转换对全数字ATM平台与数字前端输入部分进行接入。交换~01Yg因特尔网、IP电话、VOD指令、以及数据信号进行交换,各自的服务器分别接收,实现双向数字传输功能的有效发挥。

三、视频点播技术在有线电视网的应用

有线电视技术篇(2)

 

l 有线电视系统技术发展的阶段性

中国有线电视开始于二十世纪七十年代,经过二十多年的发展,从无到有,从小到大。今天,已经发展成为我国广播电视领域一支新兴产业。中国有线电视技术从自力更生、白手起家,到引进国外先进设备,系统技术水平发展很快。从vhf频段、全频道共用天线系统到750mhz、860mhz有线电视城域网系统,从同轴电缆传输到光缆、电缆、mmds等多种传输技术的混合应用,从只传输模拟信号到模拟、数字信号的混合传输,从单向广播网到双向交互网络。同时,先进的数据传输设备、数字传输系统以及计算机技术在有线电视系统中的成功运用,中国有线电视技术的发展日益接近国际先进水平。今天已经确立了它在国家信息化结构框架“三网一平台”的基础网络地位。有线电视技术先进,有良好的社会效益和经济效益,是国家的基础设施建设项目。

我国有线电视的发展历程,总体上看,可分为三个阶段,即:小型共用天线系统、大型共用天线系统和有线电视系统。

1.1小型共用天线系统阶段(1975—1985年)

1、生长的自发性

2、经费的自筹性

3、企业的主动性

4、系统的分散性

5、节目源的局限性

1.2大型共用天线系统阶段(1985—1995年)

1.3有线电视系统阶段(1996-现在)

有线电视系统的发展阶段。充分借鉴国际上的先进技术,因地制宜地采用光纤、电缆、mmds微波等传输技术,在省、市、县各行政区域范围内建设有线电视网。目前.正朝着大容量、数字化、双向多功能等方向发展。

经过几年的网络实践,一个以传输广播电视节目为主的a平台和一个以传输数据为主的b平台已经取得成功。既保证了千家万户收看高质量的广播电视节目,又为数据通信和各种信息的传输提供高速率、大容量、低资费、安全可靠的传输手段。

目前,我国大多数省市己开通采用数字技术的光缆干线,实现了全省、全市范围内的联网。同时,全国骨干网采用先进的数字传输技术,为开展数字、数据传输业务提供了优质的服务平台。我国有线电视进人了实现数字化、交互式高速多媒体信息网的实验阶段。

2 有线电视系统性能指标及相关标准

2.1基本概念

1、有线电视cable televition(catv):用射频电缆、光缆、多路微波或其组合来传输、分配和交换声音、图像及数据信号的电视系统。

2、付费电视pay-tv:采用加、解扰技术,用户需额外付费方可收看的电视节目。

3、双向有线电视two-way:具有上、下行传输的有线电视系统

4、前端bead end:在有线电视系统中,用以处理需要传输的由天线接收的各种无线信号和自办节目信号的设备。

5、分前端hub headend:系统辅助前端,通常设置在服务区中心。其向下传输模拟和数字电视信号,同时接收源于服务区内所有用户上行传输的信号。

6、干线系统trunk feeder system:在有线电视广播系统中,用于各类前端之间或前端与各分配点或各光节点之间传输信号的链路。

7、光链路optical link:利用光纤通信技术传输声音、图像和数据信号的链路。一般由光发送机(电/光转换器)、光纤、光接收机(光/电转换器)及其它必需的光器件(如光放大器、光连接器、光分路器和光衰减器等)组成。

8、光纤同轴电缆混合网(hfqhybrid fibercoaxial以光纤为干线、同轴电缆为分配网的接入网。

9、光节点fiber node:为hfc网络中完成光、电或电、光转换的节点,以光纤与前端(分前端)相连,以同轴电缆与分配网络相连。

10、下行传输通道downstream transmiwssion path:hfc网络的一部分,其信号在下行方向从前端或任何其它中心节点分配到用户的网络部分。

11、上行传输通道upstream transmissionpath:hfc网络的一部分,其信号在上行方向从连接到网络的用户到前端或任何其它中心节点的网络部分。

12、系统输出口system outlet:连通用户线和接收机引入线的接口装置。

13、双向用户端口two-way subscrider port:用户室内的可向下传输信号和向上传输信号的双工接入端口。

2.2性能定义

1、图象载波电平:在75q终端上调制包络峰处(同步头)的图像载波电压的有效值,以dbuv表示。

2、伴音载波电平:在75欧姆终端上无调制声音载波电压的有效值,以dbuv表示。

3、载噪比(c/n):图像载波电平有效值与规定带宽内系统噪声电平均方根值之比,用db表示。

4、交扰调制比(cm):在系统指定点,指定载波上有用调制信号峰一峰值对交扰调制成分峰一峰值之比,用db表示。

5、载波互调比:在系统指定点,载波电平对规定的互调产物的电平之比,用db表示。

6、载波复合二次差拍比(c/cso):在系统指定点,图像载波电平与在带内成簇集聚的二次差拍产物的复合电平之比,用db表示。

7、载波复合三次差拍比(c/ctb):在系统指定点,图像载波电平与围绕在图像载波中心附近群集的复合三次差拍产物的峰值电平之比(多簇产物时应取叠加功率),用db表示。

8、交流声调制比(hm):基准调制与峰一峰值交流声调制之比,用db表示。

9相互隔离:在待测系统的频率范围内,任意频率上系统某个输出口与另一个输出口之间的衰减,对任何特定的设施,总是取其频率范围内所测得的最差值做为相互隔离,用db表示。

10、色度/亮度时延差:电视信号中色度和亮度分量通过被测系统之后,它们的延时不等称为色度/亮度时延差,用m表示。

11、回波值:在规定测试条件下,测得的系统中由于反射而产生的滞后于原信号并与原信号内容相同的干扰信号的值。

12、上行汇集噪声:源自于用户端、电缆和无源传输设备引入的干扰,以及光纤和有源设备自身产生的噪声在前端或分前端汇集形成的噪声。

13、上行最大过载电平:保证链路中上行光发射机和放大器不造成严重过载失真条件下,在用户端可以注入的最大上行电平值。

14、上行通道群延时:在规定频段内不同频率信号从用户端到前端接收端产生的传输时间差。

15、上行通道传输延时:信号从最远路由用户端至双向通信设备上行射频接收端传输的总延时。

16、窄带数据频段:适应于传输窄带低速数据的信道频段

17、宽带数据频段:适应于传输宽带高速数据的信道频段

18、通道串扰抑制比:在双向系统运营时,上行信号(满负载时)对下行电视信号产生干扰导致传输技术指标劣化。下行图象载频电平与因此产生的寄生产物电平的比值。

19、上行通道的载波/汇集噪声比(c/n):用于在规定上行测量信号源电平值为标称值条件下,对上行物理通道作广义性的传输质量判别。c/n=上行信号电平(双向通信设备上行射频接收端口)一上行汇集噪声电平(双向通信设备上行射频接收端口)

20、用户端口保护隔离能力:当某用户端引入强干扰时,可能导致某信号频段(信道)停止服务。系统对其引入干扰抑制的分贝值。

21、用户电视端口噪声抑制能力:在同一用户室内,规定其用户电视端口(或电视传输物理通道)相对于该用户的双向数据端口(或数据物理通道)对上行传输公共通道具有的抑制(隔离)能力。

22、上行电平:上行信号功率(p1)与基准功率(p0)比的分贝值,即101gpl/p0。通常用dbuv表示。以在75欧姆负载电阻上产生luv电压的功率(0.0133uuw)为基准。

23、上行传输增益:在双向用户端口注入电平为a1的信号,经过上行传输通道,在前端或分前端双向通信设备上行射频接收端口处测量到的电平为a2,上行传输增益g=a2-a1以db值表示。

2.3系统性能指标

1、下行传输系统主要技术参数要求

(1)系统输出口电平(dbuv)60-80

(2)载噪比(db)≥43(b=5.75mhz)

(3)载波互调比(db)

≥57(对电视频道的单频干扰)

≥54(电视频道内单频互调干扰)

(4)载波复合三次差拍比(db)≥54

(5)载波复合二次差拍比(db)≥54

(6)交扰调制比(db)≥46+10lg(n一1)(n为电视频道数)

(7)载波交流声比(%)≤3

(8)色亮度时延差(ns)100

(9)回波值(%)≤7

(10)微分增益(%)≤10

(11)微分相位(度)≤10

(12)系统输出口相互隔离度(db)330(vhf)≥22(其它)

(13)特性阻抗75欧姆

2、上行传输通道主要技术要求:

(1)特性阻抗75欧姆

(2)频率范围(mhz)5-65(基本信道)

(3)标称上行端口输人电平(db,v)100(设计标称值)

(4)上行传输路由增益差(db)≤10(任意用户端口上行)

(5)上行通道频率响应(db)≤10 9.4—61.8mhz)≤1.5(32mhz范围内)

(6)上行最大过载电平(dbuv)≥112(三路载波输人,当二次或三次非线性产物为-40dbc时测量)

(7)载波/汇集噪声比(db)≥20(ra波段) ≥26(rb、rc波段)

(电磁环境最恶劣时间段测量,一般为18点--22点,注入上行载波电平为l00dbuv,波段划分见附表)

(8)上行通道传输延时(us)≤800

(9)回波值(%)≤10

(10)上行通道群延时(回≤30(任意3.2mhz范围内)

(11)信号交流声调制比㈤≤7

(12)用户电视端口噪声抑制能力㈣≥40

(13)通道串扰抑制比(db)≥54

附表:上行传输通道波段划分

波段

频率范围(mhz)

业务内容

传输媒质条件

ra

5.0-20.2

上行窄带数据业务、网络管理(上行)

共缆

rb

20.2—58_6

上行竟带数据业务

共缆

rc

58.6-65.0

上行窄带数据业务、网络管理(上行)

共缆

2.4相关国家标准和行业标准

1、gb/t6510-1996<电视和声音信号的电缆分配系统>

2、gy/t106-1999<有线电视广播系统技术规范>

3、gy/t121-1995<有线电视系统测量方法>

4、gy/t131-1997<有线电视网中光链路系统技术要求和测量方法>

5、gy/t132-1998<多路微波分配系统技术要求>

6、gy/t180-2001<hfc网络上行传输物理通道技术规范>

7、gy/t135-1998《有线电视系统物理发泡聚乙烯绝缘同轴电缆入网技术条件和测量方法>

8、gy/t130-1998<有线电视用光缆入网技术条件>

9、gb/t11318-1996<电视和声音信号的电缆分配系统设备与部件>

10、gb50200-1994<有线电视系统工程技术规范>

11、gbj42-81<工业企业通信设计规范>

12、gbj79-85<工业企业通信接地设计规范>

13、gb57-83<建筑防雷设计规范>

14、gbjl20-88<工业企业共用天线电视系统设计规范>

15、gb7393-87<声音和电视信号的电缆分配系统输出口基本尺寸》

16、sj2708-86<声音和电视信号的电缆分配系统图形符号》

3 有线电视系统的组成

有线电视系统由三部分组成:前端系统、传输系统和电缆分配系统。

3.1前端

位于信号源和传输系统之间,对传输信号进行各种技术处理的设备组合。它是系统信号处理的中枢。前端设备的性能,对整个系统的信号质量起着决定性的作用。

3.2传输系统

对于超大型或大型catv系统而言,传输系统指远距离传输的超干线或干线。它位于前端系统和电缆分配系统之间。对于干线系统的技术要求是将前端信号传送到各个干线分配点所连接的电缆分配系统。同时必须达到载噪比和非线性失真指标要求。传输系统一般分别采用电缆、光纤或微波多路mmds三种方式。

3.3电缆分配系统

位于传输系统和用户终端设备之间,把前端经干线系统传输的信号进行放大和分配。将信号均匀地分配给各用户,并使各用户终端得到规定的电平。同时,各用户终端之间具有良好的相互隔离作用互不干扰。对于双向有线电视系统还必须符合反向回传通道的技术要求。

4 有线电视系统传输技术

4.1电缆传输技术

1,电缆传输系统的构成

电缆传输系统采用同轴电缆做传输线,构成catv网的干线或超干线。电缆传输系统主要由同轴电缆和干线放大器间隔配置、级连构成,附属设备有过电型分支器、分配器,用于干线分路。供电器和电源插入器用于干线放大器的电缆芯线供电。

电缆传输干线示意图

2,电缆的传输特性及其补偿

(1)同轴电缆的结构:

同轴电缆由内导体、外导体和中间的绝缘介质组成。常用的有:藕芯型、封闭竹节型和物理发泡型。

(2)同轴电缆的传输特性:

a、特性阻抗:75欧姆

b、衰减特性:高频衰减大于低频衰减。细芯径电缆衰减大于粗芯径电缆衰减。衰减与电缆长度成正比。

c、温度特性:随温度的升高,电缆的衰减量增大。一般电缆的温度系数约为0.2%/度。

d、屏蔽特性:优质的电缆外导体有良好的屏蔽作用,传输信号不受外界干扰,也不会向外幅射、干扰其它信号。同轴电缆的屏蔽特性用屏蔽衰减表示,单位为db。

e、机械特性:包括抗弯曲性能、防潮抗腐蚀性能和结构稳定性。

(3)电缆传输特性的均衡和补偿:

由于同轴电缆的衰减与电缆的长度成正比,干线要远距离传输,必须对电缆的传输特性进行补偿。干线放大器用来补偿电缆对信号电平的衰减,均衡电缆的频率特性和温度特性。干线放大器使用特性相同的放大器,各放大器的输入和输出电平值相同。采用“单位增益法”设计。

3,对远距离传输的限制

同轴电缆传输系统采用干线放大器级联的方法实现对电视信号的远距离传输,传输距离越远,需要放大器的级连n越大,系统指标下降越多。

随着区域性有线电视网络建设的发展,干线传输系统的传输距离越来越大,而放大器级联增多导致噪声、频率失真和非线性失真的积累,使得信号指标下降。而且电缆的温度特性增加了系统设备的复杂度,远距离传输时,可靠性差。系统的维护管理任务繁重,服务水平难以提高。

4.2微波多路mmds传输技术

1,mmds的技术特征

(1)多路微波分配系统mmds的定义:用微波频率以一点发射,多点接收的方式把电视、声音广播及数据信号传输到各有线电视站、共用天线电视系统前端或直接到各用户的微波系统。

(2)频率范围:空间传输2500-2700mhz

接收分配111-750mhz

(3)传输方式:多路微波信号采用空间传输方式。发射与接收应在视距范围内进行。

2,mmds传输系统的构成:由发射系统和接收系统组成,发射系统的设备包括发射机、合成器、馈缆和发射天线;接收系统的设备包括接收天线、下变频器和供电器。

3,受无线传输缺陷的局限性

mmds传输系统属于无线传输,带有无线传输的通用缺点,如信号怕遮挡、反射出重影、易受干扰。这种方式不适用于人口稠密、高层建筑林立的大中城市。

4.3光纤传输技术

1,光纤传输技术的特征

(1)光纤传输损耗小,可实现电视信号的远距离干线传输,保证电视信号的技术指标。

catv系统中用于干线的同轴电缆,即使很粗(例如美国mc750电缆),在750mhz的损耗,也要40db/km左右。而采用波长1310nm的光信号,其损耗约为40db/100km。光纤的损耗比同轴电缆降低100倍。显然,用光纤替代每隔几百米必须设置一台放大器的同轴电缆干线,可以实现跨越几十公里的直传。彻底解决了干线放大器级联造成传输信号技术指标下降的问题。

(2)光纤频带宽,可以保证多路有线电视信号均衡地传输到各光节点。

(3)光纤无中继传输距离长,且抗干扰能力强,系统可靠性高。

(4)光纤传输技术不仅仅局限于传输有线电视信号,它为开展宽带综合业务传输提供一个开放平台,是宽带综合业务网的重要组成部分。

2,光纤传输系统的构成

最基本的光纤传输系统由电光变换器(e/o)、光纤和光电变换器(o/e)组成。也称之为光链路。光纤传输系统具有很大的传输容量,在系统中实行着多工传输。

(1)空分多工:(sdm)。(上下各一光纤)

(2)时分多工:(tdm)。

(3)波分多工:(wdm)。

(4)副载波多工:(scm)。

3,为开展宽带综合业务传输提供开放平台

光纤有线电视网不仅仅局限于有线电视业务,它可以为开展宽带综合业务传输提供一个开放的平台,是宽带综合业务网的一个重要组成部分。用光缆构成广域的包括电视业务在内的多媒体网络具有广阔的前景。

4.4光纤同轴混合网--hfc宽带接入网的拓扑结构

hfc有线电视网由光纤作干线、同轴电缆作分配网,构成光纤同轴混合网。它充分发挥了光纤和电缆所具有的优良特性,有机地结合而完成了有线电视信号的高质量传输与分配。从而构成了这一独特的光纤/同轴电缆混合网络结构。hfc是一个以前端为中心、光纤延伸到小区并以光节点为终点的光纤星形布局,同时,以一个星树型同轴电缆网络从光节点延伸覆盖用户。因而,hfc有线电视网络拓扑是一个星一树形结构。

在hfc宽带接入网中,模拟电视和数字电视、综合数据业务信号在前端或分前端进行综合,合用一台下行光发射机,将下行信号用一根光纤传输至相应的光节点。在光节点,将下行信号变换成射频信号。每个光节点通过同轴电缆,以星树形拓扑结构覆盖用户。从用户来的上行信号在光节点变换为上行光信号,通过上行光发射机和上行回传光纤传回前端或分前端。上下行信号在光传输中采用的是空分复用,在电缆传输中采用的是频分复用。

hfc网采用频分复用技术,将5-1000mhz的频段分割为上行和下行通道。5-65mhz为上行通道,87-1000mhz为下行通道。上行通道为非广播业务,主要传输包括状态监控信号、视频点播信号以及数据通信业务等。下行通道将87-550mhz为普通广播电视业务,该频段全部用于模拟电视广播时,除调频广播业务外,可安排约54个频道的模拟电视节目。550-750mhz为下行数字通信信道,用于传输数字广播电视、vod数字视频以及数字电话下行信号和数据,上行数据一般利用5-65mhz频段,为了提高抗干扰能力,采用qpsk(或16qam)调制。

有线电视hfc网上综合多种数字业务是依靠电缆调制解调器cable modem和机顶盒set-top-box。cable modem系统由置于用户端的cable modem(cm)和设置于前端的cmts(电缆调制解调端接系统)组成。用户端cm的基本功能是将上行的数字信号调制成rf信号,将下行的rf信号解调为数字信号。hfc接入网的主要优势为:巨大的接入带宽,可提供各种模拟和数字业务;cable modem系统的下行速率高是显著的优势,提高了网络资源的利用率;同时,还具有永久在线、无须拨号的优点。

有线电视接入网络的主要业务可分为两大类,即广播电视业务和交互业务。广播电视业务包括目前的模拟电视节目的传输和正在逐步发展的数字广播、数字电视等其它广播业务。交互业务包括internet接入、视频点播vod、可视电话、会议电视、远程教育、远程医疗等。

5 有线电视电缆传输网络

有线电视电缆传输网络,作为有线电视城域网的一部分,其规划设计,从规划思路、设计标准、技术指标、施工工艺规范等方面,都发生了很大变化。有线电视电缆传输网络已不再象以往那样:每个小区都自成体系,具有接收电视信号的前端、传输外线和楼内分配网络,属于封闭的、小型独立的共用天线系统。今天的电缆传输网络不需要前端,要建成双向传输宽带网络,它不但要符合达到相关的国家标准,还必须执行所在地域有线电视网的总体技术要求。

5.1双向传输的实现方式:

在hfc接入网中,为了实现信号的双向传输,同时采用了空分复用、频分复用和时分复用技术。从光节点至前端(或骨干网的分前端)的光纤传输链路中,上下行信号采用空分复用:从光节点到用户的电缆网中,上下行信号采用频分复用,数据传输采用时分复用方式,

5.2回传通道的噪声

在hfc网络中,反向通道的汇集噪声是影响双向数据传输的主要问题。由于反向噪声大,数据传输链路的c/n大大降低。因此,解决反向回传通道的噪声问题,是ⅲc网络顺利开展双向业务的关键。

上行通道中汇集的噪声来源于多种形式。其中,影响上行信号传输的主要是信号的削波失真、网络结构噪声和侵入噪声。

(1)削波失真主要由系统中的反向回传光发射机和双向放大器等传输设备的非线性失真造成。

(2)结构噪声主要来源于系统中的有源设备的器件自身产生的基础热噪声。同时,由于放大器的级联以及各支路回传信号的汇集,造成噪声的功率叠加,形成“漏斗效应”。

(3)侵入噪声主要由外界电磁波的侵入造成。是一种随机的、不规则的射频干扰。它是hfc网络开展双向数据通信需要努力克服的技术难题。系统中的侵人噪声主要有两种,即:a窄带短波信号的干扰:b冲击脉冲干扰:主要包括雷电、电动机、发动机,以及家用电器设备产生的脉冲干扰。

5.3电缆分配网络的组成

1、传输系统

包括光节点中的正、反向rf放大模快、双向延长放大器、线路分支器、分配器、供电器、同轴电缆等。光节点中的正向光接收机将下行光信号转换成电信号后,经置于光节点内的rf宽带放大器放大至较高电平,再由延长线上的延长放大器、同轴电缆和线路分支、分配器,将信号下行信号分路传送给各分配系统。来自分配,系统的反向回传上行信号,从分配放大器的输入端口沿着正向传输的途径进行反向回转,经同轴电缆、线路分支器、分配器、延长放大器,进入光节点,送人回传激光器。

2、分配系统

包括双向分配放大器(即楼头放大器),分支器分配器,双向用户终端和同轴电缆等。

延长线路将下行信号传送到各分配放大器的输入端。分配放大器将信号放大至所需电平后,经过同轴电缆、分配器、分支器,传送给每个用户终端。来自用户的反向回传上行信号,从用户应用设备的回传发射机,通过用户电缆回送人用户终端,经过分支器、分配器和同轴电缆,送到分配放大器的输出端,经分配放大器放大到合适的电平,从分配放大器的输入端送入传输系统。

5.4电缆分配网络的规划与设计

由于住宅小区的网络规划受土建规划的制约,各种形式风格住宅小区的土建设计千差万别,建筑物大小、高低、形状各异。特别是各小区内建筑群体布局各不相同。因此,住宅小区的网络规划也不可能有统一的模式,只能因地制宜。

1光节点的位置

光节点应设置在服务区的中心建筑物内,以达到尽量减少延长线电缆传输的最远距离,并减少延长放大器的级联的目的。进而降低传输信号的噪声和非线性失真。

2光节点服务区的划分

应按照各建筑物内的用户数量,将相近的建筑物组成500左右的服务区。由于不同结构的建筑物中的用户数量差别较大,因此不宜按照建筑物数量划分服务区。

3、器材选用

(1)同轴电缆的选用

系统内所有电缆均选用物理发泡电缆。延长线的电缆,应选用外导体为铝管结构的一12电缆。所有外线电缆均采用稳定的聚乙烯外护套。

(2)延长放大器

由于光接点服务区都不太大,采用手动增益控制放大器(mgc)能够满足使用要求。延长放大器按使用的模块不同,有推挽放大器和功率倍增放大器延长放大器一般应选用双模块功率倍增放大器。

4、双向放大器上下行通道结构

双向放大器总体上由正向放大通道、反向放大通道、分波器、混合器、稳压电源组成。

正向放大通道由前置衰减器和均衡器、一级放大模块、级间衰减器和均衡器、二级放大模块组成。

反向放大通道由反向放大模块、衰减器和均衡器组成。

5、设计计算公式

(1)放大器输出信号的载噪比与噪声系数的关系:

c/n=si-nf-2.4

式中:si为放大器输入电平

nf为放大器的噪声系数

(2)放大器级联后的载噪比(各级放大器工作状态相同)

(c/n)n=(c/n)1-10lgn式中:n为级联数

(3)放大器的c/ctb取决于放大器的输出

电平,输出电平增加ldb时,c/ctb下降2db。

(4)放大器级联后的c/ctb(各级放大器工作状态相同)

(c/ctb)n=(c/ctb)1-20lgn

式中:n为级联数

5.5用户分配网络

1住宅建筑(楼房)用户分配网的组成作为住宅小区网中的分配系统,主要包括用户分配放大器(即楼头放大器)、同轴电缆、分支分配器、用户终端。

2用户分配网使用的设备

(1)双向用户分配放大器

采用双模块功率倍增型或双模块推挽型。

(2)分配器和分支器

分配器和分支器都是无源网络设备,其主要功能为既对下行信号进行功率分配,对上行信号进行汇集。

分配器是将下行信号均匀分成几路,在下行通道中起分路作用。常用的有二分配器(分两路)、三分配器(分三路)、四分配器(分四路)、六分配器(分六路)。

分支器是将下行信号不均匀分成几路,输出信号有主路输出和分支输出。主路输出衰减小,可持续进行再分配。分支输出有一系列的衰减量,供信号分配时选用。同时,将主路输出端和分支输出端的反向回传信号进行汇集。常用的有一分支器、二分支器、三分支器、四分支器、六分支器。

分配器的主要性能指标

a、分配衰减:指分配器的输人端的输入电平与输出端的输出电平的差值。分路越多的分配器,分配衰减越大。

b、相互隔离:指分配器的各输出端之间的隔离度。相互隔离表征了分配器各输出端相互影响的程度。相互隔离数值越大,相互影响越小。

c、端口阻抗与反射损耗

有线电视系统中的所有设备均采用75欧姆端口阻抗。反射损耗是表征各种设备的端口阻抗匹配的程度。反射损耗的数值越大,表示阻抗匹配越好。

分支器的主要性能指标

a、分支衰减:是指分支器的输入端输入电平与分支输出端输出电平的差值。

b、反向隔离:是指分支器的分支输出端与主输出端之间的隔离度。反向隔离表征了分支器的分支输出端与主输出端之间相互影响的程度。反向隔离越大,相互影响越小。

c、插入损耗:是指分支器输入端的输人电平与主输出端输出电平的差值。分支器的分支衰减越小,其插入损耗越大。

有线电视技术篇(3)

中图分类号:TN943 文献标识码:A 文章编号:1673-8500(2013)05-0051-01

一、电缆传输技术

1.电缆CATV网络的构成

(1)信号传输前端:位于信号源和传输分配网络之间,对传输信号进行各种技术处理的设备组合。

CATV传输采用频分复用(FDM)方式,采用邻频传输技术,提高频率资源的利用率。双向传输功能的前端的下行和上行信号各行其道。

信号的加扰大多采用基带加扰方式。

(2)干线系统:由干线电缆和干线放大器间隔配置、级联而成。

系统网络拓扑结构以树枝型为主,也有星型―树枝型混合拓扑结构的应用。

树枝型适合正向多频道信号的传输分配,对于反向回传信号,由于噪声汇聚效应使回传信号C/N降低。

对干线系统的主要技术要求是保持低的非线性失真条件下,将前端信号传送到分配系统。

(3)分配系统:由电缆、桥接放大器、延长放大器、分配放大器和无源分配网络组成。分配系统的任务是把前端经干线系统传来的信号进行放大和信号功率的分配。

2.电缆衰减特性的均衡和补偿

电缆对传输的信号电平有衰减,其衰减大小近似与信号频率的平方根成正比。

常温下,电缆衰减特性的均衡和补偿:均衡器的频率响应与该段电缆衰减频率特性相反信号。

通过均衡器后具有平坦的幅频响应。电缆衰减和均衡器插入损耗造成的信号电平下降,由放大器放大来补偿

3.放大器的级联

电缆CATV网络按照“单位增益”法设计,即放大器的增益等于电缆的衰减和其他器件插入损耗之和。

(1)放大器的输出端噪声电平=NF+2.4+G(dBμV),第N台放大器的输出端噪声电平=NF+2.4+G+10lgN(dBμV)。信号的载噪比(C/N)较单台放大器下降10lgN。

(2)非线性:复合三次差拍(CTB):三阶互调产物集聚在图像载波附近,形成密集的“簇”干扰。是衡量系统非线性失真大小的主要标志。复合二次差拍(CSO):二阶互调产物落在信号通带中的一些单频干扰。

二、光纤传输技术

1.光纤CATV网络的构成

(1)光纤到户方式(FTTH):从前端经光纤将图像等信息直接传送到户的全光化的CATV网络,是CATV的发展方向。

(2)光纤―同轴电缆混合方式(HFC):光纤干线传输,同轴电缆分配到户,是目前的主流方式。

(3)光链路的环形结构:采用不同光缆,主备系统,提高运行可靠性。

2.HFC系统结构中的几个问题

(1)光纤的基本参数:损耗、色散。1310μm波长损耗:0.35-0.4dB/km,色散近似零。1550μm波长损耗:0.2dB/km,色散较大。采用色散位移光纤(DSF)和色散补偿光纤(DCF)。

(2)HFC的光强度调制:容易产生复合二次失真(CSO)。

(3)HFC的频率配置:48-450(550)MHz用于传送模拟电视信号,450(550)-750MHz用于传送数字电视信号,750-862MHz用于传送数据通信、多媒体信号。87-108MHz用于传送调频广播信号。5-65MHz用于传送上行信号。

(4)频率扩展到1700-2600MHz是发展高清电视的必由之路。

三、有线电视传输设备及其特性参数

1.前端信号传输设备

2.电视调制器。将信号源的视频信号和音频信号转换成符合有关制式标准要求的射频信号输出。

分为:模拟调制器和数字调制器。模拟调制器:直接调制式和中频调制式。技术参数要求符合:国家标准GB/T11318.3-1996《电视和声音的电缆分配系统设备与部件》。

3.数字QAM调制器:工作原理:首先对传输流数据进行DVB变换,然后进行帧同步字节变换和随机化处理、RS编码、卷积交织、差分编码、基带成型、QAM调制、上变频输出射频信号,可以直接在有线电视网上传送,完全符合DVB-C标准。技术参数要求符合:国家广播电视电影总局行业标准GY/T198-2000《有线数字电视广播QAM调制器技术要求和测量方法》。

3.声音调制器(调频器)

用音频基带信号对高频载波进行频率调制(FM)、放大输出的设备。分为:单声道调频器和立体声调频器。技术参数要求符合:广技监字(1999)183号《村村通用调频调制器技术要求》。

4.频道变换器(频道处理器):把输入的某频道电视信号转换为另一频道输出的设备。分为:直接变换式和中频变换式。技术参数要求符合:国家标准GB/T11318.3-1996《电视和声音的电缆分配系统设备与部件》。

5.混合器:将多个单路射频信号混合成一路FDM(频分复用)信号的设备。分为:频道型、频段型和宽带型。技术参数要求符合:国家标准GB/T11318.6-1996《电视和声音的电缆分配系统设备与部件》。

6.滤波器。改变通道的频率响应,抑制无用信号,保障有用信号 的传输质量。分为:高通、低通、带通、带阻滤波器,或按照结构分为:集中参数(LC)滤波器、分布参数(腔体滤波器和螺旋滤波器)、声表面滤波器。技术参数:带宽、插入损耗、阻带内的衰减、输入阻抗、输出阻抗、驻波比(反射损耗)。

有线电视技术篇(4)

1有线电视的发展历程以及数字电视技术的特点

1.1有线电视的发展进程

最早有线电视的画面是黑白色的,生产于1958年。直到1973年,有线电视才可以播放彩色画面的电视节目。有线电视的每一次改革和进步,电视的质量和画面都得到了不断的提升。目前,基本上每家每户都普及了有线电视。但是,随着技术的不断发展和进步,在互联网技术和移动技术的冲击下,有线电视的发展受到了巨大的冲击。为了促进有线电视的稳健发展,需要重视加强对数字电视技术的应用。

1.2数字电视技术的特征

数字电视技术主要是将传统的模拟信号转换为数字信号进行制作、传输、播出等。数字信号在传输的过程中,受周围环境干扰较小,因此使用数字技术传播的电视画面质感比较清晰。数字电视技术与传统的有线电视相比较,不仅传播的节目质量得到了有效的提升,而且节目内容也越来越丰富,而且数字电视技术也使点播、回看等交互式双向收看方式成为可能。

2有线电视中引入数字电视技术的优势

传统的有线电视由于信号传输的不稳定,很容易出现电视画面不清晰、画面失真、画面和音频不同步等问题。而数字技术在有线电视中应用就有效的解决了这一问题。数字电视技术是原有电视系统的数字化,将活动图像、声音和数据从信源编码、调制到接收和处理均通过数字技术进行压缩、编码、传输、存储,实时发送、广播,供观众接收、播放,由于在传输过程中传播的媒介是数字,所以信息的传播较为稳定,可以有效的避免信号丢失。数字电视的主要优势有:数字信号处理、传输使信号质量大大提高;频谱资源利用率高;多信息、多功能;以及数字化技术带来的有效便捷的用户管理系统。数字技术的应用在一定程度上实现了客户定制化的发展,由于数字化的信息更加方便储存,因此用户可以根据自己的喜好来随时选择自己想看的电视节目。与模拟电视相比,数字电视有明显优势:①高质量的音画效果:节目信号质量明显提高,画面更清晰,音质更优美,使HDTV、4K等高清电视节目成为可能。②内容丰富、自由选择:数字电视开展了多功能业务,用户在选择收看个性化的节目内容的同时,还可以进行文字录入、上网浏览、收发邮件、实时股票行情、交通信息、电视购物、远程教学、远程医疗、信息咨询等各种资讯信息服务,也可以享受视频点播、在线游戏、短信等多种交互式点对点的娱乐和信息等服务,使观众从被动地“看”电视变为主动地“用”电视。③服务领域极大拓宽:数字技术可实现时分多路,充分利用信道容量,利用数字电视信号中行、场消隐时间,可实现文字多工广播;易于实现信号的存储,而且存储时间与信号的特性无关;很容易实现加密和解密技术,有利于加密和保密通信,便于专业应用或广播应用(特别是开展各类收费业务)。④强大的抗干扰能力:可避免电视系统的非线性失真的影响,不会产生“交扰调制”与“相互调制”的干扰,消除了模拟电视的“雪花”“暗纹跳动”“画面不稳定”等毛病。⑤频道资源得到释放:利用数字压缩技术,使原来只能传输一套模拟电视节目的频道,现在可以传输多套数字电视节目,用户最多可以收看到上百套电视节目,同时还提供了几十套广播节目等等。目前,数字电视广播有3个相对成熟的标准制式:欧洲的DVB(数字视频广播)标准、美国的ATSC(先进电视制式委员会)标准、日本的ISDB(综合业务数字广播)标准。国内常用于有线电视系统的数字电视制式是DVB-C标准,用于8MHZ的数字有线电视系统,传输层最大码率38.1Mbps;采用MPES压缩的音频、视频及数据格式作为信源压缩与编码(ES流),采用公共MPES-2传输流(TS流)复用方式,QAM正交幅度调制方式。

3数字化电视技术的应用展望

有线电视技术篇(5)

中图分类号:TN943.6 文献标识码:A 文章编号:1007-9416(2012)03-0000-00

近年来,随着微电子技术、数字信号处理技术及信息技术的快速发展,关于数字图像获取、存储、处理、显示等方面的技术基本成熟。数字技术因其诸多优点,在军事、工业、文化等领域得到了诸多应用。数字电视就是一种,它将电视节目的录制、播出、发射、接收等过程均采用数字编码和数字传输技术。

广播电视是我国最大的媒体,有线电视网是其中重要的组成部分。针对有线电视网的数字电视技术研究,可以利用现有资源,为客户提供优质的服务,同时,可以增强有线电视网在市场中的竞争活力。

1、数字电视相关理论介绍

数字电视(DTV)是将模拟电视信号进行抽样、量化并编码转换成二进制代码的数字信号,并进行各种功能的传输、处理、存储等,最终为用户提供电视服务。在数字电视系统中,无论信源部分,还是业务中心,无论视频,还是音频,都是通过数字方式进行编码压缩。数字视频按照协议进行传播,所有可用的节目都是通过分布式网络传输。跟传统的模拟技术相比,采用数字电视技术具有如下优点:

(1)提高了电视节目的的质量。数字电视采用数字信号传输,噪声没有积累,传播过程中也不受地理环境因素的影响,提高了传输质量,增强了抗干扰能力。因此,接收端电视节目的清晰度高。

(2)增加了频道数量。采用模拟制式的频道带宽是8MHz,而采用数字电视时,1个8MHz模拟频道可以传输8-10套数字电视节目。这样,频道数量较大地提高,从而可用提供更多的电视节目。

(3)可扩展性好。采用数字电视技术,通过与计算机及网络技术配合,可用实现设备的自动控制,可用提供其他的数据业务,增强了其可扩展性。如可以提供电话、计算机浏览、电视购物、电子银行、远程教育等以往模拟信号模式无法提供的新业务。

(4)数据安全性好。采用数字技术,更容易实现加密和解密,对收费类业务及专业应用创造了条件,可用实现条件接收系统的应用。

(5)音频效果好,可用实现五声道超重低音的5+1环绕声的家庭影院服务。

2、利用有线电视网进行数字化改造的必要性

广播电视媒介是我国的主要媒介。随着改革开放的深化,经济水平和人民的物质文化生活有了较大地提高,传统的媒体理念也发生着转化。广播电视媒体在发挥宣传、教育和娱乐三个主要作用的同时,更要注重服务意识,提高服务质量,为用户提高更多的信息和知识。数字电视在地面广播、有线电视广播和卫星电视广播中已全面的应用,各种传播媒体的竞争十分激烈。有线电视网作为我国广播电视网的重要组成部分,为了在未来的激烈竞争中生存和发展,必须认清形势,制定战略和技术策略。

(1)有线电视网能够提供高性价比的服务,即以较低的价格为用户提供很好的图像质量和多套电视节目。目前,我国的有线电视用户已超过1亿户,成为我国家庭入户率最高的信息媒介工具。从市场角度而言,有线电视网进行数字化技术改造具有群众基础。

(2)有线电视网经过几年的建设、改造,如采用混合光纤同轴电缆网、干线传输光纤化改造,信号质量有了较大的提高,使数字电视在有线电视网中传输成为可能。

(3)有线电视网在采用数字压缩技术后,削弱了直播卫士对其的优势,同样能提供上百套电视节目。

(4)有线电视网本质上是一个信息传输平台,任何数字业务经过一定的处理,就可以按照协议的格式在这个平台上传送,对开展多样化业务提供了可能。

(5)有线电视网可以进行双向改造,变成双向传输网络,用户端不只是被动地接收信号,可以个性化地主动的获取服务,并在网络上进行交互。在业务上,不仅可以传送传统的电视和声音广播外,还可以开展交互式的电视、数据、电话业务。于是,可以将有线电视网发展为新的有线电视通信综合业务网。

此时,对有线电视进行数字化改造,条件成熟,是挑战,更是机遇。

3、基于有线电视网的数字电视关键技术

3.1 数字视频广播标准

90年代,欧洲各国组织确立了促进数字视频广播的DVB国际合作联盟,并出台了一系列标准,如采用QPSK调制方式的DVB-S标准,采用QAM调制方式的DVB-C标准及DVB-T标准。DVB标准只涉及数字信号的传输和调制,信源压缩编码的方式采用国际标准MPEG-2。

美国高级电视系统委员会ATSC制定了采用MPEG-2视频压缩和AC-3音频压缩、信道编码采用VSB调制方式的数字电视国家标准。

日本综合业务数字广播ISDB制定了采用QPSK调制方法的数字电视标准,利用已经标准化的复用方案在一个信道上传送不同类型的信号。

数字电视传播标准其实是用来定义不同传输介质上实现TS流传输的方式。不管哪种标准都要克服干扰,选择合理的调制方式,并采用容错纠错技术。

3.2 基于有线电视网的数字电视网络构成

数字电视有线网络采用HFC网结构,干线采用基于SDH的光纤传播。在应用中,每个光节点可以根据需要安排500-2000户,每户采用同轴电缆宽带入户,用户端采用机顶盒接入。机顶盒对数字信号进行解压,获取数字图像和声音。数字有线电视网络的构成如图1所示。

3.3 数字前端技术

有线电视网络实施数字化首要要将模拟前端升级为数字前端。基于有线电视网的数字电视前端包括视频服务器、以太网交换机、调制器、接入服务器和管理/数据库服务器。

视频服务器是数据存储和传输的系统,可以支持多达几百个用户连续播放视频节目的需求;这个技术实现的原理是视频服务器对用户传输视频数据的速率远高于用户接收的速率。以太网交换机连接各个相关的服务器,实现多路100M以太网数据流的快速交换和多路100M视频流、数据流的输出任务。调制器是实现数字信号传输的一个关键设备,在有线电视系统中采用64QAM调制方式,负责32M下行数据流的调制;数字有线电视的64QAM调制,具有类似双边带的特征, 它们的峰值功率和平均功率是不同的, 根据计算和实践经验, 通常数字调制器的输出电平比模拟调制器的输出电平低10dB。接入服务器可以分为拨号接入和Cable接入,在CATV网络上多采用Cable接入模式。管理/数据库服务器在系统中承担用户请求的响应和中心资源的实时控制和分配,对系统数据库进行管理。

3.4 数字终端技术

电视的发展趋势是数字电视,但目前广大用户使用的仍然是模拟电视机,因而不能接收数字信号,在用户端要将数字信号转换为模拟信号,数字机顶盒就是这样的装置。在有线电视数字网中,数字机顶盒( STB)是用户终端,也是网络终端,将有线电视网作为传输平台, 电视机作为用户终端, 将数字电视信号转换为模拟电视机能识别的模拟电视信号,使用户享受数字电视、数据广播等全方位的信息服务。机顶盒的组成部件主要有机顶盒芯片、CPU、Flash、存储器、CA、中间件等,它的功能可以分为两部分:接收和解码。调谐模块接收射频信号,转换为中频信号,进行A/D转换器变为数字信号,送入解调模块进行解调,输出MPEG传输流串行或并行数据。视频送入视频解码模块,对MPEG数据解码,然后输出到PAL/NTSC编码器,编码成模拟信号,再经视频输出电路输出。音频送入音频解码模块,对MPEG音频数据流进行解码输出PCM音频数据到PCM解码器,得到立体声模拟音频信号,经音频输出电路输出。

3.5 数字网络技术

目前, 广泛采用两级光链路级联的双星型结构作为网络结构技术。这种技术中,总前端和分前端通过使用1550nm光发射机,依靠双星型光纤结构环型路由形成物理环型网,组建一级链路。 二级光链路采用1310nm光发射机将信号送到星型光纤结构的各个光节点, 随后进入电缆分配系统,构成分布式HFC网络。

有线电视网络主要符合系统指标, 就能传输DVB-C数字有线电视信号, 不同的拓扑结构可能存在可靠性及扩展性方面的差别。分布式HFC网络有完整的冗余保护体系,其可靠性、可扩展性及网络性能指标较好。

4、结语

数字电视技术伴随着信息产业技术革命蓬勃发展,改变了人们的社会生活质量和方式。基于有线电视网的数字电视技术,改变了有线电视网的硬件结构,在有线电视网的广大用户基础上,合理利用现有的资源,为用户提供优质和增值的服务。有线电视网在我国国民经济生活中,将发挥越来越重要的作用,最终将成为国家信息高速公路的一部分。

参考文献

[1] 罗志利.浅谈数字电视在有线电视网中的应用和发展[J].内蒙古广播与电视技术,2002,1:22-36.

有线电视技术篇(6)

随着社会科技的发展和计算机网络技术的发展,数字电视技术广泛应用到了传媒行业,并且在传媒行业当中发挥出了巨大的作用。数字电视技术是一种先进的科学技术,它的出现为电视媒体行业带来了巨大的变革,也使传媒行业发生了巨大的变化,可以说数字电视技术有效推动了传媒行业的发展。当数字电视技术替代了传统的模拟技术以后,传媒行业在数据的制作和传输方面对图像、视频的清晰度和准确性及安全性方面有了更高的要求。这些方面的提高跟着传输信道和信道资源等方面都有关系,本文针对有线电视网络中数字电视技术的应用做出了阐述。

一、有线电视网络中的数字电视技术

有线电视网络技术就是从传统的模拟信号技术发展而来,它把原先的信号复制之后,传送到有线电视当中。数字电视技术把接受到的模拟信号进行处理,转换成为数字信号,这样的信号使得电视机上呈现出的画面更加清晰、真实。数字电视技术应用于有线电视网络中具有以下几个方面的特点:

(一)画质更清晰

数字电视信号不仅仅是简单的对原来信号的复制,是一种信号的转换,这样电视信号更加完整,传输的画面不会失真,所以画质更加清晰流畅。

(二)传输介质是光纤

数字电视信号传输介质是当前较为先进的光纤,光纤传输介质传输的信号可以有效拓展数据信息的荷载量,可以提供更多的传输频道,也为电视内容的丰富做出了重要贡献。

(三)跟互联网有效结合

数字电视技术有效应用到了互联网技术,这使得电视向网络方面靠近了很多。用户可以通过有线电视进行网页的浏览,可以在网页上寻找更多的视频资源,另外用户还可以利用有线电视进行视频通话,实现远程操作等。

二、有线电视网络中数字电视技术的应用

有线电视的数字化中最终要的技术就是数字电视机顶盒,它主要的作用就是把电视和网络有效连接在一起,它在中间起到信号转换的作用。数字电视机顶盒能够把模拟信号转换成数字信号,也就是把接收到的模拟信号通过压缩和编码转换成数字信号。到了接收端,再通过解码技术把数字流转换成清晰的视频和音频信号,通过客户端的显示器和音响把这些信号呈现给用户。数字机顶盒的主要作用体现在以下几个方面:(1)机顶盒可以向用户提供清晰的音频和视频信号。(2)数字电视技术是在机顶盒服务的基础上进行的。(3)机顶盒可以通过电联传输一些广播数据信号,它是通过同轴混合网传输的。另外机顶盒也可以在交互式多媒体中广泛应用,可以充分利用网络中的多种服务,比如软件的升级、接收电子邮件、点播视频等。总之数字电视技术跟原先的模拟电视技术相比,有了更多的网络功能,对于网络的发展和电视技术的发展都起到了积极的推动作用。目前我国在很广泛的范围内都是用到了数字电视技术,国家在很多区域实行了数字化电视技术和双向网络有线电视技术的改造工程,主要可以从三个方面体现出来:第一方面从客户端可以看出数字信号的许多先进的功能。第二方面实现了双向网络,可以进行人机交互。第三方面可以清楚、流畅的接收多个卫视频道信号。数字化电视技术还根据用户的需要增添了许多网络功能,如打游戏、点播电视剧和电影节目等。

三、数字电视信号的有线电视网络传输

与传统的模拟电视技术相比,数字电视技术主要采用了HFC方式,利用了AM-VSB频分复用方式,它把不同的节目放到了不同的频道上。另外数字电视技术通过将传输信道的编码处理使当前数字信号符合现在的HFC网络的标准要求。在高频载波形式上,MPEG-2与HFC在高频段进行网络传输时模拟信号是一样的,主要采用混合传输方式,传输介质主要是电缆和背光链路。

四、数字电视的环节组成

(一)信源编码

此环节的主要功能就是把图像和声音等模拟信号转化成数字信号,实现信号的数字化。

(二)复用技术

此环节把图像和视频等各种类型的数据融为一体,以数据包的形式在传输信道上传输,最后组合形成一套节目流或者多套节目流。

(三)信道编码与调制

信道适配就是信道编码,主要功能是对各种数据流进行处理,以减少错误,还可以将一些基带数据流存放到高频波段当中,变成频带信号。

(四)传输信道

数字电视技术可以采用HFC、卫星、数字干线和无线等多种传输信道进行信号的传递。总之,数字电视技术是信息化社会的必然产物,它传输和接受的画面更加清晰、流畅,受到用户的青睐,也是传媒行业发展的新方向。但是数字电视技术还存在着诸多的问题,需要相关专家进一步的研究改进。

参考文献:

[1]吴昌进.浅析当前有线电视网络中数字电视技术应用及发展前景[J].科技资讯,2010(13).

[2]赵春梅.论地面数字电视技术在广电应用中的实践[J].西部广播电视,2016(16).

有线电视技术篇(7)

1有线电视网络中的数字电视技术简介

数字电视技术,可以理解为一种带有数字信号的电视设备。其原理就是将原来的信号进行数字的分解和转化,将处理后的数字信号进行传播,最后在接收时进行信号的还原和重组。这样一来,有线电视网络中的原信号就不会受到损害,不但提高了画面的清晰度,而且还能还原真实的效果。数字电视技术正处在迅速发展的阶段,它对于有线电视网络的未来发展,起着至关重要的作用,它的广泛应用代表着未来有线电视网络的发展趋势,是电视信号传输的过程中取得的一次具有重要意义的变革。

2数字电视技术的应用

2.1数字电视技术的应用优势

在目前的数码市场中,有线电视已经比较普遍,人们每天都会利用空闲时间看电视休闲娱乐或者了解新闻。数字电视技术有着它天生的优势,信息的承载量比较大,可以为用户提供更多的信息,带来便利。它的应用存在着以下3个方面的优势。2.1.1信号传输的高稳定性在有线电视网络中,传统的数字模拟技术很容易受到其他因素的干扰,在传导过程中很容易出现信号变异和信号中断的现象。相比之下,数字电视技术的应用可以说是历史性的突破,在传输中信号的稳定性高,不仅提高了传输信息的真实性和可靠性,而且还有效地降低了信息在后期的编辑过程中发生失真现象的概率,大大增加了信号传输的高稳定性,提升了信号的质量。2.1.2方便的网络化操作数字化电视技术在使用的时候,不仅发挥了传统的优势,为观众提供画面和音频的信息,同时它还与网络技术结合,给用户带来了全新的体验,例如娱乐游戏、视频点播以及上网服务,通过提供这些个性化的服务,实现了电视与网络的紧密结合,为更好地适应信息化社会的发展创造现实条件。2.1.3频道范围的不断扩大传统的电视频道在选择方面受到限制,主要原因是信号的传输和处理方式过于陈旧,使得频道的数量有限,观众错过很多精彩的节目。传统的模拟电视频道宽带普遍是10MHz左右,在频道传输时,只能够传输一套普通节目,无法满足人们的需求。但是通过数字电视技术,可以同时传送多个电视节目,主要是因为,数字电视技术的信息传递是依靠编码传送频道。因此,伴随着编码技术的不断更新,数字化电视技术能够传递的节目数量仍然会不断扩大,为越来越多的观众提供更好的服务。

2.2数字电视技术的应用

2.2.1数字电视技术中机顶盒的广泛使用数字电视技术在有线电视网络中的应用主要是机顶盒,机顶盒可以对数字信号进行模拟化操作,提取数字信号中的关键信息,进行先模拟后还原的一系列操作,从而呈现出真实的声音和画面。机顶盒在数字电视技术中应用十分广泛,可以更好的支持广播电视功能,提高图文点播和图文电视的操作功能,从而达到信号的交互式利用,便捷网络化操作。数字电视技术未来的发展会完全取代传统技术,在现在能够达到的电视传输信息基础上,观众们可以收到超过过去四倍的电视节目,在很大程度上满足了人们的精神需求。正是出于想要获取更多更及时的资讯内容,机顶盒作为这样的一种媒介应运而生。数字电视技术机顶盒除了有从模拟电视过渡到数字电视的一般功能之外,还有付费点播等新业务功能。如今,数字电视一体化还没有完全普及,机顶盒仍然还有存在的必要性,而且还有很大的进步空间和现实意义。2.2.2有线电视网络的双向网络化改造在有线电视网络中,应用数字电视技术对大众媒体的进步和发展有至关重要的作用。在信息化时代,人们对电视的需求已经不单单满足于对机顶盒的图像转换功能和双向网络功能的要求,同时还要求研发人员逐渐重视有线电视的双向网络化改造。双向网络化改造主要由三个方面组成:一是把网络系统内部的单项网络变成可以循环使用的双向网络;二是对客户端进行升级改造;三是对电视系统整体进行改造。在双向网络化改造工作完成之后,也就出现了人们在观看中央台的节目同时还可以收看湖南卫视等多个电视台节目的现象。双向网络化改造之后,在数据线中传递的信号变得更加稳定,电视屏幕呈现的画面也更加清晰,很大程度上满足了观众对电视的更高体验要求。

3数字电视技术的未来发展前景

有线电视技术篇(8)

中图分类号:TN943文献标识码: A

1数字电视

数字电视就是节目从有线电视台传输到我们家里,这一过程中节目是以数字信号的形式存在。简而言之,数字电视以数字信号的形式进行电视信号的产生、存储及传输。

数字信号具有很强的抗干扰能力,即使线路传输过程中衰减比较大,或者是受到一些干扰,信号仍然能保持良好,至少要比模拟信号受到的影响小一些。数字信号物理值不直接拥有表征意义,在某些数字电路中,一个电压波形,当它低于1V时,无论到底是多大,都表征“0”;而当它高于1V时,则被视为“1”。也就是说,数字信号其实是利用了真实世界中的电压值,人为地划分成若干区间。当该物理量的值落在某一区间内时,就将其判定为某一约定好的数字值,这就是数字信号与模拟信号的本质差异。当数字信号受到干扰时,只要其当前值仍然落在其应该在的区间内,那么其表征的值就没有受到影响。同时,从通信的角度上看,频率是一种资源,射频的频带是有限的,数字电视系统能更有效地利用带宽。再者,数字电视使用的MPEG-2编码,能支持多种不同分辨率及复杂度的编码方式,使节目的视音频质量能随需应变,且能满足较高的观赏需要。此外,如果运营中能使用双向网络,则用户可以更多地参与到节目中,例如在线点播、回看、上网,可以衍生出许多增值业务。

2节目传输

有线的节目来源有多种,大多数是通过卫星接收机、模拟传输等得到节目,然后将这些节目源加入复用器将多个节目加在一个TS流中,此时再通过加扰器将节目流进行加扰,这样没有缴费的用户就看不到节目了。加扰后的节目通过QAM解调器将多个流再放在一个频点内,因为一个QAM只能解调一个频点,所以一般情况下是需要多个QAM解调器。多个QAM解调出多个频点信号,再将这些频点信号放入混频器中将多个频点信号放入一个同轴电缆中,最终通过HFC网络将信号送到用户家中。这些是信号由源到端的的过程,读者不妨自己画一个流程图,加深印象。

作为解码端来讲,它使用高频头进行下变频,尽管电缆上包含了所有信号,但一个高频头同一时间只能接收一个频点的信号。

3数字电视解决方案

在整个数字电视的运营系统中可以由五层组成:

运营支撑层:这层有网络管理、资源管理、用户管理。

业务控制层:认证及鉴权系统。

业务及支撑层:EPG系统、增值应用。

业务传输层:视频编码、码流复用、业务数据插入、DVB加扰。

用户接入层:机顶盒。

这里只对有线电视技术的架构做一个概括习惯的介绍,具体的系统这里就不做详细介绍了。

4MPG-2系统层

MPEG是一种视音频编码标准。MEPG-2不仅仅包括了编码,还包括了码流的封装格式及数据流的格式。所以,数字电视广播系统通常使用MPEG-2协议。以其为基础,DVB组织增加了一些内容,使其更适应于数字电视业务,就产生出了DVB标准。

MPEG-2的系统层定义了两种码流结构:

PS (Program Stream) 节目数据流,针对错误少的环境,比如硬盘与本地U盘等交互式多媒体,分组长度可变一般比较长。

TS (Transport Stream) 传输流,针对易发生错误的环境将多个独立时间基点的多道节目合成单独的数据流,比如射频等各种传输信道,属于同一套节目的各个PES分组具有相同的。TS是我们有线电视技术中的重点。

5码流中包的传输

传输流是最基本的传输实现,数据最终以码流的方式输出。码流部分其实就是DVB协议的最底层,类似于TCP/IP协议的数据链路层,这一层的主要任务的是数据打包,数据帧结构和传输。

码流中最基本的单位是包(Packet,又称为分组),前4BYTE是包头,后184BYTE为负载。有的包大小为204字节,那是因为在原来的188字节后加了16字节的前向纠错(R-S编码),需要进行转换处理时可以直接裁剪掉。在实际的数字电视应用中,因为实际信道会有各种干扰导致的误码,这16个字节的纠错是必然要使用的。

包是信息的最小单位,包的类型由包中的负载决定。一个包有可能是视频、音频、辅助信息或者是填充的空包。

码流的速率称为码率,单位是bit/s,因此可以计算出一个100M的码流文件在码流发生器上以38M码率发送时,持续时间是:100M(BYTE) × 8 / 38M = 21.05秒

码流传输采用时分复用方法,也就是说同一时间只能传输一个包,多个包通过排序的方式,在不同的时间里依序进行传输,就像行人搭乘扶手电梯一样。

视频基本流先是被封装,成为视频打包基本流(VPES),因为TS流的基本传输单元是TS包,因此VPES再次被打包成TS包,然后它和其它的众多TS包一起,混合(复用)到TS流中送出。在TS包的结构中,有一个叫做PID的字段,协议规定,对于要进行传输的一个组件,或者一个Section,当被封装为TS包时,其PID相同。例如:江苏卫视的一个节目《非诚勿扰》,装载它的各个包,其PID为一个值0123,音频数据则在PID为0124的包中传输。抽取出拥有相同PID的所有包,依序重组在一起,就是一个原始数据源。如果我们依序过滤出PID为0123的包,将其重新组合,就成了打包前的VPES流(即视频打包基本流)。因此,我们从机顶盒的角度,就把“获得某节目视频流数据”的任务,转化成了“得知该节目视频所在PID”的任务。

6STB如何找到节目

DVB网络的树状结构,层次从高到低分别为Network网络 > Transport Stream传输流 > Service 服务> Component组件。

在全球范围内,每一个正式的网络都有一个唯一的网络标识,就是Network ID。在各自的网络区域内,有很多TS流,而这些TS流也都有各自的标识,每一个TS流都在不同的频点上,一个频点有多个TS流传输到用户家中。单单是这些,用户使用机顶盒仍然不能找到每个台对应的节目,机顶盒需要将频道中设置Service_ID与TS流中的Service_ID相对应才能够找到相应的节目。

在MPEG-2协议中,采用了一种索引的思路来进行节目的寻找。可以凭着直接检查TS包头的PID找到PAT表。PAT表指出了当前这个TS流中包含的各个节目所对应的PMT表的PID。此时就能通过检索PID的方式,把这个PMT表找出来。PMT表叫做节目映像表,它指出了它所描述的节目其所对应的视频流、音频流、PCR(时间参考信息)的PID,即它提供了找到各个组件的“绳头”。我们以视频为例,既然有了视频所在TS包的PID,那就在当前TS流中过滤出PID等于这个PID值的包, 这些过滤出来的包依序排列,就可以从这些包中先还原出视频打包基本流VPES,然后再将多个VPES还原出视频基本流。按照上述的方法,我们就可以分别地得到一个节目的各个组件。有了视频基本流、音频基本流、参考时钟,机顶盒就能够对节目进行解码,输出显示在电视画面上了。

机顶盒得到了视频和音频的解码后,还需要得到节目的名称和EPG信息。SDT就是服务描述表,它最重要的作用就是给出各个节目的名称、节目提供商的信息等。EIT表列出当前及后续的电视节目,包括了节目名称及播出时间。

一根同轴电缆中会同时有很多个频点在传送信号,即存在多路TS流。但是解码一侧,即机顶盒,由于只有一个高频头,因此同一时间只能调在某一频点上,只能接收一路TS流。

在整个网络(即包含所有TS流)中,需要有一个表来描述这整个网络,比如这个网络中有哪些频点是有节目信号的,哪些是没有的,这就是NIT表。这个表在实际运营中会在所有的频点上都存在。

7CA系统

为了使机顶盒能够达到运营商可管可控,我们对单、双向机顶盒使用授权和鉴权的机制。

如果一个网络是双向广播网络,那么可以使用鉴权认证的方式实现条件接收,也就是说使用终端与局端双向交互、动态获取密码的方法。但有些地方的广电网络是单向网络,这就要依靠授权的方式实现“条件接收”,授权是不需申请,局端直接将有权观看的节目的密钥发给机顶盒。

机顶盒运营商首先需要对节目传输流进行加扰,有以下过程:

7.1码流加扰:

加扰过程是在发送端用一个伪随机序列(CW,Control Word)对复用后的TS流进行实时扰乱控制,使用加扰序列控制对打包的图像信号进行扰乱。接收端必须获得CW,再次对码流进行位运算才能将码流还原,只有授权用户才能获取CW,才能对码流进行解扰。但CW如果明文传输,则很容易被破解,因此提出需要对CW进行加密,在码流中传送的是密文信息。

7.2CW加密

有线电视技术篇(9)

新形势下,信息时代的快速发展,促进网络信息服务的多样化发展,尤其是近几年来双向互动网络技术的推广,人人可以通过智能手机平板电脑进行视觉信息采集和网上娱乐购物,人手一机,让一直占据客厅主席位置的电视备受冷落,当下传统的有线电视仅靠农村高龄寿星坚守阵地。2017年4月18日时光网刊登一则消息:“传统媒体高投入、产量低、观众流失严重,而互联网视频网站的发展迎来新高潮,二者的竞争势必造成中国文化产业的洗牌”,由此可见,有线电视技术和宽带技术的竞争势必形成新一轮融合局面,加强二者融合是当今时代潮流的发展所向,借助政府引导,积极推进二者融合,有助于中国电视产业的再次繁荣发展。

1当前我国有线电视技术与宽带技术发展现状

1.1有线电视技术发展概况

早在上个世纪七十年代,有线电视就在中国生根发芽,经过漫长的历史进程,有线电视技术逐渐走向成熟,进入二十一世纪来数字高清电视的应用,让人们欣赏到更加清晰的图文,但是近几年来,宽带技术的发展,网络音频视频的有线传输,把有线电视用户分流的越来越少,2017年3月广电总局就此局面提倡建立在广电网统一管理下,加快传统媒体和新兴媒体深度融合,推动各级广播电视台建设融合媒体制播云平台、服务云平台;推动有线、无线、卫星协同一体化建设;加快推进全国有线网络整合,推动有线网络双向化、智能化改造;加快地面数字电视广播网建设,促进音频广播的普及和应用;推广普及新一代直播卫星机顶盒;大力推进普及TVOS自主创新技术标准,推进广电终端标准化、智能化;推进省级、地市级广播电视台高清制播能力建设;推动建设覆盖全国的广播电视监测监管系统。

1.2我国宽带技术发展概况

我国宽带技术最早使用电话线进行传输,大概传输速度在256k/s,随着科技的进步,今天我国宽带技术采用光缆线,平均传输速度达到4G/s,提高了网络画面传输的流畅性和画面质量,尤其是免费wifi的应用,手机app软件以及网络机顶盒的使用,随处看见人人使用手机在线读书、看电影,发达的网络已经渗透到人们生活的每一个角落,这种唾手可得的网络优势深深的影响着中国人们的生活方式,也是现代网络的优势所在,随着网络媒体提供的个日益增多,能满足越来越多不同人群的差异性需求,在一定程度上推动中国文化的进程。

1.3有线电视技术与宽带技术的融合

随着宽带技术的多功能化,逐渐吸收越来越多的电视观众,而中国有线电视有着丰厚的历史底蕴,在其发展的过程中,积极采取措施,不断提高技术含量,丰富电视节目,引进国外大片,提供看电视剧即可扫二维码领各地商场优惠券活动,两家在使尽手段拉拢观众的同时,一方面分流观众群体,加剧了竞争的矛盾;另一方面促进了两家的相互渗透相互交融,鉴于当前竞争的局面,清华大学教授尹鸿曾经说过:“与其两个媒体的竞争,不如加快二者的融合,推动信息网络基础设施互联互通和资源共享,有利于促进消费升级、产业转型和民生改善。”由此可见二者重组优化是大势所趋,有利于中国文化产业的升级改造。

2两者融合的重要性

新形势下,有线电视结合宽带网络媒体优势,进行强强联合,具有重大的意义。

2.1二者融合有利于优化重组

有线电视技术和宽带技术的融合有利于从整体上增强有线网络的竞争实力,化散乱为整合,产生规模效益;整合后的部级有线电视网络将成为国家信息网络的重要组成部分,促进通讯网络间的良性竞争,促进信息服务全面发展。

2.2二者融合有利于优化社会资源

有线电视技术和宽带技术的融合节约社会资源,通过一根光纤线缆即可实现网络资源共享,减少有线装置的费用以及安装成本,同时在二者融合的过程中优化人力资源,精简机构,节能减排,为社会节约了大量人力、物力和财力,优化社会资源。

2.3二者融合有利于提高网络电视技术的创新能力

有线电视技术和宽带技术融合的同时促进有线网络运营主体的体制创新,并使运营商走上服务创新、技术创新、内容创新之路,建立和完善适应二者融合发展要求的运营服务机制,最终加快有线网络的产业化进程。综上所述,有线电视技术和宽带技术的融合,是网络有线电视分散资源向集约化整合的迈进,在优化重组的过程中,调整了产业结构模式,实现网络电视互动,提高服务业态质量,壮大了网络电视经济实力,促进了电视技术的创新、服务创新、质量的提高,同时也抓住有利机遇,积极响应政府政策,促进中国民生发展。

3有线技术和宽带技术的融合策略

有线电视和宽带技术的融合需要时间的磨合,是两大运营商的协调合作,一直以来有线电视和宽带进行持久的争夺战,由于二者既有各自技术的优势,又存在技术上的差异,在融合的过程中难免出现一些矛盾或者冲突,因此着力解决二者融合中出现的问题,积极展开策略的研究,全面提升网络电视综合服务能力。

3.1建立统一的规划标准

有线电视和宽带在自己的历史发展历程中都有各自的优势,尤其在技术要求和技术参数上各有千秋,在二者融合的过程中,进行技术交流,制定统一规则,例如统一的技术参数、设备标准、行业规则、人员技术要求等等一系列的行业发展规制,从而提高系统管理能力和技术开发能力,经过一系列的统一规划和整合,为今后网络有线电视的运营、管理以及业务功能的实现,提供优质的解决方案。

3.2政府积极发挥引导作用

二者的融合两者均是最大的赢家,在融合的进程中需要政府相关部门的监督引导,适时引导采取合理措施,辅助相应法律法规的建设,根据实际需要给予政策上的优惠,从侧面推动社会资本融合,探索社会合作新业态,有助于网络有线电视产业的发展和提高。

3.3探索多种合作模式

二者融合积极探索多种合作模式,建立多渠道合作形式,进行网络整合企业改制,采取各种办法加快部署智能终端融合,因地制宜灵活合作,根据两家优势共同协作,在扩大业务的基础上,提高单个用户的有效利用率,在业务的合作中形成技术模式和技术体制的融合,从而催生新生态合作形式的共赢,推动二者融合、发展、创新,有利于网络电视的深层次发展。

4结语

有线电视技术与宽带技术的融合,加快了网络有线电视升级,促进了新兴媒体的发展,尤其是技术整合创新,让有线电视朝着市场化、新兴化、多样化的综合服务业态的转变,让宽带技术朝着集约化规模化发展,在二者优化重组的过程中巧妙利用多项社会资源,为今后技术创新、业务创新以及服务创新打下坚实的基础。

参考文献:

[1]李晓辰.有线电视技术与宽带技术融合探讨[J].科技展望,2017(3).

有线电视技术篇(10)

在互联网发展快速视域下,宽带技术和有线电视技术的融合是必然趋势,能够开发有线电视技术更多功能,能够满足更多人的需求,能够更好实现视频行业的长远发展。想要让宽带技术和有线电视技术融合的更恰当、更合理,就需要制定合理的融合发展策略,发挥出两种技术的优势,实现合作共赢,由此达成发展目的。

1有线电视技术和宽带技术的发展概况

1.1有线电视技术发展

传媒渠道扩大。当前有线电视技术拥有多种渠道进行信号传播,如卫星、无线等,不同渠道之间存在着竞争关系,竞争关系的产生和发展极大的推动有线电视技术发展,各类不同渠道的涉入也较大程度上满足了不同用户的不同需求,能够将服务体现的更全面,使得市场竞争一直处于活跃状态,对消费者而言带去更多益处,深受消费者喜爱。网络整合重要性突出。有线电视技术发展到今天是日积月累的结果,规模相比于以往有了较大扩展,开发潜力更是巨大,有关部门制定了一系列制度,为有线电视技术和宽带技术的融合铺平道路、创造条件,网络整合变的重要,有线电视网络必然从分散状态走向统一,由此打开有线电视网络新格局。业务融合日趋明显。以往的有线电视技术的业务范围是单一的,发展目标存在局限性。伴随人们生活水平的提高,现有的业务已经无法满足人们更多的需求,从而加速了有线电视技术多元化发展,增添了较多项符合人们需求的业务,如语音业务、数据业务等。业务的不断推陈出新,使得业务体系更加完善、更加健全,拉近了有线电视业务与消费者的距离,有益于两方各取所需,同时也为有线电视技术和宽带技术的融合提供了可能,有利于双方实现共赢。

1.2宽带技术发展

宽带技术近些年发展迅猛,基础设施不断完善、加强,更是在国家政策支持下得到了广泛普及,已经渗透到了人们的日常生活中,现在宽带技术已经成为了人们生活中必不可少的部分。此外,在宽带技术发展的视域下,各行各业借助宽带技术实现了发展结构升级,较大程度促进了经济市场的繁荣,且宽带用户全体呈逐年上升态势,具有较为坚实的群众基础。

2有线电视技术与宽带技术融合发展策略

有线电视技术和宽带技术融合可以从多方面入手,具体策略如下:

2.1技术上进行统一

有线电视技术和宽带技术属于两个独立性质的技术,各有所长,存在较为明显的差异,两种技术在融合时,相互弥补,需要清楚两种技术的优势与劣势,寻找能融合的契合点,做到知己知彼。首先,在技术的实际应用中,为了避免两种技术之间的差异性造成融合阻碍,在制定相关数据和参数时,需要对数据及相关信息进行统一要求,尽量将数据做到贴合,避免不良影响发生。通过对两种技术之间参数进行统一规范,实现两种技术优势的结合。此外,还需要对两种技术的特点进行筛选,使得其中一项技术弊端被另一项技术优势所弥补,做到扬长避短,提升无线宽带技术功能。另外,还需要制定一定的行为规范对两种技术的融合进行制约和管理,制定这种方案解决两种技术融合矛盾,为两种技术的顺利融合做好准备。

2.2加强政府引导

想要让有线电视技术和宽带技术更快、更好融合在一起,需要借助外部力量加快融合步伐,而这股力量就来源于政府支持。政府的介入可以开拓出较宽融合渠道、创造各种融合机会,对两种技术融合大有助益。政府可以制定相应的扶持性政策制度,实现对技术融合发展的引导。但在政府介入中需要注意两个问题,一个是在引导过程中不要过多的干涉技术层面的规划,另外一个就是针对两种技术的融合目标,制定、出台多项支持政策,确保有线电视技术和宽带技术更顺利融合,也为消费者使用安全带去切实保障,从根本上提有线电视技术和宽带技术高融合的速度与质量。

2.3加强渠道监管

在两种技术融合过程中,需要多个渠道进行全面监管,而技术的复杂性、内容渠道多样性也给监管部门带去了一定监管难度,针对此种状况,提出两个监管小建议。一是利用现有的技术对内容渠道进行筛选,减少后期的工作量和长时间的等待。二是对不同渠道内容进行分类,针对类别进行深层次的审查和辨别,为满足更多用户需求做出努力。

2.4促进共赢发展模式

上一篇: 美术课教案 下一篇: 国企党建工作总结
相关精选
相关期刊