有线传输技术论文汇总十篇

时间:2023-03-28 14:55:26

有线传输技术论文

有线传输技术论文篇(1)

2通信工程中有线传输技术的改进———以光纤有线传输技术为例

与其他传输技术相比,光纤传输技术有着较为突出的优越性,现阶段其己经基本取代同轴电缆传输技术、绞合电缆传输技术等成为当前最主流、应用最广泛的通信技术。加强光纤有线传输技术的改进意义重大。

2.1光纤有线传输新技术的应用

我国最早的光纤传输技术即为PDH技术,其主要采用图像与语音结合的多媒体方式进行光纤传输,传输方式相对简单,且传输设备也比较单一,随着经济建设的不断变化与发展,这种准同步数字传输技术已经很难适应时展的需要。2.1.1SDH技术的应用SDH技术是继PDH技术之后的一种更严密、更灵活的传输技术。以SDH技术为主的光纤传输节点设备又称为同步数字序列设备,SDH技术传输设备正为全球各领域广泛应用于光纤节点处理和传输中。由于当前的SDH技术相较于之前的PDH技术在网络传输与处理功能、业务处理能力及传输网络的灵活度与运行能力、网络维护等各方面都有了明显的提升和改善,极大地弥补了原先的PDH技术的缺点和不足。2.1.2DXC技术的应用该技术的出现是在SDH基础上演变而来的,是为了更好地服务于用户之间相互传输、转化等信息提供相应的技术支持。该技术的使用可以通过光纤数字技术传输网络配线、软件管理、业务监控等方面进行改革创新,进而做到光纤业务分级处理、动态信息监控,从而保证了信息传输的质量。2.1.3DWDM技术的应用密集波分复用系统简称DWDM,现今它大致向两大领域发展:用于DWDM系统长途传输骨干网的大容量长距离,以及用于DWDM系统本地骨干传输网,其具有大容量短距离、多业务接口的低成本以及多速率的特征。使用DWDM技术,能够增长光纤的传输容量,可达几十倍、几百倍,这给IP业务的指数性增长提供了条件。DWDM的优势在于其具有容量超大,“透明”传输数据,高度的组网灵活性、经济性和可靠性,兼容全光交换,能最大限度地保护已有投资的特点。

2.2光纤有线传输网络改进方案

2.2.1骨干层骨干层改进由四部分组成:①通过收敛骨干层的带宽和路由,让它生成网状或环状型的组网,且节点的扩展性要非常强;②尽量使用不同种类的光缆路由组网,及不同种且能对其进行自愈保护SDH环网系统中的直达电路;③为了使障碍点降到最低,应尽最大努力缩减跳线转接;④把接入层业务进行负荷分担处理,尽量采用接入环双归属,合理地增加骨干环与骨干节点的数量。2.2.2光缆线路光缆线路作为连接传输设备的物理介质,若中心局房对应管辖区域没有清晰的划分,根据目前的设备类型的组成,核心层承担两局间电路和调度电路,为传输系统提供物理上的光通路,并且至各局的业务趋于均衡,建议对设备区域进行中远期的规划划分,使运营商选择符合自身网络发展的设备类型。故光缆线路优化要求根据网络的组成,若中心局房对应管辖区域合理并有清晰的划分,通过设备搬迁调整实现合理划分,从而为本地SDH光传输网的网络结构的稳定发展打下基础,考虑经济、工程等因素。假设各环路均为STM-16环路,既可提高设备的可控能力,网络结构调整和设备搬迁替换过程可进一步对生产性能高效性的各指标进行评估比较。以通路规划的思路,可采用拓扑,又可适当引入设备厂家,采用两纤双向复用段保护方式,提高竞争力。2.2.3接入层从两个方面入手对接入层进行优化,根据接入环容量已经趋于饱和的实际情况对运用光纤资源并且做出接入环的裂变,相当于把接入部分进行化一为二的裂变,以此提升网络的容纳量;把接点数设置在8个范围内更加适应当今的环网中的节点数的现状。运用拆环的方法来提高环路的容量大小来解决接入节点相对多的环路。由于业务发展不断增大的需要,通过提升环网的容量实现升级。2.2.4设备依据考虑的着重因素进行设备优化,主要从以下几个方面考虑:①根据自身发展需要的网络规划和商务谈判等情况,优化方案实施的难点是搬迁替换设备过程和调整网络结构应标准规范,现今MSTP设备的优选处理能力弱于SDH光传输网设备,而且要以保证网络的正常运行为基础对网络结构进行调整。②对厂家设备环境进行优化。根据优化网层面的分布对厂家设备环境进行优化。而且在实际优化的过程中,要对电源、光纤、机房等条件进行充分地考虑,运营商在准备的阶段应做好与设计院等各方意见的协调工作。不能局限在一个厂家的设备,要做出详细的方案,但也不宜做出过多的电路割接方案,尽可能地形成一个具有完善、稳定调整目标的网络方案。

有线传输技术论文篇(2)

中图分类号:TN811

当今是个高度信息化的世界,人呢么的日常生活、工作都离不开网络的运行,信息传输在互联网技术中的地位举足轻重。信息传输技术的水平直接关系到信息化的产业结构,随着人们对信息技术的依赖性越来越大,因而对信息的传输质量与速度也提出了更多的要求。有线传输的介质通常有以下几种,双绞线、光缆、光纤和同轴电缆等,可以根据不同情况选择适合的传输介质。

1 有线传输介质

传输介质可以在两个通信设备间进行连接,传递信号从一方向另一方。以往的信息传输媒介是语音,可输送的信息容量很小,传输信号的模式也很简单,受外界的干扰比较大,这样就对信号传输的质量有了一定影响。有线传输介质主要有双绞线电缆和同轴电缆、光缆三种。

1.1 双绞线电缆传输。双绞线电缆是应用非常广泛的一种介质材料,可以用来传输数字信号以及模拟信号。通常来说,双绞线的电缆中有一对或一对以上的双绞线,两条相互绝缘的导线缠绕在一起,一般是逆时针缠绕。双绞线分为两大类,一类是非屏蔽双绞线。二是屏蔽双绞线。这样的通用配线,在以前是传输模拟信号的,现在数字信号的传输也同样适用。双绞线的传输距离最大为100m。屏蔽双绞线的外层由金属材料包裹,能够减少辐射,阻止信息被窃等作用,于此同时,它还具有很高的传输率。缺点是屏蔽双绞线的价格较高,安装困难,需要用特定的连接器,有较高的技术门槛。非屏蔽双绞线更适合综合布线系统。

1.2 同轴电缆传输。同轴电缆在曾经应用广泛,但是后来发展越来越不好。它的技术原理总是使用同轴的铜管和铜网来进包裹铜线。同轴电缆有两种,一是基带同轴电缆,二是宽带同轴电缆。基带电缆只用在数字传输。同轴电缆的缺点是安装、维修困难,价格高。优点是,带宽范围大,对外来干扰的抵抗性好。同轴电缆在降低对外来干扰信号的同时,也使频带的宽度得到了加大,有些同轴电缆的频宽甚至达到十几兆赫兹,由于直径的尺寸不同,同轴电缆分为细、粗同轴两种电缆。粗和细两种电缆在总线的两端都要装上与之相匹配的终端电阻。

1.3 光纤传输。光纤是现代科技的产物,光纤通信的载体是光和电信号。光缆由光纤组成,光纤是一种输光信号的介质,细小并柔韧。光缆在目前的长距离大容量传输中扮演着重要角色。光纤中有光脉冲,出现时表示为“1”,不出现时表示为“0”。光纤分为两大类,一类是传输点模数类,传输点魔术类又分为多模和单模光纤,单模光纤在制定的工作波长中只能够用单一的模式传输,传输的频带宽,容量大。而多模光纤能在制定的波长上用多个模式进行同时传输。这是一种高效的传输方式。

2 与无线传输技术的对比

有线传输技术和无线传输技术是现代信息传输技术最重要的两种,无线传输技术近年来的发展迅速,这基于信息化的进程,多种通信设备的不断发展,人们对信息传输的速度和质量要求也水涨船高。无线传输技术的成本较低,实现方式也容易,在很多领域中都得到了使用,比如手机通信、“无尾电视”、WIFI技术和手机软件互联等领域。无线传输在最近几年的发展势头强劲。

无线与有线的传输技术在介质方面有所不同,有线传输的介质有光缆和电缆等,无线传输的介质是电磁波。在有线传输技术中,传导材料可能制约传导的质量,传输距离会影响传输的信号质量。无线传输的信息发射装置若不同,那么信号的传输质量也不同。可以看出,有线传输信号是数率衰减,无线传输信号与空间电磁波成平方反比关系,无线传输模式可以在距离上走的更远,目前,航天通讯就是使用的无线传输模式。总之,有线传输的稳定性较好,传输的速度快,有比较好的抗干扰性,安全系数高等特点。

3 有线传输的发展动态

人类信息化工程的不断建设,对信息传输的要求越来越高,无线传输在这样的时代背景下诞生,虽然有灵活、方便的特点,但是,目前在人机互联、机机互联,在这样的条件下,有线传输还是最适合的。从某种意义上说,无线传输不可能全面替代有线传输方式。目前,随着科技的不断进步,处理语音之外的传输介质不断出现更新,其中有本文字、符号数字、图形图像和数据包等等,利用此种传输介质可以支持电脑、数字电视、幻灯片、多媒体、机器仪器、电影科技、显示屏等。过去简单传输介质已经无法满足全方面发展的传输技术了,有线传输技术与无线传播技术在传输方式上有所不同,但都占据了非常重要的位置,尤其是近几年来,WIFI的普及和无线技术的告诉发展更是迅速,有线传输在技术上还是有自己的优势,如传输的质量和效率方面。这两种传输技术的良好发展能更好的为人们生产生活服务。

3.1 传输技术发展。网络技术的不断发展,比如:路由技术、数字复分接技术、光纤通信技术、网络信号的传输协议技术、传导材料升级等等,这些都需要有线传输技术发挥重要作用,其优越性不言而喻,有线技术也有赖于传输的材料更新和传输协议的发展、软件系统等。光纤的传输成本很高,但是基于现代工业发展和经济发展的需要,有很大的上升空间。

3.2 传输距离更远。由于人们的生产生活需要,对传输距离有了更高的追求,世界越来越小,地球村的概念被广泛接受,尤其在我国加入世界贸易组织后,我们有了更多的国际贸易机会。我国幅员辽阔,国内贸易在地理上的跨度也是很大,还有西部大开发等项目,这些都要求传输距离要远。很多跨地域的光缆和电缆、跨海电缆被铺设,这对于世界的有线传输事业起到了促进作用。对于光纤传输来说,传输距离当然是越远越好,所以,研究人员在传输距离方面的努力一直没停过,光纤放大器的应用对传输距离技术的提高又很大作用。

3.3 网络化发展。计算机的网络技术迅猛发展,信号的传输更加网络化,而不是传统单目标指向性的连接方式。在功能上要能实现信息传输,还要能对安全性有保障,这才是未来发展的方向。随着IP业务的大规模应用,通信行业的结构有所改变,行业面临着重新洗牌的情况,新技术也随之出现。软件的开发控制也标志着光通信技术也朝向网络化、智能化发展。

4 结束语

有线技术有很好的发展前景,尽管无线技术的迅速发展给有线传输技术带来影响,但是无线传输技术的不安全性却是有线传输技术可以弥补。多种通信技术要协调发展,为人们进行更好的服务。在通信事业未来的发展当中,我们要根据有线传输技术本身的特征来对该技术进行优化、改进,从而推动传输事业的发展。本文通过对有线传输技术进行分析,可以得知有线传输技术在通信领域的重要作用。我们要继续深入研究有线传输技术,进一步探索其新技术的应用,可以创造更多的经济效益,为我国的信息传输事业做出贡献。

参考文献:

[1]刘湘荣.通信线路与容灾能力研究[A].中国通信学会2009年光缆电缆学术年会论文集[C],2009.

[2]王永红,宋志佗,鹿中晖.我国西南地区通信线缆的安全与防护技术[A].中国通信学会2009年光缆电缆学术年会论文集[C],2009.

[3]潘峰.半干式光电复合缆研究[A].2012年光缆电缆学术年会论文集[C],2012.

有线传输技术论文篇(3)

 

税源监控系统是税务机关利用现代信息技术对税源信息进行全面采集、分析和利用的税务信息化应用系统。一般由企业端和税局端组成。安装在企业的企业端系统功能是用于对企业进行税源信息监控、采集和数据传输;安装在税务机关的税局端系统功能是用于接收所采集的税源信息,并对信息进行分析和利用。税源监控系统是税务机关对重点税源企业进行实时监管的重要工具,应用先进信息技术提高系统功能,对税务机关降低税源监控成本,提高税源监控实效,从源头堵塞税收流失具有重大意义。

一、无线监控技术简介及3G-EVDO优势分析

1. 无线监控技术简介

目前无线监控技术实现上有下面几种方式:

(1)模拟无线数据收发模块实现。该类监控数据传输距离主要由发射机的发射功率来决定,监控范围受发射距离的限制,范围小;数据在空中传播,易受电磁等干扰,数据可靠性不好;模拟传输没有很好的加密模式,安全性不好;数据传输率很低,不能满足税源监控要求的从企业原料采购到成品销售的多个重要环节产生的数据采集及时性、准确性、安全性等要求。

(2)GSM网络实现。这类监控通信方式是依托全球的GSM网络,它的最大特点是打破了距离的限制,从而可以实现远程监控。主要是利用GSM短消息业务或语音业务进行业务监控。语音业务就是利用语音信道进行通信,把各种信息转化成语音信号计算机论文,通过语音信道发送。缺点是:由于网络传输不稳定,短信中心容量等问题,信息发送不可靠,并且缺乏安全性;消息的发送到接受很多情况会有较大时延,加上内容长度限制和GSM上网速度只能达到9.6kbps,这种网络环境无法满足企业税源实时监控和准确性的要求。

(3)GPRS网络实现。GPRS是由中国移动推出的2.5G服务,是在现有的GSM系统上发展出来的一种新的分组数据承载业务论文服务。GPRS与GSM语音的根本区别是,GSM的基础是电路交换,GPRS的基础是分组交换。因此,GPRS特别适用于突发性的、少量的数据传输,也适用于偶尔的大数据量传输。和GSM相比的优点是传输速度较快,缺点是数据传输速度偏低,有跳跃性,只能满足部分视频监控的要求。

(4)3G-EVDO即CDMA2000 1x EVDO,是3G系统CDMA2000的演进版本,基于CDMA的集群技术。3G-EVDO系统设计的基本思想是将高速分组数据业务与低速语音及数据业务分离开来,利用单独载波提供高速分组数据业务,而传统的语音业务和中低速分组数据业务仍由 CDMA2000 1x系统提供,这样可以获得更好的频谱利用效率,网络设计也比较灵活,抗干扰能力强、信号穿透能力强、系统容量大。1x EV-DO 于2001 年被ITU-R 接受为3G 技术标准之一。

2. 3G-EVDO技术优势分析

3G-EVDO是基于CDMA系统的升级,兼容了IS-95系统的空中接口技术,在升级上只需进行软件方面的升级。而CDMA网络经过7年多的建设,通信网络覆盖全国,基础设备完善齐全,将会是最快升级到3G网络的系统。通信过程中不会产生脉冲式射频,当在周围各种强电设备密布的情况下,不会给其他电器设备造成射频破坏。3G-EVDO通信网络覆盖全国,并成为成熟和稳定的网络,为无线局域网络税源监控系统提供一个稳定、安全的接入环境。3G-EVDO系统本身网络的安全性就好,传输过程中满足IP化和多媒体化的需求,系统具备视频编解码处理、网络通信、自动控制等强大功能计算机论文,直接支持网络视频传输和网络管理,使得监控范围达到前所未有的广度。比较符合以后的发展方向。3G-EVDO可提供高达153.6kps的无线数据通讯带宽,采用信道资源分配方式,可确保基于无线局域网络的税源监控系统企业信息传输的实时性。目前从技术先进性上来看,3G-EVDO是各种无线网络通讯技术中最新的改良技术,在网络安全、传输、解码、分配、覆盖等方面都有着明显的优势。

二、3G-EVDO技术在税源监控中应用的意义

伴随着网络技术3G业务应用范围不断扩大,基于3G系统的无线局域网络监控系统将会用到各个领域,3G技术与税务信息化的结合也是大势所趋。目前国内有关无线局域网税源监控系统产品多数为针对2G无线网络系统进行开发的,由于税源监控图像所包含的信息量非常大,而2G通信系统本身又具有带宽小、抗干扰能力差、衰落严重、误码率高等特点,税源监控数据传输容易掉包的问题没有得到很好解决,无法达到实时监控的作用。如何将远程的监视、系统遥控、监控无线化有机地结合起来,做到既可以基于无线网络进行远程的监视、遥控和图像的传输,又具备通常税源管控的功能,并且投入费用合理,能够更加有效地确保系统运行稳定,将安全防范技术提高到一个新的水平,是目前税源监控信息化的应用的最大需求. 开发基于3G-EVDO无线局域网络的税源监控系统实现税源监控管理网络化、无线化、远程化具有积极的现实意义,主要体现在以下几个方面:

1.有利于实施全方位的税源动态监控

基于3G-EVDO的企业无线局域网络税源监控系统,可深入企业生产经营全部环节,进行实时监控、采集企业生产、经营真实信息,实施全方位的税源动态监控和纳税评估,对提高税源信息采集质量、加强信息共享和综合分析利用、查找和堵塞征管漏洞、提高税源管理实效具有重大意义。

2.有利于解决复杂工业环境下有线网络税源监控技术难题

有关税源监控系统的开发与应用,在国内也已有少量报道,但企业现有的局域网络都是有线网络,在工业环境复杂的企业生产环境中有线网络的应用受到环境的很大限制,存在布局困难、损耗大、传输距离短、分布范围有限、运行成本高的缺陷。无线局域网络监控系统具有无限的无缝扩展能力,可组成非常复杂的监控网络。无线网络监控系统是监控和无线网络传输技术的结合,它可以将不同地点的现场信息实时通过无线通讯手段传送到无线监控中心。

3.有利于降低税源监控成本

目前从技术先进性上来看,3G-EVDO是各种无线网络通讯技术中最新的改良技术,在网络安全、传输、解码、分配、覆盖等方面都有着明显的优势,具有综合成本低计算机论文,只需一次性投资,性能稳定可靠,维护费用低,无需专人管理的特点。建立无线局域网络税源监控系统,有利于提高税收行政管理的效率、降低税源监控成本,解决有线局域网络下监控中存在的监控点多、传输距离远、覆盖范围宽、实时性强、适应复杂的生产环境等技术瓶颈。。

三、基于3G-EVDO的无线局域网络税源监控系统设计

1.总体目标

在目前已有的基于有线网络传输的企业税源监控系统基础之上,以3G-EVDO集群技术替代现有的有线网络监控、数据采集与传输,设计实现基于3G-EVDO集群技术的无线局域网络税源监控系统。相比现有的有线网络税源监控系统,系统功能可在以下方面达到提升:

(1)税源监控范围扩大。基于3G-EVDO集群技术的无线局域网络税源监控系统可实施全方位的动态税源监控,对企业生产经营的采购、生产、库存到销售都进行了全方位的动态监控,实现对企业生产经营的全过程的数据信息进行实时采集传输和分析利用。使税务管理部门能够全面了解企业的实时经营情况,全面掌握税源信息,减少税收流失论文服务。

(2)税源监控能力提高。基于3G-EVDO集群技术的无线局域网络税源监控系统不再受企业地理位置的限制,适合远距离传输,数字信息抗干扰能力强,不易受传输线路信号衰减的影响,能够进行加密传输,可以在数千公里之外实时监控现场。特别是在现场环境恶劣或不便于直接深入现场的情况下,数字视频监控能达到亲临现场的效果。即使现场遭到破坏,也照样能在远处得到现场的真实记录。

(3)税源监控实效提升。系统采用3G-EVDO集群技术、视频压缩编码等诸多先进的信息化技术进行信息采集与传输,由于对视频图像进行了数字化,可以充分利用计算机的快速处理能力,对其进行压缩、分析、存储和显示。通过视频分析,可以及时发现异常情况并进行联动报警,从而实现无人值守。提高税源监控范围、质量和效率。

2.技术路线与技术关键

(1)技术路线:系统从设计到开发采用基于无线局域网络税源管理思想,利用3G-EVDO集群技术、视频压缩编码等诸多先进的信息化技术进行数据无线网络传输的新型系统,运用H.264视频压缩编码技术和3G-EVDO无线网络数据传输解决方案,通过建立统一的信息采集机制、统一的数据信息监控机制,构建面向应用监控、预警的信息化系统。采用跨平台跨数据库的设计技术、J2EE技术、三层/多层结构技术、3G通讯标准、TCP/IP协议等技术进行分析设计和数据交换标准。

(2)技术关键:基于3g-EVDO无线局域网络技术税源监控应用研究,提供3G网络接口实现数据传输、共享、分析、预警;网络带宽自适应技术,根据网络带宽自动调整视频帧率计算机论文,适应爆发性、大容量数据传输;基于无线网络的点对点、点对多点、多点对多点的远程实时企业生产经营现场监视;具有面向异构网络环境的综合管理能力。

3.技术创新

(1)采用3G-EVDO 、H.264视频压缩编码技术等网络通讯新技术,实现企业生产经营“购、产、存、销”关键经营环节监控,解决传统网络传输方式的无法适应监控点多、传输距离远、覆盖范围宽、实时性强、适应复杂等网络税收监控瓶颈问题,实现实时数据传输、接收,保证信息的安全性、稳定性、准确性、及时性;

(2)采用3G-EVDO 、H.264视频压缩编码技术等网络通讯新技术在企业生产关键环节实现实时的税源信息采集,从源头控制发票开票信息的不实,通过技术手段对企业真实的经营信息的分析,测算销售数据,与纳税申报信息比对,实现异常预警。

(3)采用3G-EVDO网络通讯新技术通过一个系统将多种系统整合在一起,将信息自动化,财务分析,税源监控功能集于一身,实现对各类税源信息的传递、交流、共享、存储、协同,实现数据集成及数据的集中展现,做到全方位税源实时控管,有效解决企业,税务机关,政府,生产者之间信息不对称问题。真正实现了监控系统的数字化、网络化和智能化。

【参考文献】

[1]尹逊政,路勇.一种基于GPRS技术的远程监控解决方案[J].计算机应用,2006,Vol.15(5):27-30.

[2]任雷.固定监控与移动无线图像传输技术[J].赤子, Vol.2009(16).

[3]范文博,姚远,张其善.基于GPRS技术的数据采集远程网络监控系统.无线电工程[J],2004,Vol.34(1):21-24.

有线传输技术论文篇(4)

中图分类号:X703文献标识码: A

前言

21 世纪是信息化的社会,人类的各种经济活动和日常生活都有赖于信息网络得以更好的运行和开展,信息传输技术的发展决定着信息化产业的结构升级和更新效率,随着信息产业技术发展,对信息传输的速率和质量提出了更高的要求。有线传输的传输介质主要有双绞线、同轴电缆、光缆、光纤等,根据不同的经济体制选择合适的传输介质以更好地服务于各种社会活动之中。传统信息通信的信息媒介主要是语音,其传输数据信息量小,如电话网络等,其传输信号模式相对简单,传输信息量小并且信号受到外界干扰影响比较大,影响信号传输的质量。现代信息有线传输除了语音之外还包括文本文字、数据包、符号数字、图形图像等多种信号模式,借助此传输媒体支持的有数据电视、电脑、多媒体信息、显示屏幕、幻灯片、电影科技、机器仪器等等,传统的传输方式显然不能满足现展的要求。21 世纪信息传输技术按照传输方式的不同可以分为:有线传输方式和无线传输方式。虽然现进随着 WIFI 和无线网络技术的更新发展,无线传输方式占据了半壁江山,并且发展势头强劲。但是就传输效率和传输质量而言,有线传输方式有着自己的独特优势,并广泛地服务与工业生产和居民日常生活之中。

1、对有线传输与无线传输的分析与对比

有线传输主要是用一些介质进行传输。有线传输在传输的过程中,无论是利用何种介质,但是所传输电磁波的地点是需要之前固定好的。也就是说,有线传输是在指定的地点和空间进行工作的。但是,用于制作有线传输介质的材料一般都是使用铜丝这种相对性价比很低的材料。铜丝等介质材料很不结实并且价格也比较高,很容易出现损坏和丢失的情况。有线传输对于天气的要求不是很高,阴雨天也不会影响有线传输的速度。因此,有线传输技术一般都是被用于要求比较高,比较重要的地点。道路交通信号灯、监控器等为了能够保证设备运作的顺利性时,一般都是采用的有线传输技术,能够在第一时间发现设备出现的故障,能够及时进行维修和更换。无线传输主要是数字微波传输和模拟微波传输这两种。无线传输的主要传输方式有六种,分别为:视频基带传输、网络传输、微波传输、宽频共缆传输、无线SmartAir传输光纤传输、双绞线传输。无线传输是一种不需要介质进行传输的方式。无线传输的地点和空间在某种情况下来讲,应该是比较自由的。天气情况对无线传输技术的影响要比有线传输大得多。但是,无线传输更具有自由性并且十分方便。因此,很多场合可能更希望使用无限传输技术。

相比之较,可能无线传输技术在当下时代更受欢迎。但是通过总体分析之后,有线传输技术还是具有比较可观的优势的,有线传输具有比较高的稳定性,只要其它设备正常运行、传输介质没有被损坏,两者相连几乎都能够正常运行并且传输的速度也是比较稳定的。有线传输的安全性也要比无限传输高很多,对于很多重要的环境是不能够使用无线传输的。有线传输的抗干扰性要比无线传输强很多。总之,有线传输技术的使用率还是不断升高的。

2、对有线传输技术特点的思考与分析

由于有线传输技术到目前为止,还是具有很重要的作用的。为了确保有线传输技术能够更好地服务于我们的生活和工作,因此要对有线传输技术的特点进行分析,为有线传输技术未来的发展奠定基础。有线传输就是使用一些介质将信号进行传输由此得到信息的方法。有线传输技术十分依赖传输时采用的介质种类。不同种类的介质能够影响有线传输的速度等不同的方面。因此,想要对有线传输技术进行进一步探讨,就要分析不同介质给予的不同种类的有线传输技术的特点。第一种是光纤传输,它所选用的介质主要是光导纤维。光纤传输的主要特点在于具备比较良好的安全性,能够保障使用者的权益。光纤传输的信号比较好,对于时间、地点、条件没有太多的要求。并且光纤传输的形态比较小,容易存放,所占空间也比较小。最重要的一点是光纤传输的成本比较低,主要是由于光纤传输所采用的材料比较便宜并且数量也比较少。第二种是平衡电缆传输。

频带比较小的是低频对称电缆传输,很适合电话机使用,相对比较轻便。比较笨重一点的就是高频对称电缆传输,虽然高频对称电缆传输能够带来更多的信道,但是相对设计成本也比较高,不利于大量生产和使用。第三种是架空明线传输,架空明线传输的方式产生的时间已经比较悠久了。它就是我们比较常见的道路两边那种杆子上排列的不同线,以此进行传输。主要特点是比较单一,每条线只能够对应一个信道。根据导线不同的粗细,能够用来带动不同的设备。第四种是同轴电缆传输,它主要的特点是频带比较宽,能够传输的信号量也是比较大的。同轴电缆传输的介质也是比较特别的,它是将铜网用铜线缠绕而成,具有比较高的保密性。无论是何种的有线传输技术,其自身也具备了一定的优势。光纤传输和同轴电缆传输经过更深入的发展之后,一定会给使用者带来巨大的权益。

3、确定有线传输技术发展的方向

传输技术在长久以来为了满足人们对交流的需求一直在不断地发展,但是就是由于人们的需求不断地增加,学者深入探讨之后,发现传输技术是受很多因素影响的。所以在传输技术发展的同时是需要考虑全球不同的文化、观念、等一系列因素。对于现在我们所讨论的有线传输技术在近年来开始出现被无线传输技术替代的趋势。有线传输技术的很多优势在暂时的情况下,无线传输技术还是不具备的。往往使用者都是看中了无线传输技术的灵活性、方便性,但是在很多情况下却忽略了无线传输技术的缺点。为了加深全球人类的联系,有线传输技术的发展迫在眉睫。发展后的有线传输技术要具备现在技术的优势,也就保密性好、稳定性强以及受外界干扰的情况少等。

对于目前的实际情况以及使用者的需求来讲,可以将有线传输技术发展的重心转移到光纤传输技术上。光纤技术目前所存在的最大缺点就是投入量少。很多使用者都对光纤传输具有需求,但是开发者却没有放开设计。现在有很多地方采用的是无线传输技术,但是很可能因为无线传输技术的不安全性影响了信息的传输,因此要对现有比较重要的场所的真实情况进行调查,给予有线传输技术更好的市场。有线传输技术未来的发展前景还是比较好的,经过各界专家的研究,能够在一定程度上改善自身缺陷。

结束语

随着通信技术的不断发展,有线传输技术得到了迅速发展,以其传输信息稳定,快捷方便,受外界条件影响小的优点而继续保持高速发展的状态。相信只要有线传输技术根据自身的特点和发展优势,明确自己的发展方向,不断更新技术,最终一定会得到持久稳定的发展,给人民生活带来更大的便利。

参考文献:

[1] 李锦才. 论传输技术在通信工程中的应用及发展方向 [J].广东科技.2008(24)

有线传输技术论文篇(5)

1 前言

广播电视技术,集信息,计算机,电子,空间,通讯等现代技术于一身,通过现代化的传播手段与外界交流。其中,传输技术是保障其声音,图像的重要一环。现如今,广播电视业发展多样,无论是广播节目还是频道设置,都是多层次,大规模,极为丰富的。区别于以往的有线和无线技术,数字化应用于广播电视行业,又成就其上升了一个新高度,数字技术是该行业一项重大的改革。因此,加强对其技术的深入研究和探讨,及时改进实际中所出现的问题,是新技术更加完善,符合实际要求,真正为广播电视事业的不断进步做出其应有贡献。

2 广播电视新技术包含的范畴

广播电视新技术是一个发展性的概念。广播电视的发展经历了几个重要的历史时期。广播电视技术的发展依靠多方面技术的进步。所以,广播电视新技术从广义上说就是广播电视技术在哪些方面的进步,从狭义上说主要是指广播电视具体技术的新应用。广播电视传输新技术是电子信息技术的存在方式。

2.1 广播传输新技术的内容

在新型广播传输技术中有两个主要内容:数字音频广播,是广播模拟技术的发展成果;电台数据广播,利用无线信号完成信息传输,通过调制解调技术来实现。

数字音频广播技术,更新了以往采用连续波形传送模拟信号的方式,将这模拟信号变为比特,这是通过将数字和压缩技术结合起来实现的,从而使广播的无线电波传输更加简单。在广播信号传播过程中,经历的阶段分别为:中波、短波到调幅广播。调频广播不仅音质极佳,纯正,其对频率的利用率也是极高的,远远优于模拟广播,此外其还增加设置了一些频道。数字音频广播是在其基础上,结合通信卫星的出现发展而来的,其比以往增加了图形扩展,有了更加强大的功能,使收音机可以不仅有文还有图形。

电台数据广播技术,是传输技术发展的有一新高度。其调制解调技术分类,排列数字信息,在极短的时间内便在全世界盛行。新型的数据广播,图文并茂,不同的国家对其设计,形成了本国语言的,独特的,符合国民要求的信息。这些信息量是非常大的,覆盖面也是非常广的,包括了新闻,娱乐,气象,交通等信息的实时报道,这些都是与人们生活息息相关的问题,完全满足了人们生活的需求。

2.2 电视传输新技术的内容

电视新技术的发展同广播一样,是一个理论与实践互相碰撞的产物。电视传输新技术包括卫星电视、有线电视、无线电视、图文电视、电视数据广播、高清电视。电视传输技术的发展是非常迅速的。在短短的时间里,实现了突破。卫星电视通过卫星进行数据传输。卫星传送扩大了我国的电视覆盖面,当前,各国的卫星技术都非常发达,各个国家之间在卫星技术应用上都互通友好。卫星电视把电视节目实现了全球化播放。卫星电视打破了电视播放受限制的约束。有线电视是通过电缆和光缆进行信号传输,电缆和光缆对信号进行分配。有线电视实现的是区域性的电视用户接受方式。

光缆是电缆的优化体现。有线电视经过多年的发展,已经拥有了成熟的有线电视体系。有线电视节目容量大,节目质量高,可以进行双向传输,最重要的是可以与网络进行连接。图无电视是一种文摘形式的电视种类。图文电视需要依靠电视解码器。图文电视的优势是大量的信息存储。图文电视可以保存大量的多媒体信息,而且传输速度很快,是比较实用的电视种类。图文电视的应用性是其最明显的优点。高清电视当前最为流行的一种电视技术。高清电视的图像清晰度是其最明显的优势。高清电视把画面对比度提升到一个新的水平。但是,高清电视需要有相适应的电视机设备。高清电视在推向市场以来,得到了人们的广泛喜爱。

3 广播电视传输新技术的具体应用

广播电视传输技术应用是一个实用性问题。在广播电视传输技术中有光纤技术、波分复用技术、SDH数字技术、微波技术、GPRS技术、动态IP传输技术等类型。这些新技术的应用,加快了广播电视行业的进步。

3.1 光纤传输技术的应用

光纤传输是近几年发展的一项新技术,主要是通过光纤的纤心折射率来实现信息传输,主要分为多模光纤和单模光纤。这项技术可以保持广播电视信号传输中一路畅通,很大程度上提高信息传输的速度。除此,该技术缓解了传播中波段矛盾的问题,促进长波,中波,短波相互协调,合理运行,达到要求。同时,该技术传输也可以保障所传输信号有良好的质量,确保其稳定,使信号传输变得较为综合。它也是一项既安全又环保,又高效的技术,是网络应用的关键传输技术,是广播电视业一项重要的发展。

3.2 波分复用技术的应用

随着技术的发展,人们对有线技术的要求不断提升。波分复用技术的产生,通过在一跟光纤中传输多个信道,是信道能够根据不同业务需要自由组合运用,极大的提高了通讯速度,扩展了网络宽带业务。该技术有着良好的兼容性和系统保留性,是信息在传输中实现了双向回传,提高了信息传播的效率,从而使得整个网络运行技术要求有了显著的提升,并一定程度上降低了网络建设的成本,促进了广播电视在网络传播上的升级与飞速发展。

3.3 SDH数字技术的应用

SDH技术是需要与光纤技术进行结合的数字传输方式。SDH具有线路传输的巨大优势,同时,在传输过程中,具有交换功能。SDH技术弥补了传统的传输技术中的单向传输的缺憾。而且SDH技术可以在传输过程中对信号进行复接,这种复接功能促进了广播电视信号传输过程中错误信息的纠正。

4 结论

这几种广播电视传输技术是促进其发展的主要动力。新技术推动着广播电视事业不断向前,使其越发的满足人们生产生活的要求。但新技术的发展还不完全,还存在着一些缺陷,因此,在技术不断发展,研究不断深入的同时,不能只注重探究其优势,还应该关注到其劣势,对存在问题进行改良,从而使整个新技术不断完善发展,真正的起到推动广播电视业发展的作用,做出其应有的贡献。

参考文献

[1]刘刚.信号编码技术在广电传输网中的应用[J].广播与电视技术,2011(07).

有线传输技术论文篇(6)

中图分类号:TM 文献标识码:A 文章编号:1007-0745(2013)06-0222-02

0、引言

感应耦合电能传输(Inductive Coupled Power Transfer,简称ICPT)技术是基于电磁近场耦原理,结合了现代电力电子技术、磁场耦合技术、现代控制理论和大功率高频电能变换技术,实现用电设备以非电气接触方式从电网获取电能的技术,具有可移植性好、稳定性高、环境亲和力强等特点。能够解决传统供电技术在需要线缆拖拽、供用电设备之间频繁移动、粉尘等易燃易爆环境中的隐患,是一种新型实用的供电技术,但是在ICPT系统的实际应用中,比如钻井设备,人体内置医疗设备等,往往需要检测设备的运行状态或传输控制指令,这就要求ICPT系统具有电能与信号同步传输的能力。其中电能传输通道给系统运行提供动力和能量,信号传输通道用于传输状态信息等数据。

本文研究了基于感应耦合电能传输系统能量通道的信号双向传输方法,即信号在系统原边和副边之间的双向传输。对于信号从原边向副边的传输,论文改进了载波频率的选择策略,减少了能量的损耗。同时,重点优化了其信号解调方案,在信号采样与包络整形之间增加了信号与能量的隔离环节,解决了原文中的信号传输稳定性问题,并通过了实验验证。

1、ICPT系统及其能量信号同步传输问题概述

感应耦合式电能传输技术(ICPT)综合了现代电力电子技术、磁场耦合技术、现代控制理论和大功率高频电能变换技术,实现用电设备以非电气接触方式从电网获取电能的技术。

感应耦合电能传输系统的原理如图1.1所示,主要由初级回路(整流滤波、高频逆变、发射线圈)和次级回路(拾取线圈、整流滤波、功率调节)组成。系统将工频交流电经整流滤波变为直流后向逆变器输入能量,该直流电经过高频逆变器电路后在原边回路中产生高频交流电流,该高频电流在电能发送线圈周围产生高频交变的磁场,电能接收线圈通过耦合媒介(空气、水、油等)以松耦合方式在磁场中产生感应电动势,将这个电动势经过整流滤波和稳压调节后变换成为一个电源为用电设备供电,从而完成了整个感应耦合电能传输的过程。因此,感应耦合电能传输技术与变压器的相似,但他们之间又有各自的特点。感应耦合电能传输系统的发射线圈和拾取线圈之间是以空气作为耦合介质,而且二者之间是可以相对位移的。因此,ICPT系统需要提高系统工作频率来提高能量的传输距离和功率密度,减小系统体积,提高能量传输效率。

与传统的电源供电系统相比,感应耦合式电能传输系统最大的特点就是它解决了传统供电方式在特殊场合(水下或易燃易爆等场合)和移动设备供电等情况下存在的问题和缺陷,能够实现电能的无线传输。

2、信号从原边向副边传输方式研究

本文所述的感应耦合式电能与信号传输系统,为了提高能量的传输效率,特在系统原边采用谐振电容串联补偿、副边谐振电容并联补偿的结构。原边回路可以等效为一个典型的RLC串联谐振电路,如图2.1所示。其中R包含了原边回路的阻抗以及副边对原边的反射阻抗。

采用不同的控制频率,能在原边回路及原边线圈中产生相应频率的高频电流,该电流在原边线圈周围产生高频的交变磁场。副边拾取线圈通过感应耦合产生感应电动势,经过整流、功率调节环节后,实现对负载的非接触供电。

3、信号从副边向原边传输方式研究

ICPT系统原副边线圈之间以空气为耦合介质,通过电磁感应耦合实现能量的无线传输,原副边本质上是属一种感应耦合回路,因此具有耦合回路共有的一些特点。研究发现,当副边线圈I2因为原边线圈电流I1产生感应电动势V2,进而在副边回路形成回路电流I2时,I2也会通过电磁感应耦合原理在原边回路中产生感应电动势,这个感应电动势与原边谐振回路输入电压极性相反,会对原边的回路电流幅值产生影响。因此,本文基于耦合回路的这一特性来调制反向信号,实现信号从副边向原边的传输。

根据反射阻抗的理论依据,副边电流I2对原边电路的影响可以用一个等效电阻(副边对原边的感应电压与原边电流的比值)来代替,系统简化的等效电路图如图3.1所示。

图示横坐标表示副边电容的增减量,其中横坐标为0处表示系统工作在最佳谐振状态时的补偿电容增量。当容值发生改变时,原边电流将发生较大变化。因此,可以根据不同数字信号来调节副边电容容值大小,再检测原边电流的变化,实现信号从副边向原边的传输。

4、输出能量品质的改善方法

在感应耦合能量与信号混合传输系统中,电能本身作为信号调制的载波,调制信号传输到副边电路或者从副边传输到原边电路后,电能在幅值上随着基带信号的不同而变化。同时,改变副边拾取补偿电容容值来调制信号也会造成副边拾取电压的下降。因此不能直接给负载供电,必须经过DC/DC变换调节单元,使得负载电压稳定在恒值上。功率调节电路的工作原理如图4.1所示:

图4.1稳压控制电路

由于副边拾取到的电压在幅值上会有波动,通过对整流后的电压采样,与预设的所期望的输出电压VVEF相比较,产生相应占空比的控制脉冲控制开关管S的通断,就能得到所需要的稳定的电压值。输出电压与控制波形的示意图如图4.2所示。

图4.2控制脉冲示意图

当基带信号为1时,副边整流环节输出电压相对参考电压增加V,开关管S开通,直流电感Ldc和开关管S把负载短路,储能电容C0向负载供电。当数据信号为0时整流电压相对参考电压下降,开关管S关断,直流电感Ldc重新充电,一方面给电容充电,一方面给负载供电。

理论研究证明,如果要求输出的电压为确定值时,就将所需要的输出电压值设置为参考电压,对系统输出电压采样后与预设参考电压值进行比较,就能动态调整开关管占空比,使得输出电压稳定在说需要的电压值。

5、总结

本文主要研究了基于ICPT系统能量通道的信号传输原理及方法,提出了在ICPT系统中进行双向信号传输的调制和解调方法,分析了各自的传输机理,并通过实验验证了双向传输的可行性。

参考文献:

[1]孙跃,杜雪飞,戴欣,苏玉刚.非接触式移动电源新技术[J].电气自动化,2003(5):11-13.

[2]Hu A P,Boys J T,Govic G A.Frequency Analysis and Computation of a Current-Fed Resonant Converter for ICPT Power Supplies(C). IEEE International Conference on Power SystemTechnology, Proceedings, PowerCon 2000, 2000, 1(1):327-332.

有线传输技术论文篇(7)

中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2017)04-0017-02

1 引言

无线通信技术的快速发展和广泛应用,丰富了人们的日常工作和生活,尤其在军事通信应用领域,极大地提高了战场的通信能力和作战水平。然而,由于无线通信信道的固有的广播性、开放性以及传输链路的不稳定性,使得无线通信系统相比于传统的有线通信系统更加容易受到非法用户的侦查、截获和监听,带来传输数据失泄密问题。近几年来,发生的“棱镜门”、“小米移动云泄密”、“金雅拓SIM卡窃密”等事件,无不印证着信息安全在无线通信领域的重要性。因此,设计安全、高效且可靠的无线通信系统在涉及国家安全、战场通信、商业机密等应用场景中,将起着举足轻重的作用,安全通信技术的创新和发展是增强国防现代化水平,提高国与国之间竞争力的重要途径,得到了国际社会的密集关注和重视。

传统的安全技术采用以密钥管理、数字签名、身份认证等技术为主的密码学体制,其安全机制建立在计算密码学方法的基础上,借鉴计算机网络中上层协议的设计来保证信息的安全。传统的安全技术主要依靠破解生成密钥需要极高的计算复杂度来保证加密算法的有效性,然而,随着计算能力的提高和信息传输场景的多样化,传统的密钥体制日益受到挑战,其局限主要表现在以下几方面:1) 随着计算机性能的大幅提升,特别是量子计算机的出现,以计算复杂度为理论基础设计的现代密码学加密算法存在着安全隐患;2) 由于无线网络中信息传播的广播特性和系统中终端设备的移动性,使得密钥的在线分发、维护和管理更加困难;3)随着传统网络呈现出的多样性、异构性以及用户与用户之间交流、用户与基站之间交流的频繁性等特点,传统的加密方式无法发挥有效的作用。因此,探索一种新的安全传输技术来克服传统安全技术的不足,构建更加科学完善的密码体制是一个极具研究价值的课题。

近期,物理层安全技术(Physical Layer Security, PLS)的提出,为无线通信安全问题的解决开辟了新的方向,其核心思想是从信息论的角度而非仅仅通过增加计算复杂度来保证网络的信息安全。物理层安全技术利用无线传输链路的动态特性,依靠信号处理、天线、编码调制等物理层手段,在避免窃听方获取信息的同时,提供给通信方可靠的、安全可量化的通信,是解决无线通信系统中安全问题的一个新思路,具有广阔的研究和应用前景。

2 物理层安全技术

物理层安全的研究主要从两个方面进行着手:一是基于信号处理的物理层安全,二是基于安全编码的物理层安全。物理层安全编码是实现安全传输的基础,其通过主窃信道之差,从信息论的角度,来避免信息的窃听,在主信道传输质量优于窃听信道传输质量时,可以从理论上确保完美的安全传输;另一方面,通过信号处理手段,可以有效利用无线通信系统的各种资源来进一步地提高主窃链路的差异性,为安全编码的实现提供坚实的基础。本文着重从信号处理的角度,对物理层安全相关的技术进行介绍和展望,其主要包括多天线分集技术、协作干扰技术和全双工技术等等。

2.1 多天线分集技术

随着无线多入多出(MIMO)技术的应用,终端往往具有多根发送和接收天线。多天线技术主要利用空间自由度来实现安全。对于发送端的多天线技术,主要有最大比传输(MRT)、空时编码传输(OSTBC)和发送天线选择(TAS)等方案。最大比魇浼际跤殖莆波束成型技术,其通过对多跟发射天线进行系数的加权处理,增强接收端的信号强度;空时编码技术则利用发端多天线带来的空间维度和信息传输的时间维度来提高信息传输的安全可靠性;发送天线选择技术通过选择最优的一根发射天线,使得接收端收到的瞬时信噪比最大,而该最优天线对于窃听用户端而言却是随机的,从而使得主信道质量优于窃听信道质量。在这三种技术中,由于发送天线选择仅仅需要单个射频链路,其复杂度最低,因而得到了广泛的研究。文献[1]分析了发送天线相关时,利用天线选择来实现物理层安全的性能;文献[2]中研究了信道信息反馈不完全情况下的安全性能分析;文献[3]则考虑在无线瞬时携能多入单出系统中,天线选择和信道信息反馈不完全情况下的安全传输,从上述文献中可以看到,天线选择技术可以有效地提高系统的物理层安全传输能力。

对于接收端的天线分集,由于每根天线均收到信号的一个副本,可以利用多天线技术如最大比合并(MRC)、选择合并(SC)和等增益合并(EGC)等相关技术来提高终端的接收能力,从而提高合法链路的传输质量。

图 1所示为多入多出无线通信系统中,发端和收端天线数目对系统安全传输能力的示意图,从图中可以看到,随着发端天线选择数目的增加,系统安全传输能力明显提高,而终端天线数目的增加则进一步地提高数据传输的安全性。

2.2 协作干扰技术

协作干扰技术是实现物理层安全传输的重要手段之一,在不影响合法终端正常通信的前提下,通过在传输信道的零空间上叠加人工噪声和干扰信号来扰乱窃听节点对信号的接收。人工噪声或者干扰信号可以分别在发送端[4]、接收端[5]和协作终端[6]上进行叠加。文献[4]在多入单出无线通信系统中,利用发端天线在传输信息的同时,发送干扰信号来提高传输的安全性能,并研究了系统功率分配的优化问题和传输方案的安全吞吐量。文献[5]在放大转发中继系统中,利用目的节点发送干扰来实现安全通信,并通过干扰功率分配的优化,实现最优的安全传输;文献[6]中考虑不完全信道状态信息的条件下,研究了多天线协作干扰机辅助的安全传输性能。

通过以上文献可以发现,协作干扰技术恶化了窃听信道传输质量,同时也避免了对合法用户的干扰,能够有效地满足信息的安全可靠传输。从图 2中也可以发现,随着主窃链路差异的增大,安全传输能力不断提高,而干扰机和发送天线数目的增加都可以提高系统的安全性。

2.3 基于信道估计的物理层安全技术

前面所述的多天线技术和协作干扰技术,都是利用主窃链路信号的差异来实现安全,这些技术都是在信号传输阶段起作用;而信号传输之前往往需要先对信道状态信息进行估计。可见,通过干扰、限制窃听用户对信道状态信息的估计能力,可以恶化窃听用户在数据传输阶段的有效信噪比以及对信息的破译能力,因此,差异化信道估计(DCE)也是实现物理层安全的重要手段之一。当前针对DCE的研究主要有反馈与再训练DCE方案[7]和双向训练方案[8]。

文献[7]中在多入多出信道中,设计了合法用户与窃听用户之间差异化信道质量的估计方案,该方案中通过巧妙地将人工噪声合理地加入到训练信号的零空间中,并优化合法用户的信道估计性能,限制窃听用户的估计能力,提升了系统的传输安全性。该方案的不足在于信道估计过程需要多个阶段的反馈与在训练,使得数据帧报头过长,效率低下;为此,文献中[8]对文献[7]的方法进行了改进,提出了双向训练的方案,其利用目的节点而不是基站来发送初始训练信号,窃听用户收到的信号仅仅包含合法用户到窃听用户之间的信息,而不是基站到窃听用户之间的信息,从而巧妙地避免了窃听端对初始训练阶段的估计。

3 总结与展望

本文比较了传统安全传输技术与物理层安全技术的差异性,研究了物理层中的多天线分集技术、协作干扰技术和基于信道估计的物理层安全技术。随着研究的不断深入,物理层安全技术仍然有很大的提升空间,首先,物理层安全技术实现的基础是安全编码,如何设计优异的码字对于提升安全通信能力非常重要;其次,多天线灵活的天线配置,为安全传输提供了额外的自由度,合理地设计天线和发送功率的配置,可以进一步地优化系统的安全传输能力;最后,当前研究主要是针对被动窃听的场景,而对于主动窃听和攻击模式时,现有的安全传输方案往往比较脆弱,探索跨层联合传输方案来保障无线通信系统的安全传输,将具有非常重要的研究意义和现实价值。

参考文献:

[1] N. Yang, H. A. Suraweera, I. B. Collings, and C. Yuen.Physical Layer Security of TAS/MRC With Antenna Correlation[J].IEEE Transactions on Information Forensics and Security, 2013,8(1): 254-259.

[2] X. Jun, T. Yanqun, M. Dongtang, X. Pei, and W. Kai-Kit.Secrecy Performance Analysis for TAS-MRC System With Imperfect Feedback[J].IEEE Transactions on Information Forensics and Security, 2015,10(8): 1617-1629.

(下D第23页)

(上接第18页)

[3] G. Pan, H. Lei, Y. Deng, L. Fan, J. Yang, Y. Chen, and Z. Ding.On Secrecy Performance of MISO SWIPT Systems with TAS and Imperfect CSI[J].IEEE Transactions on Communications, 2016(99): 1-1.

[4] N. Yang, S. Yan, J. Yuan, R. Malaney, R. Subramanian, and I. Land.Artificial Noise: Transmission Optimization in Multi-Input Single-Output Wiretap Channels[J].IEEE Transactions on Communications, 2015,63(5): 1771-1783.

[5] K. H. Park, T. Wang, and M. S. Alouini.On the Jamming Power Allocation for Secure Amplify-and-Forward Relaying via Cooperative Jamming[J].IEEE Journal on Selected Areas in Communications, 2013,31(9): 1741-1750.

有线传输技术论文篇(8)

中图分类号:TN914.42 文献标识码:A 文章编号:1009-914X(2016)13-0189-01

一、 直接序列扩频技术的应用背景

信息交流是人类社会要进行发展和进步所必不可少的。随着人类社会的发展,信息系统也逐渐发展成了覆盖全球的信息网。从十九世纪人们对电缆通信的初步发明开始,伴随着科学技术的不断发展,通信技术突破了最初的有线通信,发展出了无线通信技术。无线通信靠电磁波来进行信息传递,不用架线,更具灵活性,因而被迅速推广和发展。但无线通信由于其传输环境的复杂性,在传输过程中会遇到各种各样的反射体以及来源于其它无线电波的干扰,会极大的影响甚至改变信号的传输信息,因此,无线通信抗干扰技术便应运而生。

直接序列扩频技术作为主要的抗干扰技术之一,产生于二十世纪五十年代,其发明之初主要被应用于军事领域。在世界格局动荡的那个年代,扩频抗干扰技术主要用来对抗敌方的恶意干扰,维持军事系统安全不被侵入,其作用的重要性由此可见。

二、 直接序列扩频技术简介

直接序列扩频技术是指利用高速率的扩频序列在发射端扩展信号的频谱,而在接收端用相同的扩频码序列进行解扩,把展开的扩频信号还原成原来的信号。该技术作为一种信息传输方式,通过编码及调制的方法将频带展宽,使得其信号所占有的频带宽度远大于所传信息必需的最小带宽,与所传信息数据无关,这样便可以有效提高频率资源的利用率,且使所需要传达的信息安全、准确的传达。

该技术主要是通过发端、信道和接收端三部分来实现的。其工作原理为:将需要传输的数字信号在发端输入以后,首先通过扩频码发生器产生的扩频序列将输入的数字信号进行调制,以扩宽其信号频谱,扩频码序列一般采用PN码。然后将扩宽后的信号调制到射频发生器发射出去。调制方式多采用BPSK、DPSK、MPSK等方式。发出的信号在接收端的本地射频发生器接收到信号后立即进行解调,此后再由本地的扩频解调设备产生与发端相同的扩频序列进行信号解扩,使信号恢复到原信号进行输出,从而实现信息的传输。

三、直接序列扩频技术的理论基础

无线通信技术自发展以来,伴随着科学技术的飞速发展也迅速发展。发展至今,人们由通用无线逐渐发展出了专用无线网络,无线通信传输环境变得日趋复杂,同时人们对无线传输网络的传输质量变得日益严苛,所以如何在保证传输质量的同时尽量节约传输信号所占用的频谱宽度便成了当代无线技术不断探索的领域。直接序列扩频技术可以把传输信号在发射端用扩频码进行调制,使得其所占用的频带宽度远大于传输信息所必须的带宽,再在接收端用相同的扩频码进行解扩,以把信号进行还原。这样既节省了频率资源,又可使信号安全送达,保证了信号传输的质量,一次被广泛应用。其理论依据为:

该式是香农在长期的无线通信研究中总结出来的公式,称为香农公式。

式中,C―信息的传输速率(即信道容量,单位b/s),B―频带宽度(单位Hz),S―信号平均功率(单位W),N―噪声平均功率(单位W),S/N―信噪比。

从公式中可以看出,要提高到信号的传输速率,可以通过两种途径实现。一种是提高信号传输的频带宽度,另一种是提高信噪比。在保证信号的传输速率一定时,可以通过提高信号传输的频带宽度来降低对信噪比的要求,这便是直接序列扩频技术的原理,通过增加带宽来降低对信噪比的要求,从而保证信号传输的质量。

该式是柯捷尔尼科夫在其长期研究的潜在抗干扰理论中得出的估算信号传输差错概率的公式。

式中,Pe―信号差错概率,S/N―信噪比,B/Bm―信号带宽比。

由此可以看出,信号差错概率与信噪比和信号带宽比两个因素有关。降低信噪比或信号带宽比均可使信号传输的差错概率减小。因此,在信噪比一定的情况下其差错概率可通过信号带宽比的调整来减小。由这一公式也可以得出直接序列扩频技术抗干扰的原理。

四、 直接序列扩频技术的特点

4.1抗干扰性强

抗干扰性是直接序列扩频技术之所以发展的本质属性。该技术通过扩频序列将要传输的信号的频带进行扩宽,使得窄带干扰基本不起作用,而宽带干扰要想达到干扰目的必须提高相应倍数的总功率,从而避免了无论是来自窄带还是宽带的干扰,保证了传输信号的稳定性。同时,由于在发射端对传输信号进行了扩频处理,要还原信号必须要在接收端用同样的扩频序列进行解扩,在不知道信号扩频码的情况下是不能进行信号还原的,因此这类干扰在扩频技术下是起不到作用,从而保证了传输信号的安全性。

43.2隐蔽性好

由于扩频技术是把传输信号在很宽的频带上进行扩宽,所以单位频带上的信号功率很低,几乎淹没在了白噪声之中,很难进行捕捉。加之,由于不知道扩频码序列,很难获取有用信息,所以这一技术很好的把信号隐藏了起来,使得别人很难对信号进行破坏及获取。

4.3易于实现码分多址

由于扩频技术对不同传输信号进行了不同的扩频码序列扩,在扩宽信号频带的同时,由于不同扩频码之间互不干扰,可以极大地提高频带的重复利用率。同时,发送者可用不同的扩频编码分别向不同的接收者发送数据,接收者也可用不同的扩频编码,接收不同的发送者送来的数据,从而实现多址通信。

五、直接序列扩频技术的发展前景

直接序列扩频技术从发展之初便不断进行改进以适应不断变化的需求环境。但是,其发展至今仍存在一定的技术缺陷,如由于信号的带宽增大使得接收端的信号干扰增多、传输速率在一定程度上受限等。对此,必须对这一技术进行不断地改进与完善,以适应社会的不断发展需求。同时,伴随着无线通信技术的发展,尤其是近几年投入使用的4G无线移动通信技术的发展,直接序列扩频技术也必须进行不断地改进,如朝着网络抗干扰技术、与其他抗干扰技术组合应用等方向发展,才能不断使用当代社会对无线通信安全性、及时性、稳定性的严苛要求,保持其在无线通信抗干扰技术中的地位而不被淘汰。

结语:

有线传输技术论文篇(9)

随着社会经济的发展,人们对无线电传输技术的质量有了更高的要求。传统的电能传输技术已经暴露了诸多问题,比如说导线接触产生的火花、碳积累及带电导体等。无线电传输技术是一种用无线电能传输的一种新技术,与传统的传输技术相比,无线电传输技术不需要用导线之间相连,这就避免了有线传输技术带来的那些问题,具有更加安全、高效、方便的优势。近些年来,无线电传输技术已经在众多领域应用,产生了非常好的效果,特别是在军事、石油、矿井、医疗等领域中的应用。因此,对无线电传输技术进行研究是非常有意义的课题。

一、无线电传输技术简述

无线电能传输 (Wireless Power Transmission,WPT)又称无线电力传输,非接触电能传输,是通过发射器将电能转换为其他形式的中继能量(如电磁场能、激光、微波及机械波等),隔空传输一段距离后,在通过接收器将中继能量转换为电能,实现无线电能传输。现有的无线能量传输技术主要有三种形式:(1)电磁感应技术;(2)电磁耦合共振技术;(3)基于微波或光波的原场辐射技术。

电磁感应耦合式无线输电系统是基于一种电磁感应耦合理论、现代电力电子能量变换技术及控制理论的新型电能传输模式。无接触电能传输系统属于疏松耦合系统,传输性能一般较差。为了提高系统的传输能力,初级变换器通常采用高频变换器。可分离变压器是无接触电能传输系统的最重要组成部分,它的性能对于整个系统的稳定、高效起着至关重要的作用。发射端和接受端之间是利用电磁感应耦合的方式来传递能量的。电磁耦合共振式无线输电系统 中程无线输电方式是基于电磁共振耦合原理,利用非辐射磁场实现电能高效的传输。其原理是基于2个电磁波在满足规定条件的情况下,在同一波导(腔体)的不同电磁波的模式之间或不同波导(或腔体)的同一电磁波模式之间可以发生耦合谐振的现象,通过理论分析计算或实验的方法选择耦合模参数,利用强磁场耦合共振方式使能量在收发2 个谐振腔之间有效传输。远场辐射式无线输电系统 远场一般指远远大于装置尺寸的几千米以上的传输距离。只要合理设计接收机形状,采用高精度定向天线或高质量的平行激光束就可 实现远距离传能。 通过无线电波可以在微波范围内实现能量定向传输,接收端采用硅整流二极管天线可将微波能量转换回电能。

二、无线电传输技术的现状及应用

电磁感应技术一般适用于距离比较近、功率比较低的传输系统中;电磁共振技术通常在距离适度、功率中等的条件下适用;基于微波或光波的原场辐射技术一般在功率比较大、传输距离比较远的环境中适用。近些年来,随着各种便携式设备和电器的应用,采用有线的技术,既不安全,也容易磨损。特别在一些比较特殊的领域,有线传输的危害更大,比如说矿山矿井、石油、孤立的岛屿以及自然环境恶劣的环境中等。因此,无线传输技术具有极大的应用市场。

1、医疗领域。无线电传输技术的发展和应用改变了医疗领域植入式电子系统的供电方式。如心脏启博器的核电池,其充电方式一般采用ICPT和RFPT等进行体外能量传输。在医疗电子系统中,主要采取RFPT技术,通过体外与体内两个线圈之间的电磁耦合输送电能,主要有经皮能量传输和直接能量传输。随着植入式系统的复杂化,系统的功耗越碓酱螅对于短期植入式系统,电池完全可以胜任,如胶囊内窥镜。但对于长期植入式系统往往不能满足要求。无线和光电供电能解决上述问题。

2、航空领域。无线电传输技术在航空航天领域已经开始得到应用。MPT技术的发展也推动了空间太阳能发电和卫星技术的革新。空间太阳能电站发出的电能可通过微波向卫星和地面传输电能。空间太阳能电站中的WPT技术发展经历了很多的阶段发射反射和接收技术等得到了很大的发展。

3、水下领域。水下高频功率传输损耗是关键问题。由于海水是优良导体,其电阻随着频率的增长而增加。随着工作频率的提高,海水导电面积减小电流主要从电缆流通。海水作为导体损耗增加。在研究水下电能传输时可将海水看作与原边绕组同轴匝链的绕组通过增加耦合来限制电流路径以减小耦合海水的损耗。

结语:无线电传输技术是一种用无线电能传输的一种新技术,与传统的传输技术相比,无线电传输技术不需要用导线之间相连,这就避免了有线传输技术带来的那些问题,具有更加安全、高效、方便的优势。随着无线电传输技术的发展,它可以在更多领域得到普及和应用,这对于促进社会进行发展具有重大的现实作用。

参 考 文 献

有线传输技术论文篇(10)

【中图分类号】TN949.197 【文献标识码】A 【文章编号】1672-5158(2012)11-0092-01

数字电视是指包括节目摄制、编辑、发送、传输、存储和接收等环节全部都采用数字处理的全新数字系统,也即在信源、信道、信宿三个方面全面实现数字化和数字处理的电视系统。

1、有线电视系统的组成

有线电视系统由三部分组成:前端系统、传输系统和电缆分配系统。

1.1 前端 位于信号源和传输系统之间,对传输信号进行各种技术处理的设备组合。其主要任务是首先将播放给用户的信号转换为高频电视信号,之后,将多路信号进行混合,送往传输系统。前端设备的性能,对整个系统的信号质量起着决定性的作用。

1.2 传输系统 对于超大型或大型CATV系统而言,传输系统指远距离传输的超干线或干线。它将电视信号进行相应处理后,不失真地输送到相应网络的输入接口,送入用户分配网络。传输系统一般分别采用电缆、光纤或微波多路MMDS三种方式。

1.3 电缆分配系统 位于传输系统和用户终端设备之间,把前端经干线系统传输的信号进行放大和分配。是最终将电视信号分配到各个用户电视接收终端接口。

2、有线电视系统传输技术

2.1 电缆传输技术

2.1.1 电缆传输系统的构成 电缆传输系统采用同轴电缆做传输线,构成CATV网的干线或超干线。电缆传输系统主要由同轴电缆和干线放大器间隔配置、级连构成,附属设备有过电型分支器、分配器,用于干线分路。供电器和电源插入器用于干线放大器的电缆芯线供电。

2.1.2 电缆的传输特性及其补偿 ①同轴电缆的结构:同轴电缆由内导体、外导体和中间的绝缘介质组成。常用的有:藕芯型、封闭竹节型和物理发泡型。②同轴电缆的传输特性;a特性阻抗:75欧姆。b衰减特性:高频衰减大于低频衰减。细芯径电缆衰减大于粗芯径电缆衰减。衰减与电缆长度成正比。c温度特性:随温度的升高,电缆的衰减量增大。—般电缆的温度系数约为0.2%/度。d屏蔽特性:优质的电缆外导体有良好的屏蔽作用,传输信号不受外界干扰,也不会向外幅射、干扰其它信号。e机械特性:包括抗弯曲性能、防潮抗腐蚀性能和结构稳定性。③电缆传输特性的均衡和补偿:由于同轴电缆的衰减与电缆的长度成正比,干线要远距离传输,必须对电缆的传输特性进行补偿。干线放大器用来补偿电缆对信号电平的衰减,均衡电缆的频率特性和温度特性。

2.1.3 对远距离传输的限制 以同轴电缆作为信号的传输介质,信号电平损耗较大,通常每隔几百米就需要安装一台放大器,同时信号容易受环境影响而引起噪声并产生非线性失真。系统维护使用不便,可靠性较差。因此,同轴电缆目前仅用于靠近用户分配系统较小的系统中。

2.2 光纤传输技术

2.2.1 光纤传输系统的构成 光纤传输系统由光放射机、光中继器、光接收机和光纤介质组成。光发射机的主要作用是将有线电视的电平信号转化为光载波信号,经过此电光转换过程后,电视信号就可以在光纤内传输了。一般,光纤传输长度也是有一定限制的,因此需要通过光中继器对光信号进行放大,然后送入相应的目的地。光信号通过光接收机的光电转换作用转换为有线电视电信号,最终再通过同轴电缆分配给用户端。

2.2.2 光纤传输技术的特征 ①光纤传输损耗小,可实现电视信号的远距离干线传输,保证电视信号的技术指标。②光纤频带宽,可以保证多路有线电视信号均衡地传输到各光节点。③光纤抗干扰能力强,系统可靠性高。

2.2.3 为开展宽带综合业务传输提供开放平台 光纤有线电视网不仅仅局限于有线电视业务,它可以为开展宽带综合业务传输提供一个开放的平台,是宽带综合业务网的一个重要组成部分。用光缆构成广域的包括电视业务在内的多媒体网络具有广阔的前景。

2.3 多路微波系统传输技术

2.3.1 多路微波分配系统(简称MMDS)的构成 由发射系统和接收系统组成,发射系统的设备包括发射机、合成器、馈缆和发射天线;接收系统的设备包括接收天线、下变频器和供电器。

2.3.2 MMDs传输系统的技术特征 ①多路微波分配系统MMDS的定义:用微波频率以一点发射,多点接收的方式把电视、声音广播及数据信号传输到各有线电视站、共用天线电视系统前端或直接到各用户的微波系统。②频率范围:空间传输2500 2700MHz,接收分配111-750MHz。③传输方式:采取发射与接收在视距范围内的空间传输方式。

2.3.3 传输局限性 MMDS传输系统属于无线传输,带有无线传输的通用缺点,如信号怕遮挡、反射出重影、易受干扰。这种方式不适用于高层建筑林立、人口稠密大中城市环境,只适合于建筑物密集度不高、地形开阔的电视传输场合。

2.4 光纤同轴混合传输技术

2.4.1 光纤同轴混合传输系统的构成 有线电视网的光纤同轴混合传输系统通常采用光纤作为干线、同轴电缆作为分配进户传输介质,以此构成光纤同轴混合信号传输网络。

2.4.2 光纤同轴混合传输系统的特征 光纤同轴混合传输方式充分发挥了光纤和电缆所具有的优良特性,从而更加高质量地完成有线数字电视信号的传输与分配。

上一篇: 工业烟气论文 下一篇: 财务管理环境论文
相关精选
相关期刊