电力系统自动化杂志

发表咨询:400-808-1731

订阅咨询:400-808-1751

电力系统自动化杂志 北大期刊 CSCD期刊 统计源期刊

Automation of Electric Power Systems

  • 32-1180/TP 国内刊号
  • 1000-1026 国际刊号
  • 3.65 影响因子
  • 3-6个月下单 审稿周期
电力系统自动化是国网电力科学研究院有限公司主办的一本学术期刊,主要刊载该领域内的原创性研究论文、综述和评论等。杂志于1977年创刊,目前已被北大期刊(中国人文社会科学期刊)、CSCD 中国科学引文数据库来源期刊(含扩展版)等知名数据库收录,是国家电网有限公司主管的国家重点学术期刊之一。电力系统自动化在学术界享有很高的声誉和影响力,该期刊发表的文章具有较高的学术水平和实践价值,为读者提供更多的实践案例和行业信息,得到了广大读者的广泛关注和引用。
栏目设置:电力视角下能源转型的技术路径专辑、学术研究、研制与开发

电力系统自动化 2016年第21期杂志 文档列表

电力系统自动化杂志柔性直流电网控制保护及关键技术专辑
特约主编寄语1-1

摘要:全控型电力电子开关器件的发展促使基于电压源型换流器的柔性直流技术日益成熟,以此为核心技术的未来直流电网将以直流形式互联组成电能传输系统,实现新能源的平滑接入、有功无功的独立控制、全局功率的调节互济等。中国在柔性直流电网领域已取得大量阶段性理论和应用成果,近年来先后在上海南汇、浙江舟山、广东南澳、福建厦门,以及云南鲁西等地有针对性地开展了柔性直流技术的工程示范和应用,大大提升了中国柔性直流输电技术水平和装备制造水平。

多端柔性直流电网保护关键技术2-12

摘要:多端柔性直流电网直流故障后故障电流快速上升、无自然过零点等特点使得直流线路保护和故障处理技术成为柔性直流电网发展的关键技术难点。理论分析了多端柔性直流电网线路保护的特殊性,借鉴传统直流输电线路保护原理和点对点式柔性直流输电线路保护原理的研究现状,对多端柔性直流电网线路保护的发展方向进行了探讨。同时,全面分析了各类直流故障隔离方法的基本原理,从故障隔离能力、经济性、控制保护耦合影响等多个方面阐述了其进一步的发展趋势。最后,考虑到架空线路输电的应用前景,设计提出了一种适用于点对点式柔性直流输电系统、具有低电流危害的新型故障重合闸判断方法,较现有重合闸策略而言,该方法重合于永久性故障时能够彻底避免对系统的二次过电流冲击。在此基础上,讨论了多端柔性直流电网对重合闸策略的性能要求。

柔性直流电网架空线路快速保护方案13-19

摘要:基于柔性直流输电的直流电网技术,是大规模清洁能源接入电网的有效手段,直流电网快速线路保护是其面临的重要技术挑战之一。以国内计划建设的张北直流电网工程为背景,提出了一套适用于全网配置直流断路器、采用架空线输电的对称双极直流电网线路快速保护方案。保护仅利用单端信息进行故障判别,且保护数据窗短,满足速动性的要求;保护采用电压梯度快速检测故障,利用限流电抗器对故障电压信号的平滑作用实现故障区间的判别,并根据零模与一模电压传播特性的差异判定故障极,实现保护的选择性与高可靠性。结合直流电网的PSCAD模型,验证了所提出方案在不同故障情况下的保护性能,并分析了保护对运行方式改变的适应性。

模块化多电平换流器子模块故障时中性点移位容错控制策略20-26

摘要:模块化多电平换流器(MMC)发生子模块故障后,由于桥臂子模块数目的改变,将使故障相的相电压输出能力发生改变,导致三相输出不对称。针对MMC子模块故障下容错控制问题,以保证子模块故障后线电压平衡为控制目标,提出了一种MMC中性点移位控制(NPSC)容错控制策略。其通过修正故障后各相调制波控制中性点在故障相的相电压矢量方向上进行移位,在完成子模块故障容错运行的同时简化了传统中心点偏移控制算法的复杂程度,易于实现。同时,文中分析了NPSC下对MMC系统运行的影响,指出了该种控制方式下桥臂电流工频分量与直流分量的分配特性。最后,通过仿真与实验进行验证,表明了理论分析与该容错控制策略的有效性。

柔性直流控制保护系统方案及其工程应用27-33

摘要:结合厦门柔性直流输电示范工程,对柔性直流控制保护系统方案及其工程应用进行了研究,包括控制保护系统的分层结构、极控制系统的基本控制策略、控制系统结构、极控制系统与阀控制系统间的接口特性,以及直流保护系统功能的配置情况。为了验证极控制系统、阀控制系统及换流阀之间工作的正确性,防止首次有源解锁出现大电流损坏换流阀,针对真双极拓扑结构系统,提出了无源逆变试验方案,现场试验结果证明了阀组触发相序的正确性,实现了对控制系统延时的完全补偿。无功和有功功率阶跃试验结果表明,控制系统在性能上和速度上满足快速性、可靠性、灵活性要求。直流保护跳闸试验结果表明,保护逻辑功能正确,换流阀正确闭锁、断路器正确跳闸。

MMC静态直流充电时电容均压特性研究和保护定值整定34-39

摘要:模块化多电平换流器在静态直流充电时存在电容电压两极分化的问题,部分子模块甚至因电压跌落导致反复启动。先通过引入取能电源等效阻抗动态参数改进子模块等效模型,然后根据改进后模型仿真分析了电容电压两极分化的机理,最后在仿真基础上提出了静态直流充电耐受时间定值整定方法,通过优化保护定值降低电容电压两极分化程度。依托厦门柔性直流输电工程进行了静态直流充电和单个阀塔加压试验,试验结果与仿真结果基本一致,验证了所提子模块等效模型、电容电压两极分化机理分析和保护定值整定方法的正确性。

适用于柔性高压直流输电网的直流电压下垂控制策略40-46

摘要:基于带死区的直流电压下垂控制,提出一种适用于柔性直流输电网的新型直流电压下垂控制策略,可保障直流与交流系统交换功率的平衡。提出的新型直流电压下垂控制方法首先将各换流站分为4组,之后通过对各换流站组设定不同的电压裕度和死区来设定参与协调控制的不同优先等级,最后提出改进的"功率—电压"特性曲线来确保各换流站在暂态下具备良好的动态特性。仿真测试系统的交流部分为IEEE 39节点系统,直流部分为一个5端直流电网系统,其中换流器类型为401电平模块化多电平换流器。通过对该交直流混合系统的测试,文中提出的新型直流电压下垂控制方法可以在故障发生后有效地使系统过渡至新的稳态运行点。在暂态过程中,各换流站具备良好的动态特性。

适用于多端柔性直流输电系统的通用控制策略47-52

摘要:随着柔性直流输电技术的不断发展与成熟,多个换流站并联组成的多端柔性直流输电系统成为必然趋势,而换流站数量的不断增多,对多端控制策略提出了更大的挑战。在此背景下,文中提出了一种适应于多端柔性直流输电系统的通用控制策略,其通过权衡系数实现了定直流电压控制与定有功功率控制的灵活切换,通过合理选择权衡系数的计算函数可模拟传统的多端控制策略,并能设计出新型的多端控制策略。最后,在MATLAB/Simulink下搭建了五端柔性直流输电系统进行多个仿真,验证了通用控制策略的正确性与可行性。

海上风电场与柔性直流输电系统的新型协调控制策略53-58

摘要:提出了一种适用于采用双馈机型的海上风电场与柔直输电系统的新型协调控制策略。接入风电场的送端换流站采用基于锁相环的定功率控制,根据风电场的有功参考值控制其有功功率输入,并且在送端换流站的有功功率控制外环中加入有功功率与直流电压平方的下垂特性来加强直流电压暂态稳定性;双馈风电机组采用同步控制,调节海上风电场交流电网的电压幅值和角度。相对于经典协调控制策略,该控制策略可以加强柔直输电系统的直流电压稳定性,对通信延时不敏感,通信成本较低。该控制策略还实现了送端交流电网故障下系统的故障穿越。文中以风电场接入基于多电平的两端柔直输电系统作为仿真研究对象,通过仿真分析验证了该协调控制策略的有效性和优越性。

适用于分层接入的特高压直流输电控制策略59-65

摘要:随着中国特高压直流的广泛应用,多馈入直流集中落入受端负荷中心将成为未来中国电网发展所面临的重要问题。特高压直流分层接入方式有助于提高多馈入直流系统电压支撑能力,已经列入国家电网规划。分层接入的特高压直流输电在电路结构上发生了变化,在阀组电压平衡控制、阀组退出后直流功率控制、逆变侧最大触发延迟角控制和无功功率控制等方面需要研究适用于分层接入的特高压直流控制策略。在阀组电压平衡控制方面,两个阀组各运行在逆变侧最大触发延迟角控制,通过换流变压器分接头来平衡电压;在阀组退出后直流功率控制方面,研究阀组退出后限制的功率分配策略;在逆变侧最大触发延迟角控制方面,大扰动下采用实际电流计算最大触发延迟角;在无功功率控制方面,连接不同交流电网的换流器分别控制各自的无功功率。

基于阻抗分析法的柔性直流馈入容量计算方法66-72

摘要:确定合理的直流馈入容量极限值对于保证受端电网安全稳定运行具有重要意义。以奈奎斯特判据为理论基础,提出了基于阻抗分析法的并网柔性直流输电系统馈入容量极限值计算方法。该方法不需要对变流器内部进行分析,只根据变流器的输出阻抗和电网阻抗的比值即可进行计算,使这种方法更加简捷。通过在IEEE 39节点系统上进行仿真分析,验证了所提方法的有效性,同时对影响直流输电系统的直流侧极限馈入容量的因素进行了分析。

基于接口修正方程的含柔性直流大电网解耦潮流算法73-77

摘要:含柔性直流的大电网潮流计算是深入研究柔性直流运行特性的基础。潮流算法主要包括交直流联立求解算法和交直流交替求解算法两类。前者无法利用已有的交流计算程序,扩展性差;后者存在收敛性差、有交替误差等缺点。基于接口修正方程技术,构建了含柔性直流的大电网解耦潮流算法。通过把换流器交流侧和直流侧的节点分裂开,形成换流器、交流网络和直流网络三部分,利用交流网络、直流网络各自与换流器之间的接口修正方程,实现交流电网和柔性直流的潮流计算解耦。该算法可弥补常规算法的不足,同时具备扩展方便和收敛性好的优势。实际的柔性直流工程算例结果验证了方法的正确性及上述优点。

电压型直流潮流控制器优化配置方法78-83

摘要:直流潮流控制器可提高线路潮流的可控性,针对多点电压下垂控制的直流电网,提出了一种电压型直流潮流控制器的优化配置及变比计算方法。建立了含潮流控制器的直流电网数学模型,采用灵敏度方法研究控制器对网络潮流分布的影响,从整个电网的角度得到直流潮流控制器最佳配置位置。针对加权潮流熵无法突出反映线路过负荷的情况,提出直流电网改进加权潮流熵,并将其作为目标函数,对系统潮流进行优化控制,由此得到对应的直流潮流控制器变比。以海上六端直流电网模型为例,验证了所提方法的有效性。

模块化多电平换流器实时仿真建模与硬件在环实验84-89

摘要:模块化多电平换流器(MMC)因其独特的优势已在世界范围内取得广泛的应用。MMC实时仿真平台可以对控制系统进行测试,对实际工程具有重要的意义。文中开发了一种基于RT-LAB的高效MMC实时仿真模型,在MATLAB/Simulink中搭建21电平双端系统,在稳态、交直流暂态工况下与详细模型进行对比测试,验证了该MMC实时仿真等效模型的正确性。相比于OPAL-RT公司开发的提速模型,在相同条件下所述模型占用资源更少,能够仿真更大规模MMC系统;采用状态空间节点算法,将换流器的6个桥臂分割成6个子网络求解,可以实现超过601电平MMC双端系统的实时仿真。通过实时仿真平台,连接外部物理控制器进行硬件在环测试,实验结果表明所述模型具有良好适用性。

柔性直流输电系统数字物理混合仿真改进阻尼阻抗接口算法90-97

摘要:针对功率接口引起的稳定性和精确性问题,提出了一种适用于基于模块化多电平换流器的高压直流输电(MMC-HVDC)系统数字物理混合仿真的改进阻尼阻抗接口算法。根据MMC中功率器件断态电阻通常远大于通态电阻的特性,简化了阻抗计算过程,并采用绝对稳定且精度较高的梯形积分法对子模块电容进行离散化,实现了MMC正常运行工况下阻尼阻抗接口算法阻抗的高效匹配;结合MMC闭锁运行时的特点,提出了其闭锁时阻抗的实时匹配方法;基于傅里叶分解重构电压信号的方法实现了接口延时补偿控制,以提高系统的仿真精度。在PSCAD/EMTDC中建立了基于所提接口算法的双端MMC-HVDC数字仿真系统,对不同运行工况进行了仿真,结果表明改进阻尼阻抗接口算法可以保证混合仿真系统在不同扰动下稳定运行,且有功功率最大相对误差小于1.5%,具有优越的稳定性和精确性性能。

电流转移型高压直流断路器98-104

摘要:混合式高压直流断路器是目前处理直流电网故障较为认可的一种方式,但其存在造价昂贵、使用个数多等问题。为有效解决此类弊端,提出一种电流转移型高压直流断路器,并对其故障隔离控制时序进行了研究。电流转移型高压直流断路器借鉴了混合式高压直流断路器的关键部件和设计理念,将直流母线以及与其相连的混合式直流断路器进行了整合,以整体概念对断路器进行了再设计,优化了设备利用价值。在保证同等直流故障处理能力的前提下,相比混合式高压直流断路器,其投资成本大幅度降低。为验证电流转移型高压直流断路器的有效性,在PSCAD/EMTDC内建立了一个三端单极直流网络模型。仿真结果验证了电流转移型高压直流断路器在隔离直流线路故障方面的可行性和有效性。

适用于远距离大容量架空线输电的交叉型子模块拓扑105-111

摘要:提出了一种适用于模块化多电平换流器的具有直流故障自清除能力的交叉型子模块(CCSM)。该子模块由12个绝缘栅双极型晶体管、12个反并联二极管和4个电容组成,可分别输出4电平、2电平、0电平和-2电平。同等输出条件下,CCSM除了具有较高的经济性以外,还可在保证直流故障自清除能力的基础上为换流器提供更广泛的运行范围,尤其适用于电压等级高、输送容量大、采用架空线路传输的柔性直流输电系统。此外,还研究了基于CCSM的调制方法及电容电压平衡策略,并在PSCAD/EMTDC中搭建了仿真模型,验证了所提拓扑及控制策略的有效性与可行性。

单向LC型直流—直流变换器的设计与控制112-116

摘要:提出一种单向LC型直流—直流变换器,可用于互联两个电压等级不同的直流系统、单向地传输直流功率。该单向LC型直流—直流变换器由电压源型换流器、不控整流器,以及连接它们的LC电路构成。研究了单向LC型直流—直流变换器的拓扑设计,推导了其电感、电容设计步骤,设计了单向LC型变换器的功率控制方法,理论分析了直流故障时,故障电流幅值的大小。然后,在PSCAD/EMTDC上搭建了30 MW±10kV/±100kV仿真算例,验证了所提控制方法的正确性以及拓扑本身所具有的故障穿越能力。相较于其他直流—直流变换器,单向LC型直流—直流变换器具有直流升压比高、功率可控性好、制造成本低、具备直流故障穿越能力等优点。