模具设计论文汇总十篇

时间:2022-07-19 01:38:13

模具设计论文

模具设计论文篇(1)

(一)根据填料和增强材料进行选择的分析

热塑性塑料可分为未增强、玻璃纤维增强、矿物及玻璃体填充等种类产品。玻璃纤维主要用于增加强度、坚固度和提高应用温度;矿物和玻纤则具较低的增强效果,主要用于减少翘曲。玻璃纤维会影响到成型加工,尤其会对部件产生收缩和翘曲性。所以,玻璃纤维增强材料不能被未增强热塑性塑料或低含量增强材料来替代,而不会有尺寸改变。玻璃纤维的取向由流动方向决定,这将引起部件机械强度的变化。试验(从注射成型片的横向和纵向截取了10个测试条,并在同一个拉力测试仪上对它们的机械性能进行了比较)表明,对添加了30%玻璃纤维增强的热塑性聚酯树脂,其横向的拉伸强度比纵向(流动方向)低了32%,挠曲模量和冲击强度分别减少了43%和53%。

在综合考虑安全因素的强度计算中,应注意到这些损失。

在一些热塑性塑料中加入了一系列增强材料、填料和改性剂来改变它们的性质。由这些添加剂产生的性能变化必须认真地从手册或数据库中查阅,更好的是听取原材料制造厂家的专家的技术建议。以选用最为合适的材料。

(二)考虑湿度对材料性能影响

一些热塑性材料,特别是PA6和PA66,吸湿性很强。这可能会对它们的机械性能和尺寸稳定性产生较大的影响。在进行设计时,应特别注意这种性能,考虑其对产品性能的影响。

模具材料的选用取决于制品材料,细致分析制品材料后,才能在模具设计时选用最为合适的模具材料。

(三)塑料制品模具材料选用

细致分析塑料制品使用的材料后,选取最为合适的模具材料。目前我国市场常见的、适合热缩性材料的模具材料有:非合金型塑料模具钢(即碳素钢)、渗碳型塑料模具钢、预硬型塑料模具钢、时效硬化型塑料模具钢、整体淬硬型塑料模具钢、耐腐蚀型塑料模具钢几种。在模具材料选取时,根据制品材料是否改性和增加填充剂,添加何种添加剂来选取适合的模具材料。例如:制作形状复杂的大、中型精密塑料制品时,其模具材料可选用预硬型塑料模具钢;制造复杂、精密且生产时间较长,需要高寿命模具时刻采用时效硬化型塑料模具钢。具体选用时主要还是要针对塑料制品的材料和模具预计使用情况选取。适宜的材料加上合理的设计将极大的提高模具使用周期,同时也可以提高产品质量。

二、壁厚及相关注意事项对产品性能的影响

在工程塑料零件的设计中,还有一些设计要点要经常考虑,其中对于壁厚的设计尤为重要,壁厚设计的合理与否对产品影响极大,改变一个零件的壁厚,对以下主要性能将有显著影响:零件重量、在模塑中可得到的流动长度、零件的生产周期、模塑零件的刚性、公差、零件质量,如表面光洁度、翘曲和空隙等。

(一)塑料模具设计工艺中的基础要求

在设计的最初阶段,有必要考虑一下所用材料是否可以得到所要求。流程与壁厚比率对注塑工艺中模腔填充有很大影响。如果在注塑工艺中,要得到流程长、而薄,则聚合物应具有相当的低熔融粘度(易于流动熔解)是非常必要的。为了深入了解聚合物熔化时的流动性能,可以使用一种特殊的模具来测定流程。

增加壁厚不仅决定了机械性能,还将决定成品的质量。在塑料零件的设计中,很重要的一点是尽量使均匀。同一种零件壁厚不同可引起零件的不同收缩性,根据零件刚性不同,这将导致严重的翘曲和尺寸精度问题。为取得均匀的,模制品的厚壁部分应设置模心。此举可防止形成空隙,并减少内部压力,从而使扭曲变形减至最小。零件中形成的空隙和微孔,将使横截面变窄,内应力升高,有时还存在切口效应,从而大大降低其机械性能。不同壁厚塑料制品的模具设计时,模腔的要求也不同,根据制品的要求,设计模具的模腔及脱模斜度,斜度要与塑胶制品在成型的分模或分模面相适应;是否会影响外观和壁厚尺寸的精度。

(二)热塑性塑料设计中的指标分析

热塑性塑料一般具有高的延展性和弹性,不需要像具有高刚性、低延展性和低弹性的金属一样指定严格的范围。设计者在决定热塑性塑料模具制品的成本方面起了关键作用,合理且不影响产品性能的、缩小公差,较少成本是可以实现的。一般商业上可接受的产品与标准尺寸的偏差不高于0.25-0.3%,但这还需要与应用时的具体要求相结合来判断。精确的模具可以有效的缩小制品公差,从而降低制品成本。因此,模具精密度对制品生产厂家具有重要意义。

三、塑料模具设计时对收缩值的考虑

为了不对塑料部件制定过分严格的范围,必须要注意一些影响塑料制品尺寸准确性的因素。模具制造的标准必须严格遵守,同时要特别注意脱模斜度的重要性,因为它决定了脱模容易与否及防翘曲性能。

还有一个与产品设计相关的重要问题是,当成型品是由不同材料或不同壁厚制成时,其模后收缩值与方向和厚度相关如果复杂的成型对加工的要求非常严格,必须要获得模具原型有关收缩值和翘曲行为的准确数据玻璃增强材料的这一性质最为明显。玻璃纤维的取向性可在水平方向和垂直方向产生具有显著性差异的收缩,从而导致尺寸不准确。塑料制品的几何形状对收缩也有影响,进而影响到产品的性能,这也是设计者值得关注的一点。因此在此类制品模具设计时要注意制品脱模收缩后的尺寸是否为产品要求尺寸,否则因制品模后收缩值的影响,极有可能导致产品尺寸不符合标准。

结论:

与产品模后性能相关问题还有许多,设计人员可以参考手册进行设计。总之,在塑料制品模具设计时要充分考虑可能影响制品尺寸、性能、外观等多方面因素,综合利弊,选用适合的材料,合理的设计,才能保证产品的性能。

论文关键词:塑料模具设计;材料;选用

论文摘要:随着塑料工业的飞速发展及塑料制品在各个领域的推广应用,产品对模具的要求也越来越高。同时也对专业设计人员的经验提出了更高的要求,在塑料制品模具设计时制品材料的选择是决定产品性能的重要因素。还有制品壁厚等问题是辅助设计软件所不能解决的,要需要专业设计人员长时间经验的积累才能做好的。因此本文就塑料制品模具设计中若干重要问题做以简要的讨论。

参考文献

[1]张国栋.模具设计概述[J].中国模具设计,2003,6.

[2]李海龙.注塑模具设计[J].模具前沿,2005,12.

[3]肖海燕.模具设计之材料选用[J].西安机械设计,2006,1.

模具设计论文篇(2)

Abstract:Thisgraduatethatdesignis:ThemovetelephonethatshouttheBatterydoorinjectsthemold.Thisdesignprimarilypassesestopieceviabilityassessmentforrequestforofshape,sizeanditsaccuracycomingproceedinginjectingtypecraft.thepiecethewallforoftypecraftprimarilyincludingthepieceisthick,slopeandcircleangleandwhethertohavecore-pullingornotmechanism.Passtheaboveanalysistocomethecertainmoldingtoolcentthetypethesurface,typethenumber,gatetheform,placethesize;Theamongthemandmostimportantisacertaintypecoreandtheconstructionofthetype,forexampleadoptthewholethetypeoftypestill,andtheirfixedpositionandtightwayof.Inadditionandstillanalyzedthemoldingtooltosufferforce,moldthatdesignthatthedesignofthepatterndrawmechanism,matchthedesignetc.toleadtothemechanism,coolingsystem.Finallydrawtheproductionthatcompletemoldingtoolassemblethegeneraldrawingsumthesoilandestablishmentofprinipalmoldingtoolpartstypezerothepartsprocessthecraftprocessthecard.

Keyphrase:partingline,thegate,cavity,core,moldinsert,

ejectionforce,submarinegate.

概论

模具是工业生产中的重要工艺装备模具工业是国民经各部门发展的重要基础之一。塑料模具是指用于成型塑料制件的模具,它是型腔模的一种类型。模具设计水平的高低、加工设备的好坏、制造力量的强弱模具质量的优劣,直接影响着许多新产品的开发和老产品的更新换代,影响着产品质量和经济效益的提高。

在现代塑料制件的生产中,采用合理的加工工艺,高效设备,先进的模具。塑料成型技术的发展趋势是:

一、模具的标准化

1.为了适应大规模成批生产塑料成型模具和缩短模具制造周期的需要,模具的标准化工作十分重要。

二、模具加工技术的革新。

1.为了提高加工精度,缩短模具制造周期,塑料模成型零件加工广泛应用仿行加工,电加工,数控加工及微机控制加工等先进技术,并使用坐标镗,坐标磨和三坐标测量仪等精密加工与测量设备。

三、各种新材料的研制和应用。

1.模具材料影响模具加工成本使用寿命和塑件成型质量等。

四、CAD/CAM/CAE技术的应用。

第一章塑件分析

参看产品零件图如,

本零件为手机的外壳的上盖。主要形状为长方并带圆弧形。上面为曲面,有多个长方形并带有侧抽心;两个伸出尾脚;内表面的精度要求一般。表面精度要求较高,同时需要涂漆。由于是采用上下盖配合而成,从而避免了侧向凹凸,尽量简化模具结构。从而避免在尖角处产生应力集中或在脱摸过程中由于成型内应力而开裂。综合以上各点分析,采用一模一件。

第二章塑件材料的成型特性与工艺参数

本章着重介绍塑料成型的工艺特点以及塑件的工艺要求,塑件结构设计方面的知识。为后面几章的模具设计奠定了基础。

对零件的分析得塑件材料取ABS(丙烯腈-丁二-苯乙烯共聚物)。

第一节塑件材料的特性

ABS是由丙烯腈、丁二烯、苯乙烯共聚而成的。这三种组分的各自特性使ABS具有良好的性能。

ABS无毒、无味,呈微黄色,成型的塑件有较好的光泽。密度为1.02~1.05g/cm.ABS有极好的抗冲击强度,且再低温下也不迅速下降。有良好的机械强度和一定的耐磨性、耐寒性、耐油性、耐水性、化学稳定性和电器性能。

ABS在机械工业上用来制造齿轮、泵叶轮、轴承、把手、管道、电机外壳、仪表壳、仪器盘、水箱外壳等。ABS还用来制作水表壳、纺织器材、电器零件、文教用品、玩具、电子琴及收录机壳体、食品包装容器、农药喷雾器及家具等。

第二节成型特性

ABS在升温是粘度增高,所以成型压力较高,塑料上的脱模斜度宜稍大;ABS易吸水,成型加工前应进行干燥处理;易产生熔接痕,模具设计是应注意尽量减小浇注系统对料流的阻力;在正常的成型条件下,壁厚、熔料温度及收缩率影响极小。要求塑件精度高时,模具温度可控制在50~60℃,要求塑件光泽和耐热时,应控制在60~80℃。

目录

前言……………………………………………………………………………3

任务书…………………………………………………………………………4

摘要……………………………………………………………………………5

概论………………………………………………………………….…………7

第一章塑件分析……………………………………………………7

第二章塑件材料的成型特性与工艺参数…………………………8

第一节塑件材料的特性………………….……………………8

第二节成型特性…………………………………………….……9

第三节工艺参数…………………………………………….……9

第四节塑料制件的结构工艺性…………………………….……11

第三章设备的选择………………………………………………………12

第一节最大注射量………………………………………….……12

第二节注射量的校核……………………………………….…13

第三节塑件在分型面上的最大注射量与锁模力的校核………14

第四节注射压力的校核……………………………….…………14

第五节开模行程的校核……………………….…………………14

第六节注射机的技术规格………………….……………………15

第四章分型面与浇注系统的设计………………….……………………16

第一节分型面的设计…………………………………………………16

第二节主流道的设计………………….……………………………17

第三节分流道的设计……………….……………………………19

第四节浇口形式的选择…………………………….………………19

第五节冷料穴的设计…………….………………………………19

第六节排溢系统的设计…….………………………………….20

第五章成型零件工作部分尺寸的计算……………………………………21

第一节成型零件的设计………….………………………………21

第二节成型零件的工作尺寸….…………………………………21

第三节成型零部件的强度与刚度计算……………………………27

第六章模架组合的选择……………………………………………………29

第七章合模导向机构的设计…………………………………………………30

第八章推出与复位机构的设计……………………………….………………33

第一节推出机构的组成……………………………………………33

第二节推出机构的设计原则…………………………………33

第三节简单推出机构…………….……………………………34

第九章侧向分型与抽芯机构设计………………………………………..36

第十章冷却系统的设计……………………………………………………..43

模具设计论文篇(3)

进料箱、进料管及软布套管共同组成了进料装置。其中进料管被安装在机架上,通过软布套管联接到进料。在进料管的内部,有1个偏心锥形圆筒,该锥形圆筒的作用就是改变物料落点位置,并且引导物料准确落入进料箱的中心。进料箱是被安装在装置中的筛体上,当筛体开始振动,进料箱随之振动,这样可在一定程度上保证喂料的均匀性。固定在进料箱内有一个分料板,其中部会垂直箱壁,分料板的两侧略朝下倾斜,分料板中间有匀料闸门,可调整伸缩,以保证物料均匀分布在筛面宽度。进料箱与机架之间的联接为刚性联接,这样可以保证抽查筛格,同时进料箱也可以自由的拆卸与翻转。

1.2出料箱的结构

螺栓与筛体联接在一起是出料箱的特点之一,主要包括大杂出料口、粮食出料口、机箱、及小杂出料口,通过焊接,不同的出料口结构都可以与出料箱机箱联接,不同的出料口和筛体之间都存在着密封装置。出料箱结构通过筛面筛出的大杂项经过大杂出料口输出到一旁的机箱,上筛面与下筛面之间的物料经过物料输出口后直接输出,而小杂项通过下筛面选出,并通过小杂出料口输出。机器在使用之前,需要检查其严密情况,保证设备不存在泄漏情况,以保证各个出料口之间不会发生混合的可能。

1.3机架

采用分离式设计是该振动筛的特点之一,同时横梁和底座的支撑采用分开设计,支撑横梁与底座之间使用可调式螺栓联接,这样的好处是横梁可以上下移动,因此保证了筛体调节角度在0~12°。不同角度的调节可以满足不同情况下的不同的筛选要求。该方案的优点是实用性强,并且制作简单,运输方便。物料输入和进料机构联接的设备是移动架。螺栓进行联接是料筒盘和进料筒之间的主要联接方式,物料也可以经过管道直接进入物料筒。料筒盘可以直接在支架的横梁上进行焊接。上支架的组成部分包括了加强板、料筒盘、封板。移动架和支撑架之间是刚性联接,这是由支撑板和螺栓完成的。在设备开始运转之前,要保证移动架支撑架的联接紧密,这样才能保证物料准确进入进料箱。

1.4驱动电机的设计

驱动电机的驱动设置一般都选择在筛体两侧,并且要保证筛体重心的位置重合。在4只螺栓的固定下,电机安装在圆盘上,当圆盘的固定螺栓被松开时,电机和圆盘将同时绕着中心轴旋转,以至于改变电机安装角度,实现调节振动角,振动角在0~45°可调节。

2模具设计

在模具的设计过程中,以下现象需要考虑到,有模具头部的成形,在球形顶端的飞边、打偏等现象。与此同时还需要考虑到限位工件、出料自动等来自各个方面的多因素。各个部件的关系如下:上锻模被安装固定在了工作头的主轴孔中,下锻模被安装固定在定位模具中,压板紧紧压住下锻模,工作台与压板在工作台的T形槽的作用下,由联接螺栓被紧密联接在一起。工作台和定位模具为了提高定位与定心的精确度,选择了比较小的间隙进行配合。模具中存在着顶芯,机床底座的下面存在着模具底座,在连杆和工作头的作用下联接为一个整体。设计的模具的工作原理如下:模具被固定在指定位置后,把加热后的材料放在下锻模里面,上锻模在工作头的带动下,压在了下锻模上,模具底座在联接杆的作用下随之往下,顶芯因此落到了定位模具的下边。顶端的部分刚好比下锻模的底部高出部分,可以支住工件。等工件加工完毕,工作头将会随之升起,并带动上锻模和模具随之升起,在顶芯的作用下,模具底座的柱销也因此被顶出模具。

3设计时注意的问题

(1)下锻模下锻模在实际作业时受到的压力非常大,因此若强度方面没达到标准,很容易因此而断裂。所以在实际选用特殊材料,并且加热处理,满足强度方面要求。下锻模的台阶过渡时选择了大圆弧过渡。(2)定位模具为了在实际作业中避免锻压工件偏倒现象,为此特别设计一个定位模具,作用主要体现在3个方面:①保证上锻模与下锻模的同心度;②对顶芯的支撑作用,对工件的定位作用;③若顶芯上升的话,将起到一个导向的作用。(3)顶芯上锻模通过工件对顶芯施加锻压压力,同时,为了保证下锻模和定位模具能够在允许范围内正常滑行,那么一定不能存在形变,所以也需要选择特殊材料,并进行热处理。

模具设计论文篇(4)

2积极探索课堂教学方法的改革

上述课程结构的设置是紧紧围绕培养挤压模具专业应用性人才这一目标,基于对学生模具设计能力和解决现场实际问题能力的培养,采取了更加灵活的方法来辅助教学。(1)在课时安排上,尽量精讲一些纯理论性的知识,在满足“够用”的前提下,对于一些复杂的理论推导不再介绍。(2)采用典型案例形象化理论教学内容,是改进挤压工艺课程教学的有效方法之一。为丰富教学内容,增强教学效果,在教学过程中将实际企业中应用的各种挤压加工技术介绍给学生,使学生对所学的专业知识有更深刻的理解。(3)在课堂教学中通过播放现场视频,及时穿插诸多挤压生产行业中出现的热点问题,以此激发学生的学习兴趣,增强学生对所学的理论知识学以致用、活学活用的意识,为将来走上工作岗位或进一步深造奠定了良好的基础。(4)将零件的成形过程采用模型、动画、成形仿真等授课方式展现在学生面前,这比纯粹的理论讲解更利于学生学习和接受。通过学生直观地认识模具结构组成、模具工作过程,增强学生对模具结构零件作用的了解,培养学生对专业课程学习的积极性。

3实践性教学环节实施重点

实践性教学环节是培养学生创新能力的关键环节,为了把学生培养成为技能型人才,要让学生参与到课堂教学中来,增加师生的互动性,增强教学效果。《挤压模具设计》课程在实践教学中更应注重学生的实际操作,反复训练,如增加对模型的认知。对于Autocad、UG、Pro/E等各类二维和三维绘图软件的教学,应注重对学生在熟练操作和创新能力方面的实训。模具制造技能训练环节,是让学生在课程设计阶段设计出模具结构后,在模具制造实验课程中采用快速成型机模仿制造模具,并分析设计出模具结构是否合理。针对上述列举出来的教学环节,可以从以下3个方面进行探讨。

3.1强化学生对软件使用的实训技能

通过对学生就职于现有企业的情况分析,企业要求学生能够熟练运用二维和三维绘图软件设计模具,因此在专业课和实验上机操作的教学过程中,应强化学生Autocad、Pro/E或UG的实训技能。在培养学生具有一定读图能力、空间想象和构思能力的基础上,要求学生能熟练掌握CAD软件绘图和建模的方法和技能;同时应加大学生对软件的使用要求以及考核力度,要求学生在随后相关的课程设计、毕业设计环节,必须运用该类软件进行设计、绘制工程图,以便在进入生产岗位时能快速上手。

3.2更新实验室教学方式,提高动手操作能力

模具结构规格繁多、内部构造复杂。教材中穿插的静态图例大多都是二维视图,学生只能看到主剖面,联想不到三维空间结构,而且图例说明简略,学生读图、看图均感抽象,在很大程度上对学生专业课的学习及后续课程设计和毕业设计造成不利影响。因此,《挤压模具设计》课程体系应增设实验教学模型、数值仿真、动画3种教学模式,在此基础上建立模具拆装、现场教学等多功能模具拆装室。通过对模具的反复拆装和测绘,加强学生对模具结构的感性认识,解决理论课程中难以消化的模具设计细节问题,提高动手能力,加强模具设计能力,有助于学生后续毕业设计的顺利完成。目前实验室对挤压模具教学模型的现场教学已实现了初步阶段,下学期学生就能通过教学模型的现场教学充实课堂学习内容,实现相辅相成。

3.3将数值模拟融入毕业设计,加强引导与互动

毕业设计是实践教学中最重要的一个环节,主要培养学生运用多学科的知识和技能分析与解决实际工程技术及相关问题的能力,学生在修完专业课程和课程设计之后,运用所学理论知识,独立检索资料、调研,拟定设计的技术路线和研究方案,最终完成毕业设计。挤压模具方向的毕业设计要求学生在教师指导下进行工艺分析和模具结构设计,重在训练学生的模具设计能力。学生设计出模具结构后,无法将模具投入生产。由于没有实践经验,学生不能完全确定模具结构的合理性,从而导致模具设计成为“闭门造车”,为此将仿真技术渗透到模具设计中,让学生能熟练运用软件和预先掌握先进的模具设计思想。学生在导师结合工程实际确定毕业设计题目的要求下,正确选择建模方法,对工程实际问题的可行性方案进行验证,并最终建立优化模型。通过近几年来将挤压成形数值模拟融入到毕业设计环节,模具结构设计方向的学生掌握了模具的实际运用,并能大大提高模具设计能力。针对挤压模具方向的毕业设计,可按3个阶段实施:第1阶段为模具设计阶段,大致占全部毕业设计时间的1/4,要求学生独立设计一副挤压模具。此阶段主要让学生阅读大量参考文献,尽可能深入企业调研分析以掌握第一手资料,在此基础上,训练学生紧密结合基础理论知识和实践经验来完成模具设计的能力;第2阶段为软件学习阶段,基本上占全部毕业设计时间的1/4,针对设计中的典型模具设计案例,以铝型材实心型材模为主,先采用三维造型软件Pro/E或UG对模具结构建模,之后利用塑性成型仿真软件Deform对挤压成形工艺过程进行数值模拟;第3阶段为通过对仿真模拟结果进行后处理分析,探讨设计方案和工艺参数的合理性,并制定出模具结构设计优化方案。历经这一教学改革,加强了教师与学生的引导和互动,针对性强,学生应用现代设计软件的能力得到了提高,充分调动了学生做毕业设计的积极性和提高学习工程设计软件的热情,更加锻炼了学生通过设计软件解决实际问题的能力,使学生能够举一反三,将来面对同类专业设计得心应手,全面提高了学生在挤压模具设计方面的综合能力。综观前几届学生在毕业设计阶段的表现,通过对该教学环节进行教学改革和实施,采用仿真技术完成毕业设计的学生几乎都受益匪浅,每年都有学生获得校优秀毕业设计论文的荣誉。

3.4实践性教学考试模式的探索

强化实践教学环节,理论联系实际,才能全面提高学生的综合素质。结合模具专业本身实践性较强的特点,安排实践环节,可以大大提高学生的动手操作能力。例如:在上完《挤压模具设计》专业课后安排2周的专业课程设计。课程设计的选题兼顾实用性和典型性,尽量选择一些实际生产中的实例,提高学生分析实际问题的能力。逐步提高具体要求,让学生根据给定任务,绘制正规的模具装配图,要求有主视图、俯视图、零件图、技术要求及明细栏;学生绘制模具零件图,要求标注公差与配合;学生编写设计计算说明书1份,不得少于12页。该环节有助于学生掌握具体的挤压模具设计思想和设计过程。在实践性教学环节考试模式上,从提高学生的动手能力和设计、操作技能方面入手。以课程设计为例,采用多种考试方法相结合:典型案例模具设计+上机操作+上机考试+实验报告+答辩。通过对铝型材工件的典型案例进行模具的结构要素设计,学生的模具设计能力、绘图能力得到了提升;基于动手能力的培养,侧重上机运行软件练习并结合上机考试绘制模具图,着重考核学生的软件操作和绘图能力,最后通过答辩考核学生获取理论知识的程度。基于实践教学环节的考试模式改革,实训教学质量得到了保证,避免出现同学相互拷贝实践教学考核内容以应付考试,有效地促进了学生自主学习的能力。

模具设计论文篇(5)

在一体化教学的过程中,先以项目教学为主要手段,然后以情境教学为教学目标,明确教学内容、学习目标,引导学生学习与技能的训练。在教学方法上有多种灵活方式,比如:情境教学法、讲授法、现场指导教学法及分组讨论法等等。分组讨论法:是将一组人选集中在一起就某个话题展开讨论,最后大家达成一致的结论。例如:在讲解塑料模具结构的时候,学生们就是采用这种方法将每个部分的名称一一讨论出来。讲授法:教师通过口语向学生传授知识、培养能力、进行思想教育的方法,在教学方法中应用广泛,且其他各种方法在运用中常常要与讲授法结合。现场教学:是在自然和社会现实活动中进行教学的组织形式。现场教学既是课堂教学的必要的补充,又是它的继续和发展。借以开阔眼界,激发学习热情,培养独立工作能力,陶冶品德。情境教学法:是指在教学过程中,教师有目的地引入或创设具有一定情绪色彩的、以形象为主体的生动具体的场景,以引起学生一定的态度体验,从而帮助学生理解教材,并使学生的心理机能得到发展的教学方法。例如对于塑模中塑料原材料的讲解,老师可以先设计一个场景,让学生通过视频中的场景了解一些知识,然后设计疑惑问题,使学生产生兴趣,从而引发学生的情感。

2.《塑料成型工艺与模具设计》编写一体化教学计划。

教学计划是培养人才的一个纲领性文件,是实现培养目标,组织教学活动,体现教育的重要的依据。我们要以培养学生综合素质为目的,注重对学生全面素质和综合职业能力的培养,增强学生的职业适应能力。改变传统授课模式当中的单一性和枯燥性,将理论和实践有机的集合起来,使学生能够循序渐进的接受过程。一体化教学计划避免了重复学习,提高了学习效率,突出了综合职业能力的培养。

3.《塑料成型工艺与模具设计》编写一体化教学教案。

一体化教学已经在中职学校的学习中占主体地位,因此老师编写的传统教案也要随之改变。《塑料成型工艺与模具设计》教案中的所有内容必须要以职业能力为本位,围绕模具制造额不同岗位,以专业能力培养为目标,坚持理论知识“必须、够用”原则,围绕“设计”“、制造”来编写,每一个环节都必须根据一个阶段的教学目标所涉及的知识为能力体现。

4.《塑料成型工艺与模具设计》教学时间的安排。

在《塑料成型工艺与模具设计》一体化教学的实施过程中,我们不但要考虑到内容与教学目标的要求,同时还需要考虑到学校现有的实训设备、场地以及学生的基本素质情况,采用四学时为一个情景教学单元设计教学内容,教师“教、学”和“做”的时间多数情况下是1:1的比例,当然对于难度系数较大或是学生部容易掌握的内容,可以根据具体的情况进行灵活的调整。

5.教师在《塑料成型工艺与模具设计》一体化教学过程中分工协作。

由于《塑料成型工艺与模具设计》一体化教学需要完成“做中学”“、学中做”,所以在教学中必须有良好的团队分工协作,才能达到理想的教学目标与教学效果。因此在教学过程中采用了一名主讲与一名实训相组合的授课模式。主讲老师主要负责讲授基本的理论知识和模具的设计技能,指导学生完成模具的设计;而实训老师主要是指导和帮助学生实现模具的加工、装配和调试等,让学生能够正确有效的消化学习的知识点,达到巩固,加深,掌握的目的。

模具设计论文篇(6)

2模具设计要求

复合材料成型模具直接影响着产品的质量,在设计时应满足:①模具要有足够的刚度、强度,以保证模具型面基准不变;②热容量小,热膨胀小,热稳定性好;③加工精度高,表面光度高,模具自身协调性好;④施工便捷,操作安全可靠;重量轻,运输方便;⑤可维护性好,制造成本低;⑥具有良好气密性。根据复合材料U形梁的结构特点,在设计中需要解决以下技术难点:成型模具的结构形式如何保证构件的型面公差,如何满足脱模要求并解决U形梁的回弹问题。

3模具选材

3.1模具材料

复合材料成型模具用料要求热变形小、热膨胀系数小以及导热系数高,大多采用普通钢、INVAR钢、碳/环氧复合材料和铝合金。普通碳钢适用于型面曲率不大的模具,当产品批量生产、尺寸精度要求较高时,选择钢制模具最为经济、实用;铝合金适用于平板类、尺寸精度要求不高的模具;INVAR钢适用于结构复杂、曲率大、尺寸大的模具。不同模具材料对复合材料构件变形的影响主要体现在两个方面,一方面是不同的材料热导率会影响与其直接接触的复合材料构件固化温度场的分布,从而影响最终构件内残余应力的大小及分布,引起不同的构件变形;另一方面就是不同材料的热膨胀系数不同,模具与构件之间的相互作用程度不一样,因此导致构件的变形不同。在固化过程中,模具与复合材料构件之间的热膨胀系数不匹配会引起模具与构件接触处的层间应力,包括层间剪切应力和沿构件厚度方向的力,这主要是由于模具与构件在固化压力的作用下始终粘贴在一起,随着模具受热膨胀,靠近模具的构件层比远离模具的构件层受到的约束张力要大,因此沿构件厚度方向形成一定的应力梯度,在固化过程中这部分应力被“冻结”在构件中,在脱模以前都没有得到释放,固化完成后冷却至室温脱模,这部分应力将被释放,脱模后的复合材料构件必须通过变形来维持应力的平衡。

3.2模具型面补偿修正

模具设计时要考虑复合材料与模具热膨胀系数的差异,INVAR钢和复合材料模具受热膨胀的影响很小,可忽略不计;但对于普通碳钢和铝合金模具影响比较大,对于大尺寸的复合材料构件需要采取补偿措施,根据计算公式和生产经验。考虑到制造成本和构件精度要求,本文设计的模具选用Q235钢制造,根据上述公式计算缩尺KS为-0.65‰,结合生产经验和复合材料梁的结构形式,提取整个构件的理论型面并按适当缩尺进行缩小,模具设计时按照缩小后构件提取的型面作为模具的设计型面,以减小构件的变形或抵消变形的影响作用。

4模具结构设计

4.1模具回弹角的补偿

复合材料在热固化成型过程中由于材料本身的各向异性、铺层方向引起的力学性能差异、结构的不对称性和基体的固化收缩效应等因素,在构件内经应力梯度和温度梯度耦合作用导致固化时的内应力积聚,一部分应力在构件中以残余应力的形式长久存在,另一部分应力在构件脱模后释放,这两部分应力存在的形式共同导致回弹变形。对于梁、长桁类有大夹角的构件,固化成型过程中在拐角处的回弹变形会导致夹角变化,即构件在固化脱模后,夹角因收缩而小于模具角度,此差值为回弹角。这将给制件间的装配带来容差、超差等问题,翼梁缘条回弹使其外形偏离了设计要求而导致蒙皮与翼梁间螺栓连接装配孔错位,若对装配件进行强制装配将会引起残余应力、密封不好等问题,这样会降低结构的强度和疲劳寿命,甚至造成制件报废。在模具设计时,通过调整模具型面来补偿构件回弹,即构件夹角加上回弹角等于模具夹角,使构件在脱模回弹后符合工程数模要求。国内外专家学者都在积极研究复合材料结构固化变形的预测及控制方法。GFG公司在复合材料工形梁的成型模具设计时,考虑工形梁缘条的回弹,采用经验的方法在模具的缘条型面上加入修正值(约1°)以抵消构件回弹。国内贾丽杰等人针对复合材料典型C形结构的回弹变形进行研究,通过对回弹角的预测结果进行修正,确定C形梁回弹角度在1°左右。本文涉及的复合材料U形梁为闭角结构,成型模具设计时需要进行回弹补偿,结合以往生产经验和国内外学者的研究结果,在两侧缘条各设置1°回弹补偿角,提取补偿后的两侧缘条型面为模具的型面。

4.2模具结构形式

复合材料梁一般为细长结构,常用模具结构形式为阴模、阳模和阴阳模组合,分析构件是否有气动面、装配面、胶接面等,一般情况下可确定这些面为贴膜面。根据U形梁的结构特点,采用CATIAV5R18建模,模具为框架式阳模结构,采用Q235钢焊接制造,模具包括模胎、支撑框架(支板组件和框架)、盖板、工具球套。根据产品设计部门所提供的产品零件数模提取成型曲面作为模胎的理论型面,将该曲面偏移10mm切割实体,获得“Ω”型模胎;创建支板组件,输入单个支板尺寸创建实体并设计散热孔,通过阵列命令创建其他支板;框架为长方体结构,采用的方钢管为标准型材,根据彼此之间的位置约束关系通过阵列偏移命令进行设置。这种框架式模具结构厚度均匀,通风好,升温快,有利于模具各点温度均匀,可以减少模具在升温和降温过程中因各部位温度不一样而引起的模具变形。(1)模胎模胎是“Ω”型一体式结构,采用10mm等厚的钢板,在保证气密性前提下允许拼接焊接。在模胎上需要留有一定距离用于打真空袋,通常手工铺贴模具的余量区在100~200mm。模胎的型面轮廓度公差小于0.2mm,数控加工后按数模中模胎线数据集划线,深0.5mm、宽0.3mm,并在余量线外打出标记,所有划线位置的偏差不大于0.2mm。构件轮廓线用于非数控切边时使用,决定构件外形尺寸的精度,设计时应考虑模具材料的膨胀因素作适当缩放处理。铺贴线用于无激光投影时手工铺贴定位,以控制铺贴余量,防止由于铺贴不完全齐整、流胶、挡胶条等因素导致固化后产品边缘质量不高,通常铺贴线到产品轮廓线可留20mm余量。(2)支撑框架框架与支板组件主要起支撑作用,保证整个模具的强度和刚度。框架取消了传统的薄板格栅结构,采用方钢管焊接,具有成本低、加工周期短的优点,有效实现模具减重,又使得空气流在模具体上下表面任意流动,加热更均匀。在支板组件上设计散热孔,尽量在同一直线上保证成型过程中空气的流通性,有利于整个成型的复合材料构件温度均匀,保证成型产品的质量。同时在支板两端设计80×50×10mm的加强块,防止模具在吊装时沿长度方向产生变形。(3)盖板和工具球梁腹板平面处采用2mm铝盖板与阳模配套使用,使构件表面加热均匀,同时在抽真空的过程中传力均匀,保证构件外表面的平面度。工具球用于定位找正,在设计时要覆盖构件的最高点和最低点,长度方向间隔不超过1m。各工具球孔按数模制造,并在模胎上打出所有工具球实际坐标值及孔位序号,用于手动铺贴时放置激光投影的靶标,以定位铺层区域。(4)后续处理模具焊接完成后进行2~3次退火,消除焊接和机加应力,减少模具的变形;对模具型面进行激光测量,型面精度符合图纸要求;加工完毕做气密试验,保证模具气密性。

4.3工艺验证

在复合材料U形梁的热压罐成型工艺中,采用本文设计的成型模具进行铺叠成型,生产的复合材料构件易于脱模,表面光滑平整,型面公差符合要求,U形梁两侧缘条的角度变形控制在技术要求范围以内,满足了后续与壁板及其他组件的装配要求。

模具设计论文篇(7)

在我国塑料工业发展中,计算机的应用起到了重要作用。计算机技术在模具设计领域的应用,大大缩短了模具设计时间,尤其计算机辅助工程(CAE)技术的大规模推广,解决了塑料产品开发、模具设计及产品加工中的薄弱环节。更在提高生产率、保证产品质量、降低成本等方面体现出现代科技的优越性。但是现代技术并不能替代专业设计人员的经验,在塑料模具设计时制品材料的选择是决定模具设计时模具材料选用的重要因素。怎样选用合适的材料,是模具设计中一个重要的问题。

一、塑料制品材料的选用对模具设计的影响

一般来说,并没有不好的材料,只有在特定的领域使用了错误的材料。因此,设计者必须要彻底了解各种可供选择的材料的性能,并仔细测试这些材料,研究其与各种因素对成型加工制品性能的影响。本文只就传统的热塑性材料进行分析以说明问题。在注射成型中最常用的是热塑性塑料。它又可分为无定型塑料和半结晶性塑料。这两类材料在分子结构和受结晶化影响的性能上有明显不同。一般来说,半结晶性热塑性塑料主要用于机械强度高的部件,而无定型热塑性塑料由于不易弯曲,则常被应用于外壳。这是材料选用的大框,其次,还要根据填料和增强材料继续选择。

(一)根据填料和增强材料进行选择的分析

热塑性塑料可分为未增强、玻璃纤维增强、矿物及玻璃体填充等种类产品。玻璃纤维主要用于增加强度、坚固度和提高应用温度;矿物和玻纤则具较低的增强效果,主要用于减少翘曲。玻璃纤维会影响到成型加工,尤其会对部件产生收缩和翘曲性。所以,玻璃纤维增强材料不能被未增强热塑性塑料或低含量增强材料来替代,而不会有尺寸改变。玻璃纤维的取向由流动方向决定,这将引起部件机械强度的变化。试验(从注射成型片的横向和纵向截取了10个测试条,并在同一个拉力测试仪上对它们的机械性能进行了比较)表明,对添加了30%玻璃纤维增强的热塑性聚酯树脂,其横向的拉伸强度比纵向(流动方向)低了32%,挠曲模量和冲击强度分别减少了43%和53%。

在综合考虑安全因素的强度计算中,应注意到这些损失。

在一些热塑性塑料中加入了一系列增强材料、填料和改性剂来改变它们的性质。由这些添加剂产生的性能变化必须认真地从手册或数据库中查阅,更好的是听取原材料制造厂家的专家的技术建议。以选用最为合适的材料。

(二)考虑湿度对材料性能影响

一些热塑性材料,特别是PA6和PA66,吸湿性很强。这可能会对它们的机械性能和尺寸稳定性产生较大的影响。在进行设计时,应特别注意这种性能,考虑其对产品性能的影响。模具材料的选用取决于制品材料,细致分析制品材料后,才能在模具设计时选用最为合适的模具材料。

(三)塑料制品模具材料选用

细致分析塑料制品使用的材料后,选取最为合适的模具材料。目前我国市场常见的、适合热缩性材料的模具材料有:非合金型塑料模具钢(即碳素钢)、渗碳型塑料模具钢、预硬型塑料模具钢、时效硬化型塑料模具钢、整体淬硬型塑料模具钢、耐腐蚀型塑料模具钢几种。在模具材料选取时,根据制品材料是否改性和增加填充剂,添加何种添加剂来选取适合的模具材料。例如:制作形状复杂的大、中型精密塑料制品时,其模具材料可选用预硬型塑料模具钢;制造复杂、精密且生产时间较长,需要高寿命模具时刻采用时效硬化型塑料模具钢。具体选用时主要还是要针对塑料制品的材料和模具预计使用情况选取。适宜的材料加上合理的设计将极大的提高模具使用周期,同时也可以提高产品质量。

二、壁厚及相关注意事项对产品性能的影响

在工程塑料零件的设计中,还有一些设计要点要经常考虑,其中对于壁厚的设计尤为重要,壁厚设计的合理与否对产品影响极大,改变一个零件的壁厚,对以下主要性能将有显着影响:零件重量、在模塑中可得到的流动长度、零件的生产周期、模塑零件的刚性、公差、零件质量,如表面光洁度、翘曲和空隙等。

(一)塑料模具设计工艺中的基础要求

在设计的最初阶段,有必要考虑一下所用材料是否可以得到所要求。流程与壁厚比率对注塑工艺中模腔填充有很大影响。如果在注塑工艺中,要得到流程长、而薄,则聚合物应具有相当的低熔融粘度(易于流动熔解)是非常必要的。为了深入了解聚合物熔化时的流动性能,可以使用一种特殊的模具来测定流程。

增加壁厚不仅决定了机械性能,还将决定成品的质量。在塑料零件的设计中,很重要的一点是尽量使均匀。同一种零件壁厚不同可引起零件的不同收缩性,根据零件刚性不同,这将导致严重的翘曲和尺寸精度问题。为取得均匀的,模制品的厚壁部分应设置模心。此举可防止形成空隙,并减少内部压力,从而使扭曲变形减至最小。零件中形成的空隙和微孔,将使横截面变窄,内应力升高,有时还存在切口效应,从而大大降低其机械性能。不同壁厚塑料制品的模具设计时,模腔的要求也不同,根据制品的要求,设计模具的模腔及脱模斜度,斜度要与塑胶制品在成型的分模或分模面相适应;是否会影响外观和壁厚尺寸的精度。

(二)热塑性塑料设计中的指标分析

热塑性塑料一般具有高的延展性和弹性,不需要像具有高刚性、低延展性和低弹性的金属一样指定严格的范围。设计者在决定热塑性塑料模具制品的成本方面起了关键作用,合理且不影响产品性能的、缩小公差,较少成本是可以实现的。一般商业上可接受的产品与标准尺寸的偏差不高于0.25-0.3%,但这还需要与应用时的具体要求相结合来判断。精确的模具可以有效的缩小制品公差,从而降低制品成本。因此,模具精密度对制品生产厂家具有重要意义。

三、塑料模具设计时对收缩值的考虑

为了不对塑料部件制定过分严格的范围,必须要注意一些影响塑料制品尺寸准确性的因素。模具制造的标准必须严格遵守,同时要特别注意脱模斜度的重要性,因为它决定了脱模容易与否及防翘曲性能。

还有一个与产品设计相关的重要问题是,当成型品是由不同材料或不同壁厚制成时,其模后收缩值与方向和厚度相关如果复杂的成型对加工的要求非常严格,必须要获得模具原型有关收缩值和翘曲行为的准确数据玻璃增强材料的这一性质最为明显。玻璃纤维的取向性可在水平方向和垂直方向产生具有显着性差异的收缩,从而导致尺寸不准确。塑料制品的几何形状对收缩也有影响,进而影响到产品的性能,这也是设计者值得关注的一点。因此在此类制品模具设计时要注意制品脱模收缩后的尺寸是否为产品要求尺寸,否则因制品模后收缩值的影响,极有可能导致产品尺寸不符合标准。

结论:

与产品模后性能相关问题还有许多,设计人员可以参考手册进行设计。总之,在塑料制品模具设计时要充分考虑可能影响制品尺寸、性能、外观等多方面因素,综合利弊,选用适合的材料,合理的设计,才能保证产品的性能。

参考文献

张国栋.模具设计概述[J].中国模具设计,2003,6.

李海龙.注塑模具设计[J].模具前沿,2005,12.

肖海燕.模具设计之材料选用[J].西安机械设计,2006,1.

模具设计论文篇(8)

2注塑模具筋位电极常规设计方案

根据电极在模具制造过程中的作用可将其分为产品外形成型电极、清角电极、筋位电极、“铜打铜”电极(即用来对电极进行电加工的电极)等。按电极组合方式可分为整体电极、组合电极及一极多用电极(也称跑位电极)。按电极制造材料又可分为普通紫铜电极、石墨电极和特种铜电极等。对于一般电极,其结构主要包括成型部位和电极基准部位等组成。对于前文所述的塑料盒零件的注塑模具后模制造,电极材料选用普通紫铜电极即可。如果模具尺寸不大,筋位电极一般会采用整体电极,如图3所示;如果尺寸比较大,通常会采用跑位电极,只做一条筋位的放电电极,即类似于图3所示的整体电极的1/8,通过对后模上加强筋位置的逐一放电来完成放电加工任务。相比之下,整体放电电加工用间短,电极制作成本偏高,成型误差小;跑位放电电极制作成本低,放电耗时长,成型误差受电极自身损耗较大。

3注塑模具筋位电极设计方案优化

结合上述情况,在保证生产效率的前提下,本着最大程度降低生产成本的目的,笔者将本塑料盒筋位电极的制作方案进行了创新性优化设计。放弃原来的切削加工方式,同时将电极基准部位由紫铜材料改用普通钢材,电极成型部位仍采用紫铜材料,将电极制作成镶拼结构。筋位电极基准部分投影示意图,示意图中间又以局部放大视图的形式对镶拼位置的结构进行了表示这两部分均采用电火花线切割方式进行加工,在普通钢板上割出电极成型部分镶拼框,并加工电极吊装螺丝孔或其他吊装结构,同时用铜板割出8件同样的电极成型部分,切割路径如图5、图6的投影轮廓所示。由于加强筋一般情况下对形状精度要求较低,因此,电极成型部分的拔模角度采用手工打磨的方式即可满足要求。最后将打磨后的电极成型部分按要求拼装到电极基准部分的镶拼框里,保证两部分的垂直度和各成型部分底面的共面度,便可进行下一步的放电加工了。另外由于放电加工基本没有切削力,因此直接镶拼或进行涂胶固定后镶拼结构是能够满足放电要求的。

模具设计论文篇(9)

2模具结构分析与模具设计

2.1成型零件的模具设计

根据塑件为一圆盖形零件的结构特点,基于优化模具加工与装配工艺的考虑,成型零件宜采用镶拼结构,并设计成圆柱形。在此基础上确定出成型零件的主要装配尺寸,其中,型腔边与镶件边的间距为15~30mm,型腔顶部与镶件背面间距为15~30mm,由此设计出型腔镶件的外形尺寸为?82mm×35mm;而型芯的主要装配尺寸应结合零件的镶拼位置来确定。另外,成型零件的其他结构需结合模具其他相关机构综合考虑设计。结合产品的结构尺寸,初步设计出各成型零件的结构草图,如图3所示。

2.2模架结构的确定

如前所述,本模具采用点浇口进料方式的三板式模具结构,因此应选用带水口推板的细水口模架;另外模具中塑件采用推板推出的脱模方式,模架的下模部分必须配置推板,综合考虑镶件的结构尺寸及其固定方式、流道的设置、塑件的推出及模具的冷却等因素,确定选用的模架规格型号是:DBI-2030-A50-B25-C90。其中各参数的含义如下[2]:D——带刮料板的细水口模架形式;B——下模部分设置有推板及托板;I——工字模;2030——模架宽度200mm、长度300mm;A50——上模板厚度50mm;B25——下模板厚度25mm;C90——垫板厚度90mm;190——拉杆长度190mm。模架剖视结构如图4所示。

2.3浇注系统的设计

根据塑件的结构特点,本模具确定采用点浇口的进料方式,分别在两个型腔中间各开设一个进胶点,结构中结合三板式模具的动作原理设计相关机构,由此实现开模过程中塑件与浇注系统凝料自动分离脱落,确保塑件的外观质量,减少后处理工序,降低操作者的劳动强度。(1)设计浇口根据塑件结构工艺性分析可知,本模具以采用点浇口的进料方式为宜。结构形式及形状尺寸如图5所示,结合塑件的尺寸大小设计出点浇口的结构尺寸,分别为l=1.2mm、d=?1.2mm、R=2mm,a=6°。(2)设计分流道根据三板式模具的动作原理及浇注系统凝料的脱模形式可知,模具的分流道只能设置在水口推板与上模板结合面处,通常只在上模板一侧单边开设。本例中确定采用半圆形的分流道截面,截面半径为R=5mm;结构中两个型腔的中心距为100mm,分流道的长度结合型腔布局并适当延长,以作为分流道的冷料穴。(3)选用浇口套与定位环结合常用标准件的规格型号,本模具中选取直径为?16mm的浇口套及?120mm的定位环。并根据三板式模具的动作原理,将浇口套与水口推板的配合段设置为锥度α=10°的配合锥面。浇注系统及相关零部件结构如图6所示。

2.4脱模机构的模具设计

(1)设计螺纹脱模机构由于塑件的螺纹部分采用手动式螺纹脱模方式,模具中螺纹型芯应设置成活动镶件的结构形式,为了实现活动镶件的可靠定位及快速装卸,螺纹型芯应采用弹性的固定方式,因此,结构上在下模镶件中设置一弹簧波珠,并在螺纹型芯的对应部位开设一圆弧槽,以起固定作用。与此同时,为了减少螺纹型芯与下模镶件的配合长度,方便螺纹型芯的安装、脱模以及在模外的拆卸,将螺纹型芯的底端部分设置成锥面,并在其周边开设4个平面,螺纹型芯结构如图7所示。(2)设计推板推出机构根据推板推出机构的工作原理,为防止推板刮伤下模型芯,推板内孔应比下模型芯成型部分大,并将推板与下模型芯的配合面设计成单边斜度为10°的锥面,以防止因推板偏心而出现飞边。除此之外,为了避免推板推出行程过大而脱离导柱,必须根据模具的推出行程设置推板推出机构的限位装置,结构中采用限位螺钉的限位方式。(3)设计先复位机构由于采用活动镶件的结构形式,螺纹型芯必须在合模之前放置到模具里面,因此必须在模具中设置先复位机构。先复位机构主要包括弹簧式先复位机构与机械式先复位机构,考虑到推出机构中推杆较少,摩擦力较小,因此确定选用弹簧式先复位机构。弹簧长度的算法[3]:i=s+lL其中:i——压缩比,通常取0.4~0.5之间;s——总行程,mm;l——预压量,通常为15mm左右;L——弹簧自由长,mm;根据本模具结构,确定出相关参数,分别取i=0.45,l=15mm,s=20mm,由此可计算出L:L=s+li=20+150.45=77.7mm取L=78mm。复位弹簧一般套装在回程杆上,由于模具回程杆直径为?15mm,结合模具的推出行程及弹簧的自由长度,确定复位弹簧的规格尺寸为TL35mm×17.5mm×78mm。

2.5冷却系统的模具设计

由于型腔与型芯均采用镶拼结构,因此模具中只需针对型腔镶件与下模镶件进行冷却。从结构上分析,型腔镶件中间设置了浇口,而型芯镶件中间设置了螺纹型芯,结构中只能通过在镶件周边开设冷却槽,以通入冷却水实现冷却。结合镶件的结构尺寸,确定在镶件圆周上设置一条6mm×6mm的冷却水槽及两条3mm×2mm的密封圈槽,并在相应模板的对应位置上开设进出水孔即可。冷却系统结构详见图8。

3模具的整体结构及工作原理

根据模具的结构方案及三板式模具的动作原理,对模具的相关结构进行完善,设计出模具的整体结构,如图8所示。模具的工作原理如下。(1)注塑充型塑料熔料经件37(浇口套)的主流道、件33(压板)上的分流道、件32(型腔镶件)上的浇口充填型腔,并在注塑压力作用下保压、冷却。(2)开模分型在注塑机动、定模板的带动下,模具依次实现分型:第一次分型:模具在Ⅱ处打开,利用分流道凝料对件34(拉料钉)的包紧力,将浇注系统凝料从件32、件33中拉出,并使其与塑件分离,直至件11(限位钉)拉住件15(上模板)。第二次分型:模具在Ⅰ处打开,件11拉动件14(水口推板)运动,将浇注系统凝料从主流道刮出,并使其脱离件34,直至件12(限位钉)拉住件13(顶板)。第三次分型:模具在Ⅲ处打开,件38(尼龙锁模器)脱离件15(上模板),塑件随下模运动并脱离件32,直至模具打开足够行程。(3)推出塑件及螺纹型芯模具在Ⅳ处打开,下模停止运动,件23(推杆垫板)、件21(推杆固定板)在注塑机顶出杆作用下,带动件17(推板)及件27(推杆)运动,并分别推动塑件及件28(螺纹型芯),完成塑件与件28的整体推出。(4)螺纹脱模在模外借助手工工具,将件28从塑件上拆卸,完成塑件的螺纹脱模。(5)推出机构复位推出动作完成后,注塑机顶出杆回抽,件21、件23在件20(复位弹簧)的作用下,带动件22(回程杆)、件27完成复位动作。(6)放置螺纹型芯将件28放入到模具中,并利用件16(弹簧波珠)定位。(7)模具合模在注塑机动、定模板的带动下,模具上的各模板分别合拢,完成一个注塑周期。

模具设计论文篇(10)

二在注射成型时

当原料以高压注进型腔内时,型腔内熔体对模具还具有涨开力,会对模具产生一个撑开的力量,注塑机为了克服这种张开力,会施加给模具一个锁紧力,这个锁紧力称为锁模力。影响锁模力的因素主要有两个。其一是模腔沿模具分型面上的最大投影面积,如果投影面积超过了注射距的允许使用的最大成型面积,则成型过成中将会出现涨模、溢料现象。另一个因素是模腔压力,模腔的压力来自熔体流动的阻力,一般来说,模腔压力在注射压力的0.4—0.6倍之间。分型面是动模和定模在闭合时接触的部分,分型面的设计是模具设计成败的关键因素之一,对于分型面的选择,我们遵循五个利于:利于脱模、利于简化模具结构、利于排气、利于产品质量、利于加工。模具的浇注系统是模具设计工作者十分重视的技术问题,浇注系统的设计直接影响着塑料产品的外观、性能及成型效率。主流道应设计成圆锥形,便于流道凝料的脱出。但锥角要合理,锥角过大会产生湍流或涡流,卷入空气,反之会使凝料脱模困难。

上一篇: 镇长工作报告 下一篇: 社会变革
相关精选
相关期刊