三角函数变换规律汇总十篇

时间:2024-03-26 17:21:19

三角函数变换规律

三角函数变换规律篇(1)

所谓等量替换,实际上就是用一种量或者其部分替换与之相等的另外一种量、或者一部分;等量替换是初中阶段数学教学过程中的一种基本思想方法,同时也是代数思想教学和学习的基础.从狭义层面来讲,函数等量替换思想,即采用等式性质体现实际上是等式的传递性.比如,a=b、b=c,则可推导出a=c.在初中函数教学过程中,真正用到的等量替换为f(a=b∧f(a)f(b)),上述关系中的f代表的是广义层面的等量替换.具体来讲,即如果M是N的同义词,而且N代表人,则M也是人.从实践来看,该种数学思想方法不仅在初中阶段的函数教学过程中应用比较广泛,作为数学基础和重要知识点,在高中、大学阶段都会用到.在初中数学教学过程中,因三角函数变换种类非常的多,学习方法非常的灵活,所以学生感到非常的吃力或者困惑.然而,三角变换过程中基本规律、解题思路不变,因此实践中可将这些基本规律概括成公式之间的联系、运用,在此过程中三角函数的等量替换对学生们的数学思维能力培养,具有非常重要的作用.事实上,在我们的日常生活中存在着很多等量替换的实例,比如曹冲称象的故事,便是一个非常经典的等量替换思想应用实例.在初中数学教学过程中,如果A=B,Q+A=W+B,则Q=W就是等量替换思想应用的结果.在初中数学函数中,如果两个方程式相等,在其两边分别同时加上同一个整式,则二者依然相等,这便是最为典型的等量替换思想.

二、初中数学函数教学过程中的等量替换措施

在当前初中数学函数教学过程中,等量替换思想应用非常的广泛,以三角函数为例,其变换常见的类型如下.

1.三角函数中的“角”替换策略

在初中三角变换解题实践中,对三角函数中的相应角度进行替换,体现在和角、差角、半角、余角、倍角以及补角和凑角之间的相互替换,其中角度变换或者替换,起到了非常重要的连接作用.在三角函数角度替换过程中,函数运算过程中的名称、符号以及次数等,也会随之发生相应的变化.

比如,在ABC中,已知∠BAC=90°,M是线段AC的中点,且AGBM,垂足为G,BG=2GM.(1)证明BC=3AG;(2)设AB=6 ,则BM的长度为多少.

(2) 由(1)得当AB=6时,BM=BG+MG=3.

本例题中用到了等量替换思想.事实上在对初中三角函数问题求解过程中,因表达式中通常会有许多个相异的角,所以需根据实际情况,三角角度间和、差、倍、半以及补和余关系,将未知角用已知角来表示(替换),然后再进行具体运算,从而顺利求解.

2.三角函数中的“形”替换策略

三角函数变换规律篇(2)

由于三角函数的变换具有多向性、不定性,因此,学生对其理解不是很透彻,也比较难掌握每一种方法,但是“万变不离其宗”,其变化的基本思想与规律是不会变换的,下面进行详细分析.

一、三角函数变换中的几种常见类型

1.函数名称变换.在三角函数变换中,最为常见的是函数的名称变换,在名称变换的情况中最为常见的是切割化弦.对于三角函数名称的变换我们可以从化函数或者是化形式的方面进行思考.

在三角函数中,正弦与余弦是六个三角函数的基础,也是应用最为广泛的,其次是正切、余切,我们只需要将变换了的三角函数名称转换成为同名的三角函数,就能够成为我们常见的三角函数.比较常见的方式是“切割化弦”、“齐次弦代切”这两种转化方式.

2.三角函数“角”的变换.“角”的变换主要体现在了三角函数中的差角、余角、补角、半角等之间相互转换.随着三角函数“角”的变换,其相应的运算符号、名称、次数都会出现一定的变化,在解题的过程中,我们只需要认准三角角度之间的和、差、半、补、余等关系,利用已知的“角”来表示未知的“角”,然后再根据相关的关系运算,就能够顺利的解决三角函数的求解问题.

例1 设A、B均是锐角,且cos(A+B)=1213,cos(2A+B)=35,求cosB=?

分析:从题目中我们知道“已知角”是(A+B)、(2A+B),,B=2(A+B)-(2A+B).

比较这三者之间的关系,我们只需要将B用A+B、2A+B表示出来,再利用两角差的余弦公式就能够轻松的解出cosB.

解:略.

3.三角函数“形”的变换.我们在对三角函数进行转化、求简或者求值的过程中,会根据一些情况来讲一些常数,比如1,2,1+2等转换成为与其相关的三角函数,其中利用常数1来转换是比较常见的.

从上文我们知道了,遇到这种情况,先利用已知条件,因此,我们利用“弦化切”来进行解答.我们利用整式中的分母都是相同4的情况,将其转换为1,将分母“1”转化为:sin2α+cos2α,从而简化解答.

在解答的过程中,我们要遵循由繁到简、由简到易的规律.

二、几种比较常用的三角函数变换解题方法

1.将“弦函数”与“切函数”进行相互的转换.将“弦函数”与“切函数”进行相互的转换是在平常的解答三角函数中比较常见的也是两种基础的转换手法.

如,在三角函数式中存在正切函数,我们就可以利用三角函数之间最为基本的关系或者是利用将“弦函数”转换为“切函数”来进行求解或者是证明.这种方法比较简单,学生掌握起来也比较快,在三角函数式中应用比较广泛.

2.采用“角”的等量代换.如,在三角函数中出现已知角与所求角时,我们要判断两者之间的相互关系,在确定两者之间存在某种关系的时候,我们就可以采用“角”之间的等量代换.

比如,α=(α+β)-β=β-(β-α)=(α+β)2+(β-α)2.

采用比较简单的“角”变换就能够将一些不容易解的题目变换为我们熟悉的题目来进行求解.

3.公式逆用或者变用对于公式或者定理,我们可以对其进行反推(从结果开始证明到题目),或者是将公式变换来进行用,会取到意想不到的效果.当然这必须建立在对公式或者定理足够熟悉的基础上,比如我们可以让学生熟练的使用2sin2x=1-cos2x、2cos2x=1+cos2x这些基础的三角函数公式,并作出引导的证明或者变换的证明,让学生反复练习,达到熟能生巧的地步.

除以上的基本解题方法,我们在教授学生的过程中要培养学生如何自己去解题,不是只会记“题”,要记住“题型”,会变换“题型”,我们所知的三角公式比较多,在解题的过程中假如没有选对公式或者选错了方向,那么解题过程就是一个泥潭,会越陷越深,在进行三角函数的变换过程中要:公式选择必须谨,角的范围尽量小,变量统一变,不局限一种方法,综合考虑.

三角变换的基本思想可以总结如下:找差异、建联系、选公式、促转化,在三角函数中无论题目是要求求值化简,还是要求我们证明某一结论,我们都应该将题目的中已知转化为未知,这也是所有解题的方法之一.根据整体已知的条件,找取相应的部分定理条件,或者是角之间的差异,或者是函数名称的差异,在找到差异之后,整个题目就迎刃而解了.

参考文献:

三角函数变换规律篇(3)

(1)必修1后接着学习必修4有利于对基本初等函数有一个系统掌握。函数是初中阶段学生已经接触过的知识点,但初中是用变量与变量间关系来介绍函数概念的,其重点是研究函数解析式;而高中的函数概念则是在映射观点下的对应学,是建立在非空数集之间的一种对应关系。它的表现形式除解析式外,还可以运用图象或列表。它的核心是三要素――定义域,对应法则及值域,而且函数可由定义域和对应法则完全确定。在此基础上我们还研究了函数的单调性,奇偶性等性质,还学习了指数函数,对数函数及幂函数三种新的基本初等函数。回头我们还用它们进一步理解了函数的概念。但对于函数概念理解难以达到完美,这样需要我们学习另一类基本初等函数――三角函数。与其他函数相比它是具有很多重要的特征,它以角为自变量,是周期函数,同时也是解决其他函数问题的重要工具,与后续学习的很多内容有联系,是深化函数性质的极好教材。因此,接着必修1后学习必修4让我们对基本初等函数有一个整体掌握,形成一串牢固的知识链条。

(2)必修1后接着学习必修4有利于高一物理等学科的学习。新课程开始几年,我们按1-2-3-4-5顺序安排5个必修模块,结果发现学生在高一第一学期学习物理需要的三角函数和向量的知识,要在高一第二学期才能学习,从而造成物理老师上数学课的现象。然后我们成立课题组,通过对按1-2-3-4-5和1-4-2-5-3两种模式学科的不同年级进行全面跟踪研究后,发现后一种选课模式基本上解决了上物理课时数学知识滞后的问题,从而真正实现了新课程标准要求的“人人学会自己须用和会用的数学”的大众数学理念。

2. 第一章三角函数部分知识点教学设计与生成后的思考

(1)任意角的三角函数的概念。三角函数概念的发展前后经历了4000多年,就初、高中教材体系而言,首先初中是把正弦、余弦、正切定义为直角三角形的边长之比。因此,初中讨论“三角函数”仅限于三角形内的三角函数。它解决的问题限于平面图形相关的几何问题。由于我们不能把任意角的三角函数看成锐角三角函数的推广(或一般化),所以在高中学习的任意角三角函数内容应该是以函数的眼光对待,把对它的学习作为理解函数一些性质,如周期性。强调三角函数是用于刻画生产生活中周期性发生变化的一个经典模型。为了建立角度集合与实数集间的一个对应,教材引入了弧度制。接下来就用单位图给出了任意角的三角函数。教学中,大多数教师从给学生回顾初中锐角三角函数定义入手,然后让学生考虑如何将锐角三角函数推广到任意角三角函数,这样的方式会使学生觉得任意三角函数是锐角三角函数的一种推广。这样方法会有以下不足:①没有讲明高、初中学习的三角函数研究方法本质上不同,容易引起概念的混淆。②没有利用好单位图。其实单位图是函数周期性的一个很好体现,它是学生后续学习逐步认识三角函数周期性的重要模型。

理解三角函数概念我们要多视角,如几何的、代数的、解析的等。教师的教学也不能将三角函数概念理解局限于一节课,一个章节里,了解学生的学习更是一个循序渐进的过程,因而在整个单元教学中应做到反复重视学生对任意角的三角函数概念理解的情况,从而达到对函数概念理解的又一次升华。

(2)正弦函数,余弦函数的图象与性质。我们知道,实数集与角的集合之间可以运用度与弧度的互化建立一一对应关系。而一个确定的角又对应着唯一确定的正弦(或余弦)值,于是,给一个实数x,有唯一确定的值sinx (或cosx)与之对应,由这个对应法则所确定的函数y=sinx(或y=cosx)叫做正弦函数(或余弦函数),其定义域为R。

《必修4》在讲述三角函数后,将简谐运动作为正弦(型)函数图象的教学情景和应用。而普通高中物理课程标准在选修模块《选修3-4》才介绍简谐运动。显然,高一物理课程不讲授简谐运动,因此,高一第一学期教授学生三角函数时,将简谐运动作为正弦(型)函数图象的教学情景应用就不合适了。为此,我们采用圆周运动或教室里日光灯的电流强度随时间变化的规律作为教学的情景,因为它们的变化都呈现了周期性规律。

通过上述实验或例子,对正弦函数和余弦函数的图象形成一个较直观的印象后,我们运用单位图中的正弦线来画比较精确的正弦函数图象。在进行教学设计时,为了培养学生的学习能力和实践操作能力,首先我们课前设计了一个3~4分钟时间可播放完的“微视频”,将运用单位图中的正弦线画正弦函数图象分步展示给同学。在实验操作完备后展示给同学们课堂上集中观看“微视频”。当视频播放结束后,我们把预先设计好并打印的坐标纸发给每一个学生,给学生5分钟时间完成用单位图中的正弦线作y=sinx,x∈[0,2π], 的图象。当时学生表现出十分高的学习热情。制图完成后抽样展示时发现都完成得十分认真。当老师再此提出如何获得y=sinx,x ∈R的图象时,绝大多数同学能回答出将图象左、右平移(每次2π个单位长度)即可。这都是前面的实验呈现出重复次数的周期性规律的成果。至于由y=sinx,x∈R的图象获得y=cosx,x∈R的图象,学生们还回答出通过单位图中余弦线或由公式cosx=sin,将y=sinx向左平移即得。

当然,这堂课的最后成果不仅仅是获得正弦函数和余弦函数的图象,而是从图象上观察出5个关键点决定正弦函数和与弦函数在长度为一个周期内的图象,如y=sinx,x∈[0,2π] 的图象上起关键作用的点为(0,0),(π,0),(2π,0),在精确度要求不太高时,找出了这五个点,再用光滑曲线连接,就可以得到函数的简图。这就形成了今后我们研究正弦(型)和余弦(型)函数图象简图的通法“五点法”。本堂课产生知识环节的教学设计是:实验―尝试―探究―提炼。四步骤体系新课程标准课堂教学以学生为本,以学生主动学习为本的理念。贯穿于教学全过程就是教师主体引导下的学生主体活动由浅入深地连续开展,更符合运用数形结合的手段研究函数的一般规律。

(3)函数y=Asin(?Ax+?渍)的图象。在A>0,?A>0的条件下,如何由y=sinx 的图象经变换获得y=Asin(?Ax+?渍)的图象呢?教材上在探究每种变换时,并没有用具体例子通过人工画图象后提炼规律,而是运用电脑软件――几何画板的功能代替了,这样过程令学生眼花缭乱,其变换规律难以体验到位。因此,在我们的教学中,对于每种变换我们均设计例子并引导学生在课堂上动手用五点法操作,然后再结合电脑动画进一步体验规律。这样的教学设计表面上因让学生动手操作花了一些时间而“降低了”课堂效益,其实际上经学生动手的过程体验而形成了理解性的知识规律,最后引导学生探讨“图象变换”法的具体过程。如何由y=sinx的图象经历平移变换和伸缩变换得到y=Asin (?Ax+?渍)的图象,每经历一部变换,五个关键点须作相应的变换,每一步变换却抓住了这五个关键点,得到的简图就可据“五点法”画出。这样学生不但掌握了研究这类函数图象的两类方法,而且了解了两类方法各自作用和互相联系性。

3. 教学后的启示与反思

(1)数学教师应该具有独立处理教材,研究并合理运用好教材的能力,而不是照本宣科。随着新课程改革向纵深发展,从传统的“教教材”到现在的“用教材教”理念的转变已经深入人心。教材仅是课程标准下提供给教师教学、学生学习知识的一个重要载体,但不是唯一载体。

在教学中,我们既考虑如何充分利用好教材,但又不能被教材所困。这就是需要吃透课程标准的前提下深入研究并发现学科知识本质的东西,尤其是考虑到“因材施教”,对于教材一些“启”而未“发”的内容,我们可考虑重新按认知观设计教学,教师做到对教材上一些概念、定理、公式、法则充分理解的前提下传授给学生。比如:在研究三角函数的单调性时,学生总是吃不透函数单调性概念必须指明在特定的区间上,二者不可分割。因此出现有的同学提出y=sinx,x∈R在第一象限内是增函数问题时,教师必须强调象限角不是区间角,二者不能等同。我以y=在(-∞,0)和(0,+∞)内分别是减函数,而不能讲y=在其他定义域内是减函数为例,考虑它的定义域已经不是独立的区间了。文章第二部分提到几个问题,也正好是体现了“用教材教”的理念。

(2)教学设计与生成应熟悉基本课型,规范操作须始终把学生的发展摆在首位。教学工作的主阵地是课堂。因此,学科教学能力是任何一个数学教师必须具备的基本能力。通常说教学有法,教无定法。所谓“有法”就是指教学应遵循一定教学规律与原则,每位数学教师应对新课程标准下高中数学教学基本课型“概念课”“习题课”“复习课”等进行系统梳理与探究,形成个人课堂教学的风格,而“教无定法”则是将其运用在具体课时进行教学设计与生成时做到“因时制宜”灵活使用。

如何在教师的教学工作中,始终将学生的发展放在首位?我想必须从以下几点入手:①在教学设计时教师必须站在教学者的角色上,按知识产生发展及生成的认知规律去思考教学的基本环节;②教学生成做到问题引入尽量给出合适的情景,探究知识过程中通过预设好适合的问题串,引导学生充分思考后步步为营朝知识产生的路径推进,切忌用师生交流替代生生间交流,培养学生学习过程中同伴互助的团队精神,以达到既学习到学科知识,又提升了学科学习的文化素养,从而形成较完美的学习过程。尤其是课堂结束时的总结,更适合在学生间的交流与对话中形成,从而全面培养学生的自主学习能力;③作为课堂学习的延伸,教师在布置学生课外作业时,一方面要做到基础性与综合性比例适当,重视课本习题在巩固知识与方法的基础作用和引领作用,对于教辅上的习题,必须做到适当的取舍,考虑到学生层次差异可布置适合每层学生发展的习题;另一方面必须留出时间给学生对明天学习内容的预习,必要时可给学生提供学习新知的自学提纲或突破知识学习重难点的“微视频”,以充分调动学生预习的灵动性,服务于明天的课堂。

三角函数变换规律篇(4)

【关键词】计算机辅助教学;几何画板;三角函数

一、计算机辅助数学教学的重要工具――几何画板

计算机辅助教学(ComputerAssisted Instruction,简称CAI)是教师为了提高教学效果和效率,利用以计算机为中心的丰富的教学资源,改进传统教学,或为学生提供一个学习环境,使学生通过与计算机的交互对话进行学习的一种教学形式.

《几何画板》(The Geometers Sketchpad)是计算机辅助数学教学的重要软件之一.它的主要功能有: ①画出各种欧几里德几何图形;②画出解析几何中的所有二次曲线;③画出任意一个初等函数的图像;④对所有画出的图形、图像进行各种变换,如平移、旋转、放缩等;⑤对所作出的对象进行度量,如线段的长度、封闭图形的面积等.

下面笔者通过分析《几何画板》辅助教学的实际案例来说明其在数学教学中的重要作用.

二、《几何画板》使用案例

(一)案例背景

三角函数y=Asin(ωx+φ)的图像变换按变换方向的不同可以分为两类:①沿y轴方向的伸缩变换;②沿x轴方向的伸缩变换和平移变换.

沿y轴方向的伸缩变换在没有平移变换的干扰下比较容易掌握.沿x轴方向的平移和伸缩变换是教学的重点和难点,如果只发生单一的变换,学生能够正确的理解并进行处理,一旦两种变换同时存在并且需要对其进行综合应用时,学生就会出现一些困难.

(二)问题情景

问题1:将函数y=sinx的图像进行怎样的变化后能得到函数y=sin2x+π3的图像?

分析:这个问题是三角函数图像变换中常见的练习题目.

解法一:先进行伸缩变换再进行平移变换.

学生出现的错误解法是:将函数y=sinx图像上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=sin2x的图像,再将函数y=sin2x的图像向左平行移动π3个单位长度.由此实际得到是函数y=sin2x+2π3的图像,而非函数y=sin2x+π3的图像.

正确的解法是:将函数y=sinx的图像上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=sin2x的图像,再将函数y=sin2x的图像向左平行移动π6个单位长度,得到函数y=sin2x+π3的图像.

对于这种平移变换中的错误,在高一第一学期介绍图像变换时是作为一个易错点进行突破的,因此在这里只要进行知识的复习和巩固,学生便能够接受.同时若伴有《几何画板》进行演示,则可以增加学生对三角函数平移变换的感性认识.

解法二:先进行平移变换再进行伸缩变换.

学生容易出现的错误解法是:将函数y=sinx的图像向左平行移动π6个单位长度,得到函数y=sinx+π6的图像,然后再将函数y=sinx+π6的图像上各点的横坐标缩短到原来的12倍,纵坐标不变.由此得到的函数图像实际为函数y=sin2x+π6的图像,而不是函数y=sin2x+π3的图像.

正确的解法是:将函数y=sinx的图像向左平行移动π3个单位长度,得到函数y=sinx+π3的图像,再将函数y=sinx+π3的图像上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=sin2x+π3的图像.

对比两种的做法,我们不难看出,出现此种错误的原因是学生没有准确地把握函数y=sin(ωx+φ)和y=sin[υ(x+φ)]在伸缩变换上的区别和规律.下面我们可以利用一个更简单的例题来说明学生的这种错误.

问题2:将函数y=sinx+π3的图像纵坐标不变,横坐标缩短到原来的12倍,所得到的解析式是什么?

正确的答案是:所得到的函数解析式为y=sin2x+π3.然而学生可能得到的函数解析式是:y=sin[2x+π3]=sin2x+2π3.

此时我们便可以利用《几何画板》进行演示来帮助学生理解函数y=sin(ωx+φ)和y=sin[υ(x+φ)]在伸缩变换上的区别和规律.

(三)问题解决

步骤1:演示y=sin(ωx+φ)和y=sin[υ(x+φ)]两个函数图像伸缩变化的过程,让学生观察它们区别.(在说明两个函数的变化过程时,可以选取两个具体的函数,这样利于学生进行观察.)

制作过程:①绘制两条可变线段AB和CD;②度量线段AB和CD的长度,并将结果分别命名为ω和υ;③分别绘制出函数y=sinωx+π3和y=sinυx+π3.

演示方法:分别变换线段AB和CD的长度引起ω和υ的变化,让学生观察y=sinωx+π3和y=sinυx+π3两个函数图像变化的相同之处和不同之处.

观察结论:当ω和υ发生变化时,函数y=sinωx+π3和函数y=sinυx+π3图像变化的共同点是:都发生了沿x轴方向的伸缩变化.不同点是:当ω变化时,函数y=sinωx+π3的图像以其与y轴的交点(0,32)作为定点进行伸缩变化的(事实上,当x=0时,无论ω取何值,均有y=sinωx+π3=32);而当υ变化时,函数y=sinυx+π3图像则是以-π3,0作为定点进行横向伸缩的(事实上,当x=-π3时,无论υ取何值,均有y=sinυx+π3=0).

步骤2:演示函数y=sin(ωx+φ)图像伸缩变化的过程,让学生观察其变化规律.

制作过程:①在x轴上选取一个点M,然后标记它的横坐标xM;②计算出2π3xM并令结果为ω;③绘制新函数f(x)=sinωx+π3.

演示方法:拖动点M,让学生观察ω和xM之间的变化关系.

观察结论:从《几何画板》所给出的数据中可以清楚地看到ω和xM之间的变化关系:当ω变化时图像上点M的横坐标变为原来的1ω倍,即当ω变换化时,图像上每一点到y轴的距离变为了原来的1ω倍.这就说明函数y=sinωx+π3的图像是以其与y轴的交点(0,32)作为定点进行伸缩变化的.

步骤3:演示函数y=sin[υ(x+φ)]图像伸缩变化的过程,让学生观察其变化规律.

制作过程:①在x轴上绘制点D(-π3,0);②过点D构造x轴的垂线;③在x轴上选取一个点N并标记它的横坐标;④计算出d=|xN-xD|,此时d为N点到D点的距离;⑤计算出πd并令结果为υ;⑥绘制新函数f(x)=sinυx+π3.

演示方法:拖动点N,让学生观察υ和xN、υ和d之间的变化关系.

观察结论:从《几何画板》所给出的数据中可以清楚地看到:当υ变化时,图像上点N的横坐标并没有变为原来的1υ倍,而d(图像上点xN到直线x=-π3的距离)变为原来的1υ倍.这就说明函数y=sinυx+π3是以-π3,0作为定点进行横向伸缩的.

三角函数变换规律篇(5)

分部积分法是由两个函数乘积的微分运算法推得的一种求积分的基本方法,主要是解决某些被积函数是两类不同函数乘积的不定积分.

设函数u=u(x),v=v(x)具有连续的导数u′(x)和v′(x),则由乘积的微分运算法则d(uv)=udv+vdu,可得:udv=d(uv)-vdu.

两边积分得udv=uv-vdu或uv′dx=uv-vu′dx

上式称为分部积分公式,它把uv′的积分转化为vu′的积分,当右边积分可以求出或右边积分比左边容易求出时,就显示出分部积分公式的作用了.

一、引言

在引出一般规律之前,让我们来先看一个例子.

例题1:求xcosxdx.

解:若设u=x,dv=cosxdx=d(sinx),则v=sinx.利用分部积分公式,得xcosxdx=xd(sinx)=xsinx-sinxdx=xsinx+cosx+C

但若设u=cosx,dv=xdx,即v=x,则

xcosxdx=cosxd(x)=cosx•x-xd(cosx)

=xcosx+xsinxdx.

不难看出,等式右边的积分xsinxdx比原来的积分更加复杂了.

由此可见,如果u、v选择不当,用分部积分法所得的积分可能比原来的积分更难计算.

一般来说,如果被积函数是两类基本初等函数的乘积,在多数情况下,可按下列顺序:反三角函数、对数函数、幂函数、指数函数、三角函数,将排在前面的那类函数选作u,后面的那类函数选作v′,然后进行分部积分即可.

二、分类探讨

1.对于xf(x)dx的积分[f(x)为指数函数(三角函数)],选x作为u,将指数函数(三角函数)凑微分,变为dv.用一次分部积分公式,幂函数指数降低一次,反复用n次分部积分公式,指数降为零次,称为降次法.

例2:求xedx.

解:xedx=xe-2exdx=xe-2xde

=xe-2(xe-edx)=xe-2xe+2e+C

2.对于xf(x)dx的积分[f(x)为反三角函数(对数函数)],选反三角函数(对数函数)作为u,将xdx凑微分.因反三角函数(对数函数)的微分形式较为简单,故可将原积分转换为较简单形式的积分,亦即转换法.

例3:求xlnxdx

解:xlnxdx=lnxd(-)=-lnx+•dx

=-lnx-+C

(3)对于f(x)g(x)dx的积分[f(x)为指数函数,g(x)为三角函数],u与dv可随意选取,但用一次分部积分公式无法求出结果,需用两次分部积分公式,且两次必须选同一函数类型的函数凑微分,可得关于所求积分的一个循环等式,然后利用解方程的形式求解出结果,称为循环法.

例4:求ecosxdx.

解:ecosxdx=ed(sinx)=esinx-2esinxdx

=esinx+2ed(cosx)

=esinx+2(ecosx-2ecosxdx)

所以ecosxdx=e(sinx+2cosx)+C.

4.当被积函数是某一简单函数的高次幂函数时,可通过分部积分法得到高次幂函数与低次幂函数的积分关系,称为递推法.

例5:求L=(lnx)dx,并且计算L.

解:L=(lnx)dx=x(lnx)-xd[(lnx)]

=x(lnx)-n(lnx)dx

=x(lnx)-nL

通过计算出L、L、L便可以递推计算出L,这里不再赘述.

5.除了应用上述四种方法之外,有时我们也需要将换元法贯穿在分部积分中来简化计算,下面来看一个例子.

例6:求sindx.

解:被积函数中含有根式,可以先换元再分部积分。设=t,则x=t(t>0),dx=2tdt,所以

sindx=sint•2tdt=2t•sintdt

=-2td(cost)=-2(tcost-costdt)

=-2(tcost-sint)+C

=2(sin-cos)+C

三、规律总结

综合以上各例,一般情况下,u与dv可以按照以下规律选择:

1.形如xsinkxdx、xcoskxdx、xedx(n为正整数)的不定积分,可令u=xn,余下的则为dv(亦即dv=sinkxdx、dv=coskxdx、dv=edx).如例1、例2;

2.形如xlnxdx、xarctanxdx、xarcsinxdx(其中n为零或正整数)等的不定积分,应令dv=xdx,余下的为u(即u=lnx、u=arctanx、u=arcsinx).如例3;

3.形如esinbxdx、ecosbxdx的不定积分,可以任意选择u和dv.但应注意,因为要使用两次分部积分法,两次选择的u与dv应保持一致,即如果第一次令u=e,则第二次也须令u=e,只有这样才能出现循环公式,然后用解方程的方法求出积分.如例4;

4.当积分式中出现由两种或多种简单函数复合而成的函数时,可利用换元法,将内层函数用t代替,然后进行分部积分,最后再将t还原成对应函数即可.如例6.

在利用分部积分法求解积分时,关键是在正确选择公式中的u和dv,然后才能进行分部积分,否则可能将问题复杂化,得不出正确的结果.在求解积分时,有时分部积分法只能解决积分式中的一部分,还需灵活运用其他的积分方法(如:换元积分法等),才能达到正确求解积分的目的.此外,“反、对、幂、指、三”的规律,适用于一般情况下的分部积分,但对于特殊情况还需特殊对待.

参考文献:

[1]史俊贤,惠淑荣.高等数学(第二版)[M].大连:大连理工大学出版社,2005.

[2]熊章绪.微积分教程[M].北京:科学出版社,2009.

[3]章学诚,刘西垣.微积分[M].武汉:武汉大学出版社,2007.

[4]费伟劲.高等数学――微积分[M].上海:立信会计出版社,2010.

[5]华东师范大学数学系.数学分析(上册)2版[M].北京:高等教育出版社,1991.

三角函数变换规律篇(6)

三角函数是高考的热点和重点,每年都会在主观题和客观题上出现它的身影。三角函数具有一般函数的性质,还具有自己独特的特性――周期性和对称性,使其产生并可以解决的问题内容多样、丰富多彩。在每年的高考中,围绕三角函数的考题具有新意,给人新颖的感觉,这已经成为了高考命题的热点。下面就三角函数在高考中如何考,谈谈自己的几点看法:

一、三角函数的化简、求值、求最值

三角函数式的化简、求值及求最值是高考考查的重点内容之一 通过三角函数学习使学生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,优化学生的解题效果,做到事半功倍。

求值问题的基本类型及方法:①“给角求值”一般所给的角都是非特殊角,解题时应该仔细观察非特殊角与特殊角之间的关系,通常是将非特殊角转化为特殊角或相互抵消等方法进行求解;②“给值求值”即给出某些角的三角函数(式)的值,求另外的一些角的三角函数值,解题关键在于:变角,使其角相同;③“给值求角”关键也是:变角,把所求的角用含已知角的式子表示,由所求得的函数值结合该函数的单调区间求得角;④化简求值。

.

三角函数的化简、求值及求最值的难点在于:众多的公式的灵活运用和解题突破口的选择,认真分析所给式子的整体结构,分析各个三角函数及角的相互关系是灵活选用公式的基础,是恰当寻找解题思维起点的关键所在。

二、三角形中的三角函数,即解三角形

分析近几年的高考试卷,有关解三角形的问题几乎是每年必考内容.试题主要是考查正、余弦定理及其变式或推论的内容及简单应用。解三角形的关键是在转化与化归的数学思想的指导下,正确、灵活地运用正弦、余弦定理、三角形的面积公式及三角形内角和等公式定理。

评注:三角函数与解三角形的综合性问题,是近几年高考的热点,在高考试题中频繁出现。这类题型难度比较低,估计以后这类题型仍会保留,不会有太大改变。解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化。

三、三角函数与其他知识交汇的设计题和应用题

此类问题主要考查与三角函数有关学科内综合问题,如与平面向量、不等式、数列、解析几何等相结合,多为解答题,考查三角函数实际应用。对待应用题没有什么通解通法,只要认真读题、审题,合理分析已知量间的关系,总是能够解决问题。解决三角应用题的关键是认真阅读题目,正确理解题意,运用所学知识建立适当的三角模型,准确无误的计算等,其基本步骤如下:

第一步,阅读理解,审清题意。读题要做到逐字逐句,读懂题中的文字途径,理解叙述所反映的实际背景,在此基础上,分析出已知什么,求什么,从中提炼出相应的数学问题。

第二步,搜集整理数据,建立数学模型。根据搜集到的数据,找出变化规律,运用已掌握的三角知识、物理知识及其他相关知识建立关系式,在此基础上将实际问题转化为一个三角函数问题,实现问题的数学化,即建立三角函数模型。

第三步,利用所学的三角函数知识对得到的三角函数模型予解答,求得结果。

三角函数变换规律篇(7)

中图分类号:G633.6?摇 文献标志码:A 文章编号:1674-9324(2014)07-0229-03

三角函数是高中数学新课程中的重要内容,在这些内容中强调了三角函数作为函数的作用,强调了三角函数是刻画周期现象的基本模型等,这是数学课程发展中的一个变化.虽然高中数学新课程已对一些内容降低了要求,但很多学生同样不适应,不能很好地理解与掌握。高考试题中的三角函数题相对比较传统,位置靠前,通常以简单题形式出现。因此,在学习、复习过程中要特别注重三角知识的基础性,突出三角函数的图象及其变换、周期性、单调性、奇偶性、对称性等性质,以及化简、求值和最值等重点内容的学习,要求学生熟练记忆和应用三角公式及其恒等变形,同时要注重三角知识的工具性.对此本人从几个方面加以阐述,希望能够帮助学生认识“三角函数”在数学中的地位,能较为全面地把握“三角函数”知识脉络,学好三角函数知识,提高综合能力.

一、解决角的问题是学好三角函数的前提

(一)解决好特殊角的三角函数值的求法

在初中,学生对0°~90°之间的特殊角(30°、45°、60°)的三角函数值已了如指掌,但到了高中,随着角度的扩展,求与特殊角有关的角的三角函数值也随之增多,如对120°、135°、330°、―30°等角的三角函数值的求法开始出现了混乱。如何解决这一问题呢?通过学习诱导公式,学生明白了求这一类角的三角函数值,看似众多,其实都与0°、30°、45°、60°、90°的三角函数值有关,且只有符号的异同。因此帮助学生弄清诱导公式所概括的“奇变偶不变,符号看象限”这一规律,计算这一类角的三角函数值的问题也就迎刃而解。

(二)解决好角与角之间的关系

在三角函数中,如例1:已知,cos(α+β)=-■,sinα=■,求cosβ.

相当多的学生直观地把cos(α+β)化为cosα+cosβ-sinαsinβ用于计算,造成运算烦琐或无功而返。究其原因是缺乏整体思想,没有注意到对角的关系进行观察、分析。事实上若清楚β=(α+β)-α,则问题迎刃而解。又如:

例2.已知cos(■-α)=■,■-α是第一象限角,求■的值.

本例的解法很多,学生若能发现(■-α)与(■+α)的关系及(■-α)与(■-2α)的关系,本例就好解了。因此在教学中,帮助学生树立整体思想,引导学生注意观察、分析、比较。(如:角与角之间的和差倍半关系,互补、互余关系等)总结基本的方法、规律,提高解决问题的能力。

(三)解决好隐含条件的问题

解题是数学学习中的一个主要环节,它的一般过程是:问题条件知识方法结果,可见寻找问题条件是解题的第一步.可是在一些数学题中,它的某些条件较为隐蔽,需要经过反复推敲,剖析题意.挖掘题设隐含条件,所谓隐含条件,是指题中若明若暗、含蓄不露的条件,它们常常巧妙地隐蔽在题设的背后,不易被人们所觉察,或者极易被人忽视,而直接制约整个解题过程,三角函数在许多方面如定义、公式、三角函数值,条件等式中都存在着隐含条件。在解三角函数题时,常因未能发掘其隐含条件造成一开始解题就无法进行,或者解到某一个阶段而陷入困境,或者造成解题失误。

例3.设ABC的内角A、B、C的对边长分别为a、b、c,cos(A-C)+cosB=■,b2=ac,求B.

学生通过公式的变换及运算得sin2B=■,sinB=■或sinB=-■(舍去),于是B=■或B=■.这样的解法存在错误,其实在条件中cos(A-C)+cosB=■隐含着cosB>0的条件,即B为锐角。或由b2=ac知b≤a或b≤c得B为锐角。所以引导学生多观察条件,从中找出隐含条件,以免造成解题失误。

二、熟记,灵活运用公式是学好三角函数的基础

(一)熟练掌握三角变换的公式

很多学生刚开始学习三角函数时,因为三角函数的公式太多,而造成混乱。其实公式之间也有一定的内在联系,比如诱导公式sin(■±α)(k∈z)中,只需把“α”看成锐角,画出■的终边表示在X轴正半轴、X轴负半轴、Y轴正半轴、Y轴负半轴中的哪一个,终边在X轴上则函数名不变,终边在Y轴函数名改变;终边再按顺时针还是逆时针转一个锐角定象限,确定函数符号。掌握了诱导公式以后,就可以把任意角的三角函数化为0°~90°间角的三角函数。又如:以两角和的余弦公式为基础推导得出两角和与差的正弦、余弦、正切公式,以及二倍角的正弦、余弦、正切公式,掌握这些公式的内在联系及推导的线索,能够帮助我们理解和记忆这些公式;同角三角函数的基本关系式是进行三角变换的重要基础之一,它们在化简三角函数式和证明三角恒等式等问题中要经常用到,必须熟记,并能熟练运用. 这也是学好本单元知识的关键.

(二)灵活运用三角公式

熟练掌握三角变换的所有公式理解每个公式的意义,特征;熟悉三角变换常用的方法――化弦法、降幂法、角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形中的有关公式解决一些实际问题.

1.运用化弦(切)法:

例5:已知tanα=■,求:f(α)=-2cos2α-■sin2α+2的值。

把-2cos2α-■sin2α+2除以1得■,化为■,再弦化切。本题就好解了。

2.运用增减倍与升降幂法:在运用公式化简三角函数时,引导学生根据具体问题分析采用增倍还是减倍,升幂还是降幂。

例6:设函数f(x)=2sinxcos2■+cosxsinφ-sinx(0

解:f(x)=2sinx・■+cosxsinφ-sinx=sinx+sinxcos φ+cosxsinφ-sinx=sinxcosφ+cosxsinφ=sin(x+φ)

因为函数f(x)在x=π处取最小值,所以sin(x+φ)=-1,由诱导公式知sinφ=1,因为0

例7:已知函数f(x)=sin2x+■sinxcosx+2cos2x,x∈R.求函数f(x)的最小正周期和单调增区间;其中sinxcosx可转化为sin2x,所以将sin2x、cos2x降幂同时把角转化二倍角。

3.运用辅助角及常用模式的转换法。在三角函数中除了运用课本内的公式外,还利用类似辅助角公式asinθ+bcosθ=■sin(θ+φ)进行解题。(这里辅助角φ所在象限由a、b的符号确定,φ角的值由tanφ=■确定。)而且在实际解题中,这一类问题大部分集中在sinα±cosα=■sin(α±■)和■sinα±cosα=2sin(α±■)和等常用模式的转化。

如上例7函数化简为:

三角函数变换规律篇(8)

一、周期函数的引入

众所周知,世界上的万事万物都在不停地运动、变化,其中又有很多事物都按照一定规律运动、变化。“离离原上草,一岁一枯荣”,即描写了因地球的自转、公转而引起的寒暑易节重复出现的规律。与此类似,有些函数也有这种现象,起函数值按照一定规律不断重复出现,如函数y=sinx、y=cosx等。周期函数就是研究这种函数按照一定规律不断重复出现的。

二、周期函数定义剖析

人教版高中教材对周期函数的定义是:一般地,对于函数y=f(x),如果存在一个不为0的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把这个函数y=f(x)叫做周期函数,不为0的常数T叫做这个函数的周期。

(1)定义中的“每一个x”即函数定义域内的所有x都有f(x+T)=f(x)成立才行。这里只要有一个x不能使该关系成立,则T就不是f(x)的周期。如函数y=sinx(x≠0),由于f(2π)=0, f(0)没有意义,f(2π+0)≠f(0),T=2π就不是函数y=sinx(x≠0)的周期。事实上,由于f(0)没有意义,所以就不存在这样的常数T≠0,使得f(0+T)=f(0)成立,所以函数y=sinx(x≠0)就不是周期函数。

(2)关系式f(x+T)=f(x)隐含这样一个事实:若x是f(x)定义域内的任一个值,则x+T一定是该定义域中的一个值,同时(x+T)+T还是该定义域中的一个值。以次类推,x+nT是定义域中的一个值……,所以周期函数的定义域一定是“无限的”,象函数y=sinx,x∈(-4π,4π)就不是周期函数。

(3)周期函数的定义域是“无限的”,不是说其定义域一定是一切实数,只是说其定义域不能受某一数“限制”。有些周期函数的定义域就是无数个区间的并,如y=tgx的定义域就不是一切实数;又有些周期函数的定义域为无数个零点,如y=的定义域为x=kπ(k∈Z)。

(4)若有f(x+T)=f(x),用x-T代换x 得f(x)= f(x-T),用用x-T代换x 得f[(x+T)+T]=f(x)f(x+T)=f(x)成立,即f(x+2T)=f(x);同理还可得f(x+3T)=f(x),以次类推,并依定义可知:若f(x)的周期为T,则-2T,-T,T,2T,3T,…,nT,…全部是f(x)的周期,即周期函数的周期应为无数多个,如y=sinx的周期有:…,-4π,-2π,2π,4π,6π,…

三角函数变换规律篇(9)

一、新课标下三角函数试题的特点

新课标卷高考数学文理科试题差异明显,文科注重考查基础知识,理科则是知识与能力考查并举;试题的呈现形式灵活多样,没有固定的模式;分值大致稳定在20分左右,必做题15分左右,选做题5分左右;在第(17)题出现三角函数题,一般都会对学生的个性品质和心理素质进行考查。

二、新课标下三角函数试题的考点追踪

1.三角函数的概念、图象与性质

三角函数的定义,五点法作图,图象变换,根据部分图象求函数解析式;值域(最值),周期性,奇偶性,单调性,图象的对称性;含有参数的三角函数问题;在知识交汇处命题,综合性较强,思维含量较高,需要仔细审题,方可准确解答。

2.三角恒等变换

恒等变换是三角函数的核心内容,是高考的热点,每年必考。试题灵活性大,能力要求较高。常常以三角函数式的化简、求值形式出现,常与三角函数的图象、性质结合,也与解三角形联系在一起考查。考查同角三角函数的基本关系式,诱导公式,两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式及其变形应用。

3.三角形中的三角函数问题

这类题常考常新,亮点纷呈。常以三角形为载体,考查正、余弦定理,三角形面积公式,平面几何中重要的定理,三角公式的灵活运用,凸显三角函数的实用性。在(17)题中出现时,已成为解答题能否取得高分的分水岭,与以往的三角题相比,突出思维含量,减少了运算量。对恒等变换、逻辑推理、数据处理以及遇到障碍时绕过障碍重新选择思路等方面的能力要求较高,同时还有函数与方程思想,考生的个性心理品质的考查。

点评:三角形面积最值的求解策略基本有两种方法:建立函数模型求解,利用不等式求解。法一通过解三角形,建立关于三角函数模型,利用三角函数的性质求最值,渗透函数思想;法二借助于基本不等式来求最值,不失为上策。

考情汇总:2007至2015年均可见到解三角形问题,选择题、填空题、解答题中都出现过。

4.坐标系与参数方程

新课标下对三角函数的考查也经常出现在三选一的解答题(23)题中,也是大多数考生首选的题。常见曲线的参数方程,极坐标方程都与三角函数紧密相关,一般考生能顺利解答第一问,第二问就比较困难。若能准确理解参数方程中参数的几何意义,极坐标方程的意义,充分发挥三角函数的工具性作用,则可以轻松求解,稳妥得分。

点评:这两道题都涉及了求两动点之间距离的最值问题,例5利用椭圆的参数方程借助于三角函数求最值;例6只需要将曲线C1的普通方程化成极坐标方程θ=α(ρ∈R,ρ≠0),利用极坐标方程求解显得简便。

考情汇总:2007至2015,每年在(23)中均出现,而且灵活性越来越大,不是想象的送分题了,解答须谨慎。

三、备考建议

三角函数变换规律篇(10)

【中图分类号】G633.6

变形技巧是解决数学问题的重要基础,这种变形能力的强弱直接关系到解题能力的发展。我们对式子变形实质上是为了将式子转化为可解决问题的某种形式,为下一步解决问题做准备。变形属于技能性的知识,其中存在着一定的技巧和方法,需要人们在学习和解题的实践中反复提炼才能把握其技巧,以至在解题中灵活应用。下面介绍基本不等式、三角函数变形中常用的变形技巧。

1、基本不等式的变形技巧

在高中数学中多应用基本不等式来求函数的最值、值域等,在解题过程中对已知条件给出的式子灵活变形使基本不等式出现积(或和)为定值是解决问题的突破口。常用的方法为拆、添、配凑、代换,现就常用技巧给以归纳。

(1)拆、添、配凑

在解决与不等式相关的问题中,拆、添、配凑有各自不同的方向和技巧但往往又是紧密相连的,拆、添常常为配凑做准备。拆常数:将不等式中的某个常数进行拆分成题中所需的常数。拆系数:将不等式中某些项的系数进行拆分。拆常数或系数多为配方创造条件。拆项:将不等式中的某些项进行拆分,为使用基本不等式创造条件。添倍数:不等式的左右两边添上倍数(注意符号),为配方创造条件。添式:在不等式的两边添上一个代数式,为使用基本不等式创造条件。

例1、x>3,求函数 的值域。

分析:添常数将 凑成含基本不等式结构的式子

例2、已知 ,则 ,求函数最小值。

分析:本题已知函数式为分式看似无法使用基本不等式,对函数式进行配凑变形再分离便可构造出基本不等式。

技巧点评:在求分式型函数的最值中常用配凑的变形技巧,可按由高次项向低次项的顺序逐步配凑。通过拆、添常数,逐步配凑基本不等式并分离出一个常数,这是分式函登笾涤虺S玫姆椒āT诮馓夤程中常常需要采用“拆项、补项、配凑”等变形技巧找到定值,再利用基本不等式来求解,使得复杂问题转化为简单的问题。

(2)常值代换

这种方法常用于如下两类题型

①“已知ax+by=1(a、b、x、y均为正数),求1x+1y的最小值.”

②“已知ax+by=1(a、b、x、y均为正数),求x+y的最小值”

例3、若 且满足 ,求x+y的最小值。

分析:结合问题和已知条件进行“1”的代换 可将问题转化为求含有基本不等式结构 ,接着可利用基本不等式求函数最值。

技巧点评:通过配凑“1”并进行“1”的代换,整理后得到基本不等式的形式能巧妙地解决问题。利用基本不等式求函数最值时,还需注意“一正、二定、三相等”,通过变形技巧找到定值,若和定则积最大,若积定则和最小。

2、三角函数的变形技巧

高中阶段三角函数与初等代数、初等几何紧密联系,是初等函数的重要部分。解决三角函数求最值问题常常要对三角函数式进行灵活的变形,而其变形主要有三个基本方向一是看角、二是看函数名称、三是看结构特征。除此之外,我们还常常结合代数的变形技巧和构造法,为三角函数的变形创造一定的条件,现就常用技巧给以归纳。

角的变换

在三角函数的求值、化简与证明题中,函数式常常出现较多的不同的角,但这些角又有一定的联系。解题过程中分析条件与结论中角的联系,进行三角函数变换 主要是“消除差异,化异为同”。根据角与角之间的和差、倍半、互余、互补的关系,运用角的变换能有效解决问题。

例4、已知 ,求证: 。

分析:可以考虑将条件中的角 和 配凑成求证结论中的角 ,即 , ,再利用三角函数和差关系解决问题。

函数名称的变换

题目中若出现不同名称的三角函数,这就需根据同角三角函数关系式或诱导公式将异名的三角函数化为同名的三角函数,达到“消除差异,化异为同”的目的。函数名称的变换中最常见的就是切割化弦。

例5 、已知 ,试用 表示 的值。

分析:将已知条件中“切化弦”将原式转化为关于 的式子即 。

(3)常数的变换

在三角函数的、求值、证明中,有时需要将常数转化为三角函数,或将三角函数转化为常数,从而构造所需的函数式。例如常数“1”的变换有: , 以及一些特殊角三函数值等等。

例6、求函数 的最小正周期,最大值和最小值。

分析:由所给的式子 可联想到

(4)幂的变换

对于一些次数较高的三角函数式,一般采用降幂的方法处理,达到化简的目的。而降幂并非绝对,有时也常需要对于无理式 用升幂处理化为有理式。

(5)公式的变形与逆用

高中教材中给出每一个三角函数公式的基本形式,但在解题的过程中往往要对基本公式变形后加以应用,有时也需逆用公式。顺公式较容易,而逆用公式较困难,因此要有逆用公式的意识和思维。这要求我们既要熟悉基本公式又要对其变通形式有所了解。

三角函数式的恒等变形是学习三角函数和其他数学知识的重要基础。三角函数式的恒等变形常应用于化简三角函数式,求三角函数式的值,证明三角恒等式等。三角函数式恒等变形的理论依据是代数式恒等变形的一般方法和法则,与三角函数式的变形公式。变形中还需注意符号的变化,以及三角函数定义域和值域的范围。

上一篇: 工业互联网方向 下一篇: 互联网企业营销策略
相关精选
相关期刊