基因组学方法汇总十篇

时间:2024-01-24 14:52:53

基因组学方法

基因组学方法篇(1)

1前言

民以食为天,食以安为先。食品安全关系人类健康,一直以来,都是全球关注的热点。随着社会经济的发展,一方面,随着生活水平不断提高,公众对食品安全越来越重视,要求也越来越高;另一方面食品工业快速发展,国际食品贸易日趋频繁,食品安全问题已呈现全球化模式。威胁食品安全的因素不仅仅有传统的化学危害物、食源性致病菌;采用劣质原料生产高货值食品、以次充好、以假乱真、产地造假、成分造假等等问题,是目前食品安全面临的新挑战。目前,已知危害物的检验技术已经比较成熟;未知、潜在的食品安全危害物侦别及成分鉴定、产地鉴定等,是食品安全检测技术面临的难题。食品安全检测迫切需要新的方法和手段来解决这些难题和挑战。组学是最近几十年发展起来的新学科,主要包括基因组学(Genomics)、蛋白组学(Proteinomics)、代谢组学(Metabolomics)、转录组学(Transcriptomics)、脂质组学(Lipidomics)、糖组学(Glycomics)等等。其中,基因组学、转录组学、蛋白组学和代谢组学共同构成了“系统生物学”[1-2]。组学技术的基本思路是通过研究成千上万的DNA、RNA、蛋白质或者代谢物等物质,找出与某一生命过程相关的特征蛋白、DNA、RNA或者代谢物,进而对某一目标进行评估。组学技术依托高通量、高分辨率、高精度的现代化分析仪器,通过海量数据处理,进行信息提取和结果分析。近年来,组学技术与食品安全检测不断融合,在食品安全检测领域发挥着越来越重要的作用。

2与食品安全检测相关的组学技术

2.1蛋白组学。蛋白组学研究特定状态下蛋白整体水平的存在状态和活动规律,是从分子水平上来分析蛋白质的表达、修饰、功能等的一门学科。蛋白组学的研究对象涉及植物、动物、微生物等,其在药物开发、病理研究、食品安全等方向都有诸多应用。蛋白质可以作为食品组分的特征标记物,因此蛋白组学可以用于食品安全检测[3]。蛋白组学的研究手段主要有凝胶技术和质谱技术,质谱可以对肽段和蛋白进行表征和测序,是分析蛋白的重要技术。通过蛋白酶解后得到肽段的肽指纹图谱结合质谱技术,可以分析某一种或同类食物的蛋白质成分[4],经过比较和筛选,确定特征标志蛋白或者肽。基于对蛋白或者肽的分析,质谱技术可以获得食品组分的特定指纹信息,实现定性分析。一旦获得蛋白标志物或者肽标志物,即可用液相色谱-质谱的选择反应监测(SRM)或者多反应监测(MRM)模式对目标物进行快速、灵敏的定量分析检测。2.2代谢组学。代谢组学以生命体的代谢物为研究对象,主要研究分子量1000以下的小分子[5-6]。根据研究对象不同,代谢组学可以分为研究已知化合物的靶向代谢组学和分析未知化合物非靶向代谢组学。代谢组学作为新兴的研究技术已应用在食品安全、药物研发、疾病诊断、环境科学和植物育种等方面[7]。代谢组学的主要研究手段包括核磁共振技术(NMR)和质谱技术。质谱技术以高通量、高灵敏度著称,飞行时间质谱和高分辨质谱是代谢组学研究中经常用到的仪器;NMR技术具有非破坏性的优点,可以对研究对象内部化学变化和生化反应进行跟踪[8-9]。常见的代谢物主要有极性化合物(例如有机酸、氨基酸、糖、胺)、脂类、类萜和固醇。代谢组学分析得到的数据量巨大,需要借助化学计量学对数据进行分析处理,常用的分析方法包括主成分分析(PrincipalComponentsAnalysis,PCA)、判别分析(DiscriminantAanalysis,DA)、偏最小二乘法-判别分析(PartialLastSuares-DiscriminantAeqnalysis,PLS-DA)等方法[10]。2.3基因组学。基因组学的研究对象包括基因组的结构、功能、进化、定位、编辑等,以及他们对生物体的影响。基因组学通过使用高通量DNA测序和生物信息学来组装和分析整个基因组的功能和结构。近几十年来,多重聚合酶链式反应、基因测序、基因芯片等技术飞速发展,为基因组学在食品安全领域的应用打下了良好的基础。基于基因组学特异性强、灵敏度高和高通量的特点,其在病原微生物检测,物种鉴定和转基因食品检测方面有着很多应用[11-12]。

3组学技术在食品安全检测中的应用

基因组学方法篇(2)

生命科学是21世纪学科发展的主流,人类的医学史证明了仅依靠单一学科,如:细胞学、发育学、肿瘤学、人类遗传学或分子生物学难以完成人类对自身的认识和保护。人类基因组学的产生和人类基因组计划(human genome project, HGP)的完成,使得人类能够对生命现象进行系统和科学地认识,揭示疾病产生的机制以及长寿与衰老等生命现象。本科生通过对基因组科学与人类疾病课程的学习,能够了解什么是基因组科学,其主要研究方法和手段,如何从基因水平认识疾病、诊断疾病和治疗疾病,为今后更深入地在临床上应用这些知识为患者服务或是继续更深入地进行理论研究奠定基础。

1 课程改革的特点

弥补本科生对于生命科学,特别是基因组科学与人类疾病关系的认识,提高学生的科研能力,为将来的研究生阶段的学习打下基础,或是对于走上临床认识疾病、治疗疾病有促进作用。本课程是我校在本科生中新开设的一门选修课,本课程的开设得到了学校有关领导的高度重视,经多次论证和在学生中征求意见,学生的反响强烈,因此可以看出本科生对于本课程有极大的兴趣,期望通过老师的讲授能对于人类疾病从基因水平有全新的认识,对自己 的科研能力有一定的提高。

2 教学研究探索的几个方面

2.1 更新教学内容 课程讲授是当前生命科学中前沿领域的热点问题。主要课程安排如下:前言;人类基因组计划与DNA测序(包括基因组测序的发展、方法、DNA测序的规模化与工业化);cDNA测序和基因表达谱的研究(包括cDNA文库的构建、全长cDNA的克隆、基因表达谱的概念及其在医学应用中的意义);人类基因组DNA序列变异及其分析方法(包括人类基因组序列及其变异、基因组序列变异检测的常用方法及基本原理、突变检测在识别疾病相关基因中的应用);基因治疗(包括基因转移和基因治疗的早期历史、基因治疗的现状、遗传型基因治疗、表遗传型基因治疗、基因治疗的问题与展望);基因工程技术(包括理论依据、基因工程技术的内容—目的基因获取、克隆、表达、基因工程技术在临床医学中的应用现状);生物信息学(包括生物信息学的概念、产生的背景、生物信息学的研究现状与发展趋势、生物信息学在医学领域中的应用);蛋白质组学(包括蛋白质组学的概念及其在生命科学研究中 的意义、国内外相关研究动态、蛋白质组学研究发展展望);生物芯片(生物芯片的原理、种类及在医学领域中的应用);生物安全(包括生物安全的概念及含义、转基因生物的安全性、转基因动物及其产品的安全性、转基因食品安全性、医药生物技术及其产品的生物安全、国内外生物安全法规及管理)等内容。

2.2 本课程将采取理论与实验相结合的教学方法 鼓励学生敢于提出问题,独立思考问题,老师与学生共同参与教学内容。根据学生人数安排一定的动手操作实验的课程[1,2]。

2.3 采用多媒体教学形式,加深学生的理解 一方面,可以加深同学的理解能力;另一方面,对于条件不允许的实验,学生可以通过多媒体的形式了解实验过程[3]。

2.4 将科研的思路、科研的方法融入教学之中,提高学生的科研能力 课堂教学中和课下作业安排一定量的文献检索、文献翻译阅读、科研方法设计、预测实验结果等内容。

2.5 改革考试形式 采取闭卷笔试与课下查文献、答题相结合的形式。

2.6 改革课程用教材 重新更新编写适合本科生参阅并适合当前基因组科学最近发展的教材,并计划出版发行。

3 教学效果的学生评价

听取学生反馈意见分为3种形式。

3.1 采用不记名问卷的形式反馈学生意见 问卷内容包括实验内容的安排、教师授课质量、希望的授课内容方式、感兴趣的实验内容等等。

3.2 建立学生公共信箱 一方面可以将某些授课内容、习题、思考题等通过公共信箱让同学下载,另一方面学生可以将公共信箱作为与老师的互动平台,及时反馈对课程提出的建议和意见,老师定期浏览信箱,及时调整课程安排。

3.3 整学期课程进行中期和结课前安排两次学生课堂讨论 讨论时间20min左右,及时反馈信息,提高理论与实验教学质量。

总之,本科生的基因组科学与人类疾病课程是一门较新的课程,在诸多方面需要进行改革探索,以适应当前生命科学发展的需要并满足学生汲取新知识的需要。

【参考文献】

基因组学方法篇(3)

1土壤宏基因文库的构建

关于土壤宏基因组学技术的构建已有许多研究报道,文库的构建需要足够高质量的DNA,由于土壤微生物往往会与土壤其他组分紧密结合,这就增加了提取土壤DNA的难度。常用的方法包括直接提取法和间接提取法。直接提取法是将样品直接悬浮在裂解缓冲液中处理,使其释放DNA,继而抽提纯化;间接提取法是首先去除土壤等杂质,通过不同的离心速度从土壤中分离出细胞,然后对细胞进行抽提。直接提取法提取的DN段较小(1~50kb),提取率高,操作简单;间接提取法提取的片断较大(20~500kb),纯度高,但操作繁琐,有些微生物在分离过程中会丢失。

根据插入片断大小,可以把基因文库分成2类:质粒载体的小片段插入(小于15kb)和柯斯质粒(15~40kb)或BAC(细菌人工染色体)(超过40kb)载体的大片段插入。大肠杆菌(Escherichiacoli)是表达土壤细菌基因或基因簇的通用宿主,穿梭载体或BAC文库可将大肠杆菌包含的文库信息转移至其他宿主如链霉菌或假单胞菌。

载体系统的选择取决于所提取土壤DNA的质量及研究目的,包括欲插入目的片段的大小、所需要的载体拷贝数、使用的宿主以及筛选方法等。如对腐殖质含量较高或剪切较严重的DNA样品适宜构建质粒文库,小片段的文库适用于筛选新的与代谢相关的单基因或小操纵子;而对于含较大基因簇或大片段的DNA样品则需要构建大片段和大容量的载体文库。Rondon直接把环境DNA克隆到低拷贝BAC载体,以大肠杆菌作为宿主构建了含100Mbp的小文库(SL1),并从这个文库中检测到DNA酶、脂肪酶、淀粉水解酶的活性。

2土壤宏基因组文库的筛选

宏基因文库的筛选主要有功能驱动筛选、化合物结构水平的筛选、序列驱动筛选,底物诱导基因表达筛选。功能驱动筛选是根据重组克隆产生的新活性进行筛选,在工业上有很多重要的酶就是用这种方法发现的。其主要缺点是要在寄主中进行功能表达,造成筛选工作量大,效率低。化合物结构水平的筛选是根据不同结构的物质在色谱中有不同的峰值,通过比较转入和未转入外源基因的宿主细胞或发酵液抽提物的色谱图筛选产生新结构化合物的克隆子。此方法工作量大,费用高。序列驱动筛选是不依赖重组基因在宿主中表达来筛选,而是根据已知功能的基因序列设计探针或PCR引物,通过杂交进行筛选具有目标序列的克隆子。底物诱导基因表达筛选是利用底物诱导克隆子分解代谢基因进行筛选,这种方法已经成功的从宏基因中筛选出芳烃化合物诱导的基因。国内外的资料显示这4种筛选方法可以筛选到所需要的物质,但筛选效率低,费用高。

3土壤宏基因组研究现状

利用宏基因组学的技术,科研人员筛选到了许多功能基因,加拿大TerraGenDiscover公司最先在以链霉菌为宿主的宏基因组文库中筛选到了具有抗菌活性的5种新的小分子物质TerragineA、B、C、D、E;Courtois等利用柯斯载体构建了含5000个克隆子的环境基因组文库,采用PCR序列分析的方法,筛选出编码聚酮合成酶的新基因,同时采用HPLC技术发现了脂肪二烯醇中2种新的化合物,两者互为同分异构体;Yun等选用pUC19为克隆载体构建大肠杆菌基因组文库,利用活性筛选方法,从30000个重组子中筛选出1个含淀粉酶基因(amyM)的克隆子。

2005年,LimHK等以枯草芽孢杆菌为宿主,建立了森林土壤的宏基因组文库,筛选到2个具有抗菌活性的克隆,对其结构进行分析,得出其中一个为产红素的靛玉红,另一个为产蓝素的靛蓝,是靛玉红的异构体。2006年,VogetS等首次研究了从土壤宏基因组文库中筛选到的一种纤维素酶的性质,证实了其具有较广的pH值和温度适应范围,并且在较高的盐度时也具有活性,具有工业应用价值。

4土壤宏基因组学的技术局限性

总DNA提取技术尚存在一定的限制,土壤环境中,由于微生物与土壤颗粒紧密结合的特性以及腐殖酸等抑制性物质存在等原因,从中难以获得适于构建宏基因组文库的高分子量DNA。Bertrand等采用间接提取法,通过Nycodenz梯度离心,所回收的土壤DN段大小己能达到400kbp,但至今基于原位裂解获得>100kbp土壤DNA的提取技术尚未突破,运用原位裂解法构建更大片段环境宏基因组文库(现有的土壤宏基因组文库中,平均插人片段最大为44.5kb)仍是一个难点。不可避免地,环境宏基因组文库所包含微生物基因组信息的偏差将直接导致“基因遗漏”现象发生,如海洋中普遍存在的微生物固氮基因,却在测序量高达1.6Gbp的马尾藻海水宏基因组文库中被遗漏,表明仅运用宏基因组学技术同样会忽略部分的微生物资源。

基因组学方法篇(4)

因绝大多数疾病是多个微效基因协同作用并与环境因素共同导致,此类基因赋予患者易感性,故称为疾病易感基因(susceptibility genes)。随着分子遗传学和人类基因组计划的发展和实施,分析复杂疾病的遗传因素,定位疾病易感基因成为可能,从而为疾病的早期诊断和预警带来了希望[2]。迄今为止,对符合孟德尔规律的单基因病已经建立了一套行之有效的研究体系并定位克隆了近千个致病基因。但对于多基因病,因其不完全符合孟德尔规律,所以在其易感基因的定位和遗传分析中仍存在很多问题。多基因病易感基因的定位和遗传分析成为近年来医学遗传学研究的热点和难点。

多基因病涉及的主要为一些常见疾病,如原发性高血压、糖尿病、哮喘、银屑病、神经及精神疾病等,其群体总患病率近6 %[3]。它们虽有一定程度的家族倾向,但不遵从典型的孟德尔遗传规律,其表型与基因型之间的关系错综复杂,对其致病基因的分离尚缺乏成熟的技术,必需在人群与遗传标志的选择、数学模型的建立、统计方法的改良等方面进行不断的探索和艰苦的工作。当今国内外学者所采取的基本策略主要是从改进实验技术和遗传分析方法等方面开展研究,其中常用的方法是大规模全基因组扫描和分型的连锁分析[4,5],即首先选定研究样本如家系、同胞对或人群,用遗传位标对样本成员针对全基因组、某染色体区段或某候选基因进行扫描,最后将所得数据用相应统计方法分析,确定哪些区段或基因与所研究的疾病间存在连锁或相关关系。

一、全基因组扫描策略

全基因组扫描(genomewide search)利用DNA多态性标记(主要是微卫星DNA)或消减杂交等策略,对基因组逐个点进行筛查,进行全基因组扫描,寻找与疾病相关的易感基因。用多态性遗传位标对样本个体进行基因扫描和分型,定出每一个体遗传位标的等位基因。用统计软件(如GENEHUNTER等)进行遗传统计分析,确定与疾病相连锁的染色体区段,通过增加扫描密度或单倍型分析等方法,将定位区域尽可能缩小。遗传位标目前大多采用微卫星多态标记(short tandem repeats, STR),单核苷酸多态性(single nucleotide polymorphisms, SNP)被认为是很有前途的新一代遗传位标。

1.样本的收集和提取DNA样本:当前全基因组扫描基因定位主要是采用以家系为基础的分析方式。

选择理想家系。所谓理想家系应符合(1)诊断准确,且为迁移较小、相对封闭的人群;(2)家系的数目及大小需达到一定要求;(3)有明确的遗传相关数据,如遗传方式、遗传度、外显率等。家系材料的收集应尽可能全面,包括血液样本、组织切片、分离的细胞株、临床检验结果等[6]。

此外,还有以患病同胞对、核心家庭或以人群为基础的分析形式,选择相对应的不同样本。

2.DNA短串联重复序列STR方法:(1)选择与制备。全基因组扫描中利用的微卫星标记,是一种广泛存在于人类基因组、以2~6个碱基为单位、串联重复排列的序列,具有高度的多态性,并以孟德尔共显性遗传,可以作为一种遗传标记。目前商品化的AB I PR ISMTM Linkage Mapping Set(PE公司出品)共包含400个STR,分辨率达

在上述区段内选择覆盖密度更高的微卫星标记,进行精细定位,尽量缩小致病基因的范围,明确基因位点。第三代遗传标志系统—单个核苷酸多态性,因其数目更多、覆盖密度更大(有可能达到人类基因组遗传多态性标志位点数目的极限),故在基因定位研究中具有其它标志系统不可比拟的优越性和潜力,目前被大量使用。

3.SNP的发展:1990年开始启动的人类基因组计划(human genome project, HGP)揭开了人类遗传信息的秘密。随着研究的深入,人类基因组单核苷酸多态性( single nucleotide poly-morphisms, SNPs)的研究应运而生,并且得到迅猛的发展。SNPs数量大、分布广且在不同人群中的分布频率也有差异,这些差异可以代表某一种族或人群间的遗传差异[8]。SNPs是指基因组DNA序列中由于单个碱基(A、T、C、G)的变异而形成的多态性,并且这种变异人群中出现的频率大于1 %[9]。SNP的位点及其丰富,几乎遍及整个基因组。据估计基因组中大约平均每1 000 bp,就会出现一个SNP,这样SNP在整个基因组的分布就会达到300万个。

由于SNP在基因组中的高密度的特点,与以前的微卫星或其它遗传标记相比,利用SNP可以在上述的研究中对目的片段或基因作出更加精细的标定,从而使研究不断深入。目前,几个相对有前景的半自动或全自动地进行大量SNP检测的方法已经初露端倪。包括小型测序、多重反向点杂交、DNA芯片或微列阵,以及TaqMAN的方法[10]。

4.基因芯片:基因芯片的基本原理是应用已知的核苷酸序列作为探针与标记的靶核苷酸序列进行杂交,通过对信号的检测进行定性与定量分析。它将许多探针同时固定在同一芯片上,在一次试验中,可以同时平行分析成千上万个基因[11]。因此它和传统杂交法相比具有操作简单、效率高、成本低、自动化程度高、检测靶分子种类多、结果客观性强等明显的优点。

基因芯片现已广泛使用于基因表达分析,疾病诊断与治疗等方面。例如基因芯片技术对血友病、杜氏肌营养不良症、地中海贫血、异常血红蛋白病、苯酮尿症等的检测均已取得了较大的成功[12]。随着“人类基因组计划”和“后基因组计划”的开展,越来越多的遗传病相关基因会被揭示出来,这为在基因水平上揭示遗传病,并进行早期诊断奠定了基础。

二、全基因组扫描数据分析方法

1.连锁分析:在遗传过程中,2个基因或遗传标志被一起分配到子代而不发生交换,称为连锁(linkage)。两个基因位点发生交换的可能性反映了这两个基因的遗传距离,所以由标记位点与疾病位点间的重组率可估算出两者间的遗传距离及连锁程度。根据疾病有无合适的遗传模式,可分别进行参数分析与非参数分析。(1)参数分析法。亦称模式依赖的连锁分析法,即一般所指的连锁分析法。两位点连锁分析最常用的是LODS 连锁分析,即对数优势计分法(log odds score ,LODS) 是基于最大似然比检验的参数连锁分析方法[13],主要检测在两基因以某一重组率相连锁时,出现这种情况的似然性有多大。该分析方法利用一个家系中所有成员之间的遗传信息,适用于已知遗传方式的单基因遗传病的基因定位。目前该计算有相应软件包可供使用,如Linkage, Lipid,Vitesse,Gene, Hunter[14~17]等。(2)非参数分析法。此法不依赖于疾病的遗传模式,被认为是多基因疾病的理想分析法。其研究对象限于家系中成对的患病成员,常用的非参数分析法有患病同胞对法和患病家系成员法。但非参数分析法在检出效力及分析可靠性上较参数连锁分析低,它也不能象LODS法那样得出遗传标记和易感基因之间的距离。患病同胞对法(affected sibpair ,ASP)原理是,如同胞对均为患者,他们将共有带有致病基因的那段染色体,通过标记物确定个体的基因型,可找出染色体上共有超出理论值的区域,从而对疾病基因进行定位。患病家系成员法(affected pedigree member ,APM)原理与ASP法相同,只是把研究对象扩展到整个家系的所有成员(包括患病的成对远亲),从而解决ASP法分析时家系资料不足的问题,其分析遗传标记和易感基因连锁的有效性则比ASP低。它只能确定致病基因与一个较大的染色体区域的连锁关系,而不能用于致病基因的精细定位[18]。目前,APM法较多用于同胞对收集较困难的晚发性多基因遗传病的遗传分析。

2.人群相关性分析:在一个群体中设立病人组和对照组,确定遗传位标频率在两组中是否存在差别,即分析遗传位标基因型与性状基因间有否连锁不平衡,进而在该遗传位标附近寻找目标基因。选用隔离人群进行连锁不平衡分析更为理想。

3.传递- 连锁不平衡检验:染色体上遗传位标与疾病位点间的距离较近,它们在传递过程中一起传递给子代,表现为共分离,即连锁不平衡(linkage disequilibrium )[19]。由于群体相关分析可能产生因群体分层而导致的假阳性,近年来有人提倡用患者核心家系成员(双亲及同胞)作为相关分析对照组,即Spielman创立的传递- 连锁不平衡检验(transmission/disequilibrium test, TDT)[20]。TDT基于连锁不平衡的分析方法,一般用于亲代的标记等位基因是杂合型,观察可能的易感标记等位基因传递给患病子代的概率。一般情况下,当通过病例-对照研究已经揭示在人群水平上某标记位点与某性状(如疾病)间存在某种关联性(无论是真实还是虚假的关联)时,进行传递/不平衡检验可排除可能的虚假关联[20]。

三、展望

多基因病的遗传模式尚未确定,性状的变异往往受众多基因与环境的共同调控,相互间又存在一定程度的互作[21]。基因与基因间、基因与环境因素间的相互作用到目前为止还无法检测,所以多基因疾病的定位结果往往不尽如人意。然而SNP和DNA芯片等新技术的出现,为多基因遗传病易感基因的定位展示了广阔的前景。多基因疾病的发病存在种族、地区差异,所以易感基因的定位应开展国际性各地区多个实验室合作研究。我国地大人稠、民族众多,由于历史、地理、传统等原因,保存着许多相对隔离群体,这是我们开发人类疾病相关基因研究一项不可多得的资源优势。充分利用我国丰富的家系资源,迅速开展多基因疾病全基因组扫描和分型的连锁分析、相关分析研究,对推动我国多基因疾病研究和提高我国人类遗传学科研水平具有极为重要的现实意义。总之,重视遗传统计学和生物信息学的发展,易感基因的定位才能有所突破。

【参考文献】

1张奎星,朱鼎良,黄薇. 多基因遗传病基因研究的策略和方法[J]. 生理科学进展,2001,3:215219.

2孙玉琳,赵晓航. 复杂疾病基因定位策略与肿瘤易感基因鉴定[J]. 生物化学与生物物理进展,2005, 32 (9):803809.

3Rimion DL. Principles and practice of medical genetics [M].3rd, New York: Church ill Livingstone Inc,1996.3132.

4Weeks DE, Lathrop GM. Polygenic disease: methods for mapping complex disease traits[J]. T rend Genet,1995,11(2):513519.

5Devies JL, Kawaguchi Y, Bennett ST, et al. A genomewide search for human type 1 diabetes susceptibility genes [J].Nature,1994,371(6493): 130136.

6张安平,张学军,朱文元. 疾病相关基因定位的全基因组扫描策略和方法[J]. 疾病控制杂志,2001,6:5(2),135138.

7高敏, 张学军, 李明,等.全基因组扫描定位遗传性对称性色素异常症易感区域[J]. 中华皮肤科杂志,2003, 36(12):675678.

8席素雅.单核苷酸多态性的特点及其在医学中的应用进展[J]. 沈阳部队医药, 2007,5:20(3):197199.

9沈亚,刘嘉茵非综合征性唇腭裂部分基因SNPs研究进展[J]. 中国妇幼健康研究, 2007,18(1):7779.

10Collins F S,Guyer M S.Chakravarti A1 Variation on a theme : Cataloging human DNA sequence variation1[J]. Science,1997,278:15801581.

11Chang JC, Hilsenbeck SG. Fuqua SA1 Genomic approaches in the management and treatment of breast cancer [J]Br J Cancer,2005,92 (4) :618624.

12王娟娟,侯佩强. 基因芯片技术[J]. 预防医学论坛, 2008, 14(3):285287.

13赵春妮, 王彤. 小家系资料连锁分析参数方法及应用[J]. 山西医科大学学报,2007, 38 (3):247250.

14Huang Qingyang, Cheng Mengrong, JI SenLin.Linkage and Association Studies of the Susceptibility Genes for Type 2 Diabetes[J].Acta Genetica Sinica, 2006,33(7):573589.

15Levine DM, Sloan BJ, Donner JE, et al. Automated measurement of Lp(a) by immunoturbidimetric analysis[J]. Int J Clin Lab Res,1992,22:173178.

16Nauck M, Winkler M, Marz W, et al. Quantitative determination of high, low, and verylowdensity lipoproteins and lipoprotein(a) by agarose gel electrophoresis and enzymatic cholesterol staining[J].Clin Chem, 1995,41:17611767.

17GU Ming Min. Genome wide Scan for the Susceptibility Gene Loci to Ankylosing Spondylitis in Chinese Han Population Acta[J]. Genetica Sinica,2004,31(3):217220.

18Weeks DE, Hardy ID. The affectedpedigree member met hod: power to detect linkage[J]. Hum Hered,1995,45:1345.

基因组学方法篇(5)

2教学手段与方法的改良

传统的基因工程教学方法在水产类高等学校中多以板书结合多媒体的方法来讲解概念、原理以及性质等内容,其过程相对机械、枯燥,使得学生难以理解所学内容。对此,笔者通过多媒体教学与自制模型演示相结合的方法取代原有的传统教学。由于基因工程的很多内容相对抽象,仅仅通过文字、图片和语言来表述是难以讲解透彻的。现代的多媒体教学技术具有图文声像随意组合、灵活多变的特点,为学生创造了良好的学习情境。通过功能强大的各种计算机软件把一些很难理解的内容做成动画影片,化难为易、化静为动、变抽象为形象,使学生对上课产生兴趣,促进学生对知识学习的渴望。同时,利用自制的模型讲解课程中的重点以及难点。例如:在介绍限制酶的切割位点时,让学生手持模型,分别角色扮演限制酶和基因序列,在排列位置的互换中了解3种切口的方式以及位置。这样的教学方法不仅形象,也让学生在互动中快速、深刻地记忆知识要点。另外,通过当下研究的前沿话题为例,先提出一个问题,引导学生运用其他课程所学过的或者自身所积累的知识来联想、分析、讨论,自己设计解答此问题的方法或实验流程。然后老师再参与其中,在讨论和修改方法以及实验流程的过程中,引出所要讲授的新的概念和知识要点。

例如介绍表达物质(蛋白质)的鉴定时,老师会先提出问题:基因克隆表达出的物质是什么?这些物质是由什么组成的?鉴定这些物质可以使用什么方法?然后引导学生回顾生物学中心法则,得出基因表达物质为蛋白质,蛋白质是由氨基酸组成等所学过的知识,由此学生可归纳出氨基酸测序法等鉴定蛋白质的方法。最后老师再在此基础上补充出WesternBlot法、生物质谱技术等新的鉴定方法。这样的讲课方式让学生回到课堂上的主角位置,在复习了以往的知识要点的同时也加深了学生对新知识的理解与记忆,在一定程度上启发了学生如何去发现问题和解决问题。此外,基因工程是一门实践性很强的课程,在讲授理论课的同时,实验课的安排也是非常重要的。设计好与理论课相配套的实验课程,可以使学生加深对基因工程学理论的学习和理解,达到理论和实践相结合的目的。对此,各大高校均在基因工程实验课上进行了改革创新,但有一点总被忽略,那就是实验研究对象。目前,国内大多数高校基因工程实验课所使用的研究对象均为果蝇等无脊椎模式生物。这种情况对于普通高校而言是可行的,但是对于拥有特色学科的水产类高校而言,研究对象也应具有其专业特点。所以本实验课所使用的研究对象是斑马鱼这种海洋模式生物。研究对象的改变虽微不足道,但是能让学生更好地理解自己所学专业的特色,在实践操作中加深对所属专业的热爱。

3成绩考核

中国传统的应试教育产生了“高分决定一切”的迂腐思想。随着国家教育体系改革的不断推进,学生对于专业知识的掌握与否,已经不能仅从一张考卷成绩的高低来反映,考核成绩的结构应向多元化的方向发展。基因工程的最终考核成绩主要包括两部分:平时成绩占40%,其中课堂出勤率10%、课堂讨论10%、课堂小考10%以及实验报告10%;期末考试成绩占60%。这样的考核体系改变了过去注重结果忽略过程的做法,让学生在平时将知识一点一滴地积累起来。同时,也让授课教师能够及时得到教学效果的反馈信息,进一步提高教学水平。

基因组学方法篇(6)

[6] 王景雪,孙 毅,高武军.一种简便实用的植物总DNA提取方法[J].山西大学学报,2000,23(3):271-272.

[7] COΜCH J A, FRITZ P J. Isolation of DNA from plants high in polyphenolics Plant Molecular Biology Reporter,1990,8(1): 8-12.

[8] DOYLE J J, DOYLE J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochemical Bulletin, 1987, 19:11-15.

[9] 易庆平,罗正荣,张青林.植物总基因组DNA提取纯化方法[J].安徽农业科学,2007,35(25):7789-7791.

[10] 李金璐,王 硕,于 婧,等.一种改良的植物DNA提取方法[J].植物学报,2013,48(1):72-78.

[11] 孙璐宏,鲁周民,张 丽.植物基因组DNA提取与纯化研究进展[J].西北林业学院学报,2010,25(6):102-106.

[12] 余晓丽,范喜梅,曾万勇,等.黄刺玫基因组DNA提取方法的研究[J].西北农业学报,2007,16(4):272-274.

[13] 赵喜华,张乐华,王曼莹.杜鹃属基因组DNA提取及RAPD的鉴定[J].生物技术,2005,15(5):43-45.

[14] 单 志,吴宏亮,李成磊,等.改良SDS法提取多种植物基因组DNA研究[J].广东农业科学,2011(8):113-115.

[15] 刘塔斯,林丽美,龚力民,等.分子标记中植物DNA提取方法的研究进展[J].中南药学,2005,12(3):370-373.

[16] 侯艳霞,汤浩茹,张 勇,等.DNA提取方法对一串红不同部位DNA提取的比较[J].基因组学与应用生物学,2009,28(1):94-100.

[17] 郝岗平,张媛英,史仁玖.高质量的丹参叶片DNA的提取方法研究[J].泰山医学院学报,2005,26(3):190-192.

[18] 郝岗平,边高鹏,张媛英.泰山白花丹参干叶片高质量DNA的提取[J].中草药,2006,37(6):855-857.

[19] 赵钟鑫,王 健,李 琴,等.阔叶薰衣草叶片总RNA两种提取法的比较[J].热带农业科学,2011,31(8):55-58.

基因组学方法篇(7)

1 蛋白质组学的概念

蛋白质组(proteome) 一词,源于蛋白质( PROTEin) 与基因组( genOME) 两个词的结合, 最早由澳大利亚学者Wilkins和Willian等人于1994 年提出,是指基因组所表达的全部蛋白质。它与基因组相对应,也是一个整体的概念。从这个定义看,蛋白质组内蛋白质的数目应该等于基因组内编码蛋白质的基因(准确地说应为开放阅读框,ORF) 的数目,但在生物体内这样的蛋白质组是不存在的。 基因组是静态的,一个生物体的基因组在其一生中基本上是稳定不变的。但基因组内各个基因表达的条件和程序则是随时间、地点和环境条件而变的,因而它表达的产物的种类和数量随时间、地点和环境条件而变化。从基因表达的角度看,蛋白质组内蛋白质的数目总是少于基因组中ORF的数目,但从蛋白质修饰的角度看,蛋白质组的蛋白质的数目又远远大于这个数字。因为mRNA 的剪切和编辑可使一个ORF 产生数种蛋白质,蛋白质翻译后的修饰,如糖基化、磷酸化同样增加了蛋白质种类。朊病毒学说认为一级结构相同的蛋白质在一定条件下可以形成不同结构的蛋白质,从结构上进一步丰富了蛋白质种类的概念。因此,蛋白质组的概念也被定义为在一个细胞内存在的全部蛋白质。 基因组基本是固定不变的,蛋白质组却是动态的,具有时空性和可调节性,能反映出特定基因的表达时间、表达量以及蛋白质翻译后的加工修饰和亚细胞分布等。 它是在人类基因组计划研究发展的基础上形成的新兴学科。

蛋白质组学就是研究细胞内全部蛋白质的组成及其活动规律[1~3]。与以往蛋白质化学的研究不同,蛋白质组研究的对象不是单一或少数的蛋白质,它着重的是全面性和整体性,需要获得体系内所有蛋白质组分的物理、化学及生物学参数,如分子质量、等电点、表达量等,以及细胞内蛋白质之间的相互作用。主要在整体水平上研究细胞内蛋白质的组成、结构及其活动规律。它旨在阐明生物体全部蛋白质的表达模式及功能模式,其内容包括蛋白质的定性鉴定、定量检测、细胞内定位、相互作用研究等,最终揭示蛋白质功能,是基因组DNA 序列与基因功能之间的桥梁。

2 蛋白质组学研究的重要工具

如何同时测定一个生物中大量或全部基因的表达可以通过引入cDNA和寡核苷酸微阵列得以解决。用DNA微阵列和相关方法分析基因表达依赖于两个重要工具:PCR和寡核苷酸与互补序列的杂交。但是蛋白质没有PCR等价物,且不能专一性与互补氨基酸序列杂交。另外由于翻译后修饰使得许多蛋白质以多种形式存在,检测和区分特定基因的多种蛋白质产物时蛋白质组学在分析方面更具挑战性。尽管存在上述困难,但由于几种重要工具的发展和结合使用给研究人员提供了灵敏度和专一性较高的识别和鉴定蛋白质的方法。

第一种必需工具是蛋白质的分析分离技术。蛋白质组学中蛋白质分离有两个目的。一是将蛋白质混合物分离成单一蛋白质或蛋白质小组以简化复杂蛋白质混合物。二是蛋白质的分离分析可以比较两个样品蛋白质的不同表观,研究者可以标记用于分析特定的蛋白质。双向凝胶电泳(two-dimensional electrop-

horesis, 2-DE)可能是目前分离复杂样品蛋白的最好单项技术。其他的蛋白质分离技术,包括1D-SDS-PAGE、高效液相色谱(HPLC)、毛细管电泳(CE)、等电聚焦(IEF)和亲和色谱等都是蛋白质组学的有力工具。为了适应蛋白质组学自动化、高通量、高产出的要求,人们将不同的蛋白质和肽分离技术结合发展为多维技术,比如离子交换色谱与反相色谱的串联是分离复杂肽混合物的有力工具。

第二种工具是质谱(Mass spectrometry, MS)。质谱仪的使用在过去10年中有了极大的革新,再发展为分析生物分子,特别是分析蛋白质和肽的高灵敏度和准确度上达到顶点。MS仪器的使用可提供在蛋白质组学研究中都非常重要三类分析。首先,MS可以进行100kDa或更大完整蛋白质的精确质量测定。估计蛋白质质量的最好方法是MS分析,而不是测定蛋白质在SDS-PAGE的迁移。高精度蛋白质质量测定的应用有限,因为它往往不够灵敏,况且精质量对精确鉴定蛋白质往往也是不充分的。其次,MS能对蛋白质水解消化产生的肽进行精确的质量测定。相对于完整蛋白质质量测定,肽质量测定可以有高灵敏度和高质量准确度。而且对于蛋白质水解肽有较好的分析方法,如肽质量指纹谱(Peptide Mass Finger,PMF)可以直接用肽质量测定数据在数据库中进行检索,该方法常常可以确切鉴定靶蛋白质。最后MS可以对蛋白质水解消化得到的肽序列进行分析。目前认为MS是肽序列分析中的最新技术,MS序列数据为蛋白质鉴定提供了最有力和最精确的方法。

第三种工具是数据库。蛋白质、EST和基因组序列数据库共同提供了生物全部蛋白质的完整数据库目录。当用有限的序列信息,甚至原始质谱数据进行检索时,我们可以根据数据与数据库的匹配情况鉴定蛋白质组分。

第四种必要的工具是对数据库定蛋白质序列与MS数据进行比对的各种软件。虽然从MS数据可以测定序列,但是这种从头开始分析成百上千的谱图是一项费时费力的任务。蛋白质组学软件将为分析的MS数据,在特定算法的帮助下于蛋白质、EST和基因组序列数据库的序列相比对,自动检测大量用于蛋白质序列匹配的MS数据。然后研究人员检查自动检测的结果,估计数据的质量,所用的时间比手工解释每一张谱图要少得多。目前常用的肽质量指纹图谱的搜索工具有Mascot、ProFound、MS-Fit、MOWSE等;常用的MS/MS搜索工具有SEQUEST、Mascot、MS-Tag等。

这4种工具的结合使用形成了蛋白质组学当前的技术,每一种工具在技术上都发展迅速。

3 开设《蛋白质组学》课程的重要性

蛋白质组学提出后,澳、欧、日、美等纷纷成立研究机构和公司,迅速启动蛋白质组计划。例如:丹麦Odense大学的Center for proteome Analysis(CPA),澳大利亚Macquarie大学的Australian Proteome Analysis Facility(APAF)。国际著名学府如哈佛、斯坦福等均跻身此类研究。由于蛋白质组学研究比基因组学研究更接近应用,具有巨大的市场前景,企业与制药公司纷纷斥巨资开展蛋白质组研究。蛋白质组研究对现代生命科学和医学的贡献可能使研究工作者从核酸时代回归蛋白质时代,对生命系统活动与疾病发生分子机制的认识有间接的基因层次深入到生命活动的执行者――蛋白质层次。蛋白质组研究已成为后基因组时代最重要的研究之一,是21世纪生命科学的重要支柱之一,其发展不可限量。

蛋白质组学是一门极富辐射能力的前沿学科,其本身综合了生物学、医学、生物工程学、计算机及网络技术等多学科的技术方法。蛋白质组所解决的问题涵盖生物医学的各种学科。蛋白质组分析已成为专门的技术体系广泛用于生物医学众多领域的研究,比如磷酸化蛋白质组学、结构蛋白质组学、疾病蛋白质组学、蛋白质组学与药物开发等。其基础研究与分析应用正已指数增长方式发展。所以,面向研究生开设《蛋白质组学》课程,介绍学科背景,了解相关技术理论和最新进展,对于研究生选题和了解学科前沿具有重要意义。

经过近十年的发展,双向电泳分离技术和生物质谱鉴定技术作为蛋白质组研究的主要支撑技术在国内外大学和科研机构已基本配套,形成了一定规模的专业队伍和专业机构。国内大学相继成立的蛋白质组学实验室,建立了蛋白质组学技术平台。近年来国内外大学和研究机构开始将面向学生讲授蛋白质组学,有关蛋白质组学的参考书也相继问世,为开设《蛋白质组学》课程奠定了基础。

4 关于授课内容和授课形式的建议

根据国内外开设《蛋白质组学》课程的内容安排并结合学校实际情况,授课内容将蛋白质组学基本技术原理和实验演示相结合。我们拟介绍蛋白质组学研究背景和主要研究内容,蛋白质组学两大主要支撑技术双向电泳和质谱技术的原理和方法,蛋白质组学数据分析原理和方法,蛋白质组学的技术进展及其生物医学应用。经过两年的教学实践,受到学生的好评。但是仍然存在较多问题,主要表现在:(1)蛋白质组学本身综合了生物学、医学、生物工程学、计算机及网络技术等多学科的技术方法,而学生基础参差不齐,部分学生感到理解困难。(2)双向电泳技术、质谱技术等虽然使用多媒体教学尽可能形象、生动,但是由于缺少实践、没有直观认识,仍然使学生感到抽象、难理解接受。针对以上问题,如果采取分级分班教学、制作双向电泳操作录像光盘等措施可能提高教学质量,以满足新世纪对医学人才培养的新要求。

关于分级分班教学可根据学生的专业情况、知识基础以及学生自愿等原则分为两个层次进行教学。

一为知识普及层次,主要让学生了解蛋白质组学的基本理论、技术方法,了解学科前沿,而不要求其掌握技术方法的原理和操作,比如卫勤管理、计算机等专业学生,通常不会涉及蛋白质组学相关课题,而且由于通常他们的相关知识背景较薄弱,掌握技术方法的原理和操作也较困难。另外一些本身基础较差又对蛋白质组学相关课题不感兴趣的学生可自愿选择在该层次进行教学。对于这部分学生教学最主要的目标是拓宽其知识面。

基因组学方法篇(8)

    结构学、生物化学和信息学路线是一直较为公认的分子生物学研究中三条主要的路线。[1]中心法则的产生是以生化——信息学方法为基础的。其产生的模式是假说演绎的,即先利用有限的证据提出一个假说,然后根据假说演绎出若干理论,最后等待证据检验所演绎的结论,其过程是假说——演绎——检验。伴随着分子生物学的不断发展,这一演绎——检验的过程不断循环往复。正是在这种循环往复的过程中,中心法则的语形发生着不断地转变。同时,在此过程中,不断有新的生物学概念的提出,不断有新旧生物学概念的更替。在这里既包括新的概念的提出及其所被赋予的特定意义,又包括同一概念在不同的研究范围中所包含的不同的生物学意义。也就是说,在这一过程中中心法则的语义不断地发生变迁,而这种变迁是在分子生物学纵向语境的不断变化中实现的。

    1 中心法则的语义变迁

    自克里克在1958年提出中心法则至今,中心法则已经经过了半个多世纪的丰富和发展。我们可以将其发展的整个过程大致分为三个阶段:克里克最初提出的经典的中心法则;20世纪70—80年代被修正和丰富的中心法则;20世纪末基因组及后基因组时代下的中心法则。

    最初被克里克描述的中心法则如图1所示。

    

    图1 最初被克里克描述的中心法则图

    箭头表示在三大类生物大分子DNA、RNA和蛋白质间信息传递或流动所有可能的方向。它揭示了生命遗传信息的流动方向或传递规律。结合当时的理论背景和认识论背景,克里克对所描述的中心法则做了进一步的分析,最终提出了中心法则最初的基本形式:

    

    上式描述了由碱基→氨基酸→蛋白质这一基本过程。对这一过程中代码的语义分析,必然无法脱离整个理论的语义结构。因为,在以上所描述的过程中,任意一次结构的上升,都必然会伴随着其代码的语义调整。在中心法则中,碱基位于一个基础的层面,成为生物学解释与物理、化学解释的纽带。例如,在化学中GAA是作为氨基乙酸的代码,然而,在生物学中,它却表示对应于谷氨酸的遗传密码。当我们对其结构上升,多个连续的三联体碱基序列自然也就对应多个连续的氨基酸序列。当碱基序列发生变化时,也就必然地导致氨基酸序列发生变化。有序列的碱基链和氨基酸链又分别构成了DNA和蛋白质。自此,就构成了最初的中心法则:蛋白质作为生物性状形成的工作分子是由构成DNA的碱基序列所决定,我们把这种碱基序列称之为遗传信息。同时,由于当时生物学理论背景及研究对象的限制,自然决定了中心法则从DNA到RNA到蛋白质严格的单程信息流路线,以及从DNA序列到RNA序列到蛋白质氨基酸序列严格的共线性。

    由上可以得到,单一的碱基符号的语义形成是在中心法则整个的语义结构中实现的,碱基序列在生物学语境中的语义表达同样也无法脱离中心法则的语义结构。而整个中心法则的语义实现又是在当时特定的语境下完成。也就是说,特定语境的确立,决定了中心法则的语义解释,确定了中心法则在当时语境下的解释伸缩度。

    随着分子生物学的发展,1970年Temin等在RNA病毒中发现了RNA逆转录酶,说明了RNA到DNA逆向转录的可能性。[2]之后,又有人发现细胞核里的DNA还可以直接转译到细胞质的核糖体上,不需要通过RNA即可以控制蛋白质的合成。[3]此时,中心法则被修正为如图2所示。

    

    图2 修正后的中心法则图

    而中心法则的语义解释,也就由之前的“严格的单程式”变迁为一种“中途单程式”。从20世纪70年代开始,分子生物学家对真核生物进行了大量的研究,发现了基因上存在的非编码序列,从而产生了内含子与外显子的区别。20世纪80年代末,分子生物学家又报道了多种RNA编辑的类型。这些都说明了蛋白质序列在DNA序列上的非连续性及非对应性。这又要求中心法则的语义解释由之前的“严格共线性”转变为“非共线性”。这都是由于分子生物学纵向语境的变化,导致了中心法则语义边界的改变,从而使其语义的解释范围及解释伸缩度发生改变。理论背景及认识论背景的不同,便造成了中心法则概念的语义扩张。这种语义的扩张通过再语境化的功能,继而又成为其它生物学理论的语义语境。中心法则的理论发展,就是在这种语境转变,或者说是再语境化的过程中不断实现其语义转变。

    在分子生物学中,还有非DNA分子模板(如细胞模板、糖原以及一些细胞级的非分子模板)、朊病毒等的出现。虽然,这些只是出现在离体实验中,应只属于尚未定论的科学预测。但是,它们强力说明着:在生物系统中,信息流的传递是多元和多层次的,它们在细胞中构成了一个精密的时空框架,中心法则仅仅只是这些信息流中的一条或者说是一条主流;在中心法则的信息流中,非DNA编码的渗入,使得DNA仅作为DNA编码的一个起点,而不是遗传信息流的唯一源头;同时,在信息流的传递过程中,非模板式的序列加工,使得信息流并不是模板流。[4]这些似乎对中心法则都构成了严峻的挑战。然而,我们并不能抹杀它的合理性地位。中心法则的提出是以当时病毒、细菌的实验材料为依据。它所指出的DNA、RNA、蛋白质间的信息传递是符合分子生物法则的。鉴于当时理论背景和认识论背景的限制,我们应该是在其三大分子的框架性语境下对其进行语义解释。当分子生物学推进到真核细胞时,中心法则的信息流其实已经处于另一个完全不同的时空框架中,这时我们应对其进行语境下降,在单个基因层面或者是更低的层面对其进行语义解释。而面对当代基因组语义研究的问题,或许我们还要对其进行语境上升,在基因组层面、细胞层面甚至是更高的层面对其进行语义解释。

    综上所述,对中心法则的语义解释应该放在分子生物学发展的纵向语境下进行。中心法则的语义变迁就是在这一纵向发展过程中,一次次不断地语境化与再语境化的过程中实现的。同时,我们对中心法 则的语义理解也还必须在一种横向的特定的语境下进行,而不是仅仅只在分子生物信息较窄的概念下进行。只有这样才不会导致中心法则的语义局限性。而作为科学理论的中心法则语义被局限,自然会导致其作为研究方法的意义局限性。这也就引出了本文接下来所要谈论的一个问题:在传统意义下,作为研究方法的中心法则的意义及其局限性。

    2 作为研究方法的中心法则的意义及其局限性

    中心法则是一个关于DNA、RNA、蛋白质三大分子的信息传递的科学理论。在它的解释之下,信息不能由蛋白质向下传递到DNA,而是DNA被转录成RNA,RNA再翻译成蛋白质。更进一步讲是,“信息从DNA向上传递到RNA、蛋白质,进而延伸到细胞、多细胞系统”。[5]然而,不仅于此,中心法则还作为一种研究的方法,被用于许多研究计划,用以解决基因组的语义问题。

    基因组研究的核心问题是研究作为生命系统发展和运行基础的基因组调节网络的意义。一个基因组意义的理论问题便是一个基因组语义问题。部分地讲,这种语义是将基因组序列转化成系统性意义的语义代码。由于生物系统是在不同层次被组织,所以一个基因组的语义会由于该序列片段所处的本体论、功能及组织层次的不同而产生不同的语义联想意义。因此,如何获得一个基因组语义的元理论问题便成为基因组和蛋白质组研究的战略问题。

    目前,许多关于基因组研究的方法论都是遵循一种自下而上的策略。这种研究的方法正是受到了中心法则的启示。也就是说,中心法则为还原论者研究基因组提供了方法论基础。这种还原论方法论的前提是,在我们要进一步了解下一个层次的信息时,我们必须在理论上和实际中都要对每一个更低、更微观层面的信息和本体论的知识有所把握。这就好比说,当我们要获得一个蛋白质的结构时,我们首先要掌握构成这一蛋白质的氨基酸信息,再获得核酸信息。然而,即便是掌握了基本的核酸信息,由于基因和细胞网络设计一系列的相互作用的部分,而使得从核酸到蛋白质信息的过程特别复杂。

    一个以中心法则为方法的研究项目,最大的弱点是其惊人的复杂度。这种自下而上的还原论策略存在的问题是,寻找到一个解决路径的搜索空间非常巨大。在计算机科学中,解决一个问题的关键往往就在于能够解决这个问题的可能路径的空间。这样一系列的可能路径被称为搜索空间。一个问题的一种解决方法就是一个路径在这样一种搜索空间中实现一个目标或解决。一些问题拥有巨大的搜索空间,从而使得其在实际层面上几乎不可能被解决。在计算机科学中讲,这就是所谓的NP——complete问题。[6]这些问题的复杂程度,足以使现阶段最快的计算机瘫痪。基因组和细胞网络的研究正是面临这样的问题,它们涉及成千上万的相互作用的部分。遵循一种自下而上的策略进行研究,必然在其过程中呈现出一系列的NP——complete问题。

    然而,在实际的研究过程中,研究者形成的研究策略都是依据关于更高层次的生物信息的知识。“即使在平常的实验决策和实验设计中,研究者的行为都是在一个关于现象的系统知识,即一个更高层次的语境中进行的。”[7]在这些系统问题的研究过程中,研究者预先假设这些知识可以对他的研究和实验设计提供一个更宽的方向。更为重要的是,这样就使得这个研究有了其自身的意义。这种高层次、系统性的信息给出了这个研究或实验为什么要进行的理由。

    这种知识在人工智能的研究领域被称为启发性知识。启发性知识被定义为可以减少搜索空间的信息。因此,在这种情况下,科学家就利用这种启发性的、系统层面的生物学知识,去减少那些非正式的、直觉的、先验的搜索空间,从而来解决他的问题。在我们所说的基因组语义的问题中,启发性信息可以减少基因组语义的搜索空间,可以减少基因代码可能解释的空间。

    例如,在信息的传递方面,根据中心法则,信息是不能从蛋白质到RNA再到DNA向下传递的。然而,在系统层面,信息可以从蛋白质向下传递到DNA。细胞信号就是一个例子。正是由于一系列的蛋白质与蛋白质的相互作用,蛋白质与RNA的相互作用,导致了DNA转录的被激活。因此,从系统层面来讲,中心法则仅仅介绍了细胞信息系统中许多种可能的信息传递路径中的一种。实际上,存在细胞内的信息传递路径和细胞间的信息传递路径。这些路径构成了细胞内及细胞间的信息传递网。然而,它们又都是通过细胞的基因组信息来组织着细胞内和细胞间的信息传递。

    所以,我们必须有意识地去区分作为科学理论的中心法则和作为研究的方法的中心法则。否则,我们就有可能错误地提前认为,由于信息不能向下传递,我们就不能自上而下地由高层次的信息得到低层次的信息。多细胞以及单细胞中信息传递的二元性,就使得基因组语义的研究策略,跳出了传统意义下中心法则的局限性。

    现阶段关于基因组理论的大部分研究,都是遵循传统意义下的中心法则,在一个严格的自下而上研究策略下进行的。替代这种研究策略,我们主张同时考虑一种自上而下的互补性策略。我们认为,一种能够整合高层面的系统层面与低层面的基因组信息层面的研究策略,对于解决基因组语义问题是非常必要的。传统意义下的中心法则对于基因组语义研究已经不再是充足的组织模式。那么是否存在一种路径,在细胞和多细胞的语境下,利用高层次的系统信息去理解基因组?我们认为是存在的。正如上文所言,这时候我们就需要对传统意义下的中心法则进行语境上升,在细胞与多细胞的层面对其进行语义理解。同时,在方法论层面,我们也就同样可以尝试一种自上而下的研究范式,来补充之前的严格的自下而上的方法论研究策略。

    3 中心法则方法论意义研究的新路径

    什么是一个自上而下的研究策略?

    在一个自上而下的研究策略下,我们可以在抽象概念的层面来讨论多细胞的发展过程。在抽象概念层面的讨论,可以使我们获得更多关于系统层面的现象。假设有一个软件系统,并且在这个软件系统中可以设计一个人工基因组,同时在这个系统中该基因组可以产生一个人工有机体。然后,我们可以使这个人工基因组尽可能地模仿自然基因组的主要的系统属性。比如,该系统是否能够模拟多细胞的发展、细胞信号的传递等?在该系统中进行特定位点的基因突变,是否能得到自然基因组下的相似效果,如畸形发展、癌变等?这一系列问题的实现,就 使得我们可以确认该系统能够反映自然基因组的一些基本特征。然而,我们可能需要一种更为精确的相关性。但是,如果我们能够使得人工基因组与自然基因组相关联,那么我们就得到了从一个基因组翻译到另一个基因组的开端。如图3所示。

    

    图3 基因组翻译模拟图

    图3所模拟的是生物体内的基因组和计算机系统中多细胞有机体之间的关系。图中的“翻译关系”指的是计算机系统及生物体系统中基因组之间的“句法关系”。中间的“语义关系”表示的是用计算机系统中的多细胞有机体语言翻译出生物体中的基因组。下面的“一致性关系”应该包括系统之间暂时的和动态的形态学之间的一致性。

    这就好比将英语翻译成汉语。我们需要知道这些被翻译的单词是什么,如何在句子中使它们相关联。这就是语言中的句法。但是,首先我们需要知道语言的语义。也只有当两段话的意思相同的时候,对于一个词、一句话或者一段话的翻译才是充分的。

    这样我们就通过计算机代码的语义获得了基因组的语义。然而,在这个过程中,并不妨碍我们同时使用自下而上的研究策略。“在人工智能中,合并自上而下和自下而上的研究路径是较优的研究策略之一。当两种研究路径,分别自上而下与自下而上在中间合并时,便形成了一种解决路径。”[8]

    在这里需要注意的是,无论是低层次的本体论层面(如生物化学),还是高层次的关于信息和本体论的层面,对于研究生物过程而言,没有哪一种是固有的更为优越的。关于细胞和多细胞现象的正确的高层面的信息,没有必要一定要被还原成更低层面的本体论视角。很多情况下,高层面的系统知识反而能够帮助我们限定研究的搜索空间,促进我们去理解更低层面的生物过程。因此,对于一个系统不同层面信息的理解,能够使我们获得更多、更全面的关于该系统的知识。

    所以,在细胞或者多细胞系统的层面,中心法则可以被简单的描述为:基因组→蛋白质组。我们也没有必要必须将其还原到DNA转录和翻译的层面。

    4 结语

    随着分子生物学的发展,其理论在不断地远离经验。在这样的一个背景下,如何去构造、理解和解释分子生物学,语义分析成为一种十分重要的科学方法。首先,“语义分析方法本身作为语义学方法论,在科学哲学中的运用是‘中性’的,这个方法本身并不必然地导向实在论或反实在论,而是为某种合理的科学哲学的立场提供有效的方法论的论证。”[9]“语义分析方法在例如科学实在论等传统问题的研究上具有超越性,在一个整体语境范围内其方法更具基础性;其次,作为科学表述形式的规则与其理论自身架构是息息相关的,这种关联充分体现在理论表述的语义结构之上,对其逻辑合理性的分析就是对理论真理性的最佳验证;第三,生物学理论表述的多元化特征使得语义分析应用更加具有灵活性。”[10]

基因组学方法篇(9)

[中图分类号] R541.61 [文献标识码] A [文章编号] 1673-7210(2012)06(a)-0007-03

表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因及基因表达发生了可遗传的变化。这些改变包括DNA的甲基化、多种形式的组蛋白修饰及小分子RNA(microRNA)等。个体间疾病易感性及治疗反应性的差异在很大程度上取决于遗传因素[1]。然而,根据全基因组研究,笔者不得不承认遗传表型的改变不仅仅是核苷酸序列的变化[2-3]。表观遗传学与核苷酸的改变共同调控了基因的表达,因而从另一种角度解释了个体间的差异。

表观遗传学研究发现,基因及其表达的遗传性改变不仅仅是指基因突变或基因多样性等DNA序列的变化。已知的三种可调节基因表达的表观遗传学改变主要是:基因组DNA的甲基化,组蛋白修饰,非编码RNA的调节(如microRNA)。上述机制均涉及外在因素在蛋白质编码序列不变的情况下仍可调节基因转录[4]。表观遗传学调节机制存在个体及组织差异性,并且可以随年龄增长、环境及疾病状态的改变而变化。表观基因组在基因组表达过程中起关键作用,个体间基因表达的不同造成药物不同的反应性,这可能是通过表观遗传学改变进行调节的。因此,目前认为表观遗传学改变可以帮助解释基因突变在药物反应中的作用,继而在临床医学中发挥作用,这一迅速崛起的新学科称为表观遗传药理学。个体间药物的反应性不同,该学科不仅研究表观遗传因子在这一过程中的作用,而且旨在开发新的药物靶点[5]。笔者认为表观遗传药理学与遗传药理学将共同在药理学、临床医学中发挥重要作用。

目前为止,表观遗传药理学的大多数研究集中于肿瘤学领域,例如,研究细胞色素p450在个体间表达的差异。幸运的是,表观遗传学修饰的作用已被应用于解释其他复杂并且多源的现象,应用的范围越来越广。在这里,笔者总结了表观遗传修饰在心衰及心血管疾病治疗方面最新的研究。

1 表观遗传修饰与心力衰竭

1.1 组蛋白的修饰

庞大的真核生物基因组在高度保守的组蛋白的作用下得到了紧密的压缩。在核小体中,基因组DNA围绕核心组蛋白(核心组蛋白H2A、H2B、H3、H4各两组)折叠、压缩,形成了染色体的基本单位。基因组DNA与染色体蛋白的相互作用有助于转录因子向靶基因片段聚集,从而调节转录活性[6]。通过这种机制,核小体利用其核心组蛋白的共价修饰传递表观遗传学信息。这些修饰包括组蛋白乙酰化、甲基化、磷酸化、泛素化及SUMO化修饰。核心组蛋白的氨基末端从染色质丝上伸出来,与DNA或其他组蛋白、蛋白质等相互作用。该末端上的赖氨酸、精氨酸残基是组蛋白修饰的主要靶点。多数研究旨在了解赖氨酸乙酰化、甲基化的作用。事实证明,赖氨酸的乙酰化作用主要与染色质亲和力及转录相关,而赖氨酸的甲基化作用取决于何种残基被修饰。

有趣的是,正如Mano所总结的那样,组蛋白乙酰化的调控与心肌肥厚相关。去氧肾上腺素可诱导心肌细胞肥大,这一过程需要乙酰基转移酶介导的组蛋白乙酰化。与此结果相一致的研究是针对Ⅱ类组蛋白去乙酰基酶(HDACs)5、9的研究,其通过抑制心肌细胞增强因子2(MEF2)的活性进一步阻碍致肥厚基因(pro-hypertrophic genes)的表达来发挥抗肥厚的作用。与此相反,Ⅰ类HDACs具有相当强的致肥厚作用,其通过调节磷脂酰肌醇三磷酸酰胺磷酸酯酶的表达发挥作用。这意味着,HDACs在多水平上控制肌肉细胞的体积。

1.2 DNA甲基化

在真核生物中,DNA甲基化是通过将甲基团转移到核苷酸胞嘧啶环的5''位碳原子上完成的。在哺乳动物体内,DNA甲基化主要发生在基因的5''-CG-3''序列,也指的是CpG双核苷酸;人体内,大约70%的CpGs发生甲基化。另一方面,未甲基化的CpGs存在于许多基因的5''端调控区域,以CpG岛的形式出现。与其他DNA区域相比,CpG双核苷酸在CpG岛出现的概率较高。人体内CpG岛甲基化的不同是表观遗传学改变的组成部分。

DNA胞嘧啶甲基化有助于局部转录因子复合物的结合,其与组蛋白修饰共同在局部及整个基因组中影响染色体的结构。因此,DNA甲基化的一个重要作用是调控基因的表达。在这方面,CpG岛超甲基化可以使基因沉默,而低甲基化使基因发生转录。有人认为,甲基化是一种稳定遗传的修饰,但同时它也受到环境因素的影响。如小鼠野鼠色基因位点,可以受到其上游转座子甲基化状态的影响。从遗传角度来讲,完全相同的亲代其野鼠色基因不同的甲基化状态可使得后代出现不同的毛色[7]。

最近,Kao等[8]的研究结果发现,DNA甲基化在心衰特定的基因转录调控中发挥作用。他们发现促炎症基因TNF-α可下调肌浆网Ca2+-ATPase(SERCA2A)的表达,这是通过增强SERCA2A启动子的甲基化状态完成的。Movassagh等[9]发现,在心肌病及人类心肌组织形成时甲基化的状态是不同的。而且,他们鉴别出三个基因位点(IECAM1、PECAM1、AMOTL2),在不同的心脏样本中,位点甲基化状态与基因表达的调控密切相关。

1.3 MicroRNAs

MicroRNAs是短的双链RNA分子,来源于细胞核及细胞质中较大的RNA前体,其可以在基因转录后对基因表达发挥调节作用。miRNAs可以对30%~50%的蛋白质编码基因进行调控,这一过程主要是通过与mRNA3''端未转录区域的碱基对进行互补结合,继而干扰转录,靶mRNAs可降解或暂时沉默[10]。miRNAs调节蛋白的表达是非常复杂的,多种miRNAs可以作用于同一基因,不同基因也可受到同一种miRNAs的调节。miRNAs的表达具有组织、疾病特异性。近年来,多种病理状态下的miRNA分子标记已被检测出来,如各种类型的肿瘤以及多种心血管疾病[11]。

越来越多的证据表明,miRNAs与基本的细胞功能密切相关。目前,miRNAs与心衰的关系已得到明确,在过去的几年中,该领域的报道层出不穷。对心血管疾病的研究主要集中于两种心脏组织特异表达的miRNA家族(miRNA-1/miRNA-133、miRNA-208)。多项研究显示,miRNA在健康、高血压以及不同病因所导致的人、小鼠、大鼠衰竭的心脏中均有表达,Divakaran等[12]发现心脏特异性的miRNA-208不仅可调节心肌细胞肥大、纤维化同时可在应激、甲退时调节β-肌球蛋白重链(β-MHC)的表达。这种miRNA由α-MHC基因的内含子编码。该基因编码α-MHC及一种主要的心肌收缩蛋白,使心脏变大,在应激以及激素信号作用下通过miRNA-208及其作用位点发挥调节作用。再者,定向删除心肌特异性的miRNA,miRNA-1-2,揭示了它们在心脏中的多种功能,包括调节心脏的形态发生、电信号传导及细胞周期的调控。Thum等[13]发现,受损心肌中miRNA标记与胚胎心中miRNA表达的类型极为相似,这说明受损心肌中重启了胚胎基因的表达程序。Thum等[13]另一个发现是miRNA-21可以调控ERK-MAP激酶途径,这种调控在心脏成纤维细胞中尤为明显,心肌细胞中却没有这种表现,这可以影响到心脏的结构及功能。在成纤维细胞中,miRNA-21水平的增高可通过抑制特定基因来激活ERK激酶,经由这种机制,miRNA-21调节了间质纤维化、心肌肥厚。上述研究揭示了在心脏成纤维细胞中,基因调节的另一种方式是在miRNA介导的旁分泌水平上进行的。

miRNA在心脏肥厚反应中的意义得到了进一步的研究,miRNA成为基因调控的主要调节因子。到目前为止,miRNA已被证实不仅可以影响心肌,还可以影响心脏电信号转导及调节血管再生[14]。

2 表观遗传筛选方法

表观基因组学示意图不是固定的,它因细胞类型、时间的不同而不同,并且可在生理学、病理学、药物作用情况下发生改变。因此,作为人类基因组计划的后续工程,表观基因组测序是一项艰巨的任务。虽然判断基因组序列的表观遗传学状态是比较容易完成的,描绘整个表观基因组需要对数十个基因组进行测序,覆盖一个有机体在生命不同阶段的所有细胞类型。

亚硫酸氢盐测序法是标测DNA甲基化类型最为准确的方法。基因组DNA与亚硫酸氢钠相作用,导致未甲基化的胞嘧啶脱氨基转变成尿嘧啶,而甲基化的胞嘧啶保持不变。为观察特定基因的甲基化状态,用特异性引物对目的片段进行扩增,随后对产物测序。在序列中,甲基化的胞嘧啶被标记为Cs,未甲基化的胞嘧啶为Ts。

近来出现了多个对甲基化进行定位的全基因组研究方法,它们都是以甲基化和未甲基化的CpGs对限制性内切酶的敏感性不同为基本原理的。限制长度的基因组扫描利用两种酶双酶切DNA,一种是频繁切割的甲基化非敏感性限制内切酶,另一种是罕见的甲基化敏感性的酶如Not1,这种酶只有在非甲基化状态时才可以酶切所识别的位点。还有一种完全不同全基因组研究方法是利用DNA芯片技术,它可以一次性标测成千上万的CpG岛的甲基化状态。这种方法可以用来识别CpG岛,相对于正常的调控过程来说,CpG岛在肿瘤组织中发生甲基化。

亚硫酸盐转化的替代方法是ChIP-seq方法(一种与测序相结合的染色质免疫沉淀方法)。通过免疫共沉淀技术使得目的蛋白与DNA发生交联,然后对DN段进行基因组测序。这一方法可以帮助识别任何DNA相关蛋白的DNA结合位点。该技术还可以提供组蛋白修饰的信息,如乙酰化、甲基化、磷酸化、泛素化、SUMO化修饰。对ChIP技术进行改进得到的DCS方法,是将ChIP与消减式PCR进行偶联。该方法旨在避免基因组片段与芯片杂交后产生非特异性信号。

以同样的方式可以检测人体病理状态下miRNA的作用,大多数研究是利用高通量的方法分析临床病例中总miRNA的表达情况。高通量技术是以miRNA基因芯片和real-time RCP为代表的。尽管分子间的差别给这些技术带来了巨大的挑战,但miRNA芯片最大的优点是具有很高的特异性,而缺陷是其敏感性较低。

3 药物可以改变表观遗传状态

表观遗传学改变正常及疾病状态下的表型,这可能意味着充分理解和调控表观基因组对于人类常见疾病的防治具有重要意义。表观遗传学为我们提供了一个重要的窗口,来认识环境与基因在疾病发生过程中的相互作用以如何调节这些作用达到改善人类健康的目的。

miRNA派生的反义寡核苷酸是单链RNA分子,对其进行化学修饰可能是针对致病miRNA新的方法。但是这种方法困难重重,miRNA属于密切相关的家族,且很难合成针对每一种miRNA的反义寡核苷酸。再者,一个单独的miRNA可针对多种基因发挥作用,它们之中可能含有对心肌有益的分子。在这方面,寡核苷酸的化学修饰可能会特异性破坏miRNA与单个mRNA的作用,这可能是疾病治疗良好的备选方案。每一种miRNA可以以不同的强度针对成百上千的基因发挥作用,所以在体内miRNA修饰的最终作用尚不明了。最终,将miRNA拮抗剂应用于临床领域将面临很多困难,这与我们在基因治疗方面所遇到的极为相似,如导入方式、载体、特异性以及毒性等问题[15]。至少在理论上,针对特异性miRNA的方法将来可能是治疗缺血性心脏病、心肌肥厚、心衰、血管再生、离子通道病的有效手段,可控制心衰的发展。

另一种方法可能是将靶DNA甲基化。一些影响基因组DNA甲基化的化学合成剂已经应用于临床,例如5-氮胞嘧啶、抑制甲基转移酶的氮胞嘧啶可以使DN段脱氨基。其它药物是通过阻碍甲基化酶的活性而发挥抑制甲基化作用。更多信息可参照Gomez等[16]的文章。除了要开发可以调节DNA甲基化的药物外,还需要设计可以影响组蛋白修饰的药物。

在抗肿瘤药物的发展过程中,组蛋白去乙酰化酶(HDAC)抑制剂占据着重要地位,它可以通过逆转与肿瘤相关的异常表观遗传改变,继而发挥作用。已有证据表明,在心肌肥厚时,HDAC抑制剂可修复基因表达程序。Gallo等证明体外试验中,曲古霉素A、丁酸钠可延缓心脏肥厚。

4 表观遗传学和环境

众所周知,环境因素如毒素、饮食可以影响DNA甲基化和染色质修饰,并且可遗传给下一代。雌激素、抗雄激素类物质可改变DNA甲基化状态降低男性的生育能力,这也是可遗传的。该假说认为,环境因素可以改变表观遗传学标记和基因表达形式,这可能在人类疾病研究中具有重要意义。常见疾病大多受到基因和环境因素的双重影响,环境可诱导表观遗传结构发生改变,进而将基因和环境因素联系起来[17]。

年龄在基因与环境相互作用中发挥重要作用。常见病的发病率随着年龄的增加不断增高,这与在人的一生中表观遗传学改变不断累积有关。有研究发现,相对于年轻者而言,年长的同卵双胞胎体内总DNA甲基化及组蛋白H3K9乙酰化的水平较高,但该研究没有检测同一个体中表观遗传学改变随时间变化的情况。

5 结论

表观遗传学为研究个体在临床疗效、药物反应及毒性间的差异,以及发现新的药物治疗靶点等方面开拓了更为广阔的空间。随着人类表观基因组工程的开展,表观遗传学机制得到不断完善,这有助于更为充分地了解人类疾病和表观遗传药物的一系列分子靶点。表观遗传药理学已被应用于肿瘤学领域,对于心血管疾病的表观遗传学研究不断增多,尤其是在miRNA方面的研究最为突出。Mishra等[18]清楚地描述了心血管疾病微观RNA组学的最新进展,以及miRNA作为一种潜在治疗靶点或药物制剂的前景。

表观基因组学在健康或疾病状态下表现型的形成过程中发挥重要作用,这可能意味着充分认识和合理调控表观基因对于人类常见病的防治具有重要意义。

[参考文献]

[1] De Boer RA,Van der Harst P,van Veldhuisen DJ,et al. Pharmacogenetics in heart failure:promises and challenges [J]. Expert Opin Pharmacother,2009,10(11):1713-1725.

[2] Codd V,Mangino M,Van der Harst P,et al. Common variants near TERC are associated with mean telomere length [J]. Nat Genet,2010,42(3):197-199.

[3] Newton Cheh C,Johnson T,Gateva V,et al. Genome-wide association study identifies eight loci associated with blood pressure [J]. Nat Genet,2009,41(6):666-676.

[4] Margulies KB,Bednarik DP,Dries DL,et al. Genomics,transcriptional profiling,and heart failure [J]. J Am Coll Cardiol,2009,53(19):1752-1759.

[5] Peedicadyl J. Pharmacoepigenetics and pharmacoepigenomics [J]. Pharmacogenomics,2008,9(12):1785-1786.

[6] Mano H. Epigenetic abnormalities in cardiac hypertrophy and heart failure [J]. Environ Health Prev Med,2008,13(2):25-29.

[7] Ball MP,Li JB,Gao Y,et al. Targeted and genomescale strategies reveal gene-body methylation signatures in human cells[J]. Nat Biotechnol,2009,27(5):361-368.

[8] Kao YH,Chen YC,Cheng CC,et al. Tumor necrosis factor-alpha decreases sarcoplasmic reticulum Ca2+-ATPase expressions via the promoter methylation in cardiomyocytes [J]. Crit Care Med,2010,38(1):217-222.

[9] Movassagh M,Choy MK,Goddard M,et al. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure [J]. Plos One,2010,5:8564.

[10] Schroen B,Heymans S. MicroRNAs and beyond:the heart reveals its treasures [J]. Hypertension,2009,54(6):1189-1194.

[11] Silvestri P,Di Russo C,Rigattieri S,et al. MicroRNAs and ischemic heart disease:towards a better comprehension of pathogenesis,new diagnostic tool and new therapeautic target [J]. Recent Pat Cardiovasc Durg Discov,2009,4(2):109-118.

[12] Divakaran V,Mann DL. The emerging role of microRNAs in cardiac remodeling and heart failure [J]. Circ Res,2008,103(6):1072-1083.

[13] Thum T,Cross C,Fiedler J,et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts [J]. Nature,2008,456(7224):980-984.

[14] Zorio E,Medina P,Rueda J,et al. Insights into the role of microRNAs in cardic diseases:from biological signaling to therapeatic targets [J]. Cardiovasc Hematol Agents Med Chem,2009,7(1):82-90.

[15] Puceat M. Pharmacological approaches to regenerative strategies for the treatment of cardiovascular diseases [J]. Curr Opin Pharmacol,2008,8(8):189-192.

[16] Gomez A,Ingelman SM. Pharmacoepigenetics:its role in interindividual differences in drug response [J]. Clin Pharmacol Ther,2009,85(4):226-230.

基因组学方法篇(10)

【中图分类号】R735.2 【文献标识码】A 【文章编号】1672-8602(2015)04-0555-01

胃癌是一种发病率较高的恶性肿瘤,也是导致我国人民死亡的主要病因,该疾病在我国的死亡率和发病率均明显高出世界平均值?化疗药物治疗和手术治疗是胃癌患者首选的治疗措施,然而,有相当一部分患者确诊时已经为晚期,因而手术治疗效果较差,化疗药物也仅仅对于部分患者有效,且会导致患者出现一定的不良反应症状?医学研究结果证实,DNA甲基化在胃癌的发生和发展过程中起到了重要作用,因此,抑癌基因异常甲基化状态的逆转是一种较为有效的胃癌治疗方法?本次医学研究就对5-Aza-dC及TSA对人胃癌细胞株SGC-7901 Runx3基因甲基化和表达水平的影响进行了分析,现报道如下?

1 资料和方法

1.1 材料

本次医学研究所用材料包括:北京中杉金桥公司生产的β-Actin一抗?二抗,博奥森生物技术有限公司生产的Runx3兔抗人多克隆抗体,TAKARA公司提供的探针和引物,Fermentas公司生产的dNTP和Taq酶,Promega公司提供的RTPCR试剂盒,Invitrogen公司提供的RNA抽提试剂TRIzol,TAKARA公司提供的Real Time PCR试剂,GEPIGENTEK公司提供的DNA修饰试剂盒,TIANGEN公司提供的DNA提取试剂盒,GIBCO公司提供的RPMI1640培养基和胎牛血清,安徽医科大学分子生物学实验室提供的胃癌细胞?

1.2 方法

1.2.1 各组细胞中Runx3基因mRNA的表达

根据TRIzol试剂盒要求对各组细胞RNA进行提取,将其逆转录为cDNA,根据反应条件进行5min的95 ℃预变性扩增,分别在95 ℃ 30 s?52 ℃ 30 s?72 ℃中进行35个30 s的扩增循环,后用琼脂糖凝胶电泳试验对结果进行验证,通过Quantity One软件进行β-Actin基因和Runx3基因条带灰度值的分析,进行3次相同的实验,并对各组灰度值比值的mean±SD进行计算,以此作为Runx3 mRNA表达水平的结果?

1.2.2 各组细胞中Runx3基因蛋白的表达

按方法提取各组细胞蛋白,通过BCA蛋白浓度测定试剂盒对蛋白浓度进行测定,调节后的蛋白加上缓冲液煮沸5 min,保证其完全变性,通过15 V恒压和15%SDS-PAGE凝胶电泳进行30min的半干转膜,将凝胶上的蛋白置于PVDF膜上?在室温下用脱脂奶粉50g/L进行PVDF膜的1h封闭,加入一抗稀释液,在4 ℃环境中过夜孵育,后使用TBST漂洗PVDF膜进行4次8 min漂洗,加入二抗稀释液,连续1h在37 ℃环境中孵育,最后使用TBST漂洗PVDF膜进行4次8 min漂洗[1]?

1.3 统计学处理

本次医学研究通过SPSS17.0软件分析和处理所得数据?计数资料通过X2检验方法进行统计学处理,计量资料通过(x±s)方法进行统计学处理和表示,其他数据资料通过单因素方差分析法进行统计学处理,如果所得分析结果P

2 结果

设定对照组甲基化水平为1,则其余各组细胞加药后,TSA组甲基化水平为0.63,5-Aza-d C组甲基化水平为0.7,TSA+5-Aza-d C组甲基化水平为0.37?各组细胞的Runx3基因的mRNA相对表达量为:对照组(0.14±0.04),5-Aza-d C组(0.29±0.02),TSA组(0.28±0.03),TSA+5-Aza-d C组(0.45±0.02),对照组相对表达量与各组相对表达量相比具有明显的统计学差异(P

3 讨论

肿瘤学研究结果提出,基因表达遗传学改变和遗传基因缺陷是诱发恶性肿瘤的主要原因,缺失和突变等基因缺陷均会对编码区功能和结构造成破坏,表观遗传学会诱导组蛋白乙酰化/去乙酰化或DNA甲基化等自身化学修饰方式发生一定的改变,进而达到DNA功能调控的作用[3]?mRNA表达水平结果证实,TSA和5-Aza-dC都会导致Runx3基因mRNA表达水平的增加,两药联合应用效果更加显著,由此可见,Runx3 mRNA启动子区甲基化水平与其表达水平之间存在直接联系,5-Aza-dC和TSA会对Runx3基因启动子区的异常甲基化状态产生逆转作用,进而形成Runx3基因的重新表达,并起到Runx3基因重新抑制癌症基因的效果?Runx3基因蛋白表达水平证实,各加药组m R NA表达水平越高,则蛋白表达水平也就越高,而这一结果也提高了实验结果的可靠性,并从蛋白表达水平的角度证实了5-Aza-dC和TSA的药效以及两药联合的协调作用?

参考文献

上一篇: 生命教育的方法 下一篇: 电影艺术的发展
相关精选
相关期刊