生物医学工程的研究方向汇总十篇

时间:2024-01-13 17:10:04

生物医学工程的研究方向

生物医学工程的研究方向篇(1)

1中国生物医学工程学科发展思路

生物医学工程是一种交叉学科,交叉的学科基础及其融合的紧密程度决定了生物医学工程学科的发展水平,交叉的学科发展推动着生物医学工程学科的发展,并且使得生物医学工程学科研究领域变得十分广泛,而且处在不断发展之中。

1、1学科发展轨迹在中国,基于电子信息工程发展而来的生物医学工程学科,主要包括生物医学仪器、生物医学信号检测与处理、生物医学信息计算分析、生物医学成像及图像处理分析、生物医学系统建模与仿真、临床治疗与康复的工程优化方法、手术规划图像仿真以及图像导引手术及放疗优化等;有基于力学发展而来的生物医学工程学科,主要包括生物流体力学、生物固体力学、运动生物力学、计算生物力学和微观尺度的细胞生物力学等;基于化学材料工程发展而来的生物医学工程学科,主要包括生物材料学、组织工程与人工器官、物理因子的生物化学效应等。

1、2学科发展特点作为交叉学科的生物医学工程学科,其发展的关键在于交叉学科间的交叉融合。构建一种良好的交叉结构,对推动交叉学科的发展具有至关重要的作用。约翰霍普金斯大学对于生物医学工程这样的交叉学科的描述有一个形象的说法:交叉学科如同在不同学科之间建立起连接桥梁,如果在河两岸没有坚实的基础,桥是无法建立好的,对于生物医学工程这样一座建立在两个不同学科之间的桥来说,它的发展要求具有坚实的交叉学科基础和交叉学科紧密融合深度。那么在生物医学工程学科构建良好的交叉结构,需要选取具有理论支撑和技术支撑的主干学科进行交叉,凝练学科方向,不能大而全,过于宽泛。目前,医学仪器和医学成像技术具有良好的应用和发展前景,应该成为生物医学工程学科的重点发展方向。医学仪器和医学成像设备能有力推动医疗产业的发展。医疗仪器和医学成像设备是现代医疗器械产业中的主流产品,在产业发展中起着主导和引领作用。其发展水平已成为一个国家综合经济技术实力与水平的重要标志之一。产业化驱动也是学科发展的一种动力,也为学生未来职业发展奠定良好的基础。基于医疗卫生健康事业的需求和生命科学发展的大趋势,生物医学工程学科应大力促进医学仪器和医学成像方法的学科建设,从而提升整个学科的发展水平。生物医学工程学科的建设离不开一流的学术研究和学术成果的应用。一流的学术研究不但能提升学科的发展水平,而且能开拓学科纵深发展,产生良好的经济效益和社会效益,进而增强学科服务社会发展的能力。学术研究的前瞻性和创新性将确保学科建设的发展动力和趋势以及学科发展的活力。交叉学科往往具有不同程度的可替代性。可替代性程度越高,交叉学科存在的必要性就越小。如何减小生物医学工程学科可替代性的程度是需要深入思考的,是需要提升学科的特异性的。生物医学工程学的学术研究主要包括应用理论研究和理论应用研究,应用理论研究主要涉及生物医学工程领域所需要解决的科学问题,开展新理论、新方法的研究。理论应用研究主要涉及生物医学工程领域所需要解决的科学和技术问题,借助理工科的相关理论和方法开展应用基础研究和应用研究。应用理论研究是理论驱动型的学术研究,理论应用研究是应用驱动型的学术研究。理论驱动型和应用驱动型是生物医学工程学科学术研究的两种主要模式。理工科大学具有良好的理论创新基础和强大的交叉的学科背景,开展理论驱动型研究具有自身优势。医学院校具有丰富的医学资源,面临着大量需要应用理工知识解决的医学问题,开展应用驱动型研究,将很好地实现与医学的应用融合,具有较好的临床应用价值,有力推进医学的进步与发展。各自的学术优势将有利于生物医学工程学科特色发展,从而增强其不可替代的程度,实现学科可持续创新发展。

1、3学科体系作为一级学科的生物医学工程,包含学科的理论体系和技术体系,且该体系离不开所交叉的学科的理论体系和技术体系的支撑,此外生物医学工程学科理论体系和技术体系既要有学科自身的特色,又要具有可持续发展和一定程度上的不可替代性,这样学科才会有旺盛的生命力。要面向医疗卫生、生物科学所涉及的重大、重要技术理论问题及基础应用开展学术研究。实现良好的学术研究定位,形成自己的理论体系和技术体系。

2大数据时代的生物医学工程学科发展

守正创新是生物医学工程学科发展的必由之路,人类已进入大数据时代,所谓大数据(bigdata),或称海量数据,是指由于数据容量太庞大和数据来源过于复杂,无法在一定时间内用常规工具软件对其内容进行获取、管理、存储、检索、共享、传输、挖掘和分析处理的数据集。大数据具有“4V”特征:①数据容量(volume)大;②数据种类(variety)多,常常具有不同的数据类型和数据来源;③动态变化(velocity)快,如各种动态数据,非平稳数据,时效性要求高;④科学价值(value)大,尽管目前利用率低,却常常蕴藏着新知识和重要特征价值或具有重要预测价值。大数据是需要新的分析处理模式才能挖掘分析出其蕴藏的重要特征信息[6]。人体生老病死的生命过程就是一个不断涌现的生物医学大数据发生源,这种源源不断的生物医学大数据的检测、处理与分析,将给生物医学工程学科的建设与发展带来新的机遇和挑战。模式识别、人工智能、数据挖掘和机器学习的发展将带动大数据处理技术的进步。

生物医学大数据广泛涉及人类医疗卫生健康相关的各个领域:临床医疗、基础医学、公共卫生、医药研发、临床工程、心里、行为与情绪、人类遗传学与组学、基因和蛋白质组学、远程医疗、健康网络信息等,可谓包罗万象,纷繁复杂。生物医学大数据中蕴藏了种种有科学价值的信息,研究有效的大数据挖掘的新理论、新技术和新方法,对生物医学大数据进行关联和融合计算分析,充分挖掘生物医学大数据中的信息关联和特征关联和数据空间映射关联,既能为疾病的预防、发生发展、诊断和治疗康复提供系统化的全新的认识,有利于深入疾病机理研究分析,开展个性化诊疗。还可以通过整合系统生物学与临床数据,更准确地预测个体患病风险和预后,有针对性地实施预防和治疗。生物医学工程学科所面临的生物医学大数据主要包括多模态医学影像数据、多种类医学信号数据以及基因和蛋白质组学的生物信息数据。生物医学大数据在生物医学工程学科领域内有着广泛深远的应用前景,从三个方面应用将推动生物医学工程学科的发展。

(1)开展多模态影像大数据计算分析。医学影像学科的发展从早期看得到,到看得清,目前的看得准,未来的趋势是看得早。只有看得准和看得早才有利于临床早期干预,提高治疗预期。医学影像大数据计算分析在影像诊断、手术计划、图像导引、远程医疗和病程跟踪将发挥越来越大的作用。建立新的医学影像大数据计算分析模型和数值计算方法,挖掘多模态影像数据的特征数据和特征关联,将会提供强有力的影像诊断分析手段,极大地推动影像技术的发展,具有重要的临床应用价值和科学价值。

(2)开展多种类医学信号大数据计算分析。医学信号大多直接产生于生理和病理过程中的信号,能在不同层面上表达生理和病理相关机制特征。融合多种医学信号的大数据计算分析,能对生理病理过程进行更好更全面的阐释,不仅能深入了解生理病理的状态特征和过程特征,而且能实现个体健康监测和管理。可以很好地开展回顾性研究和前瞻性研究,推进系统化的医学应用研究。实现强大的多种医学信号数据的特征挖掘及特征关联计算分析。大数据挖掘能够增加准确度和发现弱关联的能力,能更好地认识生理病理现象和本质。

(3)开展基因和蛋白质组学的生物信息大数据计算分析。基因组学、蛋白质组学、系统生物学和比较基因组学的不断发展涌现了海量的需要计算分析的生物信息数据,已进入计算系统生物学的时代。开展生物信息大数据计算分析,可以拓展组学研究及不同组学间的关联研究。从环境交互、个体生活方式、心里行为等暴露组学,至细胞分子水平上的基因组学、表观组学、转录组学、蛋白质组学、代谢组学、基因蛋白质调控网络,再到人类健康和疾病状态的表型组学等不同层面不同方向上实现大规模的关联计算分析,可以全面阐述生命过程机制,挖掘生命过程特征及关联特征。

生物医学工程的研究方向篇(2)

生物医学工程产业是目前全球发展最快、贸易往来最活跃的产业之一。20世纪80年代以来,全球生物医学工程产业(医疗器械)销售额年增长率一直保持在水平。BME产品的国际贸易额每年以25%的速度增长,销售利润可达50%以上。因此,美国、日本、德国和法国等发达国家投入了大量人力和财力,发展BME高科技产业,抢占国际市场。全球范围内,BME产业的主要产地在美国、欧洲和日本,美国是最大的生产、使用和出口国,其次是日本、德国和法国。

2.我国生物医学工程产业现状

随着电子技术、计算机技术与生物材料科学的发展及生物医学工程学科的兴起,我国BME工业获得了进一步发展的理论基础和技术源泉,从而带动了整个产业的技术进步和新发展,走上了 BME科技产业的道路,但与国际先进水平的差距依然非常明显,主要表现为民族产业不强,高、精、尖的BME产品依赖进口现象严重,加快了医疗费用的高速膨胀;由于我国BME产品档次低可靠性不高、缺乏创新能力等原因,难与国外产品抗衡;BME产业虽然数量众多、但组织规模不大和产品档次低,难于参与国际竞争。但我国人口众多,BME产品需求量又相当大。所以,发展中国的生物医学工程产业,改革中国的生物医学工程高等教育,已经刻不容缓。

3.生物医学工程产业化与生物医学工程学科教育

工程学突飞发展的今天,生命科学也在迅猛发展,尤其是近年来迅速兴起的生物技术给BME以极大的推动。生物医学工程作为典型的交叉、融合、边缘性的学科,其含义更深更广:不仅是工程学与生命科学、医学的交叉结合,也包括所有其他学科和生命科学、医学的交叉结合;不仅是工程技术的相应理论方法与生物医学中人体结构功能的交叉结合,而且要考虑工程技术的相应理论方法与生物技术的交叉结合。正是由于上述诸学科的相互结合和渗透,BME的研究已经深入到分子医学水平。

可以说有多少理工科分支,就会有多少BME领域,这种多学科的交叉融合涉及到几乎所有的理工学科和所有的生物学和医学分支,没有那一个学者、那一个科研结构可以涉足其全部。而且,BME所指的学科交叉,不是生物医学同那一个工程学科分支的简单结合,而是多学科、广范围、高层次上的融合。随着科学的进一步发展,各类学科都有了迅猛的发展,不断有新技术出现,而且专业基础也在变化,这些发展变化给生物医学工程学带来了新的挑战。我们有必要站在新的高度对生物医学工程学科和教育的一些问题做进一步的探讨和思考。

4.对我国生物医学工程高等教育思考

我国已有的BME专业大致可以分为两类:一类是理工科大学的BME专业,另一类是医学院校的BME专业。理工科大学的BME专业侧重点在于工科,以培养能从事BME研究、开发和生产的高级BME技术人才为主要目标,而医学院校的BME专业则培养能将工程技术与医学密切结合,能为医疗和医学研究部门进行工程技术服务,能从事医院医疗仪器设备的管理与质量保证工作的高级医学工程技术人员为主要培养目标。

生物医学工程学科在我国仅设一级学科,不设二级学科。我国生物医学工程高等教育始于20世纪70年代后期,20多年来,我国生物医学工程学科研究和高等教育已经取得了相当可观的进步,但从总体水平上看,与国外相比仍有相当大的差距。与我国国情和经济发展的需要很不适应,BME专业毕业生的社会需求缺口较大。

4.1 我国生物医学工程高等教育存在的问题

我国生物医学工程学科发展不平衡在研究方面,引进、消化、跟踪研究多,创新性研究较少;理论方法等应用性基础研究多,取得自主知识产权的应用研究较少。在学科建设和发展方面,主要集中在信息技术型生物医学工程学科,对材料技术型生物医学工程学科、生物技术型生物医学工程学科和医疗器械型生物医学工程等学科几乎没有涉足。

专业设置偏、少目前的生物医学工程本科教育的专业设置面比较集中在信息技术型生物医学工程专业,只有个别学校在培养目标中增加生物材料和人工器官方面的内容;各院校的研究生培养(科研方向)基本以生物医学信号的检测处理、医学成像、医学图像处理、医学仪器研究为主,部分涉及到分子电子学、分子光子学、生物力学、生物医学材料、人工器官、组织工程等方向,只有少数大学比较集中在纳米材料、生物医学材料以及人工器官和生物医学图像处理。研究生培养的专业面相比本科生的专业面宽广。

医工结合不突出由于受到认识和理论上的因素、文化心理上的因素、管理体制上的因素以及国家政策上的因素等方面的限制,工程与医学的有机结合在教学上体现的还很不够,综合院校往往具备更深的理工基础而缺乏医学背景,医学院校与临床结合紧密,但工程力量又显得薄弱。虽然近年来,不少医科院校与综合性大学合并,为生物医学工程专业工程背景的教育和研究提供了条件,但由于体制和教育模式的限制,学科的交叉和融合并没有得到根本解决。

专业层次不合理目前我国举办生物医学工程专业教育的各高校,生物医学工程高等教育基本执行以本科教育为主体积极发展研究生教育的方针。然而,由于生物医学工程学科自身的特殊性和学科自身的高度交叉、融合的特点,可以设想,四年制的本科教育又怎能实现真正意义上的医工的交叉融合呢?生物医学工程研究是其产业化的基础,而研究必须通过产业化才能实现为医学服务的目的,但是当前办有生物医学工程专业的大学,很多在基础研究方面并不具备实力,所以对于本科教育而言,其研究和产业化的任务也很难实现。

4.2 我国生物医学工程高等教育改革思考

学科发展与专业设置在欧美一些发达国家,无论本科和研究生教育的学科发展、专业设置以及培养目标都以社会需求为导向,紧密结合生产和科技发展变化的需要,及时调整学科发展方向和专业设置内容。在我国开设生物医学工程专业经验比较成熟的大学往往存在着偏重于理科或医科的现象,没有体现出生物医学工程多学科交叉的特点。所以我国的BME高等教育首先要从社会需求的角度出发,拓展学科建设方向,逐步建立起适合于多学科合作发展的运行模式。其次要充分利用高等院校的科研优势设置课程体系。美国生物医学工程课程特别是专业课程既能体现学科本身涉及面广的特点,又具有相当的灵活性,又能结合科研优势,突出重点,是很值得我们借鉴的。

医工结合与交叉复合型人才培养BME是多学科的交叉学科,专业人员需要同时具备医学和工程技术两类知识和经验靠以往的医生+工程师来组成专业技术人员队伍是无法适应学科发展需要的。所以必须从现在起,特别重视BME教育工作,加强现有专业点的建设,提高教学质量,改革现有教材,制定科学的人才培养计划。首先,各学科的交叉和融合是我们必须牢牢记住的关键点。以医、工、理为基础,为实现多学科的交叉和融合奠定坚实的基础。其次,构建科学的教育体系结构。根据专业设置和学科研究方向确定知识结构的主干,同时注重拓宽知识范围,使学生既能有相应的生物医学工程专业知识又具备在其他领域中发展的基础,从而实现真正意义上的理、工、生物医学的交叉和融合。

生物医学工程的研究方向篇(3)

生物医学工程是一门新兴的交叉学科,综合生物学、工程学和医学理论和方法,在各层次上研究生物系统的状态变化,并运用工程技术手段解决临床医学中的关键问题。要求学生掌握宽广而扎实的电子学、生物学、医学理论基础,能在理、工、生、医等学科高度交叉中进行前沿科学研究、知识创新,产学研结合,并推动相关科学技术发展,以满足我国对生物医学工程领域高级人才的需求。生物医学工程属于工学门类,是生物医学工程专业一级学科。

本学科是利用生命科学、医学、电子信息科学等领域的最新研究成果用于生物信息工程、生物电子工程、大型医疗仪器系统、现代医疗监护系统等领域的科研工作。工程硕士学位授权单位培养从事生物医学信息检测、医用仪器、医学影像、生物电子学、生物医用材料等方面研究开发、生产制造、检测与控制、管理与维修的高级工程技术人才。生物医学工程领域研究和人才培养侧重于生命科学、电子信息科学、医学等的交叉和渗透。该领域是生物医学信息、医学影像技术、基因芯片、纳米技术、新材料等技术的学术研究和创新基地,是与21世纪生物技术产业形成和发展密切相关的工程领域,是关系提高医疗诊断水平和人类自身健康的重要工程领域。

天津工业大学生物医学工程专业是一个年轻的、处于高速发展中的理、工、生、医交叉融合的新兴学科方向。生物医学工程专业作为电信学院的新兴专业,近年来发展迅速,有较大的发展潜力。专业下设5个实验室,医学仪器及设备实验室、医学成像及光谱成分分析实验室、生物医学电子学实验室、医学建模与仿真实验室、膜片钳实验室,拥有一批踏实肯干、敢于创新、勇于攻关的年轻科研人员,并将不断吸引其他相关学科的硕士、博士研究生、博士后等进行学科交叉的研究工作。科研方面利用人体信息检测技术与智能服装相结合,设计出检测、监控、调节人体状态的一体化智能服装;膜片钳方向主要进行生物物理和生物化学方向研究,同时与天津大学和天津各大医院开展密切合作,在医疗仪器研制和临床实验等方面积累一定的经验和成果。

本专业开设的主要课程有:C语言程序设计、电路理论、模拟电子技术、数字电子技术、大学物理、分析化学、高频电子技术、医学基础、工程光学、信号与系统、数字信号处理及DSP技术、通信原理、嵌入式系统、生物医学电子学、生物医学光子学、医学成像新技术、无线传感网络、生物医学仪器设计基础等。本专业毕业生可以在国家机关、医院、国防、科研机构、学校、工厂等企事业单位从事医疗产品设计、研发和管理工作,服务于天津医疗产业联盟的发展需求。本专业学制四年,学生毕业后可获得工学学士学位,本专业具有硕士学位授予权。

生物医学工程的研究方向篇(4)

【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2014)33-0001-02

生物医学工程是一门理工医相结合的交叉学科,主要是应用计算机和工程技术等现代先进的技术手段,研究医学中防病治病的方法,从而保障人民健康的一门新兴学科。它是从工程学角度运用高科技手段解决生物学与医学基础理论及临床应用问题的综合性专业。本文结合我校生物医学工程专业十几年的教学实践,围绕专业特色,以社会需求为导向,以人才培养为根本,以突出实践型、应用型、创新型人才的培养为目标,根据学生的学习状况和社会需求,在培养方案、课程体系、师资队伍建设、实践教学环节、课外科技竞赛活动和校企合作等方面对生物医学工程专业人才培养模式进行探索和研究。

一 中国高校生物医学工程专业人才培养的现状分析

随着人民生活水平的提高,群众对医疗保健的需求日益增长。作为医疗卫生事业的重要支柱的生物医学工程产业,已成为中国生命健康产业中最具成长性的组成部分和国民经济发展的重要增长点。根据生物医学工程学科的特点开设的高等院校主要包括两大类:(1)理工类大学;(2)医学院校。理工学校注重工程技术的培养,其学生有较强的物理电子计算机知识,但对影像设备在临床运用中的管理、操作、维修和开发能力欠缺;医学院校则相反,注重医学知识的培养却忽略工程技术理论的学习,工程技术基础相对薄弱。在当前社会形势下,要求培养出一批具备医学与工程技术相结合的科学研究能力,能够在生物医学工程领域对医疗仪器研究、开发、运行管理、维护的高级工程技术人才。

二 当前中国生物医学工程专业人才培养模式存在的问题

目前,中国有一百多所高等院校开设了生物医学工程本科专业。由于生物医学工程是一门交叉性很强的学科,需要学生掌握丰富的理论知识并且具有很强的专业技能、实践动手能力和创新能力,传统的生物医学工程专业的人才培养模式不能真正培养学生的创新思维和创新能力,不能满足市场经济下用人单位的需求,主要问题表现在:

1.专业培养目标和人才培养方案与社会需求存在一定程度的脱节

开设生物医学工程专业的高校在专业设置及培养目标上没有及时修订和完善人才培养方案,没有以社会需求为导向,没有紧密结合生产和科技发展变化的需要而及时调整课程设置、更新课程内容和教学方法,未能使学生尽快地接受新技术与信息,不能很好地了解当前生物医学工程领域发展的最新状况和趋势,不利于多学科交叉的生物医学工程专业复合应用型人才的培养。

2.专业课程体系设置不够合理,工程与医学的有机结合还不够紧密

生物医学工程是一门理、工、医融合在一起的交叉型学科,部分高校或缺乏工程技术背景,或缺乏医学背景,教师的知识结构很难融合多学科的知识,由于学科专业划分过细、专业口径狭窄,过分讲究专业对口,使专业课程设置被局限在一个狭小的范围,缺乏多样性和适应性,这种现象严重阻碍了科学技术的发展,使得培养出的人才知识面狭隘,缺乏创新思路。

3.实践性教学环节中理论知识与实践脱节严重

由于专业建设的资金投入和实验场所的限制而偏重理论教学,忽视了科学研究能力和实际操作能力。所开设的实验绝大部分属验证性的实验,很难培养学生的动手能力、创新思维和创新能力;实践性环节不足,主要以医院见习为主,不能充分调动学生的学习积极性和激发学生的求知欲望。没有做到理论与实践相结合,学生的应用能力、适应社会能力普遍偏低。

4.学生课外科技活动少,学生的动手能力和创新能力差

目前大学生以学习理论知识为主,课外科研活动少,科研活动的参与率较低,科研能力、动手能力和工程实践能力较差,科研成果少,导致创新思维和创新能力较弱。

5.师资力量薄弱,“双师型”教师队伍的建设有待加强

教师在教学和科研中起主导作用,业务素质的高低将直接影响教学质量、教学水平及学生创新能力的培养。目前普遍存在生物医学工程专业教师层次结构不合理,教师队伍的综合素质不高,单一的教学型教师已不能满足当前生物医学工程专业人才培养的需要。

6.学生自身的市场竞争力不强,校外实践教学基地建设有待加强

生物医学工程是一门医学与各种工程理论相结合的新兴学科。当前在人才培养方面,大部分高校与相关企业之间的联系不够紧密,使得学生很难到相关企业开展工程实践活动,从而导致学生运用工程技术方法来解决医学中实际问题的能力较差,在人才市场竞争中处于弱势。

三 医学院校生物医学工程专业人才培养模式的探索

江西中医药大学生物医学工程专业隶属于计算机学院,创办于2003年,同年开始招收本科生,于2010年获批江西省特色专业。按照学校“建设以中医药教育为主体,多学科协调发展,产学研结合,特色鲜明的中医药大学”的办学理念,密切联系经济发展的实际,立足江西省医疗仪器行业需要,确立以医疗器械、设备的开发、应用、管理为主,医院信息管理、生物信息处理为辅的发展方向,突出计算机与中医药、生物医学的交叉融合,构建了特色鲜明的生物医学工程专业复合应用型人才培养结构体系。这些改革举措有效地解决了当前生物医学工程本科专业教学中普遍存在的诸多问题,为医学院校生物医学工程人才的培养提供了新思路。

1.明确专业培养目标,凝练专业发展方向

面向市场对生物医学工程专业人才的需求,总结我校专业建设经验,制定专业培养目标。坚持工程技术与中医药技术相结合的教学研究方向,突出计算机与中医药、生物医学的交叉融合,培养具备生命科学、电子技术、影像技术、计算机技术及信息科学等有关的基础理论知识以及医学与工程技术相结合的科学研究能力,能在生物医学工程领域,医学仪器以及其他电子技术、计算机技术、信息产业等部门从事研究、开发、制造、应用、维护及管理的复合型高级工程技术人才。

2.修订和完善人才培养方案,提升就业竞争力

秉承培养“实践型、创新型、创业型”人才的办学目标,与时俱进地转变人才培养模式,充分体现“厚基础,宽口径,强实践”的特点,注重课内与课外、校内与校外相结合,设计结构合理的人才培养体系。“早科研、重实践”是我校生物医学工程专业人才培养的特色。在多年的教学过程中,形成了大一打基础、大二熟技术、大三搞科研、大四出作品的学习模式,培养了师兄带师弟、参加电子大赛同学带其他同学的良好风气。大三时相当部分的同学进入实验室跟随教师搞科研,在实际的科研工作中检验所学的知识,在实践中成长提高,部分同学甚至在大二时就跟随教师搞科研。大四时,所有的学生都要设计软件作品或电子作品才能进行毕业答辩。因此,在四年的学习中,对学生的实践动手能力培养一直没有间断,有效地提高了学生的动手能力,提升了就业竞争力。

3.优化课程体系,深化教学改革,提高人才培养质量

坚持“以学生为主体”的先进教学理念,注重学生素质能力的培养,改进教学内容,深化教学改革;加强基础性与综合性,重视多样性与前瞻性,强化实践性与应用性;课程结构做到平整、模块清晰;课程内容和设置服从培养目标要求,实现知识结构、课程体系的优化;鼓励教师们结合专业特点,努力寻找生物医学工程专业与中医药的最佳切入点,立足地方当前和未来发展需要,结合国家改善民生相关工程的实施,加强生物医学工程技术在医疗健康等领域的应用;通过课程结构和课程体系的整体优化,使培养方案在质量和可操作性上得到提高。

4.强化实验、实践教学环节,培养学生的创新能力

实验、实践教学是课程学习的重要教学环节,也是学生展示聪明才智的舞台。分阶段设置不同层次的基础实验、专业实验,构建由验证性实验、设计性实验和探究性实验组成的系列化实验体系,形成“启发式教学、个性化培养、系列化实验、开放式管理”的实验教学管理体系;通过第一课堂和第二课堂的结合,设计实践教学内容(如征集生物医学工程、中医药领域的大学生科技创新项目,开展完整的项目实训),制订和完善大学期间全过程的实践培养计划,突出对学生创新思维和创新能力的培养。

5.组建教学科研团队,加强“双师型”教师队伍建设

坚持把师资队伍建设放在优先发展的战略地位,有计划地引进一批既有教师职务,又有实践背景的教师,以进一步改善和提高教师队伍中“双师型”教师的比例。为进一步凸显中医药院校生物医学工程专业特色,发挥学科组、教学团队的优势,全面提高教师队伍的综合素质,使教师由单一的教学型向教学、科研、生产实践一体化的“双师型”目标转变。

6.校企双方共建专业,深化校外实践教学基地建设

为了更好地探索生物医学工程专业人才培养模式,学校于2012年9月与江西天越科技股份有限公司签约合作办学,启动了“生物医学工程专业卓越工程师计划”,通过校企合作方式订单式培养学生。校企双方在社会调查、课程设计、实践教学、毕业实习等实践教学环节已开展了相应的合作。通过建立校外实践基地,给学生提供良好的实践环境,为学生提供实习就业平台,提高了学生的动手实践能力,增强了他们参与社会竞争的能力。

四 结束语

本文就利用学校医学资源的优势,结合当今医疗卫生事业现代化建设的需求,进一步完善生物医学工程专业的课程设置,对医学院校生物医学工程专业人才培养模式进行探索与研究。经过十多年的教学实践,形成了适合社会需要、深受学生欢迎、具有中医药院校特色的生物医学工程专业人才培养新模式,即致力于培养具有良好的职业道德,掌握扎实的基础知识,具备一定的医学知识,并学会运用工程技术方法来解决医学中的实际问题,能推动生物医学工程在人类健康、医疗仪器研究领域的迅速发展,达到“医为工用,工为医服务”的创新型应用人才。

参考文献

[1]侯宏花、桂志国.生物医学工程专业创新型应用人才培养体系研究[J].安徽工业大学学报(社会科学版),2010(2):120~122

生物医学工程的研究方向篇(5)

中图分类号:G647 文献标识码:A

Explore Scientific Research Management for the Medical-engineering Cross Projects in University

ZHOU Jing, LV Fenglin, WU Xueping

(Office of scientific R&D, Shanghai Jiao Tong University, Shanghai 200240)

Abstract In this paper, focused on the macro strategy of creating world-class university, a strong impetus for the combination of medical engineering research and improvement of scientific research management, investigate the establishment and management model of medical-engineering cross fund. Based on the great requirement, cooperation and development for the combination of medical and engineering, this paper states the achievements and problems. At the same time, this paper supplies the proper proposes which can be wished to push on the development and management for the combination of medical and engineering efficiently.

Key words medical-engineering cross fund; medical-engineering combination; clinical needs;industrialization; scientific research management

0 引言

科技的发展推动社会的进步与变革,学科间的相互交叉与渗透成为了科技发展的新方向和新生力量,如生物医学工程的发展,将生物医学与工程学的科学研究、应用需求紧密结合,促其二者相辅相成、相互推动。随着现代医学向着综合化、社会化和技术化的研究趋势发展,一方面,医学与其它学科的相互渗透成为必然,出现了医学与理学、工学、文学的结合;另一方面,临床器械、医疗设备的发展显示出了对理工学科的迫切需求。美国的生物医学工程得到了快速成长和发展,扩展生物医学研究的基础,发展各学科间交叉的方法,建立与物理学家、数学家和生物医学工程师的通力合作,从基础研究到转化研究;从临床治疗到卫生保健;从功能基因组学的研究到生物材料的研发;从生物信息学的进步到医疗器械的开发;从生物电磁学到器官水平上的成像;从基因图谱到康复医学等等,无不彰显医学与理工学科相互交叉、融合、渗透的必要性。与此同时,在医学与理工学科交叉融合的进程中,也面临着种种挑战与创新,毕竟医学与理工学科大相径庭,其显著的差别在于四个不同的层次上:学科内容的不同、方法论的不同、认识论的不同和科研价值观的不同,致使医学与理工学科的合作也需要克服重重障碍。因此,医学与理工学科的交叉融合既是机遇,又是挑战。

目前国内的医学发展中,自行生产的医疗器械远不能满足临床需求的矛盾已日益凸显,加强、加深医学与理工学科的合作已成为当务之急。高校作为国家科技研究与发展的中坚力量,尤其是综合型高校,同时具备医学和理工学科的双方面优势,积极组织开展医工、医理的合作研究更是重要之举。在学校大力推进医工理结合的科研进程中,如何管理,如何充分调动起医工理结合研究的积极性,如何有效推动医工理的科研发展,如何将医工理的交叉融合落到实处,成为了学校在管理医工理科研项目过程中至关重要且需要不断思考和完善的问题。既要认识到医学与理工学科间的迥异差别,又要清楚医学研究与理工科前沿技术的相互需求,在管理医工理交叉科研项目中,既要借鉴其它类科研项目成功有序的管理经验,又要形成适宜其发展的独特的管理模式。真正做到医学与理工学科间的强强联合,共同攻关;交叉融合,优势互补;相互推动,共创佳绩。

1 医工理交叉基金的管理模式

1.1 研讨科研需求 制定项目指南

针对促进学校医工理学科的融合,提高学校医工理交叉领域的技术创新能力,培养一批在医工交叉学科的优秀科研人才,为进一步培育和孵化具有竞争国家重点科技项目和国际竞争力的前沿科研项目奠定基础。学校以医工理交叉基金的启动为主线,通过科研项目带动,有效组织和整合医工理学科资源。例如,首先邀请各学科领域的专家和领军人才探讨科研需求和未来发展方向,制定项目指南,确定项目的主要资助方向;其次,专家与科研管理人员一起探讨项目的申报要求和申请条件,针对主要资助方向,形成引导类的重大、重点项目和自由选题类的面上项目等,再依据项目要求,制定不同需要的申请条件,旨在涵盖重点研究方向,涉及不同年龄层次的科研人员,体现医工、医理、医管等学科的交叉,从人员合作、科研合作等各方面促进医工理的交叉融合与发展,形成系统、规范的项目申报指南。

1.2 自找合作伙伴 专家评审遴选

在项目的申报过程中,鼓励各附属医院、医学院、各理工科院系的教师、医生、科研人员,根据自己的科研专长、研究兴趣、参照项目指南,自己寻找志同道合的合作伙伴,通过沟通交流,相互了解、学习,形成科研思路与临床试验相结合的合作团队,共同撰写项目申报书。例如医疗器械的开发,临床医生可以与机械动力方向的教授进行合作;超声图像的改进可以与电子、软件方面的专家合作等等。然后,科研管理部门会根据申报书的研究方向进行汇总、分类后组织医工理学科领域的专家进行项目的评审与遴选,由合作的双方共同进行答辩。专家小组依据科研需求优先、双方优势联合、具备科研潜力、结合临床实际、具有产业化前景的原则遴选和审批。

1.3 实地考察调研 进行项目的全过程管理 探索质量管理体系

学校特设立医工理交叉项目旨在促进强强学科的优势联合并顺应科技发展的需要,因此对医工理项目的管理需要效率与质量兼顾,需要对执行过程中的各个环节进行规范、有效的监督、管理和引导。学校设立医工推进办,协同科研管理部门定期对各附属医院进行实地考察,听取医工结合过程中存在的问题、需求和想法,既能走近科研人员,又能近距离了解到他们在彼此合作中以及在学科交叉间出现的各类问题。在项目执行过程中,设计表格,进行中期检查,对完成进迟缓的项目进行督促;在项目完成后,统计进行结题验收,组织专家对各项目的完成情况予以打分评价,采取对完成优秀的项目进行适当的鼓励支持,对未达标的项目进行警告和督促。并在此基础上发现具有研究潜力的种子项目,进行孵化、培育。

2 医工理交叉项目管理中的问题探讨

2.1 管理中遇到的问题

(1)医工理的实质性融合不到位。由于医学和理工学科存在着根本上的差别,学科方向迥然不同,双方不熟悉更不了解对方的知识和技术。在相互合作的过程中不能很好的了解对方的知识背景和研究需求,会造成合作主动性的缺乏,存在沟通上的障碍,甚至容易出现双方研究结果的相互脱节,导致医学与理工学科难于实现真正的融合,仍然不能够很好的解决临床需求。

(2)需强化对成果的临床应用性、产业化前景的关注。医工理结合的最重要的目标之一是运用理工科的技术手段解决临床需求,因为需要在结合的同时强化成果的产业化发展,否则,目标仍未能实现。在实际的合作中,由于缺乏合作基础,学科之间的共识不足,理工科对医学的临床问题认识也不全面,研究的成果不能很好的对接临床需求,因此,也会造成难以产业化的症结。

(3)医工理交叉过程中对交叉人才培养的推动力不够。医工理结合过程中,培养交叉型人才也是至关重要的一环,使之具备多学科知识背景,能够更好的利用理工科知识解决医学问题,完善临床需求。目前,理工科学院与医学院及各附属医院,对此方面的关注程度有待提升,尚未制定相关的政策,使之成为培养交叉型人才的有力推手。

2.2 对策及推进办法

(1)建立互动平台,科研信息共享。加强学科间的沟通与交流,例如定期开展双方的学术交流沙龙,设立专门的网页进行信息共享,并且教务处和研究生院相互配合,推动在医院开设理工类课程,在理工科院系适当开设临床医学课程等。既促进对双方研究领域的认识,加深对各方研究中的空白和需求的理解,又有利于扩大开展合作研究。

(2)整合优势资源,发掘科研潜力。充分发挥理工科院系的传统优势和医科的临床优势,提倡“理工科的研究提品样品,医院提供临场试验”的研发合作,加大力度推进医疗设备、器械、材料、医用软件(如三维导航软件)等方面的合作研究,研发具有临床应用价值的产品。同时学校成立MED-X研究院,作为凝聚医工结合力量的桥梁和纽带,牵头推动形成医工理合作的大团队,培育具有科研潜力、具备产业化前景的大项目。

(3)完善管理体制,强化人才培养。建立健全的管理体制、形成高效的管理模式,有的放矢、目标明确,以医工理的实质性融合为目标,以科研项目的合作为切入点,聚焦相互的合作、发展与推动,从交叉型人才培养、加强互动为抓手,逐步扩大融合、整合优势资源,鼓励广泛参与,形成大跨度、大团队式的交叉研究,真正通过理工学科的知识体系和技术研发实现医学临床需求的解决。如医学院实施“4+4”模式的研究生招生,即招收具有理工科背景的本科生进行医学博士的培养,着力培养医工知识相互融合的交叉型人才。

3 医工理交叉科研管理的发展与展望

医学与工程的结合推动了学科的进步与医疗器械事业的发展。由于医疗检测设备、医疗器械的迅速革新及临床医学、再生医学、转化医学的快速发展,医学迫切需要相关的理学、工学学科的技术支撑,实现医工理学科的融合是未来临床医学发展的必然趋势。

在推动医工结合的科研发展中,更要完善从科研项目的申报立项到过程监督的管理流程,形成规范的管理机制、建立起有效的管理模式,为实现医学与理工学科结合的观念创新、医工合作科研的体制创新和医工科研管理的过程创新奠定坚实基础。

参考文献

[1] 万振,刘铮强,吴太虎.生物医学工程学科在临床中的创新应用[J].学科与人才,2008.29(5):110-111.

生物医学工程的研究方向篇(6)

(一)研究对象的选择

我国现有127余所高校从事生物医学工程专业本、专科人才培养工作,其中96余所为综合性或单科性理工类院校,31所单科性医科院校。所有院校专业课程体系结构中都开设了人文社科课程、医学类基础课程、理工类基础课程、工程类核心课程及其与其相关选修课程,不同院校在学分、学时与实施上有着不同程度的侧重。一般来说,多数综合性或理工类高校偏向于电子类、计算机类等理工方向,多数医科类高校侧重于生物材料与生物力学、影像工程、医学物理、医学仪器等领域。本研究以南方医科大学与湖北科技学院为例,对生物医学工程专业课程体系进行比较分析。

(二)研究资料的来源

湖北科技学院的研究资料主要来源于原咸宁学院教务处编印的本科人才培养方案(2010年版)和学院主页及其它查询调研;南方医科大学资料来源于该校提供生物医学工程专业培养方案的电子版及其该校专业建设点主页。

(三)主要研究方法

基本研究方法参照作者前期生物医学工程专业课程体系研究的思路[2],收集研究文献材料采用系统研究法、比较法、统计法对院校学科专业、课程设置多维要素质点,进行多方面的比较分析,找出特点和存在的问题,以提出课程体系改革与优化措施和建议。

二、南方医科大学生物医学工程专业本科课程体系

(一)生物医学工程专业本科背景简况

南方医科大学(以下简称南医大)生物医学工程专业本科及其相关专业有医学影像工程、医学信息工程、医学仪器检测、医学物理、电子信息工程和计算机科学与技术等专业办学方向,还有“卓越工程师培养计划”。2007年获教育部高校第一类特色专业建设点,并建设有部级精品课程1门、省级精品课程和研究生示范课程多门,出版部级教材多部,多次获得广东省教学成果奖。

(二)课程体系的核心课程群

主干学科是生物医学工程;主要课程包括高等数学、大学物理、电路分析、模拟电子技术、数字电子技术、C语言与程序设计、人体解剖学、生理学、信号与系统、医学传感器、医用X线机原理、CT成像原理与技术、MR原理与技术、医疗器械质量体系与法规、医学电子仪器原理等。

(三)本科毕业生的就业方向

课程体系中的主要课程决定毕业生未来的就业岗位和就业方向,毕业生的就业方向主要是在医疗仪器的质量技术监督部门、医疗仪器检测机构、医疗仪器企业的研发机构、三甲医院的设备中心、生物医学工程及相关学科的科研单位从事仪器检测、生产研发和质量控制等工作,也可以攻读本学科或相关学科的硕士学位。

(四)生物医学院工程专业的课程结构

课程体系结构分为政治理论与人文素质课程、公共基础课、学科基础课、专业课四段式课程构架模式。课程总学分/总学时为14分/2644学时,理论课与实验实践学时比例为2183:461/1:0.21。必修课与专选课学分比例是104:45/1:0.43,学时比例是1820:824/1:0.45。

(五)集中实践训练环节

南医大集中实践训练折合成32周,1280学时,其中模电课程设计1周,40学时;模电课程设计1周,40学时;医疗仪器综合课程设计2周,80学时。毕业实习4学分,160学时;生产实习4周,160学时;毕业设计(论文)14周,560学时;军训与劳动2周,80学时;创新课程4学分,160学时。

三、湖北科技学院生物医学工程专业本科课程体系

(一)生物医学工程专业本科背景简况

湖北科技学院(以下简称湖科院)生物医学工程专业本科及其相关专业方向有医学仪器、医学影像工程、医学物理、医学信息工程、听力学、眼视光学、医学信息工程(注:医学信息工程、眼视光学、听力学方向没有正式纳入人才培养计划实施)等6个培养方向。2007年被评为省级品牌专业,2009年获教育部财政部高校第一类特色专业建设点。近年来出版医用传感器、医疗器械营销实务等10余部部级规划教材,多次获得湖北省部级、教育厅教学成果奖。

(二)课程体系的核心课群

主干学科生物医学工程的主要课程包括高等数学、普通物理学、模拟电子技术、数字电子技术、微机原理与接口技术、数字信号处理、医学图像处理、基础医学概论、医用传感器、医用检验仪器、医学影像仪器、微机在医学仪器中的应用等。

(三)本科毕业生的就业方向

本科毕业生的就业方向主要是二级以上医院、其他医疗卫生保健机构、医疗器械公司从事医疗仪器、设备使用维护与维修,仪器设备管理,医疗器械营销策划与推广,也可以攻读本学科或相关学科的硕士学位。

(四)生物医学院工程专业的课程结构

课程体系分为通识教育课(通识必修课、通识选修课)、学科基础必修课、专业课(专业必修课、专业选修课)三段式五层次课程构架模式。课程中总学分/总学时为158学分/2810学时,理论课与实验实践学时比例为2200:475/1:0.22;必修课与专选课学分比例是117:42,学时比例是2180:630/1:0.34。见表2。

(五)集中实践训练环节

湖科院集中实践训练共47周,其中专业实习26周,毕业设计(论文)10周,就业实践8周,军训3周;而劳动教育,医学仪器等课程、模电、数电课程设计教研室分散实施,没有载入训练周,这也是与南医大的不同之处。

四、生物医学工程专业本科课程体系的比较分析

(一)专业课程体系架构的比较分析

南医大生物医学工程专业本科课程结构由政治理论与人文素质课程、公共基础课程、学科基础课程、专业课程四段式课程构成。公共基础课程只开设必修课,其他每段课程均开设必修课、选修课,段内必修课与选修课交织在一起。而湖科院本科专业课程结构是由通识教育课程、学科基础课程和专业课程三段式、五层次课程结构组成。学科基础课程只开设必修课,通识教育课程、专业课程均设有必修课、选修课两层次。南医大没有开设医用化学、电子工艺实习,是为数不多的院校,未开设医用化学课程显示远离生物与高分子材料类。将高等数学、大学物理学列入公共基础课程,可能是因为该校属于单科性医科院校,将其列入所有专业的公共课之故。南医大公共基础课程没有选修课,湖科院是学科基础课程未开设选修课。这意味着在公共基础课、学科基础课段建立大一统具有相对稳定性的课程教育平台,有利于实现大基础、宽口径、后分流的人才培养模式选择与创新,适合于发展专业培养方向,南医大更能体现出平台宽口径。

(二)课程体系学分、学时分配的比较分析

1.专业课程总学分、总学时比较分析。两院校生物医学工程专业课程总学分/总学时,理论课与实验学时比例分别见表1、表2,通过比较可以看出,湖科院学分、学时、理论课与实验学时比例分别高出南医大分/166学时,比例高出1:1:0.07,但差异相差无几。两校分别与上海交通大学生物医学工程专业课程学时比较,总学时1831学时,实验课学时为243,占总学时13.3%[3]。两校均高于上海交大,这数据显示出211工程大学人才培养既重理论教学,又重实践研发、自主学习之缘故。2.必修课与专选课学时比较分析。选修课是课程结构中的重要组成部分,是对必修课的优化和适时、适宜性补充和调节,弥补人才培养方案中课程内容的不足,调和、衔接课程内容的顺序性,适应市场与社会发展的需要。南医大必修课与选修课学分、学时比例分别是1:0.43、1:0.45,而湖科院是1:0.34、1:0.34。数据显示,南医大选修课学分、学时比例高于湖科院而偏高的现象,且选修课偏重于学科基础课程和专业课,容易造成学科、课程与教材建设方向性不明,建设稳定性差。由此建议,开设选修课学时数应以不超过必修课的10%为宜,有些课程还可以专题讲座的形式进行[4]。3.学科基础课程学分、学时分配比较分析。学科基础课程学分、学时分配数据从表1、表2看出,学科基础课开设门数、学分、学时及理论与实践学时的比例,与全程教学课程总学分、学时基本平行,基本上分析内容要素都是湖科院高于南医大,只有一项有意义的数据是理论与实践学时的比例差异性大,湖科院高出南医大的1:0.13,显示出湖科院在学科基础课程教学中重实践教学,着重培养学生的基本技能。这种差异性说明,从总体上看湖科院更重视实践教学,反映出其是综合性院校,涵盖医学、理学、工学等十大学科门类,组建17个教学院部,给实践教学创建了良好条件和宽厚的共享资源。4.医学课程学时比较分析,课程体系中医学课程开设情况与比较。南医大开设医学课程4门,总学时是212学时,分别是人体解剖学、生理学、病理学和临床医学概论。湖科院开设医学课程也是4门,总学时是297学时,分别是基础医学概论(解剖、生理、生化)和临床医学概论。从学时比较看,湖科院医学课程学时高出南医大85学时,高出率约占9%。值得讨论的问题是南医大是单科院校,医学基础条件好,该偏医的却偏工;而湖科院是综合院校,有较强的理工教学条件却偏医。两校与赵娜等人报道的“医学院校开设的医学基础课程比例高于理工院校的论点不相符合[5]。从邓军民等人报道资料看[6],首都医科大生物医学工程学院开设的医学课程有6门共472学时,远高于同类的南医大260学时,也高于综合类的湖科院175学时。

(三)专业课程与就业方向比较分析

从课程与就业的关系看,从整体上讲,主要课程设置要面向市场、面向社会,在很大程度就决定、支撑着就业方向、就业岗位。两院校对就业方向总体的表述是在医疗仪器的质量技术监督部门、医疗仪器检测与研发机构、医疗卫生机构、生物医学工程及相关学科的科研单位、医疗器械公司等单位从事专业技术工作。而南医大就业方向偏重仪器设备的检测、质控与研发,而湖科院则偏重于仪器、设备的使用与维护,医疗器械公司从事仪器设备营销策划。

(四)集中实践教学环节比较分析

实践教学环节是集中培养学生动手能力的主要措施。南医大集中实践训练32周,与湖科院集中实践训练47周相比,从总体上少15周,由于集中实践教学环节各校各异,比较的实际意义不大。但要说明的要素是,湖科院的医学仪器类、模电、数电等课程设计在操作层面上由教研室分散安排,生产实习实际上是名义,也未开设创新课程。而两校的共性不足是实践教学环节都没有开设工程实践(金工实习)训练课;南医大未开设电子工艺实习课,开设电子工艺实习的湖科院也没有做好集中训练。实质上两校集中实践教学环节均不符合高校工科类人才培养的基本要求和标准。

五、创新专业人才培养方案,优化课程体系目标的建议

通过专业课程体系比较分析,参照生物医学工程专业人才培养的实际需要,引导建立国家专业本科教育标准,特色专业建设质量工程评估,配合专业认证制度与任务为载体的课程体系,提出以下几点建议。

(一)坚持办学理念创新,探究专业培养前沿,明确专业培养目标

理念创新与目标要求可参照东北大学生物医学工程专业培养目标,拟综合利用中外优秀的办学资源,发挥国内外企业、集团公司的科研、教学和市场优势,实现“产、学、研”合作与合作教育,培养适应生物医学工程学科前沿的科技领域发展需要,精通专业基础理论、专业知识与技能,具有创新意识、创造能力的高级专门人才。此外,高校可利用专业教育教学资源条件探索与完善“卓越工程师培养计划”、“生物医学工程本科专业文科学士培养计划”。

(二)深化课程体系改革,优化课程构架

第一,课程体系改革宜突破传统三段式课程结构,建议建立新三段式九层次课程结构,每段课程开设必修课和选修课,以西安交通大学生物医学工程专业课程体系为例,通识教育课程分为思想政治教育、国防教育、大学英语、计算机等公共基础通识教育课程;学科教育课程分为基础科学教育课程、专业主干课程、专业课程;集中实践教学分为毕业设计、课程设计、工程实践、课外实践(社会实践、科技与竞技活动)[7];第二,未来的任务是积极探索面向市场营销方向的生物医学工程本科专业文科学士培养方案,其专业课开设医疗器械管理、经济、营销类课程,学时不少于总学分、总学时的35%—40%;三是学习清华大学,结合本校特点探索夏季小学期制,满足学生个性化课程选修,拓展实践的时间、空间,采用多元教学及实践活动设计。

(三)优化课程体系,规范课程主导原则

课程体系设置可参照浙江大学生物医学工程专业课程设置计算机与网络技术、电子电路设计、传感器与及仪器设计、信息与图像处理、生命科学类等五大模块[8]。要求在课程体系结构、内容之间应该设置合理比例,淡化学科自身的重要性,打破学科界限,避免体系出现较大的偏颇局面,也应避免面向市场、就业岗位的选修课而冲淡学科基础或主干课程,对开设的选修课一定要突出个性化。鼓励将学科前沿的新知识、新技术、新成果快速引入主要课程内容中,拓宽学生的知识新视野。

生物医学工程的研究方向篇(7)

1.1发展还不完善

中国的现代生物医学工程学科发展较晚,相对于国外一些发展较早的国家来说,我们对它的认识还很浅显,跟国外一些技术先进国家的距离还很远,很多人包括一些从事其研究的人对它都有或多或少负面的评价,他们普遍认为现代生物医学工程是一个生物、医学、工程学的交叉学科,但实际的培养计划中生物、医学学的很少,电子学得多些,学科广而不专,就业不好。它尚未形成自己的独立基础理论与知识体系,以融合各交叉学科知识为自己的基础,缺乏永恒的研究主题与固有的中心目标,随交叉学科的发展和应用对象的需求而变化。很多学习现代生物医学工程的人对自己的专业抱有消极的态度,对自己的前途感到渺茫,就业形势不是很乐观,这也反映了现代生物医学工程发展不完善,没有形成很好的体系,没有在国内高校中产生普遍影响力。

1.2发展方向不够全面

现代生物医学工程就目前的情况来看,还主要将目光着眼于医疗器械的研发和使用,发展方向比较单一。仅仅着眼于医疗器械而不是全面的发展,就会产生很大的局限性。这也深深影响着在这一领域学习的学生,不能使他们从一开始就形成一种将自己的研究全面化的思想,使学生的学习变得保守,进而失去学习的动力,这样就不利于生物医学工程更好的发展。

1.3包含的学科多杂

生物医学工程的研究方向篇(8)

一、选择直接就业于生物医学工程专业方向的几点考虑

根据生物医学工程专业的特点,有医院与企业两条道路供选择。但更多的同学肯定是希望进入医院,因为医院属于事业单位编制,相对于企业存在风险的运营方式,同学们普遍喜欢相对安稳的工作环境。其实同学们应该更多地了解社会对我们所提出的要求,以便于选择一个真正属于自己的地方,而不是靠自己的主观臆断。1.进入医院的大门进入医院可能是许多同学想要的,在这里也要明确,生物医学工程有两个比较明显的分支,一是进入医院设备科,进行对于医院设备的维修与采购,管理医院的医疗设备。另一种是投入到医院的放射科,对医院的医疗设备进行技术性的操作与使用。分流的选择是在大二结束之后根据自己的兴趣特长及老师的推荐所进行的。相对于企业所存在的员工竞争压力,医院的工作可能相对安稳,对于技术的创新要求并不高,但对于同学的实际操作能力及对于仪器的了解程度有较为苛刻的要求。2.应聘于医疗器械企业或电子计算机企业首先选择进入企业要明确自己的方向,从自身特点出,比如①认为自己的社会交际能力较好,则可以从事营销,做好对外推销自己公司产品的工作并学会维系与客户之间的关系,及时反馈客户的意见,更新并拓宽自己的销售渠道。②认为自己动手能力及实践操作能力较为不错的,则可以做一名技术工程师,主要职责为安装、调试、维修设备,为客户提供售后服务工作。③再者,如果觉得自己在专业理论知识方面、专业创新方面有异禀的天赋,则可以留在企业的科研创新部门,从事设备更新及研发工作。比起在医院工作,企业的薪水及待遇可能会更可观,但相对的,其工作压力及员工竞争也会较大,存在失业的可能性也就较高。3.从事高校教育工作或从事科研创新工作比起之前两种,这条路可能算是最轻松也是最艰难的。轻松是因为它们并不需要太多的担心失业与资薪问题,但是确实对于专业知识的掌握要求是最严格的。①从事教育工作还要有一定的教学经验与手段、良好的专业背景及优秀的师德师风。所以对同学们的能力提出了更高的要求。②选择科研工作则要有坚韧不拔的探索精神,谨小慎微的钻研态度、过硬的专业知识及孜孜不倦吸收新知识的心态。但这正是每一个专业从事者最希望的归宿,也是每一个同学最大的荣耀。

二、对自我的继续深造:读研

我国对于生物医学工程专业研究生教育只存在于一些较为重点的理工科学校中,所以对于医科大学,可以说继续深造像泥潭一样举步维艰。不过感到荣幸的是温州医科大学于2008年获批生物医学工程领域工程硕士点,是全国同类高校第一个招收生物医学工程专业工程硕士的单位。2010年获准招收双证生物医学工程全日制硕士。主要研究方向为医学仪器与医院信息管理、基因工程与基因药物。1.考研趋势的必要与优势相对于匆匆就业,选择考研是一条较为稳妥的道路。本科就业的学生虽然对于器械的制造、修理及工作运力相当精通,但缺乏对于一些生物医学方面的专业知识。很难根据病人的实际情况和医院复杂多变的局势做出很快的应对。简而言之,读研才是将生物医学与工程学真正结合的时期。在医科大学进修该专业的研究生往往能根据医科大学自身医学氛围浓厚的特点,让同学们更好地利用自己所学的工科知识,融会生物学与医学方面的专业知识,并通过附属医院的实践来强化理论知识,结合一定的临床医疗器械使用经验,使研究生们更好地将生物医学和工程学结合。2.在医科大学生物医学工程读研的方向及目标作为医科大学的一分子,应将自己打造为一位具有以生物学与医学为基础,擅于应用工程学方面的技术及方法的具有医科大学特色的复合型人才。根据我校提出的某些明确要求,我校塑造的生物医学工程研究生应具备能够灵活应用并及时更新工程学的理论基础,独立解决有关医疗工程的“疑难杂症”的能力。3.我校对目前生物医学工程研究生的教学及考核(1)高校对于生物医学工程研究生的教学内容应侧重在医学上的应用。与本科教育一样,我校研究生教育也分两条路,一是从事生物医学基因工程和基因药物的研究,二是对于医疗器械及医院信息管理系统的学习。在教学内容上,我校除了对于原有知识的巩固及加强外,更多的是对现存临床医学中的实际问题及教学案例进行剖析、解决,突出医学理论及工程应用两大特色。在课程设置上也会较多的注重实践应用,并采用隔周周末上课的教学方法,将平时在实践中遇到的问题带到教室与导师分享并探讨解决方案。这样,更能让自己将工作与学习、实践与理论牢牢结合在一起。(2)对于研究生的考核。学校采用以课程项目以及学术论文的形式,配合医科大学的特色,对其的要求也显而易见,应该是涉及生物医学领域的研究与拓展、更新与调试、开发与制造,特别是对于新兴事物的捕捉、猜想、实践、验证以及应用。项目不论形式,但对于其内涵价值、科研难度及工作量有一定的要求,并应与导师相呼应,导师既是学习上的模范,又是工作上的同事,相互协作达到最理想的状态来完成项目。毕业是对于大学学习做出的一个最明确、最不会让自己后悔的选择的时候。在面对毕业设计时更灵活,在选择毕业出路时更明确。在平时学习中,我们应该注意积累专业知识,多对自己的定位及目标进行反思、不断总结,在毕业时积极与同学、老师、家人沟通及探讨。笔者坚信,随着同学们对于生物医学工程专业了解的加深,毕业于生物医学工程的我们会走得更好、更远。

作者:缪林哲 李亚庭 郭亦韬 纪欣农 单位:温州医科大学

生物医学工程的研究方向篇(9)

美国斯坦福大学“Bio-X”研究中心创立于1998年的一个跨学科研究和教育项目,主要涉及生物工程、生物医学、生物科学三大领域,跨越文理学院、工程学院和医学院三大学院。其实质就是一个由生命科学与数学、物理、化学、工程学、医学、计算机科学等学科的多学科交叉研究机构[5]。Bio-X研究中心将基础、应用和临床科学中的边缘研究结合在一起,进行从分子到机体各个层次的生物物理学研究,以实现生物工程、生物医学、生命科学等领域新的发现和技术创新。发展至今,研究中心已取得包括成功破译人类遗传基因密码,发展观测人体细胞在人体中如何活动的技术等众多的开创性成果,使硅谷的这所名牌大学在科学发现和教学方面处于领先地位。在欧洲,英国1990年已设立了包括牛津的分子科学与分子医学等17个研究中心[6]。2001年,牛津大学和剑桥大学牵头成立了由英国政府的工程和物理科学研究委员会、生物科学技术研究委员会、医学研究委员会和国防部共同组成的纳米技术跨学科研究伙伴机构(IRC),开展了前沿生物纳米技术方面的研究。德国慕尼黑工业大学(TUM)以工程、自然科学、生命与食品科学、医学与运动科学等优势领域,建立了与生命科学、营养和食品科学、生命技术学、生物信息学和医学等学科的强有力的跨学科合作。

纵观世界一流大学跨学科组织建设与管理,具有以下共性特点:①政府、学校宏观政策的支持是跨学科组织发展的保障基石。如美国国家科学院协会2004年发表了《促进交叉学科研究》报告;哈佛大学就曾明文对该校跨学科动议项目的政策扶持作了规定。②组织结构与管理合理,强调多学科组织的强强联合、优势互补的组织合作,如MIT与哈佛大学共同合作的“哈佛-MIT健康科学技术学部”。③注重跨学科研究和教育的协同发展,如美国的HST就是主要通过研究影响疾病与保健的基础原理,开发新的药物与仪器,致力于培养医师-科学家,通过跨领域合作改善人类健康。④提供跨学科研究经费,如美国国立卫生研究院(NIH)作为美国联邦政府最大的生物医学研究机构,强调对多学科、跨学科和多机构联合的医学研究项目的资助,如2007年就给9个科学研究联合体提供了2.1亿美元的研究经费[7]。⑤多样化的激励措施,重视奖金发放和提供实践机会等。

2我国大学生物医学跨学科组织建设与发展

我国学科交叉研究萌生于20世纪50年代,而80年代初召开“首届交叉科学学术讨论会”,基本就被认定为我国跨学科研究的全面展开。到20世纪90年代,我国大学关于跨学科研究的建制开始引人关注。特别是我国“985”二期工程,为突出重大科学问题和现实问题引导,凝聚了不同学科背景的研究者开展跨学科研究,着力建设了一批创新平台。目前“985工程”科技创新平台与基地是我国大学跨学科研究的重要组织形式,其中就包括大批生物学与医学创新平台的实体机构。2000年,北京大学成立了生物医学跨学科研究中心。多年来,该中心将基础科学、技术应用和临床科学的前沿研究结合在一起,形成了以单细胞原位实时微纳米检测与表征研究,数字化诊疗仪器技术研究,医学信号与图像分析研究,大气压低温等离子体生物学效应及医学应用研究等四大主要研究方向,建立了跨学科的实验室和研究平台,组织了30余个跨学科研究项目,取得了系列跨学科研究成果[8]。

同时,该中心注重各有关学科优势互补、相互合作,对来自生命科学、物理化学、基础医学等基础学科,以及来自电子学、计算机技术、生物医学工程、临床医学等众多应用和工程学科的研究生,开展生物医学工程跨学科前沿领域的研究和人才培养,形成了新的学科生长点,培养出了具有交叉学科背景的新型人才。2006年,北京大学成立了前沿交叉学科研究院。生物医学跨学科研究中心至此成为前沿交叉学科研究院的研究中心之一。2010年,基于系统生物学的研究现状、发展趋势及其广阔的应用前景和重大的现实意义,北京大学建立了系统生物医学研究所。该研究所注重复杂系统的研究和学科交叉,并且与环境因素相结合,主要针对重大疾病,如肿瘤、心脑血管疾病、代谢性疾病等研究领域作为重点和突破点进行系统生物学研究[9]。2004年,清华大学顺应跨学科研究趋势,改革科研体制,通过将分散于全校各院系的有关生命科学、医学及相关的工程学科统一组织和协调起来,重点支持和建立了包括“清华大学生命科学与医学研究院”在内的若干研究所(或研究平台),加强和促进生命科学与医学的发展及其与其它工程学科间的交叉合作[10]。

同年,复旦大学组建生物医学研究院。作为国家“985工程”二期建设的科技创新平台,目前研究院以“转化医学”为目标,形成了包括疾病系统生物学、出生缺陷与发育生物学、疾病发生的分子机制、创新药物和结构生物学等主要研究方向和研究团队,建设了功能蛋白质组学、基因组学、癌症研究、心血管研究、分子与细胞生物学、药物与结构以及公共技术平台等10个技术平台,建立了基础科学与临床需求的紧密联系,为重大科研项目的实施和跨学科合作研究工作的开展提供了有力支撑[11]。此外,研究院重点把学校所属上海医学院、生命科学学院、化学系、药学院、公共卫生学院及相关附属医院等院系等有机地穿插在一起,在疾病蛋白质组学、化学生物学、生物化学与分子生物学、肿瘤学、干细胞生物学、分子药理学等专业培养研究生,开展跨学科研究生教育。2000年,上海交通大学成立“Bio-X生命科学研究基地”。2005年,与神经生物与人类造化学研究室重组成立“Bio-X生命科学研究中心”(现改为研究院),是继美国斯坦福大学后的世界第二个、中国第一个Bio-X研究中心[12]。2007年,学校又成立了系统生物医学研究中心。

该中心是集生物、医学、物理、工程、数学、信息、计算等不同学科,集研究、教育、开发及服务于一体的生物医学研究与开发的公共技术平台。中心立足于以系统生物学的方法为基础,致力于在生物整体水平、细胞和发育生物学以及单细胞分析领域开展多学科交叉融合的系统生物医学研究。同年,随着原上海第二医科大学的并入,上海交通大学成立了Med-X研究院。Med-X研究院主要依托学校临床医学学科和理工科优势,涉及生物医学工程、生物学、影像医学与核医学、材料科学与工程四个研究领域,以解决临床医学问题为目标导向,进行前沿性医学科学研究,开发高尖端领先性医疗技术产品,构建国际化、多学科交融、多资源共享、多方位服务的开放式医学应用研究平台,建立医疗技术产品研发-技术转化-临床应用体系[13]。

3我国大学生物医学跨学科组织建设困境与借鉴

生物医学工程的研究方向篇(10)

1.在讲解基本理论的基础上,增加如电子病历等热门话题的开放式教学模式探讨;

2.攻读工程硕士学位的学生已经具有一定的工作经验及在某一领域已经有一些独到见解,在教学内容上可以安排一些学生讲座,让学生针对自己所熟悉的领域与班级学生进行讲解与互动,从而扩大工程硕士在教学内容上的局限性;

3.在时间充裕的前提下可以尝试邀请相关医院及厂家的专家进行专题讲座,可以增加解决某一专业问题的针对性。

二、优化学位论文指导与评价体系

工程硕士学位论文是工程硕士培养的主要环节,也是最终环节。与工学硕士不同,生物医学工程领域工程硕士的选题应来源于医院及相关部门的实际需要或具有明确的生物医学工程背景,研究成果要有应用价值。因此,在学位论文指导方面可以实施由学校具有工程实践经验的教师与医院相关部门的技术人员联合指导,医、校双方导师发挥各自优势,共同指导。为制定更具实用性的论文指导与评价体系,我们调研了省内10余家附属医院和部分相关企事业单位的相关科室,了解附属医院及相关科室对人才的需求情况,根据相关部门及临床医生提出的意见进一步完善生物医学工程领域工程硕士的毕业论文制订及相关评价体系。在充分调研的基础上,制订了工程硕士论文学位论文质量参考标准,并在多家培养单位中应用,取得了较好的效果。

三、构建适合医学院校生物医学工程领域工程硕士培养的模式

生物医学工程的研究是电子技术、现代通讯技术、计算机技术、生物技术以及材料科学、数学、化学、物理学等新技术的飞速发展和研究的深入,由多学科的渗透与综合作用于传统医学领域而形成的一门新型的交叉的边缘学科。生物医学工程专业具有跨学科、交叉的学科特殊性,在培养模式方面会出现偏重于工科或医科的现象,没有真正体现出医学工程的多学科交叉的特点。那么如何更好地将理、工、医三者有机的结合在一起,使得培养出来的学生的知识结构和基本素质更加完善,这已成为我们在人才培养方面的一个突出问题。为了更好地构建适于医学院校生物医学工程领域工程硕士培养模式,应重视以下几个方面[4]:

1.以社会需求为导向专业设置及培养目标都以社会需求为导向,紧密结合生产和科技发展变化的需要,及时调整课程设置,不断更新课程内容和教学方法,使学生能够尽快地接受新技术与信息。

2.重视实际能力在教学过程中可以开展课程讨论会,重视学生实际操作能力,培养创造精神与创新意识。

3.师生共同参与课程设置课程目标由侧重传授知识转向培养探究能力,由片面增加学生认知成长转向兼顾学生情感发展,课程内容由静态的稳定划一走向动态的开放灵活,课程不再仅仅作为面向过去知识的载体,而更多地呈现为面向未来发展的过程;课程设计趋向更大的弹性,在必修课的基础上,增加了选修课的数量,多方位地开拓学生的知识面,激发学生的想象力和创造力。

鼓励学生积极参与课程设置与发展,通过学生在学习过程中的感受与需要,由学生和老师共同参与课程的设置与修改,而不仅仅是由学校单独制定,课程的组织不再限于学科界限而是面向跨学科和综合化的方向发展。培养模式的创新主要表现为:

1.由学校教师和医院临床医生共同承担教学任务,真正实现理、工、医的有机结合。

2.以培养复合型人才为目标,真正做到与实际相结合。针对医生在诊疗过程中对现有仪器设备的看法和改进意见以及病人的需要建立起一个良好的沟通环境。

上一篇: 设施农业分析 下一篇: 秸秆禁烧建议
相关精选
相关期刊