生物质燃料优势汇总十篇

时间:2023-11-07 09:55:16

生物质燃料优势

生物质燃料优势篇(1)

大别山地区既是武汉城市圈的辐射区,又是国家划定的重要生态功能区。2010年12月,国务院了《全国主体功能区规划》,将大别山生态功能区确定为限制开发区域。规划指出:“生态功能区把增强生态产品生产能力作为首要任务,限制进行大规模高强度工业化城镇化开发。实行产业准入原则,在不损害生态功能的前提下,适度发展旅游、农林牧产品加工、观光休闲农业等产业。”大别山地区的主要生态产品除了提供清洁水源外,最丰富的就是生物质。因此,对照规划要求,对生物质的综合开发是大别山地区发展经济的首要选择。

生物质是指有机物中除化石燃料外的所有来源于动、植物能再生的物质。生物质能则是指直接或间接地通过绿色植物的光合作用,把太阳能转化为化学能后固定和贮藏在生物体内的能量。生物质能是一种重要的绿色能源。生物质能占世界一次性能源消耗的14 %,是继主要的化石能源煤、石油和天然气之后的第 4 位能源,而发展中国家的生物质能占一次性能源消耗的40%以上。生物质颗粒燃料是将农林生物质原料(包括农作物各种残余物、林木枝叶及加工剩余物、草类、粪便等) 通过挤压加密成型技术进行加工,使其具有人们方便使用的形状、大小和密度。同其他形式的生物质能利用技术相比,生物质颗粒燃料技术因生产过程简单,其产品更容易直接使用。欧美国家使用比较普遍,生物质颗粒燃料消耗占生物质能消耗量的60%。

一、大别山地区开发利用生物质颗粒燃料的重要意义

(一)有利于大别山试验区总体目标的实现

大别山革命老区20个县市区(湖北7个、安徽7个、河南6个)是我国革命战争时期的重要根据地。近十年,国家虽然对其实施扶贫开发,但仍然是一个集老区、山区、贫困地区和传统农业于一身的欠发达地区。2010年9月,20个县市区的全国人大代表和政协委员齐聚大悟县,向全国人大和政协提出了《关于建立大别山革命老区经济社会发展试验区》的议案和提案,国务院采纳了议案和提案,编入了国家“十二五”规划。其总体目标是“红色的大别山、绿色的大别山、发展的大别山、富裕的大别山”。

以“绿色的大别山”为目标,大力发展生态经济,以生态经济托起绿色发展,推进绿色生态建设,全面实行青山绿水工程,力争“十二五”末森林覆盖率提高10%以上,达到70.5%,为发展生物质颗粒燃料产业提供了前提条件。

以“富裕的大别山”为目标,大力发展绿色生态产业,充分发挥生物质能资源丰富的优势,着力发展生物质颗粒燃料产业,使资源优势转为为经济优势。据测算,2010年生物质颗粒燃料每吨生产成本500元左右,市场售价为600元左右。如果将大别山地区每年生物质资源加工成颗料燃料,可增收118亿元。同时,根据联合国清洁发展机制,将大别山生物质颗粒燃料产业挤进碳汇交易项目,根据2010年国际交易价格每吨10欧元,创汇额非常可观。加之生物质颗粒燃料产业是劳动密集型产业,在整个产业链中可以创造许多的就业岗位。

(二)有利于大别山生态功能区作用的发挥

国家“十一五”规划要求编制全国生态功能区划。2008年7月,环保部、中科院将大别山革命老区20个县市区划为大别山水源涵养重要区,面积30455平方公里,其作用是涵养水源,培育替代产业,保护生态环境,控制水污染。为了充分发挥生态功能区的作用,大别山地区在实施青山绿水工程的基础上,以寻求替代产业为突破口,大力培植绿色产业。

大力发展低碳经济,以低碳经济托起绿色发展。生物质能是可再生能源等低碳经济产业族群的宠儿,而生物质颗粒燃料是生物质能中的佼佼者。它能替代煤、油、气传统能源,用于各类锅炉的燃烧,也可以用于直燃式发电。燃烧时二氧化碳和二氧化硫低排放,减缓了对大气的污染,避免了酸雨的形成。

大力发展循环经济,以循环经济促进产业发展。将农业产品废弃物生产成生物质颗粒燃料,不仅避免了田间燃烧的空气污染和随意堆放造成的面源污染,而且变废为宝。同时,燃烧后的灰烬也是天然的有机肥,直接施于农田,不仅减轻了化学合成肥料对水源的污染,而且为提供原生态的农产品提供了前提条件。形成了循环的、可持续的经济发展模式。

(三)有利于武汉城市圈 “两型社会”的建设

2007年12月,国务院批准武汉城市圈为全国资源节约型和环境友好型社会综合配套改革实验区,由此推开了圈域建设“两型社会”的序幕。

资源节约型社会是指整个社会经济建立在节约资源的基础上,建设节约型社会的核心是节约资源。环境友好型社会是一种人与自然和谐共生的社会形态,其核心内涵是人类的生产和消费活动与自然生态系统协调可持续发展。

建设“两型社会”就是要转变现有的高消耗、低产出、高污染的粗放式经济增长方式为低投入、低消耗、低排放、高效率、良性循环的节约型经济社会发展模式,最大程度地减轻经济快速发展、城市化加速推进、消费迅速升级带来的巨大环境压力。

据不完全统计,大别山地区拥有燃煤、油、气锅炉3200余台,约9000吨蒸量每小时,仅武汉市使用多种燃料锅炉就达4000余台,约1万吨蒸量每小时。若将这些锅炉改造成以生物质颗料为燃料,每年需消耗2400万吨(折合标煤1197万吨)。不仅可以减少大量的化石能源消耗,而且减缓了环境污染的压力,促进了武汉城市圈“资源节约型、环境友好型社会”的建设。

(四)有利于加快社会主义新农村的建设

建设社会主义新农村,是党中央、国务院针对多年来农村经济发展和居民收入增长缓慢,城乡居民收入差距逐年扩大,严重制约着全面小康目标的实现提出的新举措。

建设社会主义新农村,既是一项复杂的系统工程,又是一项长期的历史任务。既要着眼长远,又要着力当前;既要安全推进,又要突出重点。建设新农村,首先的前提是加快农村经济发展,增加农民收入,为新农村建设提供物质基础。否则,新农村建设就是建在沙滩之上。

产业是农民增收的载体与源泉,建设新农村必须从产业抓起。传统产业增收困难,因此产业发展必须要依托丰富的农林产品资源开发新的产业。大别山地区有丰富的生物质能资源,利用这些资原开发生物质颗粒燃料产业,既可以增加农民收入,又可以使农民忙时务农,闲时务工,不出家乡就能打工,解决了农民就业难的社会问题。同时,通过生物质颗粒燃料产业带动农村改水、改厕、改厨,不断改善农村的人居环境。

二、大别山地区发展生物质颗粒燃料的优势

(一)生态资源优势

大别山区地处我国南北过渡地带,常年积温为1900~2300摄氏度,高于同纬度其他山系,林地面积占总面积的51.2%,2010年森林覆盖率达60.5%。因此,生物资源丰富。仅乔灌木树种就达800多种,其中经济价值较高的有250多种,是一个天然的生物馆。大别山区生物资源海拔差异大,植被变化明显,山冲坡地种植水稻、小麦、花生等农作物;低海拔杉木、柳杉、马尾松成片分布;栓皮栎、青冈栎、枫香、黄檀等用材林穿插林中;经济树种乌桕、油桐、漆树、桑树、油板栗、油茶等镶嵌其间;间有小片荆棘掩映林间。海拔渐高,黄山松挺拔在石缝中。为生物质颗粒燃料产业的发展提供了丰富的原料资源。(详见表1)

(二)交通区位优势

大别山区位于我国腹地,是中部六省的心脏地带,是长江和淮河两大水系的分水岭,交通条件比较优越。南北向京广、京九铁路、京广高铁、京珠高速、大广高速、106、107国道和东西向的西宁铁路、沪蓉高铁、沪陕高速、312、318国道在大别山交织成了发达的交通网络。使运输成本降低,市场区域扩大。大别山是武汉城市圈、合肥经济圈和中原城市群的结合部。山南紧邻武汉,武汉作为我国中部唯一的中心城市,对大别山的经济辐射作用是无可比拟的,不可替代的。大别山是武汉的后花园,不仅为武汉提供了工业原料和农产品,而且为其较好的提供了生态功能产品。武汉城市圈辐射半径超过了大别山所含区域,其中大部分区域处于武汉城市圈的紧密圈和核心圈中。合肥经济圈的规划体系中涵盖了皖西大别山区。中原城市群的规划中也辐射到了豫南大别山区。这种得天独厚的区位优势是大别山地区经济发展的关键。

(三)市场需求优势

随着我国经济的迅速发展,能源需求的缺口越来越大,能源与环境的矛盾日益凸显,改变能源结构及其消费方式,开发利用可再生能源已刻不容缓。特别是全国人大常委会在2005年制定了《中华人民共和国可再生能源法》和国务院办公厅2008年印发了《关于加快推进农作物秸秆综合利用的意见》,生物质能的应用得到了迅速发展。国家发改委制定了生物质能中长期规划,2010年年产生物质颗粒燃料500万吨,计划到2020年要达到4000万吨。根据国际能源理事会预测,到2020年,在全球可再生能源中生物质能的比重接近60%,而生物质颗粒燃料则占生物质能利用的60%。大别山能源消耗量大(详见表2),能源资源匮乏,90%以上能源依靠区外调入,特别是石油、天然气和煤炭全部依赖外调,80%的电力也需要外输,因此,急需寻求替代的能源,而大别山地区生物质能极其丰富,是替代的重要途径。

(四)人文社会优势

大别山区是我国著名的革命老区,战争时期有几十万热血青年为了共和国的建立献出了年轻的生命,更是将军倍出的地方,其中红安、金寨、大悟、新县和六安等都是全国著名的“将军县”。虽然大别山横跨三省,但是大别山区内各县市地缘靠近,人缘相亲,具有相同的人文社会背景,在历史渊源、生活习俗和人文特征上都比较相同,这为经济上的良好合作交流打下了基础。这种相似或者相同的人文资源对大别山地区的生物质颗粒燃料产业的发展创造了极为便利的社会条件,是实现大别山地区的经济腾飞的重要因素。

三、加快发展大别山地区生物质颗粒燃料开发的对策分析

(一)科学制定产业发展规划

生物质颗粒燃料产业包括生物质成型设备、生物质成型燃料和高效燃烧装置等领域的技术研发、生产和推广应用。技术研发基地要充分利用武汉科研院所集中、人才多的优势,规划在华中中心城市――武汉;成型设备和高效燃烧装置的生产由于技术含量高、占地面积广应规划在县城;颗粒燃料的生产厂区为了方便农民进厂务工和降低运输成本,应规划在有原料的乡镇或中心集镇。要根据市场需求分县市制定生产布局规划,每个县先建设生产能力10万吨的流水线(每条流水线年生产能力5000吨),然后随着生物质颗粒燃料产品推广应用的扩大,逐步进行扩建。同时,要在县城规划建设与之配套的生物质颗粒燃料直燃式发电厂,使生物质能就地转化成电能。

(二)加大扶持产业政策力度

生物质颗粒燃料产业既是一个朝阳工业产业,更是一个现代农业产业链的延伸,必须从产业政策上加大扶持力度。第一,在财税政策上予以扶持。首先将企业购置生物质成型设备纳入农机具补贴范围进行补贴。其次对生物质颗粒燃料生产企业纳入农资企业和高新技术企业范畴,享受相应税收优惠政策。再次对应用生物质颗粒燃料的企业,财政给予一定的绿色能源价格补贴。第二,在土地政策上予以宽松。凡生物质颗粒燃料成型设备、高效燃烧装置和成型燃料生产企业由县乡政府无偿提供“五通一平”的建设用地。第三,在金融政策上予以倾斜。要扩大对生物质颗粒燃料产业企业的贷款规模,将贷款纳入政策性贷款,实行财政对中小企业担保抵押贷款制度,对贷款利息实行全额贴息。

(三)积极探索产业发展模式

要积极探索,勇于创新生物质颗粒燃料产业发展模式,采取政府撬动、企业拉动、农民联动的发展方式。县级政府要从生态转移支付和本级财政预算中安排一定的资金,设置生物质颗粒燃料产业发展基金,用于对生物质颗粒燃料产业发展好的企业或个人给予奖励。同时,积极向上争取绿色能源和高新技术产业财政补助资金,无偿注入企业,支持企业发展。鼓励民间资本投入生物质颗粒燃料产业,引导农民积极参与到生物质颗粒燃料产业链中。要完善政府、企业和农民的责任,生物质颗粒燃料生产企业分别与农民和使用企业签订合同,实行订单式生产。既可以保证生产企业的原料供应和产品销售,也可以保障农民经济收入的增加,实现共赢。

(四)加速研发产业核心技术

生物质颗粒燃料产业的关键技术是生物质固体致密技术、成型设备制造技术、高效燃烧装置制造技术,其中生物质固体致密技术既是关键技术,又是核心技术。目前,我国在生物质固体致密技术上与欧美国家相比还有相当的一段差距,主要是工艺流程落后,能耗高。因此,我们必须坚持自主研制开发和引进消化吸收两条腿走路。当前,意大利研制的生物质颗粒燃料生产系统ETS(EcoTre System)是世界上最先进的,对新鲜的生物质原料不干燥直接加工,成粒后温度只上升10~15摄氏度,压制的颗粒无需冷却,省去了干燥、冷却两道传统工序,减少能耗60%~70%,生产成本大大降低。只有先引进消化吸收,再自主研制开发核心技术,才能使国产生物质颗粒燃料象欧美国家一样替代煤炭,进入百姓的日常生活之中。同时,可以提高产品在国际上的竞争力。大别山地区已有凯迪电力、安能集团、和泰集团等大型企业参与生物质颗粒燃料产业的开发,其中,和泰集团已生产出具有八项专利的生物质颗粒燃料成型设备,年生产能力达到200套。虽然在关键技术上有所突破,但是由于县级政府和企业投入资金的困难制约了研发的进一步深化。为此,在核心技术引进和自主研发上要由省级政府统筹安排,加大财政资金的投入力度和扶持力度,以促进生物质颗粒燃料产业健康,可持续发展。

参考文献:

[1]国家能源局.《国家首批绿色能源示范县介绍》[G] .内部资料,2011

[2]田跃进,熊安洲.《关于大别山经济社会发展试验区加快发展生物质能源的调查与思考》[J] .湖北农机化,2011,(02):24-26

[3]汪石满.《大别山地区跨世纪可持续发展思路及对策研究》[J].江淮论坛,1998,(01):6-13

[4]龚德勇.《贵州生物质能源产业现状及发展对策》[J].贵州农业科学,2010,38(08):222-224

[5]扶云涛.《大别山区产业结构调整研究》[D].陕西:西北农林科技大学,2010

[6]方创琳,蔺雪芹.《武汉城市群的空间整合与产业合理化组织》[J].地理研究,2008,(02):397-407

生物质燃料优势篇(2)

中图分类号:TS44 文献标识码:A 文章编号:0439-8114(2017)06-1123-05

DOI:10.14088/ki.issn0439-8114.2017.06.033

Abstract: To compare the quality of cured tobacco which were baked by biomass fuel and conventional fuel, the differences of appearance and internal quality of cured tobacco were observed. The results showed that under automatic baking by biomass energy, the percentage of superior tobacco was larger and the economic benefit, internal quality and quality estimate were better than baking by conventional fuel.

Key words: biomass energy; bake; quality of cured tobacco

烟叶烘烤的优劣直接决定了烟叶的外观等级和价格,事关烟农的切身利益,也是卷烟工业对烟叶原料质量的要求。影响烟叶烘烤质量的主要因素包括温湿度、燃料、烤房结构等。前人对常规烟叶烘烤的研究较多,但大都集中于烤房结构优化[1-5]、不同装烟方式[6-8]、烘烤温湿度调节[9]、燃煤用量配比等方面,对生物质颗粒燃料的研究主要趋向于趋势研究[10-12],而对生物质用于烤烟的研究相对较少。生物质能源燃料与煤燃烧相比,具有低污染和洁净的特点。生物质燃料一般发热值在15 906.237~17 580.578 kJ/kg之间,灰分低于5%,还可作为优质钾肥还田利用[7],排放污染物可忽略不计,与煤相比,具有易点火、升温快、火力强、易于控制燃烧等特点。为了进一步明确生物质燃料烘烤对烟叶品质的影响,2014-2015年,对不同燃料烘烤的烟叶的外观品质、内在化学成分、评吸结果进行了综合比较。结果表明,生物质燃料烘烤不仅具有显著的环保优势,而且在提升烟叶的外观及内在品质上也具有明显的优势。

1 材料与方法

1.1 试验地点及供试品种

2014-2015年在云南省寻甸县烟草科技试验基地、禄劝县九龙镇、撒营盘镇、屏山镇、石林县长湖镇5个试验点进行试验。供试品种选择同一农户、长势正常、成熟度相同的烟叶,供试烤烟品种为云烟87、K326及云烟99。

1.2 生物质颗粒燃料制备

收集烟秆、玉米秆晒干,充分粉碎之后以烟秆∶玉米秆=7∶3的比例混合,利用生物质颗粒机制成烟秆生物质颗粒燃料成品(颗粒直径8 mm,平均长度4~5 cm)备用。生物质颗粒燃料由寻甸县烟草科技试验基地加工制作。

1.3 生物质烘烤设备运行参数

在生物质燃料烘烤烟叶的过程中,燃料的自动添加与温度、风机风力、加料间隔时间及加料量呈现动态变化的趋势。由表1可知,试验完成了生物质燃料烘烤烟叶的过程,烘烤后分不同烟叶类型取样检测。生物质新型烘烤机(KM-9)由云南名泽烟草机械有限公司提供。

1.4 试验方法

以常规密集型烤房、全新建设的生物质能源烤房、设备对接改造生物质烤房、农村土烤房4种类型进行烘烤对比。对不同燃料、不同类型烤房的烟叶样本进行了分类取样,抽取1 kg各种烤房类型条件下初烤烟叶样品C3F进行外观和内在化学成分的对比,并进行评吸比较。其中外观质量的对比主要以不同燃料所烘烤的烟叶上等烟的比例进行比较。内在质量及评吸结果以化学成分检测及评吸结果进行比较。

2 结果与分析

2.1 初烤烟叶外观质量比较

由表2可知,相同品种、部位及成熟度的烟叶分别用2种不同的烘烤方法烘烤,在外观质量上,生物质烘烤的烟叶无论上等烟比例还是产值都显著高于以煤炭为原料烘烤的烟叶。以上部烟叶来看,上等烟比例约是煤炭烘烤的2倍,产值平均约提高4.17元/kg;以中部烟叶来看,上等烟比例约提升10.40%,产值平均约提高1.32元/kg。烟叶产值提升比例为5.40%~37.05%。

由表3可知,云烟87在常规密集烤房和密集烤房改造的生物质烤房中,生物质燃料烘烤的上部烟叶上等烟比例高出煤炭烘烤34.6%,产值提升1.4元/kg;在土烤房和土烤房改造的生物质烤房中,生物质燃料烘烤的上部烟叶上等烟比例高出煤炭烘烤43%,产值提升2.5元/kg。使用煤炭作为燃料,常规密集型烤房烘烤出的上等烟平均比例较农村土烤房高出12.94%,产值平均高出2.88元/kg;使用生物质作为燃料,密集烤房改造的生物质烤房烘烤出的上等烟比例较土烤房改造的生物质烤房高出11.31%,产值平均高出1.71元/kg。由此可见,生物质燃料比煤炭烘烤,设备对接改造的生物质烤房比密集型烤房、农村土烤房烘烤在提高烟叶品质及产值上具有明显优势。

由表4可知,云烟87在常规密集烤房和密集烤房改造的生物质烤房中,生物|燃料烘烤的中部烟叶上等烟比例高出木柴烘烤15.5%,产值提升1.9元/kg;在土烤房和土烤房改造的生物质烤房中,生物质燃料烘烤的中部烟叶上等烟比例高出木柴烘烤17.4%,产值提升4.6元/kg。以相同燃料烘烤,其上等烟比例及产值略有差异,但差异不明显。

由表5可知,云烟87在常规密集烤房和密集烤房改造的生物质烤房中,生物质燃料烘烤的中下部烟叶上等烟比例高出煤炭烘烤15.7%,产值提升3.56元/kg。

由表6可以看出,云烟99在常规密集烤房和密集烤房改造的生物质烤房中,生物质燃料烘烤的中部烟叶上等烟比例高出煤炭烘烤3.97%,产值提升1.95元/kg。

综上所述,以生物质燃料烘烤出的上等烟比例较煤炭烘烤的上等烟比例高2.54%~23.00%,干烟平均产值高0.98~4.96元/kg;以生物质燃料的农村土烤房设备对接改造烤房烘烤出的上等烟比例较以煤炭或木柴作为燃料的上等烟比例高3.97%~20.57%,干烟平均产值高0.08~5.13元/kg。由此可见,生物质能源烘烤可以明显提高烟叶的外观质量及产值。

2.2 烟叶内在化学成分比较

由表7~表9可知,在不同燃料、不同类型烤房条件下,把相同品种、相同部位、相同成熟度的烟叶分别烘烤,无论使用常规密集型烤房或农村土烤房,总体来看(检测结果中个别数值稍有偏差),以生物质作为燃料烤出的初烤烟叶烟碱含量均低于以煤炭或木柴作为燃料烤出的干烟叶,而以生物质为燃料烘烤的烟叶总糖、还原糖、总氮整体含量较高;使用相同的燃料(煤炭、木柴或生物质),常规密集型烤房烘烤烟叶烟碱含量均低于农村土烤房烘烤出的初烤烟叶。

2.3 工业评吸结果比较

由表10可知,从15组不同燃料烘烤的初烤烟叶评吸对比结果可以得出,煤炭烘烤的品吸结果共计1 068.1分,生物质烘烤的品吸结果共计1 071分。生物质烘烤的烟叶评吸效果好于煤炭烘烤。具体表现为香气量增加,烟叶浓度、劲头均高于用煤炭烘烤的同类烟叶,余味舒适度上升,烟气透发顺畅,香气饱满厚实,刺激性小,细腻柔绵的特征明显,总体质量好。

3 小结与讨论

烘烤对比试验结果表明,将相同品种、相同部位、相同成熟度的烟叶分别烘烤,无论使用常规密集型烤房或是农村土烤房,生物质燃料烤出的烟叶外观品质更好,上等烟比例及产值均高于煤炭烘烤或木柴烘烤。生物质燃料烘烤出的烟叶化学成分在总糖、还原糖、总氮、水溶性氯离子、蛋白质方面总体偏高,烟碱、淀粉的含量整体有所降低,氯化钾含量水平基本保持一致。生物质能源烘烤通过生物质燃烧机、温湿度一体控制仪,实现烟叶烘烤的自动化控制,烘烤温湿度控制精准,烟叶的烘烤工艺得以完整实现,因此促进了烟叶的外观质量、内在化学成分向有利与卷烟工业需求的方向发展。同时,自动烘烤减少人工烧火温度上下波动较大的影响,降低了烤坏烟的比例。各类初烤烟叶工业评吸对比结果与上述检测结果基本一致,说明生物质能源自动化烘烤出的烟叶品质更符合卷烟工业的需求。

生物质能源烘烤不仅可以节省人工成本,而且原料来源丰富、可以再生。利用生物质农业进行烟叶烘烤,可以明显提高烟叶的外观质量和内在品质,有益于环境生态保护。在煤炭能源逐渐减少、资源不断消耗的形势下,利用生物质新能源进行烟叶烘烤将是烟叶烘烤改革的重要发展趋势[8]。

参考文献:

[1] 聂荣邦.烤烟新式烤房研究Ⅱ燃煤式密集烤房的研制[J].湖南农业大学学报,2000,26(4):258-260.

[2] 吴中华,高体仁,夏开宝,等.QJ-Ⅱ型密集式自控烟叶烘烤设备的研究与开发[J].中国烟草科学,2006,27(4):9-12.

[3] 严显进,程联雄,易忠经,等.节能炉具烤烟烤房的烘烤性能及效果[J].贵州农业科学,2014,42(5):232-235.

[4] 殷 红,张 平.聚氨酯板式密集烤房的应用效果分析[J].安徽农业科学,2013,41(4):1745-1747.

[5] 潘建斌,王卫峰,宋朝鹏,等.热泵型烟叶自控密集烤房的应用研究[J].西北农林科技大学学报,2006,34(1):25-29.

[6] 武圣江,潘文杰,宫长荣,等.不同装烟方式对烤烟烘烤烟叶品质和安全性的影响[J].中国农业科学,2003,46(17):3659-3668.

[7] 崔国民,汪伯军,许安定,等.密集烤房装烟室不同层距对烘烤性能及烟叶评吸质量的影响[J].园艺与种苗,2013(9):44-48.

[8] 徐鸿飞,普恩平,王 涛,等.云烟-12型四层密集烤房的烘烤性能及其烘烤效果[J].作物研究,2014,28(6):642-646.

[9] 罗汝林.基于模糊控制的烟叶烤房温湿度控制系统设计[D].辽宁大连:大连理工大学,2006.

生物质燃料优势篇(3)

【中图分类号】S5

【文献标识码】A

【文章编号】1672-5158(2012)12-0418-01

一、农作物秸秆制燃料乙醇的需求分析

能源是人类赖以生存和发展的重要基础,随着世界不可再生能源的枯竭,加快开发利用以生物燃料为代表的可再生绿色环保生物质能源,已成为人类社会可持续发展的战略选择和发展方向。

生物质能作为第四大能源,在可再生能源中占重要地位。开发生物质能源即可以补充常规能源的短缺,也具有重大的环境效益。

燃料乙醇和生物柴油是目前世界上应用最为广泛的两种生物燃料。继美国和巴西之后,中国已经成为全球第三大燃料乙醇生产国。但是,粮食安全问题限制着我国燃料乙醇产量的增加。

乙醇燃料技术是利用生物技术(包括酶技术)把生物质转化为乙醇液体燃料的过程。目前,乙醇生产过程中主要以淀(主要是玉米)和糖蜜原料为主,但其因为伴随粮食主要是玉米的价格连年上涨存在生产成本走高,生产企业面临持续亏损的问题。“十一五”期间,我国的燃料乙醇生产,利用玉米新粮在生产原料里的比冽已经上升到了80-90%左右,若进一步发展会造成“与人争粮”、“与粮争地”的问题。

为了能够提高我国在新的资源竞争领域内的优势,尽快实现非粮燃料乙醇产业化已势在必行。结合我国资源匮乏的国情,在国内发展非粮燃料乙醇更加具有现实意义。因此,我国政府和企业迫切需要开发和建设玉米秸秆、木薯和甘蔗渣等非粮乙醇燃料产业。“十一五”末期,乙醇汽油已经占我国汽油消费量的70%,形成以“非粮”原料为主、以技术进步为动力、经济效益为中心、缓解能源供应紧张压力和保护环境为目的的生物液体燃料产业链是当务之急。

据国家权威部门统计预测,到2020年,我国将生产生物乙醇(含下游产品)2300万吨、而我国实际晴况定位的重点产品按重要性依次为:燃料乙醇、成型燃料、工业沼气、生物塑料和生物柴油。

据测算国家统计部门测算,“十一五”期间,我国农作物播种面积约1亿公顷,每年仅农作物秸秆有7亿吨,其中2亿吨被作为农村燃料消耗。若将其余5亿吨用来生产乙醇,可产7000万吨乙醇。再加上木材、制糖、造纸工业下脚料和城市废纤维垃圾,总计可得乙醇8500万吨,比全国汽油消耗总量还要多,生物质可再生能源开发利用空间巨大。

以秸秆为原料生产乙醇的成本低于用粮食发酵,原料来源广泛.秸秆发酵生产乙醇可有效解决原有的以粮食为原料的乙醇生产中遇到的价格和资源瓶颈问题。

二、辽宁农作物秸秆资源的现状分析

辽宁是个农业大省,秸秆类农作物种植面积广泛,较多。作为可再生资源用来生产生物质燃料乙醇的秸秆量大质优,非常适宜推广,燃料乙醇作为汽车燃料生产行业适用地区广泛,产业链长,无任何污染,有利于保护环境,有益于农民增收致富,调整能源消费结构,增加非化石能源比重。促进可循环经济的持续发展。

2011年辽宁省粮食作物播种面积为4754.7万亩。其中,玉米3163.2万亩,水稻964.7万亩,保守估计玉米平均亩产1000斤,水稻平均亩产800斤,全省当年所收获的秸秆产量达3000万吨以上。

辽宁省作为农业大省之一,长期以来作为主要农村生活能源的农作物秸秆已成为占用一定的农田面积,常年堆积的废弃物,而被就地焚烧,尤其是在省内的主要粮食产区,焚烧秸秆成为普遍现象。不仅浪费了大量的资源,而且严重污染了大气环境,制约了农村经济可持续发展。因此在我省发展农作物秸秆原料生产乙醇就显得尤为重要。

直观来看,发展秸秆原料生产乙醇产业的有着显著的经济意义和社会意义。首先,秸秆原料资源是一种可再生资源,能够获得持续的供给安全保证。其次,以秸秆生产燃料乙醇可减少食物和饲料生产对土地的需求的长期矛盾,彻底解决“与人争粮”、“与粮争地”的问题。再次,以生产秸秆原料乙醇等生物制燃料时所造成的二氧化碳气体排放较少,对环境影响更小,是国际发展的先进趋势,并逐渐成为全球碳交易的内容。同时,秸秆为原料生产乙醇也是当前辽宁调整产业结构,发展新兴产业的一个方向;为营造新兴经济产业链,发展地方产业丰厚度提供的机遇。并且,秸秆类农产品的深度加工和应用也为省内当地农村人口提供就业机会。

三、辽宁农作物秸秆制燃料乙醇的经济价值分析

目前,我国以粮食为原料生产燃料乙醇的成本约为6000元左右/吨,国内试验性生产的秸秆制燃料乙醇约为7000元以上/吨,相比之下秸秆制燃料乙醇由于工艺、科研攻关的能力限制,距离产业化仍有较大差距。

依据国外公开报道,2007年加拿大Logen公司利用酶加工麦秆,从一顿原料可生产约300升乙醇。该公司的工业化生物乙醇燃料加工装置,乙醇生产成本约合430美元/吨。

以此对比分析,若秸秆按每千克0.12元征收,乙醇燃料的秸秆原料价格可按照150-200元/吨估算。如采用加拿大Iogen公司的技术,每吨秸秆可生产300升乙醇,推算的每吨乙醇产品的原料成本为600-800元。与我国目前的粮食乙醇燃料生产工艺相比,每吨产品的原料成本要低2500元以上。2011年,国内90#汽油的平均零售价格为8000元/吨左右,而以Iogen公司在加拿大的每吨燃料乙醇生产成本折合成人民币为3650元左右;如果在中国生产,各方面的成本将会更低。加上国家对秸秆制燃料乙醇的优惠政策,该项目经济效益将十分可观。

综上所述,秸秆制燃料乙醇生产技术在国际上完全成熟,正处于产业转化阶段。随着关键技术不断突破与完善,秸秆制燃料乙醇生产成本有显著的下降空间为未来的发展提供了重要的实践平台和技术支撑,并将进一步推动秸秆制燃料乙醇产业化发展。

生物质燃料优势篇(4)

中图分类号:F2文献标识码:A文章编号:16723198(2013)23000102

说起生物质能,人们并不陌生。生物质能,就太阳能通过光合作用,以化学能的形式储存在生物质中的能力,具有环境污染小、可以再生利用的特点,并且分布特别广泛。几千前来,人类一直使用生物质能作为主要能源,只是在工业革命以后,人类的能源使用方式才发生了改变。

上个世纪能源危机以后,生物质能又重新得到人们的关注。经过四十多年的发展,生物质能源技术取得了长足进步,利用生物质能源技术生成的产品已经可以替代目前人们广泛使用的石油、天然气、电力等现代能源。

生物质发电是生物质高效利用的一种重要途径,也是一种可持续发展的新型能源。为了推动可持续发展,我国2006年颁布了《可再生能源法》,并且颁布了一系列相关配套法律法规,我国生物质发电产业得到了快速发展,年均装机容量增长率高达30%。根据发展规划,到2020年,生物质发电的装机容量将达到3000万千瓦,占电力总装机容量的比重将达到2%。

为了分析某一产业是否有竞争力,美国著名产业经济学家Micheal·Porter在1990年出版了《国家的竞争优势》一书,在这本书中,他提出了决定产业竞争优势的钻石模型,这一模型逐渐成为一个重要的理论工具,被用来分析某一国家的某一产业是否有国际竞争力。

笔者旨在以生物质发电产业为例,从Porter钻石模型的视角分析我国生物质发电产业的竞争优势,探讨提升我国生物质发电产业竞争力的对策和途径。

1生物质发电概述及重要意义

1.1生物质发电概述

人们在农业、林业、工业生产中会产生很多废弃物,城市居民在生活中也会产生生活垃圾,利用这些废弃物、动物粪便作为燃料,将这些物质直接燃烧,或者转化为可燃气体燃烧,利用产生的热量进行发电,这种技术就叫做生物质发电。生物质发电是一个完整的产业链条,如下图所示(图1)。生物质发电具有技术成熟、可靠性高、发电无间歇性、清洁环保、电能质量好等特点。在欧美等经济发达国家,这些国家很注重环保,生物质发电日趋成熟,已经成为一些国家重要的供热和发电方式。根据使用燃料的不同,生物质发电包括沼气发电、农林生物质发电和垃圾发电。

图1我国生物质发电产业链上世纪70年代,世界石油危机爆发,很多国家认识到单纯依靠石油、煤炭等化石燃料是有很大风险的。瑞典、芬兰、丹麦等北欧小国通过开发利用可再生能源来优化能源结构,注重开发秸秆等生物质发电技术。北欧小国在生物质发电技术方面的努力也引起了主要发达国家的重视,生物质发电因此获得了较快发展。2002年,在南非的约翰内斯堡召开了可持续发展世界论坛,这次会议以后,生物质发电技术在全球得到了快速发展。

1.2重要意义

(1)缓解能源消耗的结构性矛盾。

在能源储量、能源供给方面,我国存在着很明显的结构性矛盾。主要是过于依赖石油和煤炭等化石燃料,石油进口依存度也很高。我国正大力推动城市化和工业化进程,天然气和石油的供需矛盾越来越突出,我国已经成为石油和天然气进口大国,对国际市场的依赖程度日益提高。能源对外依存度过高,这就影响我国的能源经济安全。发展生物质能发电,符合我国国情,对促进我国经济可持续发展,对于促进增长方式的转变都有重要意义。

(2)有利于促进社会可持续发展,服务“三农”建设。

生物质发电,对于带动农村经济发展、增加农民收入和就业岗位,是有很大益处的。以秸秆发电为例,1台装机容量为12MW的机组年消耗生物质秸秆约20万吨,如果按180元/吨计算,则每年可给当地农民带来近4000万元收入。此外,还可给农民提供大量的收购、运输等就业岗位。

2Micheal·Porter的钻石理论

产业为什么会具有竞争力呢?Porter教授认为产业竞争力取决于四个方面的因素及其相互作用,这四个方面是指:一个国家的要素禀赋、需求状况、相关产业和辅助产业的情况及公司的策略、结构和竞争。Porter教授认为,这四个要素之间具有双向作用,并形成了钻石体系,这四个因素,也是评价这一产业是否能够良性发展的重要条件,他把这套体系归纳为钻石模型,企业最有可能在钻石条件最为有利的行业获得竞争优势并取得成功。

图2Porter的钻石模型2.1国内需求

国内需求状况在提高某一行业的竞争优势方面发挥着重要的作用,因为所生产的产品首先是用来满足国内需求。Porter教授认为,企业一般对距离最近的消费者的需求最为敏感。消费者需求可以为企业改进产品质量提供反馈信息,国内消费者的需求特点能直接影响国内产品的特征,促进公司产品的创新,并提高产品质量。如果国内消费者精明而挑剔,就会增加企业的压力,压力也是创新的动力,就会迫使公司不断满足更高的产品质量标准,在产品生产上持续创新,这从中观层面讲可以提高公司的竞争能力,从宏观层面讲就增强了国家的竞争优势。

2.2 相关产业和辅助产业

独木难成林,产业也是如此,一个国家国内成功的行业经常是由很多相关行业组成的一个行业群,因为相关产业和辅助产业对技术、教育这些高级生产要素的投入所产生的效益可以波及到另外的行业,具有国际竞争优势的上下游产业对于国内某一个行业获得核心竞争优势也是大有好处的。

2.3 要素禀赋

生产要素是有层次的,主要可以区分为两个层次:高级生产要素和一般生产要素。一般生产要素就是指自然资源、气候、地理位置和人口这些基础要素;高级生产要素就是指掌握高技术受过良好教育的高素质劳动力、科技设备和技术能力。Porter教授认为,对某一国家产业竞争优势最重要的是高级生产要素,如果说一般生产要素是天然产生的,高级生产要素则是个人、企业和政府共同投资的结果。政府对教育的投资,不仅可以提高国民的整体技术能力和知识水平,而且能够促进高等院校对先进技术的研究和开发。

2.4 公司的策略、结构和竞争

从微观上讲,产业竞争力是企业竞争力的综合体现,谁也无法否认索尼对于日本电子、三星对于韩国电子产业的影响。对于不同国家而言,管理理念也是不同的,这些理念促使企业采取不一样的策略、结构和竞争。如果国内竞争很激烈,经过国内竞争环境的洗礼,也有利于公司保持国际竞争优势。因为企业为了应对竞争,会不断提高生产效率、降低生产成本、加大创新力度,进而提高企业在世界市场的地位。

由以上分析可知,产业竞争实力的建立是有原因的。国家的要素禀赋、需求状况、相关产业和辅助产业的情况以及公司的策略、结构和竞争等四个因素共同决定了某一行业在国际市场是否有竞争力。Porter教授认为,产业国际竞争力的建立并非易事,只有当产业集群拥有足够的资源来弥补最初进入某个市场所带来的损失,新进入的企业才能克服已存在的其他产业集群的先发优势和市场中存在的不利因素。而且,政府的政策对于钻石模型中的四要素会产生影响,如果政府对某一产业进行支持,就可以帮助帮助产业集群弥补最初进入某个市场的损失。

3从钻石理论视角看我国生物质发电产业的竞争优势

作为电力行业的一个细分行业,生物质发电也是和其他生产要素息息相关的,这些生产要素决定了这一产业是否能健康发展。

3.1与生物质发电产业相关的要素禀赋

我国是一个农业大国,可以利用的生物质资源十分丰富,生物质废弃物的总量,相当于煤炭年开采量的一半,约合6.56亿吨标准煤。每年农业生产中产生的生物质总量有50多亿吨,相当于20多亿吨油的当量,这一数字是我国一次能源总消耗量的3倍。

根据农业部门的统计,我国全部农作物的播种面积大约为一亿公顷,每年农作物秸秆的生产总量大约有7亿吨,除部分地区作为造纸原料,部分偏远地区用作炊事燃料,家畜的饲料和部分的秸秆用于还田作为肥料之外,可作为生物质燃料的秸秆约为3.5亿吨,其燃烧值可折合成1.8亿吨标准煤,经过转化可以生产为1亿吨燃料酒精或5000万吨生物柴油。丰富的资源禀赋为我国生物质发电发展创造了条件。

3.2 电力需求状况

电力行业的下游用电客户主要分为两类:企业客户和城乡用电客户,居民用电量比较稳定,增速也很稳定,第二产业中的制造业,尤其是一些高耗能产业,如有色化工、建材和钢铁等,这些都是周期大、投资大、产能易增不易减的基础性原材料产业,如果经济有所波动,将处于不利地位。2008年下半年的金融危机对这些行业的影响很大,很多企业开始限产,直接影响了电力用量。随着我国经济增长方式的转变,随着“调结构”的深入,高耗能产业将会受到限制,其用电量也会减少。

但如果从用电结构来看,生物质发电量的需求将会上升。2009年11月,我国政府明确提出,到2020年,每单位国内生产总值的二氧化碳排放量要比2005年下降40%—50%,并且非化石燃料所占的比重要不断提高,占到一次能源消费比重要达到15%左右。在此背景下,生物质发电等符合环保要求的发电方式将成为重点。

3.3生物质发电相关产业和辅助产业的发展

与生物质发电密切相关的两个产业是燃料收购和设备生产。在燃料收购方面,存在一些问题。一是收购难。我国农业生产的一个重要特点是比较分散,一家一户的秸秆量比较少,农民出售秸秆的意识也并不强。秸秆的收购价格也并不会较高,往往达不到农民的期望价格,这就导致农民出售秸秆的积极性不高;再就是在农村,收购秸秆的力量不足,因为秸秆收购的最佳季节恰好是农忙季节,我国近几年青壮年农民大量外出打工,农村剩余劳动力不足,农民为了抢收抢种,较多地将秸秆就地焚烧。

在运输方面,生物质原料运输也不是特别方便。主要原因就是农作物的密度比较小,导致体积过大,这样运输量就特别大。一般来说,是采用公路运输。为了方便运输,也是为了工业化生产的需要,就必须对生物质燃料就行标准化打包,这样就要购买打包机,而且所打的包块必须符合电厂锅炉的生产要求。而就实际情况而言,我国农村运输多采用拖拉机,对大型包块难以运输。

与发达国家相比,我国电力装备制造业与发达国家还有较大差距。我国目前生物发电设备尚处于起步阶段,相对于整个电力设备市场而言,所占份额较小。在设备生产方面,中国多个大型生物质发电厂的技术和设备均来自丹麦BWE公司。国内主要生产商,如青岛捷能汽轮机集团、武汉汽轮机厂、龙基电力集团、济南生建电机厂、济南锅炉厂等,技术水平和研发实力相对较弱,多是以引进国外技术、国内制造为主。在这种情况下,生物质发电厂议价能力较弱,设备购置费通常占生物质电厂总投资额的30%—

基金项目:本研究系国家旅游局科研项目:基于旅游协同促进的文化软实力建设研究(No.12TABK003)中期成果。

作者简介:张春燕(1983-),女,中南财经政法大学旅游管理专业博士研究生,讲师,研究方向:文化旅游、区域旅游与经济发展。40%,构成了生物质发电企业主要投资成本之一。

3.4我国生物质发电企业的竞争情况

生物质发电规模最大的是国电集团和凯迪控股,2009年,这两大集团的总装机容量达到了114.7万千瓦,占全国的27%,五大电力集团的总装机容量为107.6万千瓦,占所有生物质发电装机容量的24%(详见表1),其中建成和成功并网发电的绝大多数还是五大电力集团。就我国的情况来说,电力行业的垄断程度比较高,生物质发电企业的竞争并不激烈,这对提升产业整体发展水平是不利的。

表12009年主要生物质发电企业总装机

容量与市场份额

企业名称总装机容量

(万千瓦)市场份额

(%)企业名称总装机容量

(万千瓦)市场份额

(%)国电73.317中电投6.31凯迪41.410华能31华电14.53江苏国信11.53大唐10.52中节能4.814结论及启示

根据波特的钻石模型,我们可以看出生物质发电行业的一些问题,主要是国产装备水平比较弱,原材料收储困难,等。本文对提升生物质发电产业的竞争力,提出了几点启示。

4.1加强研发,提升装备水平

电力装备是最能体现技术水平的环节,是整个产业技术水平的标志,而恰恰是在电力装备方面,我国与发达国家相比还有较大差距。我国自主研发的主要是气化发电技术,其他如直接燃烧技术还处于很初级的水平,尚不能达到工业应用的要求,很多关键核心设备要从技术发达国家购买。

装备水平的落后是制约我国生物质发电发展的瓶颈因素。加强自主研发,提升装备水平是提升行业技术水平的关键。

4.2竞争程度的提升,将能提升产业发展水平

凡是经营发电业务的企业必须要有电监会颁发的发电业务经营许可证,而获得这一许可证的要求,比通常工业行业要严格得多。另外,在电力行业,尤其在项目审批环节,没有深厚的对政府公关能力,很难拿到项目开工许可。电力行业还是有比较强的进入壁垒的,这样就导致竞争不充分,不利于提升产业技术经济水平。

虽然我国生物质发电产业存在很强的进入壁垒,但随着经济改革的不断深入,产业的开放也是大势所趋。面对生物质发电产业的良好前景和国家政策的激励,无论是来自境外的跨国能源集团,还是资金充裕的民营企业都有意投资这一产业。近年来,很多来自发达国家的能源集团已经开始在中国投资,它们具有很强的资金和技术优势,将对我国生物质发电产业产生重大影响。随着产业开放程度的进一步提高,民营企业也会逐渐进入这一产业,这一产业的竞争将会更加激烈,这对提升产业发展水平是有利的。

4.3建立和完善生物质燃料供应链,确保燃料的持续供应

对生物质发电而言,燃料成本在总成本中占了很大比重,燃料成本是电厂能否实现盈利的重要因素之一。再就是燃料供应要有稳定性,否则将影响电厂设备的运行。由于农业生产的季节性特征,燃料供应会有所波动,而工业生产具有连续性。在现阶段政府和生物质发电企业应共同建立完善的生物质燃料供应链,对燃料的收集、加工、储存、运输等各个环节进行规范,以保证生物质电厂拥有价格合理、持续供应的燃料。

参考文献

[1]谭力文,吴先明.国际企业管理[M].武汉:武汉大学出版社,2002:5759.

[2]叶慧.我国生物质能源产业可持续发展的SWOT分析与对策[J].西南林院学报,2008,(28):1720.

[3]贾小黎,丁航,李晓真,等.中国生物质发电产业现状、问题和建议[J].太阳能,2007,(5):1013.

生物质燃料优势篇(5)

引言

生物质能是我国“十二五”期间重点发展的新兴能源产业之一,按我国提出的2020年非化石能源占能源消费总量15%的目标初步估算,到2020年我国生物质能装机总量将达3000万千瓦,沼气年利用量440亿立方米,生物燃料和生物柴油年产量达到1200万吨。

截止2013年底,中国生物质能并网发电装机量779万千瓦,预计2014年底,生物质发电装机将有望达到1100万千瓦,上网电量有望达到500亿千瓦时[1]。从产业整体状况分析,生物质发电及生物质燃料目前仍处在政策引导扶持期。

1.生物质发电技术分类

1.1 生物质直燃发电

生物质直接燃烧发电是指把生物质原料送入适合生物质燃烧的特定锅炉中直接燃烧,产生蒸汽带动蒸汽轮机及发电机发电,用于发电或者热电联产。国内生物质直接燃烧发电的锅炉主要有两种:炉排炉、循环流化床锅炉。采用生物质燃烧设备可以快速度实现各种生物质资源的大规模减量化、无害化、资源化利用,而且成本较低,因而生物质直接燃烧技术具有良好的经济性和开发潜力。

1.2 生物质气化发电

生物质气化发电是指生物质在气化炉中气化生成可燃气体,经过净化后驱动内燃机或小型燃气轮机发电。气化炉对不同种类的生物质原料有较强的适应性。内燃机一般由柴油机或天然气机改造而成,以适应生物质燃气热值较低的要求;燃气轮机要求容量小,适于燃烧高杂质、低热值的生物质燃气。

1.3 生物质混合燃烧发电

生物质混合燃烧发电是指将生物质原料应用于燃煤电厂中,和煤一起作为燃料发电。生物质与煤有两种混合燃烧方式: 一种是生物质直接与煤混合燃烧,生物质预先与煤混合后再经磨煤机粉碎或生物质与煤分别计量、粉碎。生物质直接与煤混合燃烧要求较高,并非适用于所有燃煤发电厂,而且生物质与煤直接混合燃烧可能会降低原发电厂的效率。第二种是将生物质在气化炉中气化产生的燃气与煤混合燃烧,即在小型燃煤电厂的基础上增加一套生物质气化设备,将生物质燃气直接通到锅炉中燃烧,这种混合燃烧方式通用性较好,对原燃煤系统影响较小。

2.生物质发电技术比较

生物质与煤混合燃烧发电技术投资少,发电效率决定于原燃煤电站的效率.其中生物质气化混烧发电对原有电站的影响比直接混烧发电对原有电站的影响小,通用性较强[2]。由于气化发电技术关键设备―小型低热值燃气轮机技术尚未成熟,对10 MW以上的生物质发电系统而言,比较有优势的技术是直接燃烧发电[3]。对10 MW以下的生物质发电系统而言,气化一余热发电系统效率远高于直接燃烧发电系统,具有更大的优势。另外,生物质直接燃烧发电技术比较成熟,但在小规模发电系统中蒸汽参数难以提高,只有在大规模利用时才具有较好的经济性,比较适合于10 MW以上的发电系统。生物质混烧发电技术在已有燃煤电站的基础上将生物质与煤混烧发电,混烧发电对原有电站的影响比直接混烧发电对原有电站的影响小,通用性较强,投资成本是三类技术中最少的,但可能降低原燃煤电站效率。

表2-1 三种生物质发电技术比较表

分类 直燃发电 气化发电 混合燃烧发电

规模 10MW以上 10MW以下 10MW以上

通用性 强 低 强

热电连供 可以 可以 不可以

并网独立性 可以 可以 不可以

投资成本 中 高 低

效率变化 中 高 不确定

3.生物质发电技术趋势

3.1直燃技术

自2006年以来,我国生物质直燃发电开始进行商业化运行,国产循环流化床燃烧技术已成为生物质直燃发电市场的主导技术。循环流化床内可采用SNCR脱销,脱硝率可达50%以上。虽然生物质燃料含硫量较低,但实际SO2排放浓度在200mg/m3以上,炉内可以加石灰石脱硫,在脱硫效率达到70%时,即可满足国家标准的要求。对灰熔点较低的生物质,如油菜秆、棉花杆等,燃烧此类生物质的锅炉,蒸汽温度不宜提的过高,除非有很好的防积灰、腐蚀的措施作为保障。此外,生物质水分很高,着火推迟,导致不完全燃烧,炉排上未燃尽的生物质含碳量很高,需要增加炉排长度,提高燃烧效果。

3.2气化技术

生物质气化发电中含焦油废水无害化处理是制约气化发电的瓶颈,国内外研究结果均提出采用有机溶剂作为燃气净化介质,避免二次水污染。循环流化床气化技术已有较好的基础,在循环流化床中进行生物质气化,气化温度控制在950~1000度,可以获得中值热燃气,同时彻底解决焦油问题,燃气净化后实现燃气内燃机-蒸汽联合循环,发电效率可达30%以上,在此基础上研发加压(30atm)循环流化床生物质气化技术,采用燃气内燃机-蒸汽联合循环,发电效率可达40%。

双床气化技术是采用循环流化床与鼓泡床双床组合技术技术,将生物质燃料送入鼓泡床内,气化热源为循环流化床分离下的高温灰,流化介质为高温水蒸气或气化气。循环流化床燃烧气化室送来的半焦,产生高温烟气,烟气经分离后进入鼓泡床作为气化室热源,分离后的高温烟气进入余热锅炉,加热蒸汽进行发电。气化室反应温度控制在650~850度,产生的燃气经气固分离、净化后送内燃机发电,内燃机尾气经余热锅炉吸热后产蒸汽送蒸汽轮机发电。燃气中焦油通过闭式循环水水洗系统,经有机溶剂萃取后回收焦油,废水采用膜技术处理后达标排放。

4.结论

在各类生物质发电技术中,直燃生物质开发利用已经初步产业化,混烧发电技术的投资经济性最好,其发电经济性决定于原电厂的效率,而且会对原电厂有一定的影响。生物质气化发电技术的发电规模比较灵活,投资较少,适于我国生物质的特点,但是技术还不成熟。从产业整体状况分析,生物质发电及生物质燃料目前仍处在政策引导扶持期。

参考文献:

[1]水电水利规划设计总院和国家可再生能源信息管理中心.2013中国生物质发电建设统计报告[R].北京:国家可再生能源中心,2014.

生物质燃料优势篇(6)

DOI:10.16640/ki.37-1222/t.2017.08.019

聚氨酯泡沫塑料在目前的社会生活中有着重要的应用,对于现阶段的材料利用结构更新和改善发挥了重要的作用,但是其在燃烧过程中产生的大量有毒气体影响了人们对其的接受程度,所以此材料的进一步推广受到了严重的限制。为了提升其社会利用价值,利用无卤阻燃技术进行聚氨酯泡沫的制成改造,这样可以有效的将其燃烧中产生的有毒气体进行抑制或者消除。通过此方面的措施,聚氨酯泡沫塑料的缺陷会得到逐渐的改变,其在社会中的推广度和利用价值都会得到提升。

1 聚氨酯泡沫塑料无卤阻燃技术

1.1 反应型阻燃剂

在聚氨酯泡沫塑料无卤阻燃技术利用中,反应型阻燃剂是重要的利用。所谓的反应型阻燃剂主要指的是在聚合物骨架中引入具有阻燃作用的元素或者是化合物,这样,基体结构中就会含有阻燃的成分。而这些阻燃的成分就可以成功的抑制聚氨酯泡沫塑料的燃烧。从现实利用的效果来看,反应型阻燃剂的阻燃作用发挥较为持久,而且具有非常良好的稳定性,并且这种阻燃剂可以有效的减少对材料自身性能的影响,所以说此种阻燃剂具有较高的利用价值。就反应型阻燃剂的配置来讲,在其中加入的元素通常是磷、硅或者氮。就反应型阻燃剂的实施原理来看,主要是通过元素和机体本身的反应使得燃烧中的有害物质减少,这样,即使在燃烧的过程中,聚氨酯材料的有害性也会降低。

1.2 添加型阻燃剂

在聚氨酯无卤阻燃技术的利用中,使用到的另一种阻燃剂是添加型阻燃剂。此种阻燃剂的构成分为两部分,第一部分是材料基体,即聚氨酯基本成分。第二N是用于添加的阻燃元素以及化合物,而从目前的情况来看,添加物主要包括了碳、旅、硼、卤素等。因为添加元素的不同,所以此种阻燃剂又有有机和无机的区别。有机添加型的阻燃剂主要指的是在其中添加了磷、氮、硅等形成的阻燃剂,而无机添加型的阻燃剂主要指的是在基体中添加无机物形成的阻燃剂,从实践中来看,无机添加型阻燃剂常用的添加物是磷酸盐、硼酸盐、氢氧化铝等。就两种阻燃剂而言,无机添加型阻燃剂相比有机添加型阻燃剂更具优势。因为无机添加型的阻燃剂不仅不容易挥发、具有较高的热稳定性,而且工艺简单,成本较低。

1.3 膨胀型阻燃剂

在聚氨酯无卤阻燃技术的利用中,最新型的阻燃剂利用便是膨胀型阻燃剂。此种阻燃剂在目前社会中的迅速发展和利用主要得益于两方面的条件:第一是卤素阻燃剂的环境问题研究有了不断的深入,第二是阻燃剂新法则在社会中进行了颁布。在这两方面条件的作用下,膨胀型阻燃剂作为具有较高环保价值的无卤阻燃剂得到了广泛的应用。就此种阻燃剂的作用原理来看,其主要是根据不同组分之间的化学反应和物理过程在聚合物的表面形成具有隔热、隔氧和抑制作用碳质泡沫碳层,利用碳层的作用对聚合物形成保护作用,从而达到阻燃的效果。从实际应用的效果分析来看,膨胀型阻燃剂有着两方面的优势:第一是此种阻燃剂的阻燃效率较高,第二是此种阻燃剂作用发挥的时候低烟无毒,也不会产生腐蚀性的气体。从这两方面的因素分析来看,此种阻燃剂的环境友好型特点突出。

2 可膨胀石墨阻燃分析

2.1 阻燃原理

可膨胀石墨是现阶段利用无卤阻燃技术利用中一种较为新型的阻燃剂。这种阻燃剂主要是利用化学和物理的方法将插层剂插入到了石墨层间的具有碳六角网络平面结构当中,由此形成的晶体化合物。在实际利用中,此种阻燃剂的原理表现为:当晶体化合物受热的时候,层间的插入物质会因为受热的缘故分解或者气化,从而产生大量的膨胀热,因为膨胀热远远的大于了石墨空间的范德华力,所以片层会被气流胀升,这样,石墨间的距离便有了进一步的扩大,由此就形成了“蠕虫状”的膨胀石墨。膨胀石墨较大的比表面积和较低的密度特点使其具有了较强的耐压性、柔韧性和可塑性,抗腐蚀性和抗氧化性以及抵抗高低温的能力也较强,所以阻燃的效果较好。

2.2 利用缺陷

在研究深入的情况下发现,虽然膨胀石墨作为新型的阻燃剂具有较大的优势,但是其也有一些客观存在的缺陷。比如说膨胀石墨的片层结构之间存在着很大的间隙,所以将其添加到聚合物当中的时候,膨胀石墨和机体之间的相容性会比较差,这就会导致复合材料力学性能的下降。无卤阻燃技术的研究目的是要在不改变复合材料性能特点的基础上提升其阻燃的效果,而膨胀石墨虽然具有较好的阻燃效果,同时也具备很好的环境效应,但是其结构的固有缺陷造成的力学性能下降却不容忽视。为此,强化膨胀石墨的进一步结构分析研究意义重大。

3 结束语

聚氨酯泡沫塑料作为一种重要的新型材料在目前的社会生活中有着广泛的应用,但是从具体的利用效果来看,此种材料在燃烧的时候会产生较大的危害,所以为了强化其应用价值的提升,积极的探讨聚氨酯材料的无卤阻燃技术,目的就是要降低我应用危害。

参考文献:

[1]郑德志,辛梅华,李明春.软质聚氨酯泡沫塑料无卤阻燃技术研究进展[J].化工进展,2015(09):3349-3355+3362.

生物质燃料优势篇(7)

中图分类号:TU998文献标识码: A

一、引言

在组成建筑的重要材料之一就是建筑防火材料,其在建筑物中起到十分重要的作用。很多年前的建筑物,由于建筑施工人员防火意识比较淡薄,从而对建筑防火材料的使用不够重视; 甚至某些施工单位为了获取利益,减少甚至不使用建筑防火材料。这些由于建筑防火材料劣质、防火装备不到位造成了人员伤亡和经济的巨大损失。由此可见,建筑防火材料是建筑物消防建设的一个重要拼图。本文第一部分对简单介绍了一般建筑防火材料进,第二部分则对建筑防火材料的发展趋势进行了预测和分析。

二、建筑防火材料的应用

2.1 轻质新型复合材料

2.1.1 石膏型复合材料

石膏产品质量较轻,具备一定保温、吸声的性能,且阻燃性能较好。石膏材料大部分是复合材料,其基体一般是无机质材料石膏。一般的二水石膏是水合物,在发生火灾时,二水石膏的结晶水受热后脱除,在脱结晶水的过程中二水石膏吸收很大的燃烧热,从而降低燃烧物的表面温度,且在脱除的结晶水时燃烧物表面容易形成水蒸气气幕,起到隔绝氧气的作用,从而也能起到阻燃作用。形成的无水石膏也是绝热体和阻燃物。正是由于石膏的优良阻燃特性,其制备的石膏复合材料被广泛应用于建筑中。

2.1.2 纤维加强型水泥板材

以水泥为基材,添加适当的胶粘剂,在向其中加入石棉或者玻纤,即可制备得到纤维增强型水泥板材。它具备板材厚度较小、板材质量较轻、板材的力学性能优良(抗拉强度和抗冲击强度高)、耐候性较好和阻燃性能优良等特点,这种材料被广泛应用于各类墙体及复合墙体方面。

2.1.3 以钢丝网为芯的复合板材

在钢丝网上覆盖轻质板或者轻质混凝土为即可制备钢丝网型复合板,这种复合板材结合了很多种材料的多种优良特性,其在减薄墙体的厚度和减轻墙体的重量方面起到十分显著的作用。

2.1.4 金属基板材及其复合材料

金属基板材及其复合材料是常见的金属型防火材料。这种材料耐火性能优良,属于难燃型材料。

2.2无机轻质防火材料

2.2.1 岩棉和矿渣棉

岩石在高温处理后即可制成的人造纤维,这种纤维就是岩棉,这种纤维阻燃性能较好及低导热系数等性能,因此其可被做为一些防火装备和防火绝热板材。利用冶金炉中的矿渣制备的纤维为矿渣棉,这种材料具有阻燃性能好、较低的导热系数等特点。上述两种纤维在建筑保温材料方面得到广泛应用。

2.2.2玻璃棉

玻璃棉也是一种人造纤维材料,其以白云石和蜡石等为原料制成的不燃性材料。玻璃棉具有很多优点,其在建筑防火和保温材料应用广泛。

2.2.3 硅酸铝型纤维

硅酸铝型纤维是质轻、耐火性优良的人造纤维,是一种新型耐火材料。其制品可在建筑和装饰材料方面得到广泛应用。

2.2.4 膨胀型珍珠岩

膨胀型珍珠岩具有轻质、多功能和耐火性优良等优点,其主要以珍珠岩矿石为原材料制备而成,其在建筑保温、防火和吸声方面应用广泛。

2.3 阻燃和自熄灭型泡沫塑料

阻燃和自熄灭型泡沫塑料:自熄灭型PS(聚苯乙烯)发泡材料、阻燃型PS(聚苯乙烯)发泡材料、阻燃型PU(聚氨酯)发泡材料、PVC(聚氯乙烯)发泡材料、脲醛发泡材料等。这些材料在建筑物防火、保温及装饰等方面得到广泛应用。

2.4 板材和砌块材料

2.4.1 加气混凝土型轻质材料

加气混凝土型轻质材料分为砌块和条板两种制品。加气混凝土是以含钙型材料、含硅型材料制成混凝土型材料,然后加入发气剂制备而成的材料。其在承重墙体和保温材料等方面被广泛应用。

2.4.2 轻质混凝土型材料

利用水泥为主要原材料,对主体材料进行改性或者配方调节即可制成轻质混凝土砌块和板材,这种产品具有种类和用途多样性等优点,这种材料主要在保温、防火、隔声等方面被广泛应用。

2.4.3 由粉煤灰制备的墙体材料

粉煤灰墙体材料主要是指粉煤灰型砌块和粉煤灰空心小型砌块。通过调节粉煤灰、石膏、石灰等原料的比例或者对原料进行改性即可制成不同类型的粉煤灰型砌块,其主要应用于工业建筑及民用墙体。通过调节粉煤灰、水泥等原料的比例或者对原料进行改进即可制成的粉煤灰空心小型砌块,其在建筑中也得到广泛的应用。

2.4.4 其他类型的阻燃材料

其他类型的建筑阻燃材料包括改性防火型吊顶板、无卤阻燃型胶合板、耐火级木地板等。隔绝材料表面的氧气和降低材料表面燃烧温度是一般防火材料的阻燃机理。当材料中的阻燃剂在火灾中遇热后熔化后,带走材料表面大量热量,从而有效的降低防火材料表面温度;且阻燃剂在材料表面易于形成致密的碳层,这样起到隔绝氧气作用;与此同时,材料能产生较多的不可燃性气体也起到隔绝材料表面空气的作用。为了有效降低建筑物的火灾危险性,阻燃型材料被广泛应用于装修建筑内部 [1]。

三、新型防火材料的研发方向

3.1 防火板材技术发展趋势

新型防火板材的发展方向主要参考环保要求,因此主要有:利用无机物做基体制备复合板材或者采用轻质材料来制备复合板材。在降低建筑器件的成本方面,厚度较薄、质量较轻的防火板越来越受到青睐。

3.2 新型阻燃材料的开发

为了有效确定高分子材料的安全使用,很多研发人员开发了新型的阻燃技术。严格的环保规定和阻燃标准对阻燃型高分子材料提出了新的挑战, 因此阻燃和环保相结合已经成为新型高分子阻燃材料的发展方向[2]。

3.3 防火涂料技术发展趋势

防火涂料通常是通过加入阻燃剂来实现阻燃作用, 因此防火涂料的发展方向主要有: 调节配方使涂料中多种阻燃剂发挥协同作用;制备具有阻燃效果的催化剂和发泡剂,这样可以猝灭氧自由基或者形成致密碳层隔绝氧气;制备无卤阻燃剂,然后添加到无机防火涂料中,这样制备的涂料可以达到环保要求。

3.4 防火封堵材料技术的开发

向材料中加入卤素阻燃剂来增强材料的阻燃性能是大部分阻燃材料进行阻燃实现的途径,防火封堵材料大部分也是采用这种方式来达到阻燃效果。目前,很多国家出于对环境保护的要求,对燃烧时产生毒性和酸性气体的防火封堵材料进行了禁止使用的规定,所以制备新型无卤阻燃助剂已成为全球新型阻燃材料开发的必然发展态势[3]。

3.5 绿色防火材料的开发

随着人们对环保要求越来越高,以可循环使用的材料或可再生资源制备绿色防火材料在建筑材料领域发挥着越来越重要的作用,尽量把制备低毒、低烟和无污染性等特性的材料做为创新点。例如近期开发洁净阻燃型材料, 这种材料具有燃烧时没有太多烟气放出且燃烧时没有浓烈刺鼻的气体放出,因此为火宅现场的人员疏散逃生创造了有利条件和争取了时间, 而且在降低起火灾方面起到十分重要的作用[4]。

四、结束语

无论是传统的防火材料或者新型防火材料的开发方面,国内企业与国际先进水平相比差距较大,这即是国内企业需要解决的难题,同时开发成功的新型防火材料也可以给企业带来十分显著的经济效益。因此国内生产防火材料的企业应注重品种、质量、性能的创新,以市场为导向,设计高品质的阻燃产品,从而提高我国防火材料的创新能力和生产水平。同时,由于人们对环保提出越来越高的要求,因此努力开发环保化和绿色化新型防火材料。

生物质燃料优势篇(8)

用于工业生产的锅炉更注重高效率、低污染、自动化、低成本(金属消耗量);而生活锅炉则追求低污染、自动化、安全可靠。本文对供热锅炉的发展趋势进行简要的分析。

1、锅炉燃用优质燃料

我们知道,锅炉燃用动力燃料。所谓动力燃料是指除了其燃烧放热可供利用外,在其他方面没有更大经济价值的燃料,主要是劣质燃料。由于国情原因,多年来,我国锅炉一直被限制使用劣质燃料。我国对供热锅炉的燃料政策在1990 年以前主要倾向于以煤为主,例如1988年底,国家煤代油办公室还发出名为以煤代油、节油的奖励办法和补贴标准的文件。随着高层民用建筑的发展、高新经济技术开发区的建设、环保要求的提,以及我国勘探到的天然气和煤层气储量的增加和我国进口能源政策的拓宽都促使供热锅炉中燃油和燃气的比例相应提高。采用燃油或燃气供热锅炉不仅可以提高锅炉热效率,而且对于改善烟气排放污染物具有显著效果。

2、锅炉用低劣的燃料的方向发展

锅炉在向燃用优质燃料的方向发展的同时,也向燃用品位更为低劣的燃料的方向发展。众所周知,随着工业化进程的加快以及人民生活水平的提高,城市垃圾已经严重影响了人类的生存环境,也困扰了城市的发展。传统的垃圾处理方法是填埋、焚烧和堆肥。而对垃圾的更进一步处理,就是垃圾能源化。这巳成为当前世界处理垃圾的热点,其中以垃圾为燃料的垃圾锅炉也成为锅炉制造业中的热点。

垃圾在锅炉中直接燃烧是各国垃圾能源化的主要手段。目前尚存在的难题是受热面管子的高温腐蚀,其中主要是塑料等垃圾中的C1和Na、 K等元素对金属的腐蚀;以及不可燃物质从炉内的排出问题。各国所采用的炉型繁多,但主要有流化床燃烧锅炉、回转窑式锅炉和机械炉排锅炉等三种。

采用流化床燃烧锅炉时,垃圾需进行预分选和破碎,然后送入流化床内燃烧。此类锅炉预处理费用高,炉前易臭味外逸,影响环境。机械炉排锅炉是目前用得最广泛的一种垃圾锅炉,其关键是炉排的结构和布置。炉排片一般用高铬钢浇铸后精加工制成,布置成水平或倾斜。炉排可分为预热段、燃烧段和燃尽段,并由固定炉排和运动炉排相隔组成。

3、洁净煤技术的开发

鉴于煤炭仍是锅炉主要燃料但对环境污染严重的事实,各国都竞相开发洁净煤技术。所谓洁净煤技术是指从煤炭开发到利用的全过程中,旨在减少污染排放与提高利用效率的加工、燃烧、转化及污染控制等新技术。主要包括煤炭洗选、加工转化、先进发电技术、烟气净化等方面的内容。

煤炭洗选是指通过物理或化学的方法,降低原煤中灰分、硫分、矸石等杂质的含量,并按不同煤种、灰分、低位发热量和粒度分成若干等级,以满足不同用户的需要。煤炭经洗选后可显著低灰分和硫分的含量,减少燃烧后烟尘、二氧化硫等污染物的排放。

配煤技术是将不同品质的煤经过筛选、破碎,按比例配合等过程,并辅以一定的添加剂,以改变动力煤的化学组成、岩相组成、物理特性和燃煤性能,达到充分利用煤岩资源、优化煤炭产品结构、煤质互补,适应用户燃煤设备对煤质要求,提高燃煤效率和减少污染物排放。

型煤是用一种或数种煤与一定比例的粘结剂、固硫剂等,加工成一定形状尺寸和有一定理化性能的块状燃料或原料。型煤也可以是粉煤及一定比例的煤泥等其他低位发热量较低的燃料或废弃物,加上粘结剂、添加剂加工成型煤的,有的燃烧特性还超过了原煤的燃烧特性。

由于煤炭资源丰富,水煤浆的加工工艺简单,与煤炭气化、液化相比, 投资少、成本低。作为代油燃料,许多国家基于长期的能源战略考虑,将其作为以煤代油的燃料技术进行研究、开发和储备,且已有商品化使用。

4、生物质能技术的发展

近几十年来,大气中的各种温室气体浓度正不断增加,它们对全球气候变化的影响已引起了人们广泛的注意。各种温室气体中,以二氧化碳的危害最为严重。大气中的二氧化碳含量在最近20年中已增加了 27%。据估计目前每年约有260亿!二氧化碳被排入大气,其中大约有80%是由于煤、石油、天然气等矿物燃料的燃烧而引起的。

从长远观点看,二氧化碳零排放技术显然是解决问题的最根本途径。在这些零排放技术中,生物质能又是其中最具潜力的。

减少化石燃料的使用,提高能源的转换效率,积极发展软能源,是降低大气中二氧化碳含量的直接方法。二氧化碳的排放与动力设备的热效率有着直接的关系,例如,对相同的供电负荷而言,若发电机组的效率提高一倍,就意味着所排放的二氧化碳减少了一半。在不久的将来,燃用化石燃料的发电机组最大效率可达45%,最高限度可望达到47%。与现在的发电效率相比,尤其是与效率低下的发电机组相比,通过提高效率来降低二氧化碳排放是有着重要现实意义的。

除了通过削减化石燃料的消耗量来降低二氧化碳的排放量外,还有控制二氧化碳的排放,或者说吸收、分解脱除或分离已生成的二氧化碳。尽管目前有许多烟气净化方法可以用来控制氮氧化物和硫氧化物的排放,但还没有有效的控制二氧化碳排放的方法。

粉煤灰是煤燃烧排放出的一种粘土类火山灰质材料。狭义地讲,它就是指锅炉燃烧时,烟气中带出的粉状残留物,简称灰或飞灰;广义地讲,它还包括锅炉底部排出的炉底渣,简称炉渣。灰和渣的比例随着炉型、燃煤品种及煤的破碎程度等不同而变化,目前世界各国普遍使用的固态排渣煤粉炉,产灰量占灰渣总量的80%~90%。电厂灰渣的大量排放,促使对粉煤灰资源的综合利用的重视。近年来,粉煤灰的综合利用已逐渐形成了一个新兴产业。

目前,粉煤灰主要用在建筑工程和基础工程中。在精细化工利用方面研究得也较多。

四、结语

总之,供热锅炉技术已发展到了这样水平:燃料向多元化、洁净化方向发展;水仍是占绝对优势地位的供给锅炉的工作介质,但近年来,由于加热工艺的要求,也出现了以有机介质为锅炉工作流体的锅炉;工作压力的范围得到拓宽, 相继出现了真空相变供热锅炉,小型超临界压力贯流锅炉等;供热锅炉的容量向两个方向上都有很大发展,小容量的家用壁挂式燃油燃气锅炉在我国得到快速发展,同时,由于集中供热的要求,供热锅炉的容量大幅度提高,并且向热电联产、热电冷联产方向发展;由于对提锅炉效率、节约能源的日益重视,排烟温度很低的冷凝式锅炉得到发展;锅炉自动控制水平、智能化水平得到空前提高。

生物质燃料优势篇(9)

我国是农业生产大国,农村发展随着新格局的改变,做出了政策性的调整,农村农作物废弃物回收利用,依靠生物质能得到一定经济效益,且缓解环境污染,减少浪费。国家重视新能源的开发和利用,在这样的情况之下,生物质能必然会成为重要的研发对象。

1 生物质固体成型燃料研究现状

1.1 国内外生物质固体成型燃料研究的现状

国内现状:生物质燃料具有它固有的特性,比如说它属于一种可再生资源,重复利用度高,完全符合国家可再生资源的条件,在掌握好其优势的情况下,运用到实际中,使得资源合理利用,这是发展的趋势所在。那么,在国内,随处可见农民利用生物质能实现农村收割后留下的秸秆,将其成型的批量生产,达到实现农村经济利益化的结果。我国在技术上存在着一些缺陷,这些缺陷导致在生产量上不能达到一定规模,还有运输不便的问题等,这些是需要解决的,而且高新的技术是国内需要学习和借鉴的。

国外现状:在国外,生物质能的研究和开发项目已经趋向成熟,比如说美国、英国、澳大利亚等发达国家,在技术上的钻研已经有了很大的突破,而且技术基本已经成型。在面对全世界的关注和重视,国家已经大范围的提高对生物质能的高度认识,对于生物质能的开发已经成为重中之重。对于能源的转化,这是资源再利用后的创新结果。国外很多生产者,已经大量的对这块领域投入精力,在资金和技术上都得到了相应的投资。目前,很多国内生产企业者,引用国外先进的技术,学以致用,将生物质固体成型燃料得到有效的利用和加工,在得到技术上的指引之下,正在积极提高自身能力和作为。

1.2 了解生物质能的应用情况,客观理解研发的意义

十二五规划建设中不断的提出要规划农村城镇建设,缩进农村与城市的距离。这一大的发展方向,是需要农村和城镇共同努力创造的。生物质能源为农村城市建设提供了良好的契机,也为生产者提供了回报社会的机会。

那么,对于可再生资源的合理配置优化问题上,不能理解,目前农村在农作物上的废弃物的利用,是推动农村发展的动力和指向。生物质能的利用在农村已经很普遍。结合工厂的加工利用,解决了农村不少供热供暖的问题。生物质固体成型燃料的研究,在新的领域中发挥其作用,比如城镇的修建中,我们可以看到解决了不少城市采暖问题。

不论在农村还是城市,生物质能的应用,遍布在工业园、社区等地方。在化工和农业发展上,得到良好的资源配置,将其转化为新能源新动力,这是国家在农业规划中取得的一大进步。在长远的发展目标下,我国会不断将生物质能的研发作为首要任务,不断突破技术和大规模生产的目标,变废为宝转为实在生产力。

1.3 分析生物质能的优势与劣势,进一步规避风险

第一,在优势上,优胜略汰,创新发展是根本。我国是农业大国,资源十分的丰富,在许多废弃利用的例子上显而易见,不仅能达到经济上的效益,而且有效的解决了一些就业难的问题。企业想要立足社会,需要不断的竞争中获得地位,那么在生物能源研究发展这块领域,有很大潜力和竞争力。很多企业学习国外先进的技术,将生物质固体燃烧能源技术应用纯熟。优胜略汰,适者生存的法则,使生物质能的研发与利用成为烫手山芋。

第二,国家的重视,企业的技术发展,带来可观收益。在规划农村建设问题,以及农业发展问题上,国家的政策支持,给予很大的鼓励。这使得大批的生产企业者,大胆创新,不断突破新的技术,研发出可行性技术,及时与农村农业废弃利用相互接应。这样推动了企业与农村建设。给农民和企业者以及国家带来了良好效益。

第三,在现代社会中,生产线上存在着不能大规模生产的缺点,如能将这缺点得以解决,在生产效益方面会得到很大的提高。这是在技术上应不断突破的重要一点,日本、美国等国家,应用生物质能研究的技术比较先进,这需要生产中不断学习和丰富经验,也是一个重要的发展目标和方向。

2 发展前景可观,生物质能源仍旧是未来趋势导向

2.1 媒体杂志报道,新观点推波助澜

在各种杂志和媒体报道上,已经足够引起社会关注度。重视程度的轻重也决定其走向,我国是农业生产大国,最近由《农经》杂志社主办的一期研讨会上,与会专家也发表了观点。在未来发展趋势上,作为秸秆生产大国,面对生物质固体成型燃料研究上,需要不断的学习新的技能和经验,补充自身不足,达到优质的标准。这些可以通过与国外进行学习和交流,一来可以促进中外合作,二来可以推进秸秆新技术,给整体行业链接做扎实的基础。促进行业产业的全面发展。

2.2 规模化应用是发展关键

顺应国家文明建设和城镇规划的要求,我国电力供应不足、农村生活改善方面,都需要实现生物质能源规模化应用的策略。目前,高温的天气,导致地方提起进入电力供应不足的高峰。我国目前应用较多的是农作物秸秆以及农产品余物上,加上废弃物以及家禽废物等,这些残余物每年达到十多亿吨。因此,为实现生物质能规模化应用势在必行。

2.3 政策利好助推产业发展

生物质能在政府推行的政策下,使产业得到迅猛发展。生物质能源是世界四大能源之一,在农业资源领域、城市中、林业资源、工厂废水还有畜禽粪便上应用广泛。在实现生物质能的合理利用中,面临着很多考验,面对系列的问题,在政策上得到应允,是项目开展的首要条件。企业给国家带来良好效益的同时,国家也为中小企业发展难提供良好的平台。

2.4 解决环保问题,缓解能源短缺

生物质能源转化为优质资源,在以往,农村经常可见的现象,如在收割完农作物后,将其剩下的部分燃烧,这使得空气污染加重,在其合理资源利用下,减少了废弃物对空气的污染。在工厂、学校、城市、医院方面,在采暖以及电力、燃料方面解决了能源短缺的问题。

3 生物质固体成型燃料研究的发展目标

对于生物质能的研究,我国树立了长远的目标。在国家的重视之下,生物质能发展越来越快,经过不断的创新和学习新的技术,给国家和社会做出了贡献。十二五规划一直都非常重视农村发展建设问题,也对生物质资源的发展给予大幅度支持。尤其针对生物质成型燃料,在其发现具可再生利用资源之初,就注定其发展会随着经济腾飞,实现其价值。国家政策支持,对生物基础质成型燃料在今后的应用广泛奠定了基础,并且树立了长远的发展目标。

4 结语

目前,国家能源局和农业部正在进行生物质固体成型燃料行业标准出台工作,包括固体成型燃料的分级标准、燃烧器技术和成型设备关键部件等规范。根据前文所述,在国内外新的发展格局下,拥有国家政策对生物质固体成型燃料研究的大力支持,通国不断努力学习,突破技术上和大规模生产的问题,我国有充足的资本和信心将生物质能推向更高更远的发展。

生物质燃料优势篇(10)

20世纪70年代,国际上第一次石油危机使发达国家和贫油国家重视石油替代,开始大规模发展生物质能源。生物质能源是以农林等有机废弃物以及利用边际土地种植的能源植物为主要原料进行能源生产的一种新兴能源。生物质能源按照生物质的特点及转化方式可分为固体生物质燃料、液体生物质燃料、气体生物质燃料。中国生物质能源的发展一直是在“改善农村能源”的观念和框架下运作,较早地起步于农村户用沼气,以后在秸秆气化上部署了试点。近两年,生物质能源在中国受到越来越多的关注,生物质能源利用取得了很大的成绩。沼气工程建设初见成效。截至2005年底,全国共建成3764座大中型沼气池,形成了每年约3.4l亿立方米沼气的生产能力,年处理有机废弃物和污水1.2亿吨,沼气利用量达到80亿立方米。到2006年底,建设农村户用沼气池的农户达2260万户,占总农户的9.2%,占适宜农户的15.3%,年产沼气87.0亿立方米,使7500多万农民受益,直接为农民增收约180亿元。生物质能源发电迈出了重要步伐,发电装机容量达到200万千瓦。液体生物质燃料生产取得明显进展,全国燃料乙醇生产能力达到:102万吨,已在河南等9个省的车用燃料中推广使用乙醇汽油。

(一)固体生物质燃料

固体生物质燃料分生物质直接燃烧或压缩成型燃料及生物质与煤混合燃烧为原料的燃料。生物质燃烧技术是传统的能源转化形式,截止到2004年底,中国农村地区已累计推广省柴节煤炉灶1.89亿户,普及率达到70%以上。省柴节煤炉灶比普通炉灶的热效率提高一倍以上,极大缓解了农村能源短缺的局面。生物质成型燃料是把生物质固化成型后采用略加改进后的传统设备燃用,这种燃料可提高能源密度,但由于压缩技术环节的问题,成型燃料的压缩成本较高。目前,中国(清华大学、河南省能源研究所、北京美农达科技有限公司)和意大利(比萨大学)两国分别开发出生物质直接成型技术,降低了生物质成型燃料的成本,为生物质成型燃料的广泛应用奠定了基础。此外,中国生物质燃料发电也具有了一定的规模,主要集中在南方地区的许多糖厂利用甘蔗渣发电。广东和广西两省(区)共有小型发电机组300余台,总装机容量800兆瓦,云南也有一些甘蔗渣电厂。中国第一批农作物秸秆燃烧发电厂将在河北石家庄晋州市和山东菏泽市单县建设,装机容量分别为2×12兆瓦和25兆瓦,发电量分别为1.2亿千瓦时和1.56亿千瓦时,年消耗秸秆20万吨。

(二)气体生物质燃料

气体生物质燃料包括沼气、生物质气化制气等。中国沼气开发历史悠久,但大中型沼气工程发展较慢,还停留在几十年前的个体小厌氧消化池的水平,2004年,中国农户用沼气池年末累计1500万户,北方能源生态模式应用农户达43.42万户,南方能源生态模式应用农户达391.27万户,总产气量45.80亿立方米,相当于300多万吨标准煤。到2004年底,中国共建成2500座工业废水和畜禽粪便沼气池,总池容达到了88.29万立方米,形成了每年约1.84亿立方米沼气的生产能力,年处理有机废物污水5801万吨,年发电量63万千瓦时,可向13.09万户供气。

在生物质气化技术开发方面,中国对农林业废弃物等生物质资源的气化技术的深入研究始于20世纪70年代末、80年代初。截至2006年底,中国生物质气化集中供气系统的秸秆气化站保有量539处,年产生物质燃气1.5亿立方米;年发电量160千瓦时稻壳气化发电系统已进入产业化阶段。

(三)液体生物质燃料

液体生物质燃料是指通过生物质资源生产的燃料乙醇和生物柴油,可以替代由石油制取的汽油和柴油,是可再生能源开发利用的重要方向。近年来,中国的生物质燃料发展取得了很大的成绩,特别是以粮食为原料的燃料乙醇生产已初步形成规模。“十五”期间,在河南、安徽、吉林和黑龙江分别建设了以陈化粮为原料的燃料乙醇生产厂,总产能达到每年102万吨,现已在9个省(5个省全部,4个省的27个地(市))开展车用乙醇汽油销售。到2005年,这些地方除军队特需和国家特种储备外实现了车用乙醇汽油替代汽油。

但是,受粮食产量和生产成本制约,以粮食作物为原料生产生物质燃料大规模替代石油燃料时,也会产生如同当今面临的石油问题一样的原料短缺,因此,中国近期不再扩大以粮食为原料的燃料乙醇生产,转而开发非粮食原料乙醇生产技术。目前开发的以木薯为代表的非食用薯类、甜高粱、木质纤维素等为原料的生物质燃料,既不与粮油竞争,又能降低乙醇成本。广西是木薯的主要产地,种植面积和总产量均占全国总量的80%,2005年,木薯乙醇产量30万吨。从生产潜力看,目前,木薯是替代粮食生产乙醇最现实可行的原料,全国具有年产500万吨燃料乙醇的潜力。

此外,为了扩大生物质燃料来源,中国已自主开发了以甜高粱茎秆为原料生产燃料乙醇的技术(称为甜高粱乙醇),目前,已经达到年产5000吨燃料乙醇的生产规模。国内已经在黑龙江、内蒙古、新疆、辽宁和山东等地,建立了甜高粱种植、甜高梁茎秆制取燃料乙醇的基地。生产1吨燃料乙醇所需原料--甜高粱茎秆收购成本2000元,加上加工费,燃料乙醇生产成本低于3500元,吨。由于现阶段国家对燃料乙醇实行定点生产,这些甜高粱乙醇无法进入交通燃料市场,大多数掺入了低质白酒中。另外,中国也在开展纤维素制取燃料乙醇技术的研究开发,现已在安徽丰原生化股份有限公司等企业形成年产600吨的试验生产能力。目前,中国燃料乙醇使用量已居世界第三位。生物柴油是燃料乙醇以外的另一种液体生物质燃料。生物柴油的原料来源既可以是各种废弃或回收的动植物油,也可以是含油量高的油料植物,例如麻风树(学名小桐子)、黄连木等。中国生物柴油产业的发展率先在民营企业实现,海南正和生物能源公司、四川古杉油脂化工公司、福建卓越新能源发展公司等都建成了年生产能力l万~2万吨的生产装置,主要以餐饮业废油和皂化油下脚料为原料。此外,国外公司也进军中国,奥地利一家公司在山东威海市建设年生产能力25万吨的生物柴油厂,意大利一家公司在黑龙江佳木斯市建设年生产能力20万吨的生物柴油厂。预计中国生物柴油产量2010年前约可达每年100万吨。

二、中国生物质能源发展政策

为了确保生物质能源产业的稳步发展,中国政府出台了一系列法律法规和政策措施,积极推动了生物质能源的开发和利用。

(一)行业标准规范生产,法律法规提供保障

本世纪初,为解决大量库存粮积压带来的财政重负和发展石化替代能源,中国开始生产以陈化粮为主要原料的燃料乙醇。2001年,国家计划委员会了示范推行车用汽油中添加燃料乙醇的通告。随后,相关部委联合出台了试点方案与工作实施细则。2002年3月,国家经济贸易委员会等8部委联合制定颁布了《车用乙醇汽油使用试点方案》和《车用乙醇汽油使用试点工作实施细则》,明确试点范围和方式,并制定试点期间的财政、税收、价格等方面的相关方针政策和基本原则,对燃料乙醇的生产及使用实行优惠和补贴的财政及价格政策。在初步试点的基础上,2004年2月,国家发展和改革委员会等8部委联合《车用乙醇汽油扩大试点方案》和《车用乙醇汽油扩大试点工作实施细则》,在中国部分地区开展车用乙醇汽油扩大试点工作。同时,为了规范燃料乙醇的生产,国家质量技术监督局于2001年4月和2004.年4月,分别GBl8350-2001《变性燃料乙醇》和GBl8351-2001《车用乙醇汽油》两个国家标准及新车用乙醇汽油强制性国家标准(GBl835l一2004)。在国家出台相关政策措施的同时,试点区域的省份均制定和颁布了地方性法规,地方各级政府机构依照有关规定,加强组织领导和协调,严格市场准入,加大市场监管力度,对中国生物质燃料乙醇产业发展和车用生物乙醇汽油推广使用起到了重大作用。

此外,国家相关的法律法规也为生物质能源的发展提供保障。2005年,《中华人民共和国可再生能源法》提出,“国家鼓励清洁、高效地开发利用生物质燃料、鼓励发展能源作物,将符合国家标准的生物液体燃料纳入其燃料销售体系”。国家“十一五”规划纲要也提出,“加快开发生物质能源,支持发展秸秆、垃圾焚烧和垃圾填埋发电,建设一批秸秆发电站和林木质发电站,扩大生物质固体成型燃料、燃料乙醇和生物柴油生产能力”。

(二)运用经济手段和财政扶持政策推动产业发展

除制定相应法律法规和标准外,2002年以来,中央财政也积极支持燃料乙醇的试点及推广工作,主要措施包括投入国债资金、实施税收优惠政策、建立并优化财政补贴机制等。一是投入国债资金4.8亿元用于河南、安徽、吉林3省燃料乙醇企业建设;二是对国家批准的黑龙江华润酒精有限公司、吉林燃料乙醇有限公司、河南天冠燃料乙醇有限公司、安徽丰原生化股份有限公司4家试点单位,免征燃料乙醇5%的消费税,对生产燃料乙醇实现的增值税实行先征后返;三是在试点初期,对生产企业按保本微利的原则据实补贴,在扩大试点规模阶段,为促进企业降低生产成本,改为按照平均先进的原则定额补贴,补贴逐年递减。

为进一步推动生物质能源的稳步发展,2006年9月,财政部、国家发展和改革委员会、农业部、国家税务总局、国家林业局联合出台了《关于发展生物质能源和生物化工财税扶持政策的实施意见》,在风险规避与补偿、原料基地补助、示范补助、税收减免等方面对于发展生物质能源和生物化工制定了具体的财税扶持政策。此外,自2006年1月1日《可再生能源法》正式生效后,酝酿中与之配套的各项行政法规和规章也开始陆续出台。财政部2006年10月4日出台了《可再生能源发展专项资金管理暂行办法》,该办法对专项资金的扶持重点、申报及审批、财务管理、考核监督等方面做出全面规定。该《办法》规定:发展专项资金由国务院财政部门依法设立,发展专项资金的使用方式包括无偿资助和贷款贴息,通过中央财政预算安排。

三、中国生物质能源发展中存在的主要问题

尽管中国在生物质能源等可再生能源的开发利用方面取得了一些成效,但由于中国生物质能源发展还处于起步阶段,面临许多困难和问题,归纳起来主要有以下几个方面。

(一)原料资源短缺限制了生物质能源的大规模生产

由于粮食资源不足的制约,目前,以粮食为原料的生物质燃料生产已不具备再扩大规模的资源条件。今后,生物质燃料乙醇生产应转为以甜高粱、木薯、红薯等为原料,特别是以适宜在盐碱地、荒地等劣质地和气候干旱地区种植的甜高粱为主要原料。虽然中国有大量的盐碱地、荒地等劣质土地可种植甜高粱,有大量荒山、荒坡可以种植麻风树和黄连木等油料植物,但目前缺乏对这些土地利用的合理评价和科学规划。目前,虽然在西南地区已种植了一定数量的麻风树等油料植物,但不足以支撑生物柴油的规模化生产。因此,生物质燃料资源不落实是制约生物质燃料规模化发展的重要因素。

(二)还没有建立起完备的生物质能源工业体系,研究开发能力弱,技术产业化基础薄弱

虽然中国已实现以粮食为原料的燃料乙醇的产业化生产,但以其他能源作物为原料生产生物质燃料尚处于技术试验阶段,要实现大规模生产,还需要在生产工艺和产业组织等方面做大量工作。以废动植物油生产生物柴油的技术较为成熟,但发展潜力有限。后备资源潜力大的纤维素生物质燃料乙醇和生物合成柴油的生产技术还处于研究阶段,一些相对成熟的技术尚缺乏标准体系和服务体系的保障,产业化程度低,大规模生物质能源生产产业化的格局尚未形成。

(三)生物燃油产品市场竞争力较弱

巴西以甘蔗生产燃料乙醇1980年每吨价格为849美元,1998年降到300美元以下。中国受原料来源、生产技术和产业组织等多方面因素的影响,燃料乙醇的生产成本比较高,目前,以陈化粮为原料生产的燃料乙醇的成本约为每吨3500元左右,以甜高粱、木薯等为原料生产的燃料乙醇的成本约为每吨4000元。按等效热值与汽油比较,汽油价格达到每升6元以上时,燃料乙醇才可能赢利。目前,国家每年对102万吨燃料乙醇的财政补贴约为15亿元,在目前的技术和市场条件下,扩大燃料乙醇生产需要大量的资金补贴。以甜高粱和麻风树等非粮食作物为原料的燃料乙醇和生物柴油的生产技术才刚刚开始产业化试点,产业化程度还很低,近期在成本方面的竞争力还比较弱。因此,生物质燃料成本和石油价格是制约生物质燃料发展的重要因素。

(四)政策和市场环境不完善,缺乏足够的经济鼓励政策和激励机制

生物质能源产业是具有环境效益的弱势产业。从国外的经验看,政府支持是生物质能源市场发育初期的原始动力。不论是发达国家还是发展中国家,生物质能源的发展均离不开政府的支持,例如投融资、税收、补贴、市场开拓等一系列的优惠政策。2000年以来,国家组织了燃料乙醇的试点生产和销售,建立了包括燃料乙醇的技术标准、生产基地、销售渠道、财政补贴和税收优惠等在内的政策体系,积累了生产和推广燃料乙醇的初步经验。但是,由于以粮食为原料的燃料乙醇发展潜力有限,为避免对粮食安全造成负面影响,国家对燃料乙醇的生产和销售采取了严格的管制。近年来,虽有许多企业和个人试图生产或销售燃料乙醇,但由于受到现行政策的限制,不能普遍享受到财政补贴,也难以进入汽油现有的销售渠道。对于生物柴油的生产,国家还没有制定相关的政策,特别是还没有生物柴油的国家标准,更没有生物柴油正常的销售渠道。此外,生物质资源的其它利用项目,例如燃烧发电、气化发电、规模化畜禽养殖场大中型沼气工程项目等,初始投资高,需要稳定的投融资渠道给予支持,并通过优惠的投融资政策降低成本。中国缺乏行之有效的投融资机制,在一定程度上制约了生物质资源的开发利用。

四、中国生物质能源未来的发展特点和趋势

(一)逐步改善现有的能源消费结构,降低石油的进口依存度

中国经济的高速发展,必须构筑在能源安全和有效供给的基础之上。目前,中国能源的基本状况是:资源短缺,消费结构单一,石油的进口依存度高,形势十分严峻。2004年,中国一次能源消费结构中,煤炭占67.7%,石油占22.7%,天然气占2.6%,水电等占7.0%;一次能源生产总量中,煤炭占75.6%,石油占13.5%,天然气占3.O%,水电等占7.9%。这种能源结构导致对环境的严重污染和不可持续性。中国石油储量仅占世界总量的2%,消费量却是世界第二,且需求持续高速增长,1990年的消费量刚突破1亿吨,2000年达到2.3亿吨,2004年达到3.2亿吨。中国自1993年成为石油净进口国后,2005年进口原油及成品油约1.3亿吨,估计2010年将进口石油2.5亿吨,进口依存度将超过50%。进口依存度越高,能源安全度就越低。中国进口石油的80%来自中东,且需经马六甲海峡,受国际形势影响很大。

因此,今后在厉行能源节约和加强常规能源开发的同时,改变目前的能源消费结构,向能源多元化和可再生清洁能源时代过渡,已是大势所趋,而在众多的可再生能源和新能源中,生物质能源的规模化开发无疑是一项现实可行的选择。

(二)生物质产业的多功能性进一步推动农村经济发展

生物质产业是以农林产品及其加工生产的有机废弃物,以及利用边际土地种植的能源植物为原料进行生物能源和生物基产品生产的产业。中国是农业大国,生物质原料生产是农业生产的一部分,生物质能源的蕴藏量很大,每年可用总量折合约5亿吨标准煤,仅农业生产中每年产生的农作物秸秆,就折合1.5亿吨标准煤。中国有不宜种植粮食作物、但可以种植能源植物的土地约l亿公顷,可人工造林土地有311万公顷。按这些土地20%的利用率计算,每年约可生产10亿吨生物质,再加上木薯、甜高粱等能源作物,据专家测算,每年至少可生产燃料乙醇和生物柴油约5000万吨,农村可再生能源开发利用潜力巨大。生物基产品和生物能源产品不仅附加值高,而且市场容量几近无限,这为农民增收提供了一条重要的途径;生物质能源生产可以使有机废弃物和污染源无害化和资源化,从而有利于环保和资源的循环利用,可以显著改善农村能源的消费水平和质量,净化农村的生产和生活环境。生物质产业的这种多功能性使它在众多的可再生能源和新能源中脱颖而出和不可替代,这种多功能性对拥有8亿农村人口的中国和其他发展中国家具有特殊的重要性。

(三)净化环境,进一步为环境“减压”

随着中国经济的高速增长,以石化能源为主的能源消费量剧增,在过去的20多年里,中国能源消费总量增长了2.6倍,对环境的压力越来越大。2003年,中国二氧化碳排放量达到8.23亿吨,居世界第二位。2025年前后,中国二氧化碳排放量可能超过美国而居首位。2003年,中国二氧化硫的排放量也超过了2000万吨,居世界第一位,酸雨区已经占到国土面积的30%以上。中国二氧化碳排放量的70%、二氧化硫排放量的90%、氮氧化物排放量的2/3均来自燃煤。预计到2020年,氧化硫和氮氧化物的排放量将分别超过中国环境容量30%和46%。《京都议定书》已对发达国家分配了2012年前二氧化碳减排8%的指标,中国是《京都议定书》的签约国,承担此项任务只是时间早晚的问题。此外,农业生产和废弃物排放也对生态环境带来严重伤害。因此,发展生物质能源,以生物质燃料直接或成型燃烧发电替代煤炭以减少二氧化碳排放,以生物燃油替代石化燃油以减少碳氢化物、氮氧化物等对大气的污染,将对于改善能源结构、提高能源利用效率、减轻环境压力贡献巨大。

(四)技术逐步完善,产业化空间广阔

从生物质能源的发展前景看,第一,生物乙醇是可以大规模替代石化液体燃料的最现实选择;第二,对石油的替代,将由E85(在乙醇中添加15%的汽油)取代E10(汽油中添加10%的乙醇);第三,FFVs(灵活燃料汽车)促进了生物燃油生产和对石化燃料的替代,生物燃油的发展带动了传统汽车产业的更新改造;第四,沼气将规模化生产,用于供热发电、(经纯化压缩)车用燃料或罐装管输;第五,生物质成型燃料的原料充足,技术成熟,投资少、见效快,可广泛用于替代中小锅炉用煤,热电联产(CHP)能效在90%以上,是生物质能源家族中的重要成员;第六,以木质纤维素生产的液体生物质燃料(Bff。)被认为是第二代生物质燃料,包括纤维素乙醇、气化后经费托合成生物柴油(FT柴油),以及经热裂解(TDP)或催化裂解(CDP)得到的生物柴油。此外,通过技术研发还将开拓新的资源空间。工程藻类的生物量巨大,如果能将现代生物技术和传统育种技术相结合,优化育种条件,就有可能实现大规模养殖高产油藻。一旦高产油藻开发成功并实现产业化,由藻类制取生物柴油的规模可以达到数千万吨。

上一篇: 班级文化的营造 下一篇: 饮食安全教育
相关精选
相关期刊