多层建筑结构设计汇总十篇

时间:2023-09-07 17:40:51

多层建筑结构设计

多层建筑结构设计篇(1)

中图分类号:TU71 文献标识码:A

1关于框架结构体系的分析

在施工过程中,为促进工程结构体系的健全,满足其建筑的抗侧力及其承重力的需求,需要对房屋结构的薄弱环节进行优化设计。通过对框架的相关链接模式的应用,促进其实际难题的解决。在框架的纵、横方向上我们要进行其刚接模的应用。在此过程中,如果不存在其他的抗侧力体系,我们就称之为纯框架结构。这种结构的抗侧力及其承载力的提升,需要实现对刚接框架的有效控制。

工程建设中承重墙环节的优化,有利于实现对建筑空间的有效应用,从而促进其建筑功能的提升。实现对其空间功能的有效应用,促进其建筑立面设计环节的优化。方便其结构构件的有效控制,方便实际施工环节的优化。通过对框架结构各个环节的刚度均匀性的控制,来保障其抗震能力的提升。由于其框架结构体系的优越性,其得到了多层钢结构住宅的有效应用。由于其框架结构的侧向刚度问题,容易导致比较大的侧向位移的出现,不能实现对其整体结构的有效控制。很容易引起非结构构件以及整体结构的破坏,这也是框架结构的主要缺点。在设计时要注意梁柱的截面尺寸和连接节点刚度,因为它们对该结构的侧向刚度影响很大,同时要遵守“强柱弱梁”和“强节点弱构件”的原则,从而减小地震反应,以确保结构的安全。

2关于框架支撑体系及其剪力墙体系的分析

所谓的框架支撑体系就是针对框架结构的应用,通过对建筑的纵横方向的控制,进行其结构体系的优化,其相应用模式与框架结构体系类似。其框架支撑体系的平面设置也具备灵活性的特点,实行了建筑空间的有效应用,有利于促进其制作环节、设计环节、施工环节的优化,从而促进其高层钢结构住宅的结构体系的深化应用。正是由于框架支撑体系的应用,才促进框架结构的优化,从而促进其抗侧能力的提升,实现其框架系统及其支撑系统的有效应用,实现对水平剪力环节的有效控制,从而有效降低结构的侧移距离,促进整体施工工程的完善。框架和支撑两系统的侧向变形协调一致,降低了支撑上部和框架下部的较大层间位移角的数值,从而使各层的层间位移角得到了有效的控制。框架-支撑体系作为一种双重抗侧力体系,即使在罕遇地震下支撑系统发生破坏,结构自动进行内力的调整,使框架结构承担相应的水平荷载,起到了两道抗震设防的目的,进一步增强了结构的安全度。由于受到支撑系统的影响,框架-支撑体系的钢结构房屋在建筑立面设计、门窗布置不像框架结构那么自由,并且经常与支撑的布置发生冲突。这也是框架-支撑结构体系最主要的缺点。

在实际工作中,剪力墙体系的应用有效,促进结构水平剪力的有效控制,保障结构的侧向刚度的有效控制,满足了建筑施工的需要。框架剪力墙体系仍作为一种双重抗侧力体系,并且框架与剪力墙两者协同工作,也使层间位移得到了很好的控制,减少了非结构构件在地震作用下发生破坏的可能性。由于剪力墙的侧向刚度很大,尤其是钢筋混凝土剪力墙,在地震时很容易造成应力集中,结构发生脆性破坏,通常的做法是在墙体中每隔一定间距设置竖缝。对于钢板剪力墙结构,应力集中相对较小,但仍能起到刚性构件的作用。

3关于框架-核心筒体系及其墙板体系的分析

该模式的应用离不开对框架剪力墙体系或者支撑体系的应用,通过对这两种模式的应用,促进其外侧周边设计钢框架环节的有效应用,从而保障了高层建设的应用需要。确保其多层钢结构房屋综合效益的提升,实现了其相关性能的有效使用。在应用过程中,由于其筒体的抗侧刚度的影响,其抗扭能力是比较强的,我们通过应用于日常楼梯建设、电梯建设等,这一环节的应用,有利于其材料的利用率的提升,有利于建筑的内部施工环节的优化。和框架支撑体系、框架剪力墙体系类似,筒体承担90%以上的水平力的作用和全部扭矩,竖向荷载则由核心筒和框架按一定的比例分配来承担。核心筒与框架的协同工作,同样很容易满足结构的层间位移以及整体变形的限值。虽然该体系中的核心筒的刚度很大,但其延性相对较差。尤其是在地震持续作用下,筒体很容易产生裂纹造成刚度下降,造成结构整体侧移过大。因此在强震地区要采取必要的措施或者改用筒中筒等体系。

其框架墙板体系的应用是以框架作为应用前提的,它实现了对框架这一基本结构的应用,通过对其建筑纵、横方向的有效应用,实现对其预制墙板结构体系的优化,该体系的应用,需要进行钢筋混凝土墙板的有效预制,促进其竖缝环节的应用,从而实现对其壁柱环节的优化,确保其耗能环节的控制。该模式的应用有利于实现地震能量的吸收,有利于抗震性能的提升。在实际运用过程中,我们需要进行其墙板预制环节的优化,避免出现刚度突变的现象。多层民用钢结构房屋的结构体系各有优缺点,但最主要的区别是结构的抗侧力体系不同,因而抗侧能力也不同。对于层数不多、抗震设防要求不高的建筑物,应优先考虑采取框架结构体系,对抗震设防要求较高的建筑物,宜优先考虑采取框架-支撑结构体系,因为其抗侧力效果显著且构造相对简单。

结语

尽管在多层民用建筑钢结构设计领域已取得一定进展。但我们仍需要继续进行结构系统的优化,确保结构内部各个环节的协调,以满足民众的要求。

参考文献

多层建筑结构设计篇(2)

[ Abstract ] This paper analyzes the high-rise building structure and shear wall structure design, for your reference.

[ Key words ] high-rise building ;structure design; stress analysis

中图分类号:TB482.2 文献标识码:A 文章编号:2095-2104(2012)

1、多层建筑结构设计特点

1.1轴向变形不容忽视

多层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大 还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整:另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。

1.2 侧移成为控制指标

与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。

1.3结构延性是重要设计指标

相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。

2 多层建筑结构分析

2.1 弹性假定

目前工程上实用的所层建筑结构分析方法均采用弹性的计算方法。在垂直荷载或一般风力作用下,结构通常处于弹性工作阶段,这一假定基本符合结构的实际工作状况。但是在遭受地震或强台风作用时,所层建筑结构往往会产生较大的位移,出现裂缝,进入到弹塑性工作阶段。此时仍按弹性方法计算内力和位移时不能反映结构的真实工作状态的,应按弹塑性动力分析方法进行设计。

2.2 小变形假定

小变形假定也是各种方法普遍采用的基本假定。但有不少人对几何非线性问题(P-效应)进行了一些研究。一般认为,当顶点水平位移 与建筑物高度H的比值 /H >1/500时,P- 效应的影响就不能忽视了。

2.3 刚性楼板假定

许多多层建筑结构的分析方法均假定楼板在自身平面内的刚度无限大, 而平面外的刚度则忽略不计。这一假定大大减少了结构位移的自由度,简化了计算方法。并为采用空间薄壁杆件理论计算筒体结构提供了条件。一般来说,对框架体系和剪力墙体系采用这一假定是完全可以的。但是, 对于竖向刚度有突变的结构,楼板刚度较小,主要抗侧力构件间距过大或是层数较少等情况,楼板变形的影响较大。特别是对结构底部和顶部各层内力和位移的影响更为明显。可将这些楼层的剪力作适当调整来考虑这种影响。

2.4 计算图形的假定

多层建筑结构体系整体分析采用的计算图形有三种:

2.4.1一维协同分析。按一维协同分析时,只考虑各抗侧力构件在一个位移自由度方向上的变形协调。在水平力作用下,将结构体系简化为由平行水平力方向上的各榀抗侧力构件组成的平面结构。根据刚性楼板假定,同一楼面标高处各榀抗侧力构件的侧移相等,由此即可建立一维协同的基本方程。在扭矩作用下,则根据同层楼板上各抗侧力构件转角相等的条件建立基本方程。~维协同分析是各种手算方法采用最多的计算图形。

2.4 .2 二维协同分析。二维协同分析虽然仍将单榀抗侧力构件视为平面结构,但考虑了同层楼板上各榀抗侧力构件在楼面内的变形协调。纵横两方向的抗侧力构件共同工作,同时计算:扭矩与水平力同时计算。在引入刚性楼板假定后,每层楼板有三个自由度∪,Ⅴ ,θ, (当考虑楼板翘曲是有四个自由度),楼面内各抗侧力构件的位移均由这三个自由度确定。剪力楼板位移与其对应外力作用的平衡方程,用矩阵位移法求解。二维协同分析主要为中小微型计算机上的杆系结构分析程序所采用。

2.4 .3三维空间分析。二维协同分析并没有考虑抗侧力构件的公共节点在楼面外的位移协调(竖向位移和转角的协调),而且,忽略抗侧力构件平面外的刚度和扭转刚度对具有明显空间工作性能的筒体结构也是不妥当的。三维空间分析的普通杆单元每一节点有6个自由度,按符拉索夫薄壁杆理论分析的杆端节点还应考虑截面翘曲,有7个自由度。

3 剪力墙设计中的基本概念

3.1 剪力墙高和宽尺寸较大但厚度较小,几何特征像板,受力形态接近于柱,而与柱的区别主要是其长度与厚度的比值,当比值小于或等于4时可按柱设计,当墙肢长与肢宽之比略大于4或略小于4时可视为为异形柱,按双向受压构件设计。

3.2 剪力墙结构中,墙是一平面构件,它承受沿其平面作用的水平剪力和弯矩外,还承担竖向压力:在轴力,弯矩,剪力的复合状态下工作,其受水平力作用下似一底部嵌固于基础上的悬臂深梁。在地震作用或风载下剪力墙除需满足刚度强度要求外,还必须满足非弹性变形反复循环下的延性、能量耗散和控制结构裂而不倒的要求:墙肢必须能防止墙体发生脆性剪切破坏,因此注意尽量将剪力墙设计成延性弯曲型。

3.3 实际工程中剪力墙分为整体墙和联肢墙:整体墙如一般房屋端的山墙、鱼骨式结构片墙及小开洞墙。整体墙受力如同竖向悬臂,当剪力墙墙肢较长时,在力作用下法向应力呈线性分布,破坏形态似偏心受压柱,配筋应尽量将竖向钢筋布置在墙肢两端;为防止剪切破坏,提高延性应将底部截面的组合设计内力适当提高或加大配筋率;为避免斜压破坏墙肢不能过小也不宜过长,以防止截面应力相差过大。联肢墙是由连梁连接起来的剪力墙,但因一般连梁的刚度比墙肢刚度小得多,墙肢单独作用显著,连梁中部出现反弯点要注意墙肢轴压比限值。壁式框架:当剪力墙开洞过大时形成宽梁、宽柱组成的短墙肢,构件形成两端带有刚域的变截面杆件,在内力作用下许多墙肢将出现反弯点,墙已类似框架的受力特点,因此计算和构造应按近似框架结构考虑。综上所述,设计剪力墙时,应根据各型墙体的特点,不同的受力特征,墙体内力分布状态并结合其破坏形态,合理地考虑设计配筋和构造措施。

3.4墙的设计计算是考虑水平和竖向作用下进行结构整体分析,求得内力后按偏压或偏拉进行正截面承载力和斜截面受剪承载力验算。当受较大集中荷载作用时再增加对局部受压承载力验算。在剪力墙承载力计算中,对带翼墙的计算宽度按以下情况取其小值:即①剪力墙之间的间距;② 门窗洞口之间的翼缘宽度;③墙肢总高度的110;④剪力墙厚度加两侧翼墙厚度各6倍的长度。

3.5 为了保证墙体的稳定性及便于施工,使墙有较好的承载力和地震作用下耗散能力,规范要求一二级抗震墙时墙的厚度应≥16Omm,底部加强区宜≥200mm,三四级抗震等级时应≥14Omm,竖向钢筋应尽量配置于约束边缘。

4 剪力墙的边缘构造

4.1 结构试验表明矩形截面剪力墙的延性比工字形或槽形截面剪力墙差:计算分析表明增加墙肢截面两端的翼缘能显著提高墙的延性:因此在矩形墙两端设约束边缘构件不但能较显著地提高墙体的延性,还能防止剪力墙发生水平剪切滑动提高抗剪能力。从1989年出版的规范开始在剪力墙中提出了暗柱、端柱、翼墙(柱)、转角墙(柱),也就是目前规范中的约束边缘构件或构造边缘构件的抗震措施。

4.2 对规范的不同理解往往产生了五花八门的设计。有人将每一轴线的墙理解为一片墙仅在端墙设暗柱,有人将凡是拐角或洞口边都设暗柱,而即使是公开发表出版的权威参考书或设计手册对暗柱(翼墙柱)的截面取值也出现了以下三种不同尺寸,因此造成配筋的差别很大,甚至相同的资料由于出版的时间不同,对规范的理解也有所不同。

4.3 从2002年开始实施的建筑结构规范,根据结构类型及受力状况,对剪力墙两端及洞口两侧的加强边缘,按墙肢在重力荷载代表值作用下墙肢轴压比的界线及加强部位要求分为约束边缘构件和构造边缘构件两类。

5 剪力墙结构的厚度和配筋问题

5.1墙的水平分布筋是为横向抗剪以防止墙体在斜裂缝出现后发生脆性剪切破坏,同时起到抵抗温度应力防止混凝土出现裂缝,设计中当建筑物较高较长或框剪结构时配筋宜适当增加,特别在连梁部位或温度、刚度变化等敏感部位宜适当增加。但对于矮、短的房屋,其水平筋的配筋率是否适当减小值得探讨。

5.2墙的竖向钢筋主要起抗弯作用, 目前在一些多层低高层剪力墙中电算结果多为构造配筋;但配筋时所取的配筋率有人往往扣除了约束边缘构件或构造边缘构件中的钢筋,笔者认为竖向最小配筋率应该包括边缘构件中的筋,墙肢的竖向配筋原则也应该尽量将钢筋布置在墙端部边缘区并保证钢筋间距≤300mm,也应该注意防止竖筋过多使墙的抗弯强度大于抗剪强度,对抗震不利。

6 剪力墙结构的超长问题

6.1 剪力墙结构刚度大,受温差影响大,混凝土的收缩、徐变产生的变形大,墙体对楼面、屋面产生的约束也大:当结构发生收缩变形时比其他结构易出现裂缝。一些未超长的剪力墙结构产生墙体或楼面裂缝,其主要原因就在此。

6.2 剪力墙结构多用于商品住房和公寓,使用状况复杂,一旦私人购买的房子出现裂缝,虽然没有安全问题,但处理起来问题多,难度大,社会影响大。

6.3 混凝土结构受温度或收缩徐变的影响与众多因素有关 而体型庞大的剪力墙房屋往往形状复杂,混凝土收缩大,约束应力积聚也大,施工工艺及管理也难控制,环境影响使用变化难于判断,因此更难于解决混凝土收缩变形时,在受约束条件下引起拉应力而保证不出现裂缝。

6.4 目前混凝土的收缩量不断增大,已由8O年代的一般收缩量300 με上升到400 με以上,因此使混凝土用量大的剪力墙产生裂缝的因素在增大。

6.5 目前随着市场形势的变化,大部分工程要赶工加班,质量难保证,为赶工混凝土中水泥用量普遍增大,使混凝土收缩量增大,加上由于混凝土强度的提高,使弹性模量增加将引起更大的约束拉应力产生,增大了结构出现裂缝的因素。

6.6 普遍使用商品混凝土泵送施工,为了泵送,增大水泥用量,减少了中粗骨料含量和骨料粒径,加上泵送混凝土合比和施工送料时的不良因素影响等都加大了结构收缩量,增加产生裂缝的因素。

7 结语

围绕着多层建筑结构 总结了多层建筑结构设计的特点,提出了剪力墙设计的几个问题,以及高层建筑结构分析和各种体系相对应的方法.

多层建筑结构设计篇(3)

大底盘多塔高层建筑结构发展于上个世纪末,所谓的大底盘即就是将许多功能不同的建筑共同建造在一个比较大的空间地盘上,这样的设计理念 能够给建筑底盘上创造一个非常宽松的共享空间和商业空间,继而满足进行商业投资的使用需求。本文就简单的介绍大底盘多塔高层建筑的设计结构。

一、大底盘多塔高层建筑结构概述

大底盘多塔高层建筑主要由两个结构组成,分别是大底盘和塔楼。(1)大底盘:从结构方面看,大底盘和塔楼之间的连接关系非常的多样化,比如底盘和塔楼结构的竖向分布发生间断,并在底盘的底部与塔楼的衔接位置使用转换层。该种结构是比较常见的住宅双塔结构,这种建筑结构对于底盘的要求需要更大的空间,这些空间的作用是提供商业场所或者是公共活动场所,如果是处于这样的设计那么大底盘的刚度相对于上部的塔楼更柔;另一种结构类型是底盘和塔楼结构其竖向分布比较连续,该种结构中上部塔楼的竖向结构会一直延伸到底盘低端。除了塔楼延续下来的结构以外,其他部分的结构均为空间框架结构。该种结构类型的底盘其刚度会明显较大,稳定性增强但是却占用了底盘的空间和建筑布置。

2、塔楼

塔楼一般最长采用的形式为剪力墙结构、框架结构、框筒结构和简体结构等,大底盘多塔楼结构是根据塔楼平面和底盘的平面布置、刚度、高度以及质量等进行划分的话可以分为4种类型,即对成型双塔结构、对称性多塔结构、非对称性双塔结构以及非对称性多塔结构等。

二、大底盘多塔高层建筑结构分析方法

1、常微分方程求解器COLSYS解法

很多学者研究人员采用微分方程对大底盘多塔高层建筑结构进行分析和研究,研究者们采用沿着建筑高度的方向进行分段连续化的方法来建立一个串并联模型,在静力分析时推导出在水平荷载下的微分方程组;在二阶分析时考虑竖向荷载若发生侧向位移对二阶效应产生的影响,继而推导出基本的微分方程;在整体稳定分析时推导出相应的方程式等。

采用常微分方程求解器进行设计结构的求解,在对二阶和精力分析时将其内力和位移求出;而整体稳定分析时则需要考虑临界载荷的变化情况,在对动力特性进行分析时需要将其自振频率和振型的特性讨论和了解。通过使用常微分方程求解器COLSYS解法让复杂的建筑结构设计和二阶分析变得简单,同时使用该种计算结构能够更多的更加有益的设计结论。

2、其它大底盘多塔高层建筑结构分析方法

除过采用常微分方程求解器方法之外,在实际的建筑设计过程中也会应用到其它不同的分析方法。比如在某些建筑会在大底盘多塔结构中设计沉降缝和后浇带,或者只设计沉降缝而没有后浇带的方式进行分析,分别对不同基础形式来对沉降差异进行控制和计算,从而制定出最为合理的地基处理方案和基础形式。在设计的过程中会根据上部建筑使用要求的区别采用扁梁、肋板箱型转移层等;(2)2007年李秋波在其撰写的论文中对大底盘多塔结构的设计进行详细的陈述,深刻的对计算模型的选择、多塔的定义、计算程序参数的定义进行分析,同时还要对计算输出的结果进行比较和分析。叶坤等设计人员还制定了基础隔震是的时程分析计算模型,并以该理论为基础编制了相应的计算程序,从而准确的计算出在地震条件下建筑物各层发生的位移情况,加速度变化情况和剪力情况等。将计算的结果和非隔震情况下的结果进行比对;除此之外叶坤还对在不同温度作用下和地震作用下隔震层的顶板是否能满足平面内刚性情况进行假设实验。

三、大盘低不规则多塔高层建筑结构

1、大底盘不规则多塔高层建筑设计选型

现如今的高层建筑大底盘不规则多塔的设计理念是从抗震设计为出发点的,对此需要对不规则的结构进行判断和分析。一般来讲在高层建筑中不规则大底盘多塔结构根据不规则的程度分为三类,即较不规则、特别不规则以及严重不规则等。对于高层建筑来说其不规则的类型主要有9种。即偏心布置、扭转不规则、组合平面、楼板不连续、凹凸不规则、刚度突出、尺寸突出、构件间断以及承载力突变等。

不规则的大底盘在设计的过程中需要尽可能的减少结构平面的不规则程度,在观察一个大底盘建筑是否规则时其标准为:该建筑不规则的结构超过某一相高层建筑的不规则类型指标的便可以称之为非规则类型;如果有多项超过高层建筑不规则类型指标的那么其程度明显加深,因此被称为特别不规则结构;如果该建筑体所有建筑体型均较为复杂,且没有考虑抗震的情况,因此便称之为严重不规则类型。

2、大底盘高层建筑不规则多塔结构的设计要点

对于不规则高层多塔结构而言,其在设计初期就应该考虑结构的抗震效果,这也是人们普遍关注的问题。在绝大多数的大底盘多塔设计过程中均都采用的是“抗”、“调”、“放”等整体结构设计理念,因此所设计出的新型连体钢结构更加适用于高层建筑中。在现场实践的过程中对技术服务和工程质量等方面进行了深入的研究,经过对其研究发现该种设计思想和设计结果完全能够满足压力考验。

在设计模型中我们可以看出,大底盘多塔结构中那些和塔楼结构较远的构建受到的震动影响非常小,其表明了在水平力的作用下多塔楼不会对远距离的塔楼构件造成大影响。如果大底盘顶层上部塔楼嵌固层的条件满足,那么便可以对塔楼各部分之间的结构进行拆分,在拆分之后这些大结构塔楼同样符合实际的受力情况。另外大底盘顶层的楼板刚度要非常优秀,所以一般在设计的过程中采用人防结构和大底盘顶层楼板相结合的设计方式,其顶层楼板的厚度要达到300mm左右为宜。

3、大底盘高层多塔不规则结构的设计

如果大盘低高层多塔结构设计中对于抗震强度达到9度以上,那么建筑结构的选择上尽量要避免连体、夹层或者转换层等等;如果抗震强度要求在7-8度,那么建筑结构的选用上则遵循剪力墙结构的高度和结构错层建筑房屋的高度保持一致。

四、结束语

由于城市中建筑面积不断扩张,能够利用的建筑空地逐渐缩减,因此为了满足日益增多的人口,那么在房屋建筑方面需要更多的去考虑高层建筑,在高层建筑的发展过程中房屋的设计更加向实际情况靠拢,因此在设计计算时需要将所有的数据计算准确,对于大底盘不规则多塔高层建筑而言,在设计方面要更加趋于合理这样才能保证设计的科学性和质量。

参考文献:

多层建筑结构设计篇(4)

1 前言

近年来国内科技技术的发展进程快速推进,促使国内的各行各业在不断提升自身的发展速度,在建筑行业当中亦是如此。城市范围的不断扩大,使得设计人员为了适应城市发展的需求,开始逐步摒弃旧时的绝对规则性设计理念,正在努力创造出更加独具一格、具有标志性及鲜明特色的建筑设施,向更加特立独行的不规则领域靠拢。随着大众观念的更新,如今的大城市当中也出现了很多的不规则结构建筑,这一趋势在也体现出了我国建筑行业后续的发展方向。

2高层建筑大底盘多塔结构的特点与设计要点

2.1 大底盘多塔结构的特点

该类建筑中所有塔楼的迎风面都是独立的,不必考虑不 同塔楼间的相互作用的风荷载的影响,而且每个塔楼的变形 能力也是独立的,其与底盘之间联系密切。该结构的主要特点为:

a)多塔和大底盘间不规则的竖向构件。底部的大底盘 通常有较大的使用面积,以便实现办公或商业用途,其内收 会改变结构的竖向刚度,将会有结构薄弱的部位出现,所以 在设计时应重视对该部分结构进行加强。多塔结构由于刚 度、质量分布不均颍振型复杂,所以各塔楼应选择相同的结 构类型与平面布置方法,使综合体刚心和质心的距离减小, 结构扭转效应减小。另外应加强连接着多塔间裙房链的屋面 梁,适当提高柱纵向钢筋的最小配筋率,按规范要求对剪力 墙设置约束边缘构件。

b)多样性的结构类型。复杂多塔结构、无裙房多塔结 构、带缝多塔结构都是常见的高层建筑大底盘多塔结构,该 类结构设计的对称要求并不严格,独特性很强,结构多样。

2.2大底盘多塔结构的设计分类

实际设计该类建筑物的结构时,可将结构类型划分为以 下两种:

a)上部多塔楼不以大底盘结构为嵌固端,通常具有商 住功能性或作为商场使用。

b)上部多塔楼以大底盘结构的顶层楼板为嵌固端,主 要是住宅小区(带有地下停车位)。这也是许多商业建筑或地 下车库完成大底盘底部设计后,将抗震缝开设于上部,增设 多塔楼的原因。

3设计高层建筑大底盘多塔结构的重点

3.1 上部多塔结构与大底盘的沉降差异

因为高层建筑具有较多层数,会极大增加地面压力,显 著增加底层大底盘需要承载的负荷,如果该建筑其他部位的 面积大于地基,地基的稳定性就会下降,危害人们的生命财 产安全,若建筑的地基基础出现了不均匀沉降,技术人员应 及时采取措施处理。为避免这种情况,在设计时应重视以下 几点内容。

a)设置沉降缝。将一道永久沉降缝设置于裙房和主楼 的交接部位,使其相互独立,将因沉降不均匀而导致的沉降 差消除。该方法会使工程投人成本增加,并对基础、防水施 工,建筑立面效果产生影响。

b)弱化裙房基础,强化主楼基础。若不设置永久沉降 缝,应选择多种形式的基础,通过变形刚度调平理念对裙房和主楼的沉降差加以调节,使不均虺两党潭燃跚幔提{设 计的经济性、安全性。

C)设置沉降后浇带。将沉降后浇带设置于结构面上,约 每隔30m-40m 一道,其与墙板、底部、顶板贯通,应尽可能将 洞口、楼梯避裕可增设防水层。

3.2结构的计算方法

该建筑结构具有较高的复杂性,与普通高层结构相比受 力特点更加复杂,计算时应对各塔间的变形影响加以考虑, 设计人员应着重考虑如何建模。在实际设计时通常采用单塔 分析手段,进行整体建模(3塔),最关键的步骤就是设计人员 通过一系列操作划分多塔,此时需要先对单塔刚度指标进 行单独分析,并组合差异不大者建模分析,若单塔间刚度差 异较大,为保证准确性应分开计算。另外还有以下几点需要 注意:

a)体型分类,包括分散型(有足够大的多塔间距)和紧 凑型(多塔间距较小)。

b)结构分类,包括复杂大底盘多塔结构、带缝大底盘多 塔结构、不带裙房的大底盘多塔结构、带裙房的大底盘多塔 结构等,以建筑要求的使用功能为依据,合理选择、布置大底 盘结构.

c)建模分类,分为整体模型(适用于紧凑型的大底盘多 塔结构)与离散模型(适用于分散型的大底盘多塔结构)。

4预防大底盘结构出现裂缝的措施

大底盘多塔结构的高层建筑因为具有较大刚度,难以使 基底受力状态保持均匀,由于不平衡受力,底板会在一定程 度上出现变形,逐渐造成地基基础开裂,使建筑的安全和质 量受到影响,所以应重视解决多塔结构与大底盘的连接问 题。在进行连接时,应选择柔性连接或刚性连接方式,然而前 者不仅费用高昂且难以维修,而后者的条件不成熟,均有一 定难度,在设计时可控制以下两方面内容。首先是混凝土等 级和浇筑的控制。以满足防水性、耐久性、承载力等要求为前 提,选择低水化热水泥(C25,C35之间),对砂石骨料的颗粒 级配与含泥量严格控制,完成混凝土浇筑后需按标准实施降 温养护,使其硬化时的收缩应力减小;其次是设置伸s后浇 带。其与沉降后浇带具有相同的设置方法和原则,应贯通 板、梁钢筋,浇筑两侧混凝土 2个月后浇筑后浇带,重视加 强养护。 .

5增强高层建筑大底盘多塔结构强度的设计措施

a)应对称布置底盘和塔楼,使底盘结构的质心尽量接 近塔楼的综合质心,二者的距离需小于底盘相应边长的1/5。

b)多塔结构具有复杂振型,高振型会在较大程度上影 响结构内力,所以若各塔刚度与质量呈不均匀分布,结构扭 转振动会有较大反应,所以应取相似方式设置不同塔楼的 结构类型、竖向刚度、平面布局与楼层数。

c)为使塔楼与大底盘的整体工作得到保证,应加厚底盘 面板,不可低于150mm,双向双层布置楼板钢筋,最小配筋率 在各方向、各层均不应低于0.25%,屋面通长布置不低于1/3 的面筋和腰筋、梁底筋。

d)带转换层塔楼在抗震设计时不应在底盘屋面上层的 塔楼内布置,否则需采取提高转换层和其上、下层的抗震级 别等有效的抗震措施。

e)建筑结构中应为各塔楼设置比较接近的刚度、平面 结构与层数。

6结语

高层建筑大底盘多塔结构的功能特点十分强大,使现代 人日益变更的建筑设计需求得到了极大满足。然而由于大底 盘多塔结构自身具有一定的复杂性,具有较高的设计要求, 所以在设计此类建筑结构时,必须综合考虑所有相关的因 素,除了严格把关技术操作之外,还需要严格把关建筑的质 量问题,使设计过程中存在的所有问题都能得到及时解决, 提高建筑结构设计的经济性、规范性与合理性.

参考文献

[1]及五限,刘广义.不同连接体大底盘多塔高层建筑结构抗 震性能分析[J].工程建设与设计,2013(2):98~102+106.

多层建筑结构设计篇(5)

引言

随着我国城市化进程的加快,现代多层建筑的规模也在不断的扩大,作为城市建筑过程中的最主要的建筑形式,多层建筑的使用优势还是十分明显的,要想对其结构的有效规划就必须要实现对其框架结构的合理设计,下面就多层框架建筑结构设计要点进行分析。

一、多层框架建筑结构的地基基础设计

①在进行多层框架建筑结构地基基础设计时,首先要对工程地质报告进行认真的分析,根据工程的实际情况,在满足地基变形及承载力的要求下,尽量利用天然地基上的浅基础;②在确定地基持力层时,要对地基基础及上部结构进行全面分析,并对土层物理力学性质、建筑结构类型、建筑体型、荷载大小、地下水等各种因素进行全面分析,确保设计的地基基础满足施工需求;③一般情况下,多层框架建筑结构会采用独立基础或者条形基础,在进行基础设计时,首先要根据地基承载力及变形,将基础底面尺寸计算出来,然后再将基础截面计算出来;③在计算基础底面尺寸时,要对覆土重力、地面以下基础等进行分析;④在进行多层框架建筑结构地基基础设计时,还要根据工程地质报告选用合理的方法对地基进行处理,从而确保地基满足施工需求。

二、多层框架建筑结构配筋设计

1、框架柱配筋的调整

一般情况下,框架柱的配筋率比较低,在地震作用下,框架柱会受到大的扭转剪力,同时还会受到双向弯矩的作用,由于框架柱的横梁约束比较小,在双向偏心受压状态下工作时,地震作用力会对内柱产生大的损害,因此在进行框架建筑结构配筋计算时,要选择最不利的方向进行。在配筋计算过程中,为确保框架柱的强度符合相关要求,设计人员要注意:由于在地震作用下,边柱、角柱、抗震墙等会出现偏心受拉的现象,因此,对于这些部分要保证纵筋总截面面积比计算值大25%;为提高箍筋对混凝土的约束,可以将框架柱箍筋形式设计成井字形或者菱形;当多层框架建筑结构的地基处于软弱土层时,可以适当的增大框架柱的配筋。

2、框架外挑梁配筋

在多层框架建筑结构设计中,受建筑使用功能、占地面积等因素的影响,经常会在框架的梁端设计挑梁。由于外挑梁实际荷载和框架梁的荷载有一定的差异,使得外挑梁和框架梁断面尺寸也有所不同,所以在设计过程中,不允许将框架梁的部分主筋延伸到外挑梁上,这会对建筑工程的施工质量造成很大的影响。因此,在进行框架外挑梁配筋计算时,设计人员要认真分析框架外挑梁的受力情况,根据实际情况,合理的配置配筋,从而多层框架建筑结构的承载力提供保障。

3、框架边柱柱顶配筋

在多层框架建筑结构设计中,水平荷载是设计控制的关键因素,由于框架顶层的风力荷载比较大,建筑结构荷载传递到边柱的作用力要远远大于传递到楼层边柱的作用力,因此,柱顶有明显的偏心问题!根据框架结构的要求,横梁上部的钢筋需要全部进入柱中,并且延伸到横梁的下边,而柱中的钢筋,有一部分需要延伸到柱顶,并一部分需要延伸到横梁中,设计人员在进行设计时很容易将边柱柱角的钢筋延伸到梁内,这就会对多层框架建筑结构的水平荷载造成一定的影响!因此,在实际设计过程中,设计人员要特别注意这类问题,从而为多层框架建筑结构的设计质量提供保障。

三、多层框架建筑结构抗震设计

为满足建筑结构的抗震要求,在进行多层框架建筑结构设计时,设计人员要保证梁的刚度取值准确、客观,如果取值无法确定时,要尽量取比较大的值,避免梁的刚度过小,在垂直荷载下,梁端负弯矩计算结果比实际值大,从而增大了梁端负弯矩配筋量,使得抗弯安全储备偏高,在地震作用下,就会引起一些不安全因素!对于梁端负筋,在设计过程中,设计人员要尽量取小的负筋计算值,这样才能为梁端塑性铰的及时出现提供保障。在进行设计时,设计人员要保证梁端负筋配置量低于需求量,或者正好等于需求量,并适当的放宽跨中配筋,对于多层框架建筑结构,为方便施工,设计人员可以将配筋相差在5%以内的梁设置成一种配筋,同时在进行施工时要特别注意,如果施工需要改变材料,要注重对梁铰负筋进行密切的关注,避免因材料的改变,从而引起配置量的改变。

四、多层框架建筑结构设计的问题及处理措施

1、基础联系梁的设计

对于基础埋设比较深的建筑,可以采用基础联系梁,从而有效地减少底层柱的计算长度,联系梁以下的柱,可以利用短柱对其进行加强处理!对于有抗震设计要求的建筑,在基础部分,可以沿着两个主轴的方向,设计基础联系梁,同时要保证基础联系梁的配筋满足梁受力要求。一般情况下,基础联系梁的标高要和基础顶端标高保持一致,如果建筑结构为独立扩展基础时,在施工过程中施工人员要利用混凝土将基础联系梁和独立基础之间的缝隙密封好,然后才能对基础联系梁进行浇筑。在设计过程中,如果设计人员采用基础联系梁对柱底弯矩进行平衡,则设计人员需要按照框架梁设计基础联系梁的截面尺寸和配筋,同时还要保证基础联系梁的纵筋在框架柱中的锚固、加密都和上部框架梁一样。

2、结构薄弱层设计

结构薄弱层是指在强震下,建筑结构最容易发生塑性位移的部位,在进行多层框架建筑结构设计时,设计人员必须保证这些结构薄弱层的承载力,满足抗震需求。由于结构薄弱层对建筑结构的综合性能有很大的影响,因此,设计人员在设计多层框架建筑结构时,要尽量避免结构薄弱层的出现,例如采用加大薄弱层梁截面和柱截面,从而增强结构的抗震侧移刚度。如果无法避免结构薄弱层的出现,设计人员要尽量减少基础的埋深或者降低结构薄弱层的层高,同时要制定合理的加强措施,对结构薄弱层进行加强,从为多层框架建筑结构的稳定性提供保障。

3、框架结构梁的设计

在进行多层框架建筑结构设计时,处于梁截面高度范围或者梁下部范围的集中荷载,全部是由横向钢筋承受的,因此,在设计过程中需要对附加箍筋及吊筋进行认真的考虑,在主梁和次梁的搭接处,设计人员要在结构设计总说明处,画出一个节点,并在次梁两侧增加3个主梁箍筋,从而进行补充。当框架梁和次梁相交后,可以按照简支梁的方式对梁端支座进行处理,对于梁端箍筋,必须对其进行加密处理。

4、框架结构柱的设计

在进行框架结构柱设计时,如果地上部分设计是圆柱,那么就要尽量将地下部分设计成矩形,这样在施工过程中,能有效地减少施工工序。对于地上部分的圆柱配筋需要保证其最少在8根以上,同时为有效地增加结构的整体性和结构柱的承载力,要尽量采用螺旋式箍筋!对于地下部分的矩形柱,要尽量采用井字复合箍的方式进行箍筋,如果建筑结构对抗震有要求,就要严格的按照抗震设计规范对其进行加密处理,从而确保框架结构柱的抗震性能满足相关规定。一般情况下,框架结构柱的截面需要满足以下要求:对于非抗震要求,框架结构柱的截面边长不能小于250mm;对于四级抗震要求的建筑结构,框架结构柱的截面边长不能小于300mm;对于一、二、三级抗震要求的建筑结构,框架结构柱的截面边长不能小于400mm。

五、总结

多层建筑结构设计篇(6)

Abstract: With the rapid development of China's economy, China's development of high rise buildings are on a new level, there are appeared a lot of new chic, the facade fabric layers, large body of the high-rise building. In this paper, the structure design of high-rise building on problem analysis.

Key words: high-rise building; structure design; design measures

中图分类号:TU318文献标识码: A 文章编号:2095-2104(2012)06-0020-02

一、高层建筑结构设计定义

高层建筑设计就是要做到结构功能与外部条件一致,充分展现先进的设计。发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。

高层建筑的主体结构是由楼层结构、传递竖载结构、抗侧力结构、基础结构以及竖向交通结构等几个主要部分构成的。建筑物在受力后,这些构成部分之间相互配合,协调受力,构成一定的传力路线,将外力(竖向荷载或水平荷载)传给地基。因此各个构成部分之间的受力是互相影响,互相干扰的。设计中要想使整个结 构做得比较完美,在技术上、用材上、造价上有其先进性,就需要从整体出发,多方面慎重推敲,挖掘局部潜力,为良好的综合效果提供方便条件。二、高层建筑结构设计存在问题及措施

高层建筑结构主要存在的问题有结构的超高问题,短肢剪力墙的设置问题,嵌固端的设置问题和结构的规则性问题。针对这些问题具体的解决对策应从以下几方面入手:

1.建筑地基设计。对高层建筑来说,在抗震设计中,房屋的高宽比是一个需慎重考虑的问题。不仅仅由于该阶段设计过程的好与坏将直接影响后期设计工作的进行,同时,也是地基基础整个工程造价的决定性因素,在这一阶段,所出现的问题也有可能更加严重甚至造成无法估量的损失。在地基基础设计中要注意地方性规范的重要性问题。由于我国占地面积较广,地质条件相当复杂地基基础设计规范无法对全国各地的地基基础都进行详细的描述和规定,因此,作为建立在国家标准之下的地方标准。地方性的“地基基础设计规范能够将各地方的地基基础类型和设计处理方法等一些成熟的经验描述和规定得更为详细和准确,所以,在进行地基基础设计时,一定要对地方规范进行深入地学习,以避免对整个结构设计或后期设计工作造成较大的影响。

2.高层建筑不规则性设计。当结构的位移比和周期比超规范规定时,说明结构的抗扭刚度相对结构的抗侧刚度偏小,结构的扭转效应较大。在结构抗侧刚度较大,结构的层间位移满足要求的情况下,可减小结构的抗侧刚度,对楼层中部结构做减法,可取消、减短、减薄剪力墙,减小连梁高度等。当结构的抗侧刚度较小,侧移较大时,可对楼层周边结构做加法,可增大周边构件的刚度。对带裙房高层建筑,带裙房部分楼层的位移比和周期比往往超规范规定。由于裙房高度不高,裙房楼层的绝对侧移值很小,因此可不按高层建筑的侧移控制条件来要求裙房,即位移比可适当放宽。

3.高层建筑剪力墙结构设计。高层剪力墙结构是特定的将剪力墙和框架两种结构相互组合,进而形成一种新的体系。那么高层建筑的竖向荷载是由剪力墙和框架共同进行承担的,但是其水平的作用则主要就是由拥有较大的抗侧刚度的剪力墙来进行承担。这样的结构设计不仅仅具有剪力墙较强的抗震能力和较大的刚度,同时还具有框架结构的使用方便和布置灵活的特点,因此能够被广泛的应用在高层的旅馆建筑和办公建筑当中。而高层建筑的水平力也主要是由剪力墙和框架共同进行承担,正是因为剪力墙和框架的共同协同工作,其内力分布和受力状况都得到了较好的改善。

4.高层建筑突出升高结构设计。在高层建筑中由于存在用水(生活用及消防用)及设置电梯的客观要求,因此,位于高层建筑屋顶上的突出升高部分是难以避免的。对该部分由于有地震中的高振型影响,所受地震力相对较大,因此,设计中应设法减轻该部非承重结构部分的重量。同时将该部分的平面位置设置于接近抗侧力结构的刚度中心处,对于结构抗震将是相当有利的。正常规情况下,屋顶突出升高部分的设备重量有电梯机房与水箱两部分。由于消防对水压头的要求,水箱常是设置在突出升高部分 的中间高度处的楼板上 ,一般高层建筑中该水箱的重量是比较大的,可达40-60吨,最大为100吨以上。因而由其产生的地震力将是相当大的。为减少此项影响,采用悬吊水箱的做法将是有效的。悬吊水箱的自振周期是较长的。常可做到3 ~ 4秒以上,此值与结构主体的第一振型自振周期以及地面的卓越周期相比都是相差较大的,与结构高振型的振动周期比将相差更大,因此是不会产生合拍共振的现象。值得注意的一点是。当采用悬吊水箱时,吊杆上下宜做成铰接。同时对进水管、出水管及溢流管与水箱的接头须采用柔性软接头处理。

三、建筑结构的经济性分析

建筑结构经济性包括内容注重经济性的建筑设计包含非常广泛的内容。传统中只强调改进建筑材料保温性、改善建筑体形系数、提高建筑材料的气密性等一系列节能降耗措施,现在建筑随着形势的发展,人们对居住环境不仅从结构性出发,更要在建筑结构的经济性角度考虑,如空间组织、技术组织、结构设置、能源与资源利用,以及建筑循环再利用等方面全面地确立经济性的原则、方法。

建筑结构的经济性就是只以较少的成本来获得最大的效用。其中由美国建筑师、工程师R·B·富勒提出的“少费多用”原则是较常用普通的原则。“少费多用(more withless)”原则的含义是,凭借有效的手段或方式,利用最小化的量的材料、资源来投资,目的在于获得尽可能大的发展效益。“少费多用”原则,顺应目前的发展形势,在建筑坚持可续费发展的思路上,该原则是一条重要的、有效的、节约型的设计方式。在富勒的实践中,“少费多用”原则最具代表性地表现在他对空间结构及建材应用的创意中。他的短杆网架穹隆结构体系(geodesic dome )被称为人类迄今为止最轻、最高效、最为有力的空间围合手段,在造型、尺寸、材料选用上具有很大的灵活性,且造价低廉、营造方便。

多层建筑结构设计篇(7)

伴随着国家建筑事业的发展规模不断壮大,我国的钢材产量也逐年不断呈上升趋势,因此,结合钢筋混凝的建设建筑框架结构设计就成为时下建筑行业的焦点关注问题。另外,当前不论是工业化建筑还是民用化多层建筑的功能也逐渐日趋多元多样化,这就促使了实际施工过程中对建筑结构框架的具体规划设计遇到了诸多难题,因而作为工程建筑机构设计人员就要充分遵循框架设计中的具体实施规范的基础之上,大胆实践尝试,不断优化框架结构设计方案的重点、难点。

1 框架结构独立基础设计相关的荷载取值问题

当建筑地基所承受的受力范畴内不存有软弱粘性地质时,多层框架建筑多半运用柱下独立基础设计。在8到25层之间的民用高层建筑中,对载荷相当多的结构多层框架建筑设计考虑时,一种情况是可以不对地基的承载能力以及建筑的抗震能力进行验算;而另一种是对其结构独立设计基础时,在实际操作中,对施工作用的项面的外载荷只考虑轴取设计和弯矩设计,而忽略建筑框架结构设计的无剪力设计,或者只考虑轴力设计值的设计方式,以上的这两种设计情形,均会导致基础作业设计尺寸偏小,以致使配筋的可操作性大打折扣,从而影响了建筑结构基础本身的安全性。

2 结构框架梁类问题的基础设计

建筑框架的结构房屋埋深设计过大时,为了减少相应的地层柱的设计长度与其地层位移时,可对基础系梁的位置进行设计做以调整。该阶段的系梁应按照一层框架梁进对其设计,同时在此基础上应对从梁往下的柱可按短柱去解决,而如果工程条件符合《建筑抗震设计规范》第6.1.11条规定,应设基础系梁,此时可根据抗震要求,沿两个主轴方向设置构造基础系梁。构造基础系梁纵向受力钢筋可取上述所连接柱的最大轴力设计值的10%作为拉力或压力来计算。另外,为了准确的计算基础系梁的跨度,可根据《规范》中的实施要求对基础梁下与独立基础的台阶或者锥形斜坡间的空隙方位用混凝土浇筑到与基础顶面持平,之后再浇筑基础系梁。

3 结构设计的重要参数的选取问题

根据《抗震规范》中的设计要求,其明确指出,要对计算机分析的计算理成果,要通过实际建筑设计的条件,去判断并确认出有效的符合实际工程框架结构的设计。常规情形下,计算机的计算程序分析,主要是对房屋结构上的自振周期、楼层地震剪力系数、楼层之间的弹性位移以及弹塑性层问位移做出有利分析。对其主要分析的内容包括:楼层的侧向刚度比,振型参与质量系数,墙和柱的轴压比及墙、柱、梁和板的配筋,底层墙和柱底部截面的内力设计值。一次,为了分析判断计算机计算结果是否合理,进行结构设计计算时,除了有合理的结构方案、正确的结构计算简图外,要正确填写抗震设防烈度和场地类别,同时视实际情况,选取电算程序总信息中的其他各项参数是十分关键的。

3.1 结构震等级设定

在建筑项目的结构设计中,大多房屋建筑按照防震等级分类均属于丙类建筑,像办公楼房、商品房、民用高层建筑以及一些工业建筑等,这类建筑的抗震等级建筑施工时可依据烈度、结构设定类型与建筑设计高度,按《抗震规范》的6.1.2条去设定。而在像能源、交通、通讯、医疗、消防等类建筑,也包括像大型场馆用地、大型商务商场等公共建筑的具体设定,应当根据《建筑工程抗震设防分类标准》(GB50223―2004)对这类建筑确立出归类。而对于乙、丙两类的防震作用都应按照当地区域的抗震设防烈度去具体计算并设计。首先是乙类建筑结构抗震性设计,常规情况下,当抗震设防烈度为Ⅵ―Ⅷ度时,抗震的防控设计都应按本地区域的抗震防控烈度去提高一度设计要求。对于具体性的抗震措施的设定,实际上是指原有的本区域的地区抗震防控烈度,去有针对性的提高一度抗震烈度,其依据是《抗震规范》所确立出的抗震等级规定;而当Ⅶ度区域性的乙类建筑高度如果超出规定的要求范畴时,就需要规定比一级抗震等级上更为合理的抗震举措。如:某Ⅶ度地震区城市的一个大规模商务商场和一个二级医院的门诊部都应归于乙类建筑。但是假使设计人员把其按照丙类建筑来具体规划设计时,就致使建设物的抗震性能大打折扣,还要对设计的抗震结构计算做出较大程度上的修改。

3.2 地震力的地震型组合数

对于多层建筑的框架结构设计时,如果对扭转耦联因素不考虑在内时,地震力的振型组合数起码应按照规定,选取为3。而如果振型数在高于3的情形下,就应当设计计算为取3的倍数,但还是计算还是不能多于层数;在建筑层数≤2时,振型数的设计选定就可设定为层数;而有些建筑实际上外形设计包括结构设计都不是常规情况下的规则高层建时,并对扭转耦联加以考虑时,此时设定振型数就应≥9;建筑层数较多或其结构设计的刚度突变程度较大变化时,其所设定的振型数的组合数就宜多取,如合计的结构存有转换层,顶层还有塔楼形式的多塔结构等,振型数就应选取≥12去按实际情况设取,也可以选取更多的振型数。但最后敲定下来的选取数不能多于房屋层数的3倍。另外,《抗震规范》中指定确立出,合理的振型个数正常情况下是能够取振型参与质量的总质量的90%所需的振型数。而诸如SATWE电算程序的强大计算功能,就能够实现合理设取并会根据建筑情况作出有力分析,综合布局,它能很方便地输出这种参与质量的比值。某些设计人员不太重视电算程序使用手册的应用,选取振型数时比较随意,这是值得改进的。此外,由耦联计算的地震剪力通常小于非耦联计算得来的数值,因此,只有结构存在大幅度扭转时才采用耦联计算,但是应当在必要时补充非耦联计算。

3.3 结构周期折减系数

建筑结构的抗震设计中的抗震墙结构中由于有填充墙的存在,使结构的实际刚度高于理论的计算刚度,并且计算周期高于实际周期。因此,导致计算出的地震剪力过于小,致使结构的安全设计可能有所偏差,这就需要对结构的计算周期可作出适当的折减,但同样折减系数过大也是不稳妥的。对于框架结构来说,采用砌体填充墙时,周期折减系数可取0.6―0.7;当砌体填充墙相对较少与采用轻质砌块时,可取0.7―0.8;完全采用轻质墙体板材时,可取0.9。另外,对无墙的纯框架,计算周期是可以不折减的。以上问题在多层框架结构设计中比较常见,也常常被忽视。设计人员应引起注意,确保结构设计质量,以免造成错误。

结语:

根据混凝土框架结构设计问题在实际设计研究阶段,可能会遇到诸多的客观性问题,在此不在赘述。因此,设计人员在对房屋框架结构设计上,应当考虑设计方案的可操作性,对可能影响解决问题的因素要多加留意,并及时采取有利、有效措施去及时处理、整改;而作为一个结构设计者就需要在遵循各种规范的前提下大胆灵活的解决一些结构方案上的难点重点并在工作中不断的总结和完善。

参考文献:

[1]张丽红. 多层建筑框架结构设计问题的几点研究[J]. 中国科技财富, 2011,(03).

多层建筑结构设计篇(8)

引言

框架结构是人们追求大空间、低成本的建筑空间的产物,满足了人们不断追求使用个性化的要求。框架形式多样,在建筑中等跨或不等跨、层高各异、抽梁抽柱等,为建筑提供了灵活的使用空间,同时框架结构的承载力较低,属于柔性结构,自振周期较长,地震反应较小,经过合理的布局和结构设计可以具有较好的延性性能。框架结构的这些优点,促进了其在住宅、公共建筑等方面的发展。

1 多层框架房屋建筑结构设计研究现状和优缺点分析

1.1 框架结构的定义及设计研究的现状

(1)框架结构的定义

框架结构主要是指由立柱和横梁组成的杆件体系,其节点全部或大部分为刚架或铰接。框架结构主要用于多层住宅、办公楼、厂房、旅馆等,其特点是双向柱网拉接,也可局部抽梁或抽柱。框架结构的种类按不同的标准可分为不同的类型,按照施工方法可以分为装配式、整体式和装配整体式,按照楼层数可分为单层、多层和高层,另外框架结构的布置方式主要包括横向承重、纵向承重和纵横双向承重。

(2)框架设计研究的现状

目前,框架结构设计的研究主要侧重于设计的计算理论、计算机软硬件、材料研究和结构型式等方面。

设计的计算理论方面,基于概率论和数理统计分析的可靠度理论有待完善,混凝土的微观断裂机理和多轴强度理论、非线性变形的计算理论等方面突破不够;计算机软硬件方面。随着计算机的普及和功能的多样化,各类结构CAD软件系统的开发及应用,使建筑结构设计的时间和工作量减少,从而提高经济效益;材料研究方面,目前主要侧重于研究易成型、耐久、高强的高性能混凝土和高强、防腐、延性好的钢筋;结构型式方面。预应力混凝土结构由于抗裂性好、高强度材料利用程度高而发展迅速,高性能新型组合结构由于材料强度利用充分、延性好、施工简单而得到广泛应用。

1.2 多层框架房屋建筑结构设计优缺点分析

(1)框架结构的优点

框架结构的优点主要体现在:第一,结构轻巧,便于布置。框架结构的空间分隔比较多样,可以灵活地配合建筑平面布置,有利于安排需要较大空间的建筑结构;第二,框架整体性较好。相比于砖混结构和内框架结构,多层框架结构的整体性更好;第三,能形成大的使用空间。建筑平面的布置更加灵活,方便安排较大的空间结构;第四,施工方便。框架结构的梁、柱构件易于标准化、定型化,便于采用装配整体式结构,施工更方便;第五,造价、成本低。多层框架结构自重轻,节省材料,施工方便,便于缩短施工工期,降低施工成本。

(2)框架结构的缺点

框架结构虽然存在诸多优点,但是也存在着一些局限性,其主要表现在以下两个方面:第一,建筑高度受限:多层框架结构灵活性较强,但是不应用于高层建筑;第二,抗震性能低:框架结构节点应力集中显著,框架结构的侧向刚度小,属柔性结构框架,在强烈地震作用下,结构所产生水平位移较大,易造成严重的非结构性破坏,因此,在抗震要求比较高时,选择框架结构及其设计要谨慎。

2 多层框架房屋建筑计算方法

2.1 竖向荷载作用下内力计算

内力计算时,在竖向荷载作用下框架结构的内力可用分层法、弯矩二次分配法等近似方法计算。分层法在分层计算时,将上、下柱远端的弹性支承改为固定端,同时将除底层外的其他各层柱的线刚度乘以系数0.9,相应地柱的弯矩传递系数由1/2 改为1/3,底层柱和各层梁的线刚度不变且其弯矩传递系数仍为1/2。弯矩二次分配法是先对各节点的不平衡弯矩都进行分配(其间不传递),然后对各杆件的远端进行传递。分层法和弯矩二次分配法的计算精度较高,可用于工程设计。

2.2 水平荷载作用下内力计算

水平荷载作用下框架结构内力可用D 值法、反弯点法等简化方法计算。各种计算方式中D 值法的计算精度较高,但当梁、柱线刚度比大于3 时,反弯点法也有较好的计算精度。D 值是框架结构层间柱产生单位相对侧移所需施加的水平剪力,可用于框架结构的侧移计算和各柱间的剪力分配。D 值是在考虑框架梁为有限刚度、梁柱节点有转动的前提下得到的,故比较接近实际情况。柱的反弯点是D值法的特例,反弯点位置也可根据以下规律确定:影响柱反弯点高度的主要因素是柱上、下端的约束条件。柱两端的约束刚度不同,相应的柱端转角也不相等,反弯点向转角较大的一端移动,即向约束刚度较小的一端移动。

2.3 软件辅助计算

在手算前,用广厦结构CAD等软件对初选方案进行结构刚度、效应分析、杆件内力标准值的计算,基本掌握模型建立、荷载输入、参数确定、整体计算、结果分析等各重要环节。如若电算通过,则继续进行手算;若不通过,则应变换截面尺寸,直至电算通过。此外,还可利用SAP2000 等数值分析软件,对设计方案进行建模模拟,验算内力、变形等。

3 多层框架房屋建筑结构设计实例分析

3.1 多层框架房屋建设结构设计原始资料

某办公楼建筑,室外气温:年平均气温最冷月份-20℃,年平均气温最高月份25℃;冻土深度:最大冻土深度为1.2m;基本雪压:0.40kN/m2;基本风压:0.25kN/m2;地质资料:20m 以上为轻亚粘土,f=210kPa,地下水位深18m。抗震设防烈度为Ⅶ度,设计基本地震加速度值为0.10g,场地设计分组为第三组,场地土类型为Ⅱ类。地面粗糙度类别C 类。建筑场地:70m×40m。

提供的建筑材料:钢筋:HPB300 级,HRB335 级,HRB400~HRB500级。混凝土:C30~C40。砌体(填充墙):加气砌块、空心砌块,强度等级≥MU7.5(加气砌块、空心砌块容重不大于8kN/m3),采用M7.5 混合砂浆砌筑。焊条:HPB300 级(准)级钢筋用E43××焊条,HRB400 级(准)级钢筋用E60××焊条。

3.2 多层框架房屋建筑物组成及功能要求

办公大楼拟建6 层总建筑面积3000~5000m2 左右。其中办公室:35~45m2 左右,50 个左右;会议室:80~90m2 左右,2 个,分布在上部。设电梯一部,入口门庭两层通高。要求采用框架结构,建筑设计要求有标志性并体现时代气息。建筑物防火等级为二级。

3.3 多层框架房屋建筑结构设计步骤

(1) 建筑设计部分

平面设计:合理确定平面柱网尺寸;布置房间;确定楼(电)梯数量、位置及形式;满足室内采光、通风要求。剖面设计:确定合理层高;给出楼(地)面、屋面、墙身工程做法。立面设计:建筑风格、造型应富有创意,有时代感。要求完成的建筑施工图有:首层平面图(1:100);标准层平面图(1:100);建筑详图(50 或1:25);立面图(1:100 或1:50):正立面、侧立面;剖面图(1:100 或1:50,剖切位置必须在楼梯部位);建筑设计说明书(在建筑设计说明中,应说明自己所选取的方案的设计意图,注意从平、立、剖等方面分别说明)。

(2) 结构设计部分

首先,结构选型方面,可以根据建筑设计方案及设计原始资料,选择适当的结构体系;其次,确定承重方案,框架结构的平面布置形式非常的灵活,按照承重方式的不同分为横向框架承重方案、纵向框架承重方案、纵横向框架混合承重方案三种类型;最后,合理进行结构布置,可以先确定柱在平面上的排列方式,一般柱网有内廊式和等跨式两种,确定好排列方式后,再合理布置结构构件,初步确定材料强度等级及构件截面尺寸。要确定构件的截面尺寸,只能先估算,等构件的内力和结构的变形计算好后,如果估算的截面尺寸符合要求,便以估算的截面尺寸作为框架的最终截面尺寸。如果所需的截面尺寸与估算的截面尺寸相差很大,则要重新估算和重新进行计算。结构内力分析及构件设计:根据现行国家设计规范,计算结构荷载及地震作用;手算完成结构一个主轴方向的内力分析,进行框架梁、柱、的内力组合,完成构件截面设计;同时,可采用工程设计软件计算结构构件的内力及配筋,进行正误对比(如图2 为某工程卫生间处错误配筋图和卫生间处正确配筋图),并与手算结果进行对比分析,以选择出更合理有效的正确配筋图,完善设计内容。同时,完成楼梯梯板梯梁、附属结构级细部大样的计算和配筋,组合好后绘制结构施工图。

4 结束语

随着社会发发展,人们在生产和生活过程中,对大空间的要求越来越高,同时又希望最大化的节约成本,而多层框架房屋建筑结构具有大空间、布局灵活、节省材料的特点,恰好可以满足人们个性化的要求,因此框架结构的设计研究具有广阔的前景。但是发展和研究的过程中,必然会遇到困难,比如在设计中会遇到一些规范或规程未论及的问题,这就需要专业设计人员不断探索、积累经验,设计出理想的多层框架房屋建筑结构,从而促进我国建筑行业的良性发展,也体现出这一课题的现实意义。

参考文献

[1]熊丹安.建筑设计与结构设计概要[M].武汉:武汉理工大学出版社,

2005(02).

[2]徐秀丽.混凝土框架结构设计[M].北京:中国建筑工业出版社,2008

多层建筑结构设计篇(9)

1.1多层框架房屋建筑结构设计研究现状框架结构主要是由钢筋混凝土梁、柱、节点和基础作为主框,同时还包括楼板、填充墙和屋盖等共同构成的结构形式,通过将楼板、横梁及柱共同边结在一起,使其成为一个主体,这样基础能够有效地承担起较大的荷载,而且力的传递路径也较为明确,能够起到较好的承重作用。在建筑施工中,针对房屋结构形式运用的情况可分为框架结构或是纯框架结构。在框架结构设计中可以根据房屋布局和空间使用要求来将框架分为等跨和不等跨,而且层高可以相同也可以不相同,在具体应用中可以存在缺梁或是缺柱的框架。房屋建筑结构中的墙体具有较好的围护和分隔作用,在框架结构中,由于承重构件及围护构件之间分工较为明确,因此建筑物的内外墙可以灵活进行处理,能够为建筑提供非常灵活的使用空间。对于框架结构来讲,由于其构件截面不大,这也使框架结构自身的承载力和刚度都不大,因此当楼层越高时,框架需要承受来自于纵向和横向两个方向较大的水平力。这也决定了框架结构属于柔性结构的特征,在合理的设计下,框架结构具有非常好的延展性,具有较强的抗震性能。

1.2多层框架房屋建筑结构设计优缺点分析

1.2.1钢筋混凝土框架结构的主要优点在房屋建筑结构中利用钢筋混凝土框架结构,不仅能够灵活对空间进行分隔,而且结构自身的重量不大,能够实现材料的节约。钢筋混凝土框架结构与建筑平面在配合上具有较好的灵活性,在对空间结构具有较大要求的建筑结构中具有较好的适用性。而且框架结构中所使用的梁和柱构件容易达到标准化和定型化,更便于采用装配整体式结构,有利于缩短工期。另外在钢筋混凝土框架结构应用过程中,具有整体性好、刚度大及抗震效果好的特点,同时梁和柱的截面形状可以根据自身的实际需要来进行浇筑。

1.2.2钢筋混凝土框架结构的缺点钢筋混凝土框架结构属于柔性结构,应用较为集中,侧向刚度较小,在强烈地震作用下非结构性破坏较为严重,因此在具体设计过程中适用于非抗震性设计。而且钢筋混凝土框架结构对于钢材和水泥的使用量较大,需要较大数量的构件,在施工过程中需要多次进行吊装,接头工作量较大,工序较多,而且受季节性影响较大,这也导致钢筋混凝土框架结构在高层建筑中不具有适用性。

2多层框架房屋建筑计算方法

2.1竖向荷载作用下内力计算在对多层框架房屋建筑进行设计时,需要对竖向荷载作用下的结构内力进行计算,通常情况下会采用分层法和弯矩二次分配法来对竖向荷载作用下的内力进行计算。利用分层法对内力进行计算时,则需要将上、下柱远端的弹性支承进行改变,使其变为固定端,而且在具体分层计算时,底层柱除外,其他各层柱的线刚度需要与系数0.9进行相乘,同时柱的弯矩传递系数也需要改为1/3,而底层柱的线刚度不变,同时各层梁的线刚度也保持原来的数值,而且弯矩传递系数也保持不变仍为1/2。而在利用弯矩二次分配法对内力进行计算时,则需要先分配各节点的不平衡弯矩,分配完成后才能不对各杆件的远端进行传递。利用这两种方法来对内力进行计算时,有效地确保了计算精度的提高,在工程设计中应用具有较好的效果。

2.2水平荷载作用下内力计算可以采用D值法和反弯点法来对水平荷载作用下的框架结构内力进行计算。这两种方法有效的确保了计算的精度。D值法中的D值作为层间柱相对侧移时所需要施加的水平剪力,在框架结构的侧移计算中具有较好的应用,同时也可以将其应用在各柱间的剪力分配上,D值与实际情况具有非常好的接近度。在水平荷载作用下对内力进行计算时,柱上和下端的约束条件会对柱反弯点高度产生较大的影响,而且当柱两端的约束刚度不一样时,也会导致柱端转角处于不相等的情况,这时反弯点则会向转角相对较大的一侧进行移动,根据这种规律来确定D值法中柱的反弯点位置。框架结构在水平荷载作用下,各层之间会有层间剪力和倾覆力矩的产生,而且在层间剪力作用下,梁和柱会出现不同程度的变形。而在倾覆力矩作用下,会导致框架柱轴向拉、压变形的产生。因此当框架结构房屋高度较大或是具有较大的高度比时,这时则需要对柱轴向变形给框架结构侧移带来的影响进行综合考虑,确保结构的牢固性。

2.3软件辅助计算在手算之前,需要利用电算来对初选方的各个方面进行计算,对重要环节进行有效掌握。当电算没有通过时,则需要对截面的尺寸进行变换,当其通过后则可以继续进行手算。另外还可以利用数值分析软件来作为计算的辅助工具,完成对设计方案相关数值的计算工作。

3多层框架房屋建筑结构设计步骤

3.1建筑设计部分建筑设计主要以平面设计、剖面设计和立面设计为主,需要对平面柱面的尺寸进行合理确定,有效地满足室内采光和通风的要求,合理对层高进行确定,同时还要确保建筑的造型上具有较强的时代感,富有创意,确保完成的建筑施工图内容的全面性和完整性。

3.2结构设计部分一是结构选型:根据建筑设计方案及设计原始资料,选择适当的结构体系。二是结构布置:确定柱在平面上的排列方式,一般柱网有内廊式和等跨式两种,选择承重方案,框架结构的平面布置形式非常的灵活,框架结构按照承重方式的不同分为三类:横向框架承重方案;纵向框架承重方案;纵横向框架混合承重方案。合理布置结构构件,初步确定材料强度等级及构件截面尺寸。三是结构内力分析及构件设计:根据现行国家设计规范,计算结构荷载及地震作用;手算完成结构一个主轴方向的内力分析,进行框架梁、柱的内力组合,完成构件截面设计;同时,可采用工程设计软件PKPM计算结构内力及配筋,并与手算结果进行对比分析。完成楼梯的计算和配筋,完成板的配筋计算。四是绘制结构施工图。

多层建筑结构设计篇(10)

1多层框架房屋建筑结构设计研究现状和优缺点分析

1.1多层框架房屋建筑结构设计研究现状

框架结构主要是由钢筋混凝土梁、柱、节点和基础作为主框,同时还包括楼板、填充墙和屋盖等共同构成的结构形式,通过将楼板、横梁及柱共同边结在一起,使其成为一个主体,这样基础能够有效地承担起较大的荷载,而且力的传递路径也较为明确,能够起到较好的承重作用。在建筑施工中,针对房屋结构形式运用的情况可分为框架结构或是纯框架结构。在框架结构设计中可以根据房屋布局和空间使用要求来将框架分为等跨和不等跨,而且层高可以相同也可以不相同,在具体应用中可以存在缺梁或是缺柱的框架。房屋建筑结构中的墙体具有较好的围护和分隔作用,在框架结构中,由于承重构件及围护构件之间分工较为明确,因此建筑物的内外墙可以灵活进行处理,能够为建筑提供非常灵活的使用空间。对于框架结构来讲,由于其构件截面不大,这也使框架结构自身的承载力和刚度都不大,因此当楼层越高时,框架需要承受来自于纵向和横向两个方向较大的水平力。这也决定了框架结构属于柔性结构的特征,在合理的设计下,框架结构具有非常好的延展性,具有较强的抗震性能。

1.2多层框架房屋建筑结构设计优缺点分析

1.2.1钢筋混凝土框架结构的主要优点

在房屋建筑结构中利用钢筋混凝土框架结构,不仅能够灵活对空间进行分隔,而且结构自身的重量不大,能够实现材料的节约。钢筋混凝土框架结构与建筑平面在配合上具有较好的灵活性,在对空间结构具有较大要求的建筑结构中具有较好的适用性。而且框架结构中所使用的梁和柱构件容易达到标准化和定型化,更便于采用装配整体式结构,有利于缩短工期。另外在钢筋混凝土框架结构应用过程中,具有整体性好、刚度大及抗震效果好的特点,同时梁和柱的截面形状可以根据自身的实际需要来进行浇筑。

1.2.2钢筋混凝土框架结构的缺点

钢筋混凝土框架结构属于柔性结构,应用较为集中,侧向刚度较小,在强烈地震作用下非结构性破坏较为严重,因此在具体设计过程中适用于非抗震性设计。而且钢筋混凝土框架结构对于钢材和水泥的使用量较大,需要较大数量的构件,在施工过程中需要多次进行吊装,接头工作量较大,工序较多,而且受季节性影响较大,这也导致钢筋混凝土框架结构在高层建筑中不具有适用性。

2多层框架房屋建筑计算方法

2.1竖向荷载作用下内力计算

在对多层框架房屋建筑进行设计时,需要对竖向荷载作用下的结构内力进行计算,通常情况下会采用分层法和弯矩二次分配法来对竖向荷载作用下的内力进行计算。利用分层法对内力进行计算时,则需要将上、下柱远端的弹性支承进行改变,使其变为固定端,而且在具体分层计算时,底层柱除外,其他各层柱的线刚度需要与系数0.9进行相乘,同时柱的弯矩传递系数也需要改为1/3,而底层柱的线刚度不变,同时各层梁的线刚度也保持原来的数值,而且弯矩传递系数也保持不变仍为1/2。而在利用弯矩二次分配法对内力进行计算时,则需要先分配各节点的不平衡弯矩,分配完成后才能不对各杆件的远端进行传递。利用这两种方法来对内力进行计算时,有效地确保了计算精度的提高,在工程设计中应用具有较好的效果。

2.2水平荷载作用下内力计算

可以采用D值法和反弯点法来对水平荷载作用下的框架结构内力进行计算。这两种方法有效的确保了计算的精度。D值法中的D值作为层间柱相对侧移时所需要施加的水平剪力,在框架结构的侧移计算中具有较好的应用,同时也可以将其应用在各柱间的剪力分配上,D值与实际情况具有非常好的接近度。在水平荷载作用下对内力进行计算时,柱上和下端的约束条件会对柱反弯点高度产生较大的影响,而且当柱两端的约束刚度不一样时,也会导致柱端转角处于不相等的情况,这时反弯点则会向转角相对较大的一侧进行移动,根据这种规律来确定D值法中柱的反弯点位置。框架结构在水平荷载作用下,各层之间会有层间剪力和倾覆力矩的产生,而且在层间剪力作用下,梁和柱会出现不同程度的变形。而在倾覆力矩作用下,会导致框架柱轴向拉、压变形的产生。因此当框架结构房屋高度较大或是具有较大的高度比时,这时则需要对柱轴向变形给框架结构侧移带来的影响进行综合考虑,确保结构的牢固性。

2.3软件辅助计算

在手算之前,需要利用电算来对初选方的各个方面进行计算,对重要环节进行有效掌握。当电算没有通过时,则需要对截面的尺寸进行变换,当其通过后则可以继续进行手算。另外还可以利用数值分析软件来作为计算的辅助工具,完成对设计方案相关数值的计算工作。

3多层框架房屋建筑结构设计步骤

3.1建筑设计部分

建筑设计主要以平面设计、剖面设计和立面设计为主,需要对平面柱面的尺寸进行合理确定,有效地满足室内采光和通风的要求,合理对层高进行确定,同时还要确保建筑的造型上具有较强的时代感,富有创意,确保完成的建筑施工图内容的全面性和完整性。

3.2结构设计部分

一是结构选型:根据建筑设计方案及设计原始资料,选择适当的结构体系。二是结构布置:确定柱在平面上的排列方式,一般柱网有内廊式和等跨式两种,选择承重方案,框架结构的平面布置形式非常的灵活,框架结构按照承重方式的不同分为三类:横向框架承重方案;纵向框架承重方案;纵横向框架混合承重方案。合理布置结构构件,初步确定材料强度等级及构件截面尺寸。三是结构内力分析及构件设计:根据现行国家设计规范,计算结构荷载及地震作用;手算完成结构一个主轴方向的内力分析,进行框架梁、柱的内力组合,完成构件截面设计;同时,可采用工程设计软件PKPM计算结构内力及配筋,并与手算结果进行对比分析。完成楼梯的计算和配筋,完成板的配筋计算。四是绘制结构施工图。

上一篇: 中小企业问题研究 下一篇: 经济责任审计的内容与重点
相关精选
相关期刊