高层建筑结构抗震设计汇总十篇

时间:2023-08-04 17:21:10

高层建筑结构抗震设计

高层建筑结构抗震设计篇(1)

中图分类号:TU文献标识码:A

1对建筑工程震能力产生影响的主要因素

1.1建筑结构的抗震设计标准

建筑结构抗震设计标准要根据国家对不同地区地震可能发生的情况以及对地震的危害程度所进行的初步预测来确定不同地区的基本设防烈度。设防烈度的确定是对抗震标准进行设计的主要参考依据,只有抗震烈度测量预测的准确性,才能够保障抗震设计标准的科学性与正确性。建筑施工单位根据抗震设计标准以及工程项目开发对住宅使用性能的要求,来进行抗震设计,提高建筑物抗震设计的烈度,设计烈度与建筑物的抗震能力成正比,与建筑工程造价成反比。

1.2建筑工程抗震设计是否合理

所谓抗震设计主要是对建筑的结构形式进行合理的设计,并对建筑结构抗震措施加以选择,保障建筑结构具有稳定的抗震性,在地震灾害威胁的情况下要确保建筑结构不倒。高层建筑物对抗震设计有着比普通建筑更高的设计要求,通常选择现浇剪力墙结构、框架- 剪力墙结构作为高层建筑物的首选结构类型。这种类型的建筑结构强度高、在外力的强烈作用下,能够维持建筑结构的平稳性,抗震效果非常明显。建筑工程抗震设计的合理性是确保建筑抗震性能的基本保障。

1.3建筑工程施工质量

建筑工程施工质量直接影响建筑物的使用性能,在地震振幅的强烈刺激下,建筑物的稳固性很难得到保障,为此必须对建筑物施工质量进行严格的控制,规范建筑施工工序,加强质量监督与检验工作,提高建筑物的整体质量,保障建筑物的高抗震性。

2选择适合的抗震结构与高质量的建筑材料

2.1建筑结构体系对建筑抗震性能的重要作用

现阶段在我国建筑结构体系中主要包含了框架结构体系、框架―剪力墙结构体系、剪力墙结构体系与筒体结构体系等主要结构体系表现形式。这些结构体系根据建筑物的实际需要被广泛的运用到高层建筑物中。而目前国外在地震多发区,已经开展广泛的采用钢结构体系,作为提高建筑结构防震的主要结构体系,我国目前所采用的多为钢筋混凝土结构,其抗震性能远远比不上钢结构的抗震性能。钢结构在强度、韧性以及延展性上具有明显的优势。

通过对地震区建筑房屋的倒塌情况进行调查我们可以发现,钢结构建筑物的倒塌机率是最小的。我国工程建造开发者在进行高层建筑物设计时,为了节省用钢数量,往往采用框架- 核心筒体系。在混合结构震层中所产生的剪应力的八成以上都由内部的混凝土来承担。钢筋混凝土结构在外力的作用下容易出现弯曲变形,为了减少建筑结构的侧移,往往需要采用小的钢结构对框架-核心筒结构加以辅助,这不但没能达到节省建筑钢材用量的目的,还增加了建筑结构的负担,不利于建筑整体结构稳固性的发挥,为此我国要积极推进钢结构在建筑领域的应用。

2.2建筑材料对建筑物抗震效果的影响与应用

建筑材料的使用性能对建筑物的质量有着决定性的影响,而高质量的建筑物又具有良好的抗震效果,为此若想提高建筑物的抗震性,首先要确保建筑材料的质量。在对建筑材料进行选择时,通常要选择强度高、安全性好,以及具有良好耐久性的建筑材料,研究实践表明,高性能的建筑材料在提高建筑结构的使用性能与使用寿命方面具有不可替代的作用。

混凝土是目前我国建筑工程领域所普遍运用的人工石材,它产生于1824年,它的出现极大的改变了世界建筑工程领域的发展状况,为促进我国建筑工程领域的发展起到了极大的推动作用。但混凝土建筑材料却属于脆性材料,从建筑结构抗震的角度进行分析,混凝土材料不利于建筑结构的抗震性,为此不应作为结构性材料应用到建筑结构当中。为解决这一问题,建筑工程领域展开了广泛的研究与讨论。目前主要通过对建筑结构进行科学合理设计以及采用钢筋来化解混凝土的脆性。同时也可以通过对混凝土自身的性能加以改变来实现对混凝土脆性的改良,达到提高混凝土材料抗震效果的目的。

通常状况下对混凝土自身的性能进行改良,提高混凝土建筑结构的抗震性能主要从以下几个方面加以着手:首先,要对混凝土搅拌过程中的用水量进行严格的控制,水对混凝土的水化反应以及混凝土的和易性都产生至关重要的影响,决定混凝土的性能,为此在混凝土加工、搅拌、运输、使用的全过程要通过会混凝土用水量的控制,来确保混凝土的强度及其耐久性。然而为了确保混凝土建筑结构的抗震性能,我们不能一味的增加混凝土的强度,因为混凝土强度与极限压成反比,当混凝土的强度达到一定高度时,在外力作用下一旦混凝土遭到破坏,此时混凝土的脆性特征就会变得更加明显,为此必须在考虑增强混凝土强度的同时要考虑增强混凝土的韧性,只有这样才能够确保混凝土具有较好抗震性能。

提高混凝土的使用性能还可以采用聚合物改性,这样可以显著提高混凝土的抗渗性、抗侵蚀能力,改善浆体与集料界面的结合,而且掺加达到一定量时,脆性的混凝土开始呈现聚合物良好的延性特征,在国际上已经开发成功的超高强水泥弹簧,即是该应用的一个极端例证。

在保证混凝土足够的碱度防止钢筋锈蚀破坏以及碳化破坏的同时,适宜掺加掺合料可降低混凝土结构中主要存在于孔隙和浆体与集料界面的氢氧化钙的含量,改善界面结构,提高混凝土的抗渗性。

集料质量也是影响混凝土质量、尤其是混凝土的耐久性的重要因素。例如,用碱活性集料或含有害组分的集料制备的混凝土不仅可导致混凝土耐久性的降低和寿命的缩短,而且可能在突发灾害中加速破坏而导致巨大损失。2003年土耳其地震后对倒塌建筑调查的结果表明,由于不当使用含氯离子高的海砂作为集料制备混凝土是导致增强钢筋加速锈蚀而使混凝土建筑在震中倒塌的主要原因。

当然,从通用水泥自身也可提出许多有益于提高混凝土耐久性的要求,如适宜控制水泥比表面积和水化热、降低水泥中氯离子含量、碱含量等。此外,还可以从根本上调整水泥品种,例如选用低水化放热、高后期强度、尤其是抗折强度高、抗侵蚀性好的低热硅酸盐水泥,即高贝利特水泥,对于重点工程建设是一种更好的技术途径。高贝利特水泥低热高强的特性表明,它是配制高强高性能混凝土的理想的胶凝材料,所配制的高贝利特大体积混凝土抗裂性优越、且具有良好的体积稳定性和优越耐久性,已在国家重点工程应用中得到证明。

3结束语

良好的抗震设计与抗震结构对建筑物抵抗地震灾害的威胁起到良好的保护作用,为确保我国建筑使用者的生命财产安全提供了可靠的保障,我国必须努力通过合理的设计创造出高性能的抗震结构,提高我国建筑物的抗震效果,对人们的生命财产安全实施全面的保护,避免汶川地震的惨剧再次上演。

参考文献:

高层建筑结构抗震设计篇(2)

Abstract: this paper briefly introduced the structure design and structure seismic design content, analyzes the structure design of high-rise building aseismic design of the basic idea, summarizes the seismic design used in designing high-rise note details to engineering example analysis introduced the related measures specific design, emphasize the matters needing attention.

Keywords: high building; Structure design; Seismic design; Performance technology

中图分类号:TU97文献标识码:A 文章编号:

引言

随着国家城市人口迅速增多、建设用地日趋紧张及城市规划科学性等要求的提出,高层建筑结构应用越来越广泛,对其各方面的设计研究投入也越来越多。高层建筑的结构设计必须满足抗震设计的各项要求,建筑布置合理设计和平面、立面的对称简洁都是结构设计师需要遵循的原则。抗震性能作为建筑结构基本的设计要求,对于高层建筑结构挑战更大,其自身的特点加上频繁的自然灾害,无疑提升了高层建筑抗震研究与分析的重要意义。

结构设计及结构抗震设计简介

结构设计简单来讲即为通过结构语言以表达出建筑师和其它各专业工程师想要表达的思想,其中结构语言是结构师提炼简化建筑和其它各专业的图纸内容得到的结构元素,这些元素具体指基础、墙、梁、板、柱、楼梯及其它细部大样等。通过结构语言元素以形成建筑物或者构筑物结构竖向及水平向承重和抗力的体系,将各种情况下的荷载通过简洁形式传递到基础上。建筑作为整体性的空间结构,所有的构件都是以较为复杂的形式共同工作着,都不是脱离于结构整体体系单独存在,要实现结构设计的技术先进、安全适用且经济合理就需要考虑多个影响因素。

在结构设计考虑的众多因素之中,地震作用因其随机性、复杂性且不确定性受到众多的研究和关注,但是想准确保证建筑物遭遇罕遇大地震情况下参数和特性仍具有很大的挑战。从结构分析角度来看,因为没有充分的结构空间作用理论支撑,结构的非弹性性质、材料的时效性和阻尼的多变性,使得结构工程的抗震问题必须立足总体的结构地震反应,依据结构破坏过程参数,灵活使用抗震设计相关原则,全面而合理的解决结构设计存在的问题,从大原则到关键细部综合把握,提高结构抗震能力。

高层建筑结构抗震设计基本思想

3.1 抗震概念设计

同数值设计比较而言,概念设计更着眼于总体的结构地震反应,运用人的判断思维能力,以宏观的角度决定结构设计方向。抗震概念设计依据地震震害及工程经验总结的基本设计思想和原则,总体布置兼职结构,最终确定基本的抗震措施。高层建筑的形状选择方面要追求规则、简洁、结构对称、采用防震缝且尽量保证建筑竖向的均匀性。

本文分析具体的实际工程发现,当前的高层建筑均匀性问题集中表现在四个方面,不均匀的布置往往造成刚度和强度的突变,致使满足不了抗震设计三原则。首先是设置填充墙的影响,高层框架结构不当的填充墙设置在地震作用下常常产生结构受力状态改变等不利影响,例如短柱的形成继而造成破坏等,必须分开墙和柱或者以轻质墙来实现框架柱的设计要求。其次是不连续抗震墙的负面影响,这也是建筑需要所导致的,其产生的不均匀性会影响到建筑上下层刚度差异,必须合理布置抗震墙间距并连续布置。另外因为艺术构思或者空间上的需要,还有同层柱刚度不同的现象存在,如果同层间柱刚度差异很大,较大刚度柱子就要承担较大内力,大幅削弱建筑抗震性能,出现这种情况就必须进行结构系统重新排设,平衡化刚度。最后,因高层建筑底层开敞性或者其它层大空间的需要,结构上会出现上下层的不连续情况,竖向刚度产生突变,尤其是柔性底层的建筑,震害非常严重甚至完全倒塌,进行抗震设计时要从概念设计阶段就予以避免。

3.2 抗震设计基本思想理念

高层建筑抗震设计首要思想是简单化处理结构,其主要目的在于保证地震作用下的结构传力途径明确且直接。简单的结构分析结构计算模型、位移和内力较为方便,易于把握对于薄弱部位出现的限制工作,从而保证可靠的结构抗震性能。第二大抗震设计基本思想在于结构均匀性和规则性的抗震设计规范要求,这就要求结构设计全面考虑建筑与结构多方面的情况。要保证建筑良好的整体性,就必须实现结构设计的抗侧力形式平面布置规则并且对称,建筑立面及竖向剖面规则的布置易于控制结构侧向刚度的变化情况,继而避免承载力及侧向刚度的突变。第三是结构刚度及抗震能力必须双向考虑,结构布置更要考虑任意方向地震作用的抵抗能力,保证主轴方向刚度与抗震能力的同时,把握结构强度和延性性能以做到全面抗震。

抗震设计应用于高层建筑结构设计细节

高层建筑结构设计中的抗震细节设计最关键的是薄弱部位的处理措施和多道抗震设防措施的保证。抗震结构体系必须包含多个良好延性保证的分体系组合,具有良好延性的结构构件还需要通过设计连接以实现联合协同工作。汶川地震等强烈地震显示,其后伴随的多次余震往往造成主震后更为强烈的结构损伤,抗震结构体系只有最大可能的增加内部和外部冗余度的数量,有意识的分布一系列屈服区,才能实现以耗能为主的抗震性能要求。高层建筑结构不能片面的强调构件强度,必须综合处理构件间强弱关系,楼层内主要的耗能构件屈服之后仍有抗侧力构件保持在弹性阶段,保证较长的有效屈服时间,实现结构延性及抗倒塌能力。

工程设计分析

某城市商住楼工程地上29层,地下设计3层,总的建筑面积5920m2,1层至3层用于商场,4层至5层用于办公,6层设置转换层及空中花园,上部其余层用于住宅房。该工程项目主体结构采用钢筋混凝土框架剪力墙结构形式,柱截面选用和两种,墙厚在200mm至400mm间,裙楼板厚110mm,住宅板厚100mm,转换层板厚180mm,梁截面主要为和两种。该建筑抗震设防烈度7度,设计地震分组属于第一组,设防类别属于丙类,底部剪力墙和上部随着结构形式不同抗震等级不同,基本设计为一级抗震。对该高层建筑结构进行软件分析结果如下图1所示,分析显示该结构存在超限问题,主要集中在结构扭转不规则、凹凸不规则及竖向抗侧力设置了不连续构件等问题。进行该高层建筑结构抗震设计时,深入剖析了项目相关工程实际和抗震规范对结构规则性要求,采取了多项针对性措施。提高一级底部框支柱和剪力墙加强部位的抗震等级;底部剪力墙加强部位竖向及水平配筋率提高至0.5%;增大转换层板厚并甚至双向双层贯穿板配筋;塔楼楼梯间和周边的楼板厚度增加到150mm,适当布置了拉梁和拉板;在轴压比较大柱中设置芯柱,并提高部分柱的配箍率和配筋率。

图1 高层建筑结构分析结果

6. 结语

高层建筑结构的抗震问题牵涉面较广,随着现代建筑结构复杂化、多样化和新材料出现的发展,传统抗震手段需要结合现代分析技术,总结工程经验,才能保证人民生命财产的安全和社会的稳定发展。

参考文献:

高层建筑结构抗震设计篇(3)

Abstract: using the modern science and technology to reduce and prevent earthquake disaster, the structure aseismatic design is a kind of effective method. So here is the author of the current structural seismic design Suggestions to explore.

Keywords: construction project, the structure, the seismic design

中图分类号:S611文献标识码:A 文章编号:

建筑物本身又是一个庞大复杂的系统,在遭受地震作用后其破坏机理和破坏过程十分复杂。且在结构分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,也存在着不确定性。因此,建筑结构抗震设计就显得尤为重要。

1.有关抗震设计的若干概念

为了保证结构的抗震安全,根据具体情况,结构单元之间应遵守牢固连接或有效分离的方法。高层建筑的结构单元宜采取加强连接的方法。尽可能设置多道抗震防线,强烈地震之后往往伴随多次余震,如只有一道防线,在首次破坏后在遭受余震,结构将会因损伤积累而导致倒塌。适当处理结构构件的强弱关系,使其在强震作用下形成多道防线,并考虑某一防线被突破后,引起内力重分布的影响,是提高结构抗震性能,避免大震倒塌的有效措施。合理布置抗侧力构件,减少地震作用下的扭转效应。结构刚度、承载力沿房屋高度宜均匀、连续分布、避免造成结构的软弱或薄弱部位。结构构件应具有必要的承载力、刚度、稳定性、延性及耗能等方面的性能。主要耗能构件应有较高的延性和适当的刚度,承受竖向荷载的主要构件不宜作为主要耗能构件。合理控制结构的非弹性(塑性铰区),掌握结构的屈服过程,实现合理的屈服机制。框架抗震设计应遵守“强柱、弱梁、结点更强”的原则,当构件屈服、刚度退化时,结点应能保持承载力和刚度不变。采取有效措施,防止钢筋滑移、混凝土过早的剪切破坏和压碎等脆性破坏。考虑上部结构嵌固于基础结构或地下室结构之上时,基础结构或地下室机构应保持弹性工作。高层建筑的地基主要受力范围内存在较厚的软弱黏性土层时,不宜采用天然地基。采用天然地基的高层建筑应考虑地震作用下地基变形对上部结构的影响。为了充分发挥各构件的抗震能力,确保结构的整体性,在设计的过程中应遵循以下原则:①结构应具有连续性。结构的连续性是使结构在地震作用时能够保持整体的重要手段之一。②保证构件间的可靠连接。提高建筑物的抗震性能,保证各个构件充分发挥承载力,关键的是加强构件间的连接,使之能满足传递地震力时的强度要求和适应地震时大变形的延性要求。③增强房屋的竖向刚度。在设计时,应使结构沿纵、横2个方向具有足够的整体竖向刚度,并使房屋基础具有较强的整体性,以抵抗地震时可能发生的地基不均匀沉降及地面裂隙穿过房屋时所造成的危害。

2.抗震设计一般规定

2.1多层和高层现浇钢筋混凝土房屋的结构类型和适用的最大高度应符合要求。平面和竖向均不规则的结构或建造于Ⅳ类场地的结构,适用的最大高度应适当降低。合相应的计算和构造措施要求。

2.2钢筋混凝土房屋应根据烈度、结构类型和房屋高度采用不同的抗震等级,并应符合相应的计算措施要求。

2.3钢筋混凝土房屋抗震等级的确定,尚应符合下列要求:框架一抗震墙结构,在基本振型地震作用下,若框架部分承受的地震倾覆力矩大于结构总地震倾覆力矩的50%,其框架部分的抗震等级应按框架结构确定,最大适用高度可比框架结构适当增加:裙房与主楼相连,除应按裙房本身确定外,不应低于主楼的抗震等级;主楼结构在裙房顶层及相邻上下各一层应适当加强抗震构造措施。裙房与主楼分离时,应按裙房本身确定抗震等级;当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可根据具体情况采用三级或更低等级。地下室中无上部结构的部分,可根据具体情况采用三级或更低等级;抗震设防类别为甲、乙、丁类的建筑应结合有关抗震设防标准的规定和确定抗震等级;其中,8度乙类建筑高度超过规定的范围时应经专门研究采取比一级更有效的抗震措施。

2.4高层钢筋混凝土房屋宜避免采用规定的不规则建筑结构方案,不设防震缝。

3. 建筑防震设计方法

建筑抗震的概念设计指在进行建筑结构抗震设计时,应着眼于建筑物结构的总体地震的震动反应,按照建筑结构的破坏机制和破坏过程,灵活应用建筑抗震的设计准则,全面而合理地解决建筑结构设计中出现的基本问题。

钢结构建筑有许多优良的特性。有很好的抗震、抗风性能。钢结构整体刚性好、强度高、重量轻、变形能力强,建筑物自重仅为砖混结构的1/5,抗震性能却是砖混结构的2倍以上,并有很强的抗风性能,有效的保护人民生命和财产安全。建筑钢结构都是由多层水平的楼盖和竖向的柱、墙等组成。楼盖主要承受竖向荷载,而建筑竖向的柱、墙等构件因为建筑高度的变化,其组成方式和受力变形.特性结构体系也有明显的变化。框架、剪力墙及筒体是结构中抵抗竖向及水平荷载的基本单元,由它们及其变体组成了各种结构体系,如框架结构体系、框架一支撑结构体系、框架-剪力墙体系、框架一简体结构体系、交错析架结构体系等。

建筑设计应设置多道抗震设防体系。由于地震的震动往往会持续一定时间,而且震动是往复的。根据对地震的大量研究可以看出,建筑物的倒塌通常是由于地震的持续往复作用,使建筑物的结构造到破坏,从而丧失了对建筑物重力荷载的承载能力。所以,建筑抗震规范提出“强柱弱梁、强剪弱弯”的抗震设计思想。建筑柱桩是建筑主要承受重力荷载的构件,通过科学、合理处理柱与梁之间的强弱关系,使建筑框架梁在地震中先于柱子屈服,出现了塑性铰,从而耗散一定的地震能量,柱桩在建筑抗震中退居到第二道抗震设防体系。剪切破坏属于力学的脆性破坏,而弯曲破坏是材料力学中的延性破坏,破坏后出现塑性铰,建筑结构还能够继续承载。“强剪弱弯”的设计思想则使剪切破坏退居到第二道抗震设防体系。

建筑抗震设计要具备合理的刚度和承载力分布以及与之匹配的延性。结构构件必须具备足够大的承载能力和刚度(刚度包括抗侧刚度和抗扭刚度),结构构件的承载能力和刚度是相关的,一般来说,建筑刚度越大,其承载能力也越大。增大建筑结构构件的承载力,可以推迟地震时构件的屈服能力,减轻地震对构件的屈服程度,降低对构件延性的要求,但这提高了建筑工程造价。要实现经济合理的建筑抗震结构体系,使建筑物在遭受大地震侵袭时,仍具有很强的抗倒塌能力,最理想的是建筑物部分结构构件破坏,通过延性耗散地震能量,避免建筑物的倒塌。

建筑延性系数设计方法。该方法的实质是通过建立建筑构件的位移延性系数或建筑截面曲率延性系数与塑性铰区混凝土极限压应变的关系,由结构约束箍筋来保证核心混凝土能够满足所要求的极限压应变,从而使建筑构件具有所需要的延性系数。建筑延性包括建筑结构延性、构件延性和截面延性三个方面。结构延性可以用顶点位移延性和层间位移延性来表达;构件位移延性与塑性铰区长度和截面延性等有关;截面延性与建筑物的几何形状、混性土强度、轴压比、纵筋含钢率、含箍特征值等因素有关。

采用能力谱方法进行建筑抗震设计。该方法是通过地震反应谱曲线和建筑结构能力谱曲线的叠加来评估建筑结构在给定地震作用下的反应特性。反应谱是指单自由度体系在给定地震输入下的加速度谱;能力谱是指通过对建筑结构进行静力推的分析,转换得到等效单自由度体系的加速度和位移之间的关系曲线。能力谱方法由Freeman等提出,经过不断的完善和革新。《日本建筑标准法》和美国ATC-40都采用能力谱法作为基于性能,位移抗震设计方法。Chopra提出了将能力谱方法和结构损伤指数评定相结合的屈服位移能力谱的地震损伤分析方法,增加并强化了能力谱法的实用性。因此,能力谱法的实质是采用的基于承载力的设计方法加位移、变形的能力校核,并依据能量的设计方法。对抗震设计的研究表明地震动瞬时能量在大多数情况下对结构最大位移反应具有决定性作用。但要建立基于能量的有效建筑抗震设计框架还需更深入的研究。

4.结束语

随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。最初,在未考虑结构弹性动力特征,也无详细的地震作用记录统计资料的条件下,经验性的取一个地震水平作用用于结构设计。结构抗震设计思路经历了从弹性到非线性,从基于经验到基于非线性理论,从单纯保证结构承载能力的“抗”到允许结构屈服,并赋予结构一定的非弹性变形性能力的“耗”的一系列转变

高层建筑结构抗震设计篇(4)

随着高层建筑的普及,高层建筑的抗震工作也成为我们必须关注的重点。那么如何更好地实现高层建筑抗震的理想?我从以下几方面论述:

1.建筑抗震的理论分析

1.1建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

1.2抗震设计理论发展历程

(1)拟静力理论。拟静力理论是20世纪40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

(2)反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

(3)动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

2.高层建筑结构抗震要求

2.1高层建筑的抗震设计理念

我国《建筑抗震规范》对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

2.2抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。

2.3抗震等级的确定

(1)抗震等级:是设计部门依据国家有关规定,按“建筑物重要性分类与设防标准”,根据烈度、结构类型和房屋高度等,而采用不同抗震等级进行的具体设计。以钢筋混凝土框架结构为例,抗震等级划分为四级,以表示其很严重、严重、较严重及一般的四个级别。

(2)地震烈度:是国家主管部门根据地理、地质和历史资料,经科学勘查和验证,对我国主要城市和地区进行的抗震设防与地震分组的经验数值,是地域概念。抗震设防类别分为甲、乙、丁类建筑,全国大部分地区的房屋抗震设防烈度一般为8度。

2.4抗震措施的要求

(1)甲类、乙类建筑:当本地区的抗震设防烈度为6~8度时,应符合本地区抗震设防烈度提高一度的要求;当本地区的设防烈度为9度时,应符合比9度抗震设防更高的要求。当建筑场地为Ⅰ类时,应允许仍按本地区抗震设防烈度的要求采取抗震构造措施。

(2)丙类建筑:应符合本地区抗震设防烈度的要求。当建筑场地为I类时,除6度外,应允许按本地区抗震设防烈度降低一度的要求采取抗震构造措施.按建筑类别及场地调整后用于确定抗震等级烈度,按调整后的抗震等级烈度。

(3)抗震设计时,多高层建筑钢筋混凝土结构构件应根据设防烈度、结构类型和房屋高度采用不同的抗震等级,并应符合相应的计算和构造措施要求。

(4)建筑场地为Ⅲ、Ⅳ类时,对设计基本地震加速度为0 15G和O.30G的地区,宜分别按抗震设防烈度8度(0.20G)和9度(0.40G)时各类建筑的要求采取抗震构造措施。

(5)抗震设计时、与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级;主楼结构在裙房顶部上、下各一层应适当加强抗震构造措施。

(6)房屋高度大、柱距较大而柱中轴力较大时,宜采用型钢混凝土柱、钢管混凝土柱,或采用高强度混凝土柱。

(7)高层建筑结构中,抗震等级为特一级的钢筋混凝土构件,除应符合一级抗震等级的基本要求外,尚应符合下列规定:

1)框架柱应符合下列要求:

①宜采用型钢混凝土柱或钢管混凝土柱。

②柱端弯矩增大系数`Η_C`、柱端剪力增大系数`Η_VC`.应增大20%。

③钢筋混凝土柱柱端加密区最小配箍特征值`Λ_V`,应按表5-13的数值增大0.02采用;全部纵向钢筋最小构造配筋百分率,中、边柱取1.4%,角柱取1.6%。

2)框架梁应符合下列要求:

①梁端剪力增大系数应增大20%。

②梁端加密区箍筋构造最小配箍率应增大10%。

3)框支柱应符合下列要求:

①宜采用型钢混凝士柱或钢管混凝土柱。

②底层柱下端及与转换层相连的柱上端的弯矩增大系数取1.8,其余层柱端弯矩增大系数`Η_R`应增大20%;柱端剪力增大系数`Η_VR`应增大2U%;地震作用产生的柱剪力增大系数取1.8,但计算柱轴压比时可不计该项增大。

③钢筋混凝土柱柱端加密区最小配箍特征值`Λ_R`应按原来的数值增大0.03采用,且箍筋体积配箍率不应小于1.6%;全部纵向钢筋最小构造配筋百分率取1.6%。

4)筒体、剪力墙应符合下列要求:

①底部加强部位及其上一层的弯矩设计值应按墙底截面组合弯矩计算值的1.1倍采用,其他部位可按墙肢组合弯矩计算值的1.3倍采用;底部加强部位的剪力设计值,应按考虑地震作用组合的剪力计算值的1.9倍采用,其他部位的剪力设计值,应按考虑地震作用组合的剪力计算值的1.2倍采用。

高层建筑结构抗震设计篇(5)

高层建筑在本质上就是竖向的悬臂结构,其可以在垂直荷载的结构上产生轴向力,进而提高建筑物高大体积的线性垂直效率,在此过程中,高层建筑结构会在水平荷载的弯矩下能够成为一个受力点,其受力特征就是当垂直荷载方向不变的情况下,会随着建筑物的增高而增加,并且水平荷载可以来自各个方向。当高层建筑受到均布荷载影响的时候,弯矩与建筑物之间就会出现第二次的变化,无论是侧移特点还是竖向荷载,都会出现较小的变化。当水平荷载在均布荷载情况下,侧移与高度会出现四次方的变化,在一定程度上,能够突出混凝土抗震结构特点。

2高层建筑混凝土抗震结构的设计要求

在高层建筑混凝土抗震结构设计之前,设计人员要对其要求加以全面的了解,保证能够提高设计效率[1]。首先,在高层建筑混凝土抗震结构设计的过程中,必须要满足发生严重地震时不倾倒的要求,在遭遇中级地震的之后,经过维护与检修可以再次使用,在遭遇微弱地震之后,高层建筑混凝土抗震结构可以保持在整体结构稳定牢固的状态,即“小震不坏,中震可修,大震不倒”的建筑抗震三水准。同时,设计人员还要对各方面影响因素加以考虑,保证能够提高高层建筑混凝土抗震结构设计的科学性与合理性,并根据高层建筑的实际情况,制定完善的设计与规划方案,满足抗震设计需求,保证高层建筑混凝土抗震结构的稳定性,为其发展奠定良好基础[2]。其次,高层建筑混凝土抗震结构设计人员在执行工作的过程中,要保证结构设计刚度满足相关要求,并且全面了解高层建筑混凝土抗震设计物理学知识,或是机械设备的运行原理,保证能够通过适当的调整与配合,不断提升高层混凝土抗震结构的抗震效果,使其波动力在一定范围之内,进而提高抗震结构设计质量,为其发展奠定良好基础[3]。最后,高层建筑混凝土抗震结构设计人员在设计过程中,必须要重视某些连接点与结构构件的受力情况,保证能够采取有效的减震措施,避免在遭受地震灾害的时候,出现严重的经济损失,导致高层建筑混凝土结构出现连续损坏的现象,进而形成崩塌的后果。另外,高层混凝土抗震结构设计人员必须要对抗震结构的抗震性能进行改善,保证其强度与刚度符合相关需求,进而形成良好的结构体系,提高其抗震效果,促进建筑事业的长远发展[4]。

3高层建筑混凝土抗震结构设计策略

高层建筑混凝土抗震结构设计人员在设计过程中,必须要对自身工作加以重视,保证能够提高设计质量,为人们营造良好的生活环境,在提升人们生活质量的基础上,促进国民经济的提高。

3.1优化抗震结构功能

在设计人员对建筑混凝土抗震结构进行设计的过程中,必须要对抗震结构功能加以重视,保证能够提高其抗震质量。设计人员必须要对功能造价与要求加以重视,保证能够结合相关设计原则对凹槽建筑混凝土抗震结构的功能加以完善,在约束条件与目标的影响下,优化其使用功能[5]。

3.2抗震结构体系的优化

高层混凝土混凝土抗震结构体系的优化是利用悬挂、筒体与剪力墙等结构形式。不仅如此,以框架核心筒结构为例,设计同时要注意由于设置伸臂桁架和腰桁架加强层引起的相对薄弱层的出现,从而导致刚度和承载力的突变,这对高层结构抗震是不利的,通常应采用有限刚度设计理念,适当“削弱加强层”。另外,设计应结合高层建筑混凝土抗震社会效应与美学效应,科学、合理的对工程造价进行控制,保证能够设计出质量较高的抗震结构体系。

3.3科学、合理的选择建设位置

经过对地震灾害的分析,高层混凝土抗震结构的建设位置对于抗震效果会产生直接的影响,因此,在设计过程中,必须要科学、合理的选择建设位置,并且全面考虑高层混凝土建筑抗震地质条件,此时应该注意到,不可以选择在变电站、火电厂等附近,避免受到不安全因素的影响,同时,还要避免在山坡与丘陵的附近选择建设位置,为其发展奠定良好基础。

3.4优化结构设计方案

在设计高层建筑混凝土抗震结构的过程中,设计人员要对设计方案加以优化,首先,要科学、合理的对其进行布局,保证能够有效协调与控制高层建筑混凝土抗震结构的受力情况,进而达到受力均匀与平衡的目的。其次,设计人员要保证高层建筑混凝土抗震结构设计的层次性,进而提高其抗震的稳定性。最后,设计人员必须要结合建设区域地质情况特点,严格处理重点关键抗震部位,进而提高其抗震质量。

3.5重视抗震扭转效力

在地震过程中会出现较多的扭转作用、竖向作用与水平作用,在一定程度上,会对建筑物造成破坏性影响,导致出现破裂甚至是倒塌的现象。因此,高层建筑混凝土抗震结构设计人员要对结构的扭转效力加以重视,保证能够提高其位移结构刚度,进而达到相关设计标准,确保高层建筑混凝土抗震结构每一个部分都能达到相关设计标准,及时发现抗震结构设计中存在的问题,并且采取有效措施对其进行调整,最大程度上提高高层建筑混凝土抗震结构的设计效率,使其设计质量得以提升,促进建筑行业的经济发展,使其向着更好的方向发展。

4结语

高层建筑混凝土抗震结构的设计,对于人们的生活质量与安全性产生直接影响,相关设计人员必须要严格遵循设计原则,阶段性的学习新型抗震结构设计知识,充分考虑到设计工作影响因素,保证能够提高其设计质量,同时,在设计人员实施工作期间,必须要对抗震结构设计经济效益加以重视,提高成本控制效率。

作者:浦心宇 单位:重庆大学土木工程学院

参考文献:

[1]罗联训.浅论高层混凝土建筑抗震结构设计[J].中华民居,2014(18):25.

[2]李鸥.浅议高层混凝土建筑抗震结构设计[J].价值工程,2015,34(9):175-176.

高层建筑结构抗震设计篇(6)

引言

随着建筑行业的快速发展,我国建筑逐渐向高层建筑和超高层建筑结构发展。高层建筑的结构复杂,层数比较高,建筑地基承受的荷载比较大。地震发生时,震源对高层建筑结构会产生冲击力,容易造成建筑梁、柱断裂,建筑倒塌等现象,严重威胁到人民群众的安全。我国是地震灾害比较频繁的国家,高层建筑抗震设计一直是社会关注的重点,抗震设计的好坏直接关系到高层建筑的质量。因此高层建筑抗震设计的时候要根据高层建筑的实际情况,提高建筑结构抗震性能。

1超限高层建筑结构基于性能抗震设计与常规抗震设计的比较

1.1基于性能的抗震设计的概念

概念设计是目前一种比较先进的设计理念,与传统建筑设计相比,概念设计不需要精准的计算或参考建筑设计规范相关的目录,而是设计者根据实践经验,按照建筑结构体系的力学关系、结构破坏机理,从建筑结构整体进行把握设计。传统的建筑设计思想无法满足人们对建筑结构抗震功能的要求,为了提高建筑结构抗震安全性能要求,抗震设计已经发生了较大变化。比如建筑结构以力分析为主并兼顾力与变形,考虑到建筑结构变形、耗能和损失,以及非线性分析和可靠性分析。基于性能的抗震设计是20世纪90年代美国建筑设计师提出来的一个全新的设计理念。它的主要核心是将抗震设计从保护居民生命财产安全为基本目标转移到不同风险水平地震作用力下满足人们对建筑的性能要求,通过多层次、多目标的抗震安全设计,保障建筑安全,最终实现经济效益和投资效益的平衡,满足人们对建筑的个性需求。

1.2我国常规抗震设计方法

当前大部分国家的抗震设计规范为“小震不坏、中震可修、大震不倒”的原则,我国采用二阶段抗震设计方法满足工业建筑和民用建筑实现以上三个原则的抗震要求,并在这个基础上根据建筑物抗震重要性分成甲、乙、丙、丁四类建筑物,根据建筑物的类别设置相应的抗震防烈要求。二阶段抗震设计方法如下:第一阶段是对建筑结构强度进行验算,也就是小震的地震洞参数,通过弹性模量计算建筑结构的弹性地震作用力,并与建筑物风荷载、雪荷载、水平荷载等进行组合,计算建筑结构截面的抗震承载力,确保建筑结构的强度,并通过合理的平面结构布置,确保建筑结构的抗拉力。第二阶段则是验算建筑结构的弹塑性,也就是对地震作用下很容易倒塌的建筑结构按照大震标准进行设计,处理好建筑结构的薄弱环节,以免地震发生时首先冲击建筑结构的薄弱环节,影响到整个建筑结构的安全性和稳定性。

1.3常规抗震设计方法与基于性能抗震设计方法的比较

基于常规抗震设计方法与基于性能抗震设计方法在设防目标、设计实施方法和检验方法、实现性能和工程应用方面都有所不同,具体见表1。通过比较发现,基于性能抗震设计方法是未来建筑抗震设计的发展方向,它适应了社会新技术和新工艺发展需求,能够满足建筑业务单位和使用单位对建筑结构安全性、经济性等相关要求。

2超限高层建筑结构的抗震性能目标

某酒店塔楼的高度是168.9m,结构计算高度为176m,建筑结构为B类钢筋混凝土高层建筑。建筑场地类别为III类,建筑抗震等级为二级。

2.1结构的抗震性能水准

按照相关规定,酒店的塔楼高度、平面扭转不规则等不能超限,所以在第一、二阶段抗震设计过程中,必须采取有效的方法满足建筑工程国家以及地方相关的标准,并将基于性能抗震设计目标概念进行设计。按照《建筑抗震设计规范》给出的抗震性能设计方法以及《高层建筑混凝土结构技术规范》中的相关规范进行设计,确定该酒店的性能水准为C类,具体控制目标如下:

2.2建筑结构的性能目标

超限高层建筑结构规则性、高度等方面超出了建筑工程规范中的适用限值,使得抗震设计缺乏相应的参考依据。基于性能目标设计方法在设计的时候,需要综合考虑到建筑场地实际设防裂度、超高限值以及建筑结构不规则等经济因素,对超高建筑的薄弱环节、主抗侧力构件等结构变形能力和抗震承载能力有具体的性能目标。按照建筑工程设计中相关内容,建筑结构关键构件由建筑结构工程师根据工程实际情况分析。比如水平转换构件和支撑竖向构件、大悬挑结构的主要悬挑构件、长短柱在同一楼层的数量相当于在该层各个长短柱等要求。这其实是将过去常规抗震设计中的“小震不坏、中震可修、大震不倒”的抗震设计原则进行量化和细化。比如将A级性能目标设计要求建筑结构小震不坏、中震和大震不坏,就是要求建筑结构在中震和大震中依然保持一定的弹性。

3结语

随着建筑行业的快速发展,常规的建筑工程抗震设计方法已经无法满足当下建筑设计的要求,基于建筑结构性能抗震设计理念对抗震结构的目标进行量化,明确抗震目标性能,能够提高建筑结构抗震性能,必将成为建筑行业的发展趋势。

高层建筑结构抗震设计篇(7)

中图分类号:TU97文献标识码: A 文章编号:

0 引言

高层建筑结构的抗震性能关系重大,本文探讨了抗震概念、构造及设计过程中如何解决遇到的问题,然后分析了影响建筑物抗震效果的主要因素,指出了高层建筑抗震设计应遵循的原则和方法,就此,提到了高层建筑结构抗震设计的广阔前景。

1 建筑结构抗震等级的规定和标准

震级是根据地震的强度而进行的划分,在我国,地震划分为六个级别:3级为小地震,3~4.5级为有感地震,4.5"--6级为中强地震,6~7为级强烈地震,7~8级为大地震,8级以上的为巨大地震,是国家根据相关的历史、地理和地质方面的经验资料,经过勘查和验证,对进行地震分组的一个经验数值,它是地域概念。抗震设防有甲、乙、丁类建筑,在我国大部分的房屋抗震等级是8度,可以抵抗6级地震的作用。国家设计部门依据有关规定,按照建筑物的分类和设防标准,根据房屋高度、结构等方面,采用不同的抗震等级。比如,在钢筋混凝土结构中,抗震等级可以分一般、较为严重、严重和很严重这4个级别。

在高层建筑的抗震设计中,混凝土结构应高根据建筑的高度、建筑的结构和设防的烈度运用不同的抗震等级,而且应该符合相应的计算和措施要求。

2 影响建筑物抗震效果的因素

研究高层建筑结构的抗震设计,必需明确建筑物抗震效果的主要影响因素。下面,将从建筑结构本身的设计效果、施工材料施工过程以及建筑场地情况3个方面进行分析。

2.1 建筑结构建造过程中所使用的材料和施工过程

建筑结构的材料是影响抗震效果非常重要的因素,但是这个因素往往被人们忽视,工作人员需要明确这样一点:在一般情况下,地震对建筑物作用力的大小与建筑物的质量成正比。在同等地震环境下,建筑物材料使用越好,其受到的地震作用力也相对较小;反之,建筑物就会遭到来自地震的很大的作用力。所以,在实际的建筑物的建设中,建议他们多采用隔断、板楼、维护墙等构件,广泛采用空心砖、加气混凝土板、塑料板材等质轻的建筑材料,这将会有利于建筑物抗震性能的提高。建筑结构施工过程同施工材料共同影响整个建筑工程的质量,在施工过程中,每一个环节都可以影响建筑结构抗震效果。所以,高层建筑在具体施工中,要加强监管和规范,严格做好高层建筑施工管理,从建筑结构的质量上来提高抗震效果。

2.2 建筑物自身的结构设计

建筑物的结构设计是影响抗震效果极为关键的一个因素,建筑物若要达到抗震目的,必须进行合适的结构设计,保证抗震措施合理,能够基本实现小地震不坏、大地震不倒这样的目标。无论点式住宅或是版式住宅,都要进行合理的结构设计,提高建筑结构的抗震性能。如果建筑物对平面的布置较为复杂,质心与

刚心不一致,在地震情况下,将会加剧地震的作用影响力,破坏性增强。所以,建筑物的结构平面布置尽量保证建筑物质心和刚心重合,提高建筑物的抗震能力。

在建筑结构的设计中,出屋面建筑部分不宜太高,以降低地震过程中的鞭梢影响;平面布置不规则的房屋注意偏离建筑结构刚心远端的抗震墙等等。

2.3 建筑物所处地质环境情况

在地震中,对建筑物造成破坏的原因是多方面的,比如:岩石断层、山体崩塌、地表滑坡等使得地表发生运动,造成建筑物的破坏;海啸、水灾等次生灾害对建筑物造成破坏。在造成建筑物破坏的诸多原因中,有些是可以通过工程措施加以预防的。所以,在选择建筑工地的位置之前,要进行详尽的勘探考察,分析地形和地质条件,避开不利地段,挑选对建筑物抗震有利的地点。

3 高层建筑抗震设计的方法

对高层建筑结构的抗震设计时,要从减小地震作用力的输入和增强地震抵抗力两个方面进行考虑。下面将从五个方面进行分析:尽可能减小地震作用能量的输入,运用高延性设计、推广消震和隔震措施的运用,注重抗震结构的设计,重视建筑材料的选择,增多抗震防线的建设。将减小地震作用力和增强建筑的地震抵抗力二者结合起来,从两方面入手,进行建筑抗震的设计施工。

3.1 减少地震发生时能量的输入

在具体的设计中,积极采用基于位移的结构抗震方法,对具体的方案进行定量分析,使结构的变形弹性满足预期地震作用力下的变形需求。对建筑构件的承载力进行验收的同时,还要控制建筑结构在地震作用下的层间位移限值;并且更具建筑构件的变形和建筑结构的位移之间的关系,确定构件的变形值;根据建筑界面的应变分布以及大小,来确定建筑构件的构造需求。对于高层建筑来讲,在坚固的场地上进行建筑施工,可以有效减少地震发生作用时能量的输入,从而减弱地震对高层建筑的破坏程度。

3.2 运用高延性设计、推广消震和隔震措施的运用

现在在我国,许多高层建筑进行抗震设计时,多采用延性结构,也就是适当的空着建筑结构的刚度,允许地震时结构的构件进入到具有很大延性的塑性状态,从而消耗地震作用时的能量,使地震反应减小,减弱地震给高层建筑带来的破坏和重大损失。如果某高层建筑的承载能力较小,但是具有较高的延性,那么在地震中它也不容易倒塌,因为延性构件可以吸收较多的能量,经受住很大的结构变形。延性结构的运用,在很多情况下是有效的,它可以消耗地震能量,减轻地震反应,使结构物“裂而不倒一。

3.3 注重抗震结构的设计

高层建筑抗震设计的结构应该得到人们的重视。我国150 m以上的建筑,采用的3种主要结构体系(框.筒、筒中筒和框架.支撑体系),都是其他国家高层建筑采用的主要体系。我国钢材生产数量已较大,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。

我国传统文化中“以柔克刚”具有价高的思想价值,可以指导很多实际问题。在高层建筑结构的抗震设计中,可以从传统的硬性为主的抗震模式向以柔性为主的抗震模式转变,实现以柔克刚、刚柔相济,有效地减弱地震作用过程中释放的冲击力。比如,在高层建筑的拱形结构中有这样一个例子迪拜帆船酒店,外观如同一张鼓满了风的帆,一共有56层、321 m高,就是运用拱结构抗震减灾的很好的例子。

4 高层建筑结构抗震设计前景展望

今后若干年,中国仍将是世界上修建高层建筑最多的国家,这将会给高层建筑抗震设防带来新的难题。21世纪,高层建筑结构抗震将有如下变化:

(1)高层建筑的抗震结构体系将从以硬性为主向柔性为主的结构抗震转变,通过“以柔克刚”方式,调整建筑结构构件的隔震、减震和消震来实现抗震目的。

(2)建筑材料对结构抗震的影响越来越得到重视。建筑材料的各个抗震指标的提升可以提高高层建筑的抗震能力,研制新的建筑材料可推动高层建筑结构抗震技术的发展。通过优化的抗震方法设计,来实现高层建筑的抗震要求。

(3)计算机模拟抗震试验得到广泛应用。将制作好的模型或结构构件放在模拟地震振动台上,台面输入某一确定性的地震记录,能够较好地反映该次确定性地震作用的效果。计算机模拟环境可以拟真抗震效果,帮助科学改进各因素,有效抗震。

另外,高层建筑结构的抗震设计的计算方法也有了新的转变:从线性分析向非线性分析转变,从确定性分析向非确定性分析转变,从振型分解反应分析向时程分析法转变 。

5 结语

高层建筑结构的抗震设计方法和技术是不断变化和进步的,我们需要在具体的实践中对高层建筑所处的地质和环境进行详细的分析和研究,选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。

高层建筑结构抗震设计篇(8)

现今,我国的大部分城市内都是高楼耸立,对于高层建筑结构的设计是一项较复杂责任繁重的系统工程,尤其是抗震的结构设计,其设计的好坏将直接影响高层建筑的工程质量,特别是在地震多发区,因此,这就需要设计人员要充分认识高层建筑抗震结构设计中容易出现的问题,不断进行总结和改进,以完善高层建筑的抗震结构设计。

1 高层建筑抗震结构设计中的常见问题

1.1 高层建筑的高度问题

根据我国现行的相关结构技术规定,在一定设防烈度和一定结构型式下,钢筋混凝土高层建筑要有一个适宜的高度。也就是说,在这个高度的范围内,建筑的抗震性能是比较可靠地,但是目前,存在少数的高层建筑的高度超过了规定的范围,如果在地震力的作用下,极易改变超过限制的高层建筑物的变形破坏性态以及其他影响因素,那么就会大大降低高层建筑的抗震能力,对于抗震结构设计的一些相关参数也要重新选取。

1.2 结构体系以及建筑材料的选用

结构体系以及建筑材料的选用对于高层建筑的抗震性能具有非常重要的意义,尤其是在地震的多发区,更应该重视科学合理的结构体系以及建筑材料的选用。在我国,多部分的高层建筑结构体系是钢筋混凝土核心筒以及混合结构为主,所以对于变形的控制通常要以这种结构的位移值为基准。但是,这种情况下,如果发生弯曲变形,导致的侧移会比较大,进而增加钢结构的承受压力,为了保证效果,使其控制在规范的侧移值内,通常需要设置伸臂结构或加大混凝土筒的刚度。

1.3 抗震设防烈度过低

根据可靠的数据以及专家分析,我国现行的高层建筑抗震的结构设计的安全度远远不能满足社会的需求,有数据显示,我国的高层建筑抗震实际的安全度很可能是世界上最低的一个国家。在经济科技都快速发展的情况下,我国的高层建筑抗震结构的设计原则,即“小震不坏,中震可修,大震不倒”,在这种新形势下,有必要进行重新的修订。由于我国现行的高层建筑抗震结构的设防标准过低,由于其结构失效,经常会导致严重的后果。

1.4 轴压比与短柱问题

在高层建筑结构设计中,如果是采用钢筋混凝土的结构体系中,为了控制柱的轴压比,增加柱的横断面,而柱的纵向钢筋却为构造配筋。对柱的轴压比进行限制主要是为了使柱子处于较大的偏压状态下,避免受拉钢筋的破损,进而降低高层建筑的整体结构延性。

2 高层建筑抗震结构设计的原则以及基本方法

2.1 抗震结构的设计原则

2.1.1 结构设计的整体性

高层建筑的楼盖对于其结构的整体性占据着不可或缺的位置。楼盖就类似于一个横向的水平隔板,将惯性力聚集起来,并向各个竖向抗侧力的子结构传递,尤其是当这些子结构的布置不均匀或过于复杂时,楼盖就可以很好的将这些抗侧力子结构组织起来,进行协同合作,来承受地震的作用。

2.1.2 结构设计的简单性

高层建筑结构设计的简单性主要是指在地震的作用下,具有极其明确清晰的直接传力方式。在相关的规范中对于结构体系有明确的要求,即结构体系要有明确的计算简图以及合理的地震作用传递途径。换句话说,只有高层建筑结构的设计越简单,才能够分析出结构的计算模型、内力以及位移,进而提高对高层建筑结构的抗震性能的预测的可靠性。

2.2 抗震结构的设计方法

2.2.1 基于水平位移的抗震结构设计

基于水平位移的抗震结构设计主要是为了使结构的变形能力能够保持在预期的地震作用下(通常是在大地震的情况下)的变形要求。此外,要根据界面的应变大小以及分布,来确定建筑的构件标准,同时在确定构件的变形值时,要以构件的变形以及其与结构位移的关系来确定。首先,要充分研究高层建筑的一些简单结构的构件变形,以及其与配筋的关系,严格按照变形的要求来设计合理的构件,进而对建筑的整体结构进入弹塑性后的变形与构件变形的关系。因此,这时就要设计在大地震的作用下的变形,这也将是高层建筑抗震结构的未来的发展趋势。

2.2.2 推广使用隔震和消能减震设计

现今,在高层建筑的抗震设计中,多采用的是传统的抗震结构体系,也就是延性结构体系,主要是控制建筑结构的刚度,如果发生地震,就会使建筑的构件进入非弹性的状态中,使其具有较大的延性,进而有助于地震作用下的能量的消耗,尽可能的减小地震效应,避免建筑物的倒塌。此外,通过采用相关的隔震措施,如软垫隔震、摆动隔震以及滑移隔震等,可以改变高层建筑的动力特性,进而减少所受到的地震能量的作用,同时通过采用高延性构件,也可以增加高层建筑结构的耗能能力,有助于减轻地震效应。

2.2.3 降低高层建筑结构的自重

如若是在相同的地基承载能力条件下,降低高层建筑结构的自身重量可以使在不增加地基以及其造价的情况下,可以在相关的规定范围内,尤其是在软土层的地基上,可以增加高层建筑的层数。研究显示,由于高层建筑的高度很大,重心也相应较高,所以,建筑的重量越大,受地震作用的倾覆力矩的效应就越大。

因此,在高层建筑的抗震结构设计中,要尽量采用轻质材料来填充高层建筑物的填充墙及隔墙。

2.2.4 设置多道抗震防线

通常在地震后都会伴有多次的余震,那么对于高层建筑结构如果只设置一道抗震防线,往往会只因首次的强烈地震就会遭到严重的破损,甚至倒塌。因此,有必要对高层建筑设置多道抗震防线。在一个高层建筑的抗震体系下,应该由多个延性较好的分体系组成,当第一道抗震防线遭到冲击时,其他的抗震防线便能够接替第一道防线继续抵挡随后的地震冲击,通过多道防线的协同合作,可有效地防止高层建筑的倒塌。

3 高层建筑抗震结构设计的前景

虽然我国的高层建筑水平稳步的提升,但是在高层建筑抗震的结构设计中仍然面临很多新的问题和挑战。其中,首先对于影响高层建筑抗震结构的设计效果的关键因素就是建筑材料的选用,提高每一项建筑材料的抗震指标可以很好地提高高层建筑的整体抗震性能,因此,科研人员要加强对于新型复合高性能的建筑材料的研发,以促进抗震技术,进而满足高层建筑抗震结构设计的需求。其次,对于不同的抗震能力的需求,要采取相应的抗震措施,设置是对于同一个高层建筑的不同部位和楼层以及对于性能的要求不同时,都要选用不同的标准的构件。因此,高层建筑抗震结构的设计人员在实际工作中,要根据自身的专业水平知识以及实际经验,并结合对具体的高层建筑的抗震性能要求及措施,来设计出符合抗震设防烈度标准的高层建筑结构。另外,高层建筑的抗震结构体系也开始逐渐以柔性为主,而不在是传统中的以硬性为主的结构体系。最后,对于高层建筑抗震结构的计算方式也发生了改变,即从线性分析向非线性分析转变,从确定性分析向非确定性分析转变,从振型分解反应分析向时程分析法转变。

4 总结:

综上所述,高层建筑的抗震结构设计是整个建筑工程的关键环节,但是在我国高层建筑的抗震结构设计上处于起步阶段,仍需要进一步的完善。因此,设计人员用综合多方面的因素进行分析,同时,结合新型的高性能材料以及抗震结构理念,以提高高层建筑抗震结构的设计水平,进而促进我国高层建筑的抗震结构设计方法的发展。

参考文献:

高层建筑结构抗震设计篇(9)

引言

随着经济社会的不断发展,高层建筑也不断涌现出来,但是由于近些年频繁发生的地质灾害,也给高层建筑的结构设计敲响了警钟。高层建筑也越来越多,在这种情况下必须做好抗震设计,设计人员在高层建筑抗震设计中,都是按照抗震结构设计规范进行的,他们希望设计的结构能够达到强度、刚度、延性及耗能能力等方面达到最佳,从而经济地实现“小震不倒、中震可修、大震不倒”的目的,但是在实际设计中,却不能达到这种效果。本文将从抗震结构设计的基本原则,我国高层建筑抗震设计常见的问题以及提高抗震性能措施三个方面对高层建筑的抗震结构进行阐述。

1.高层建筑抗震结构设计的基本原则

(1)结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能。①结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则;②对可能造成结构的相对薄弱部位,应采取措施提高抗震能力;③承受竖向荷载的主要构件不宜作为主要耗能构件。

(2)尽可能设置多道抗震防线。由于每次强震之后都会伴随多次余震,因此在建筑物的抗震设计过程中若只有一道设防,则其在首次被破坏后而余震来临时其结构将因损伤积累而倒塌。因此,建筑物的抗震结构体系应由若干个延性较好的分体系组成,在地震发生时由具有较好延性的结构构件协同工作来抵挡地震作用。当遭遇第二设防烈度地震即低于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏,但经一般修理或不需修理仍可继续使用。

2.我国高层建筑抗震设计常见的问题

2.1工程地质勘查资料不全

在设计初期,设计人员应该及时掌握施工场地的地质情况,但是往往在设计过程中,却没有建筑场地岩土工程的勘察资料,就不能很好的进行地基设计,给建筑物的结构带来安全隐患。

2.2建筑材料不满足要求

对于材料而言,我们要明确这样一个道理:地震对结构作用的大小几乎与结构的质量成正比。一般说在相同条件下,质量大,地震作用就大,震害程度就大,质量小,地震作用就小,震害就小。所以,在建筑物的楼板、墙体、框架、隔断、围护墙以及屋面构件中,广泛采用多孔砖、硅酸盐砌块、陶粒混凝土、加气混凝土板、空心塑料板材等轻质材料,将能显著改善建筑物的抗震性能。

2.3建筑物本身的建筑结构设计

建筑物如果平面布置复杂,致使质心与刚心不重合,在地震作用下产生扭转效应,则会加剧了地震的破坏作用,海城地震和唐山地震中有不少这样的震害实例。台湾9.21地震中,一栋钢筋混凝土结构由于结构平面不规则,在水平地震作用下,结构产生严重扭转效应而破坏倒塌,同时撞坏相邻建筑上部的阳台。

2.4平面布局的刚度不均

抗震设计要求建筑的平、立面布置宜规正、对称,建筑的质量分布和刚度变化宜均匀,否则应考虑其不利影响。但有的平面设计存在严重的不对称:一边进深大,一边进深小;一边设计大开间,一边为小房间;一边墙落地承重,一边又为柱承重。平面形状采用L、π形不规则平面等,造成了纵向刚度不均,而底层作为汽车库的住宅,一侧为进出车需要,取消全部外纵墙,另一侧不需进出车辆,因而墙直接落地,造成横向刚度不均。这些都对抗震极为不利。

2.5防震缝设置不规范

对于高层建筑存在下列三种情况时,宜设防震缝:①平面各项尺寸超过《钢筋混凝土高层建筑结构设计与施工规程》(JGJ3- 91)中表2.2.3 的限值而无加强措施;②房屋有较大错层;③各部分结构的刚度或荷载相差悬殊而又未采取有效措施;但有的竟未采取任何抗震措施又未设防震缝。

2.6结构抗震等级掌握不准

有的提高了,而有的又降低了,主要是对场地土类型、结构类型、建筑高度、设防烈度等因素综合评定不准造成。

上述这些问题的存在,倘若不能得到改正,势必对建筑物的安全带来隐患。上述这些问题的原因是多方面的,这就需要设计人员从设计的角度避免这些问题的出现,防止将这种问题带入施工中,应该高层建筑的抗震性能。

3.提高抗震性能措施

3.1选择合理结构类型

在高层建筑中,其竖向荷载主要使结构产生轴向力,而水平荷载主要使结构产生弯矩,随着高度的增加,在竖向荷载不变的情况下,水平荷载作用力增加,此时竖向荷载所引起的建筑物侧移很小,但是水平荷载参数的侧移就非常大,与高度层四次方变化,因此在高层建筑中,主要对水平荷载进行控制,在设计过程中,应该在满足建筑功能及抗震性的前提下,选择切实可行的结构类型,使其具有良好的结构性能。目前大多数的高层建筑都采用了钢混结构,这种结构具有较大的刚度,空间整体性好,材料资源丰富,可组成多种结构体系。但是其变形能力差,造价相对较高,当场地特征周期较长时,容易发生共振现象。

3.2减小地震能量输入

具有良好抗震性能的高层建筑结构要求结构的变形能力满足在预期的地震作用下的变形要求,因此在设计过程中除了控制构件的承载力外还应控制结构在地震作用下的层间位移极限值或位移延性比, 然后根据构件变形与结构位移的关系来确定构件的变形值,同时根据截面达到的应变大小及分布来确定构件的构造要求,选择坚硬的场地土来建造高层建筑等方法来减小地震能量的输入。

3.3减轻结构自重

对于同样的地基条件下进行建筑结构设计若减轻结构自重则可相应增加层数或减少地基处理造价,尤其是在软土基础上进行结构设计这一作用更为明显,同时由于地震效应与建筑质量成正比,而高层建筑由于其高度大重心高等特点,在地震作用时其倾覆力矩也随之增加, 因此, 为了尽量减小其倾覆力矩应对高层建筑物的填充墙及隔墙尽量采用轻质材料以减轻结构自重。

3.4尽可能设置多道抗震防线

当发生强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

4.结语

总之,面对中国的高层建筑抗震结构存在的诸多问题,限于我国作为一个发展中国家的财力、物力,探讨、研究有效的建筑抗震措施的任务仍然十分艰巨。于此同时,我国政府相关部门也应该加强规范力度,发挥好对高层建筑防震措施的检查、检验效力。

参考文献

[1]罗联训. 浅论高层混凝土建筑抗震结构设计[J]. 中华民居(下旬刊),2014,06:25.

高层建筑结构抗震设计篇(10)

Abstract: the structure of the high-rise building aseismic performance is of vital importance, this paper discusses the concept, structure and seismic design the process of how to solve problems, and then analyzes the impact of building the main factors of seismic effects, and points out that the high building aseismic design should follow the principles and methods for in this, mentioned the aseismic design of high-rise building and broad prospects.

Keywords: high building; Seismic; design

中图分类号:TU97文献标识码:A 文章编号:

0 引言

地震作用影响因素极为复杂,它是一种随机的、尚不能准确预见和准确计算的外部作用,目前规范给出的计算方法还是一种半经验半理论的方法,要进行精确的抗震计算还有一定的困难,但是近年来,地震等自然灾害多发,影响到人们的基本生活和生命财产安全,因此,建筑(尤其是高层建筑)抗震安全问题必须引起建筑师们的高度重视。本文就高层建筑结构的抗震性能作出相关分析,以同行参考!

1 建筑结构抗震等级的规定和标准

震级是根据地震的强度而进行的划分,在我国,地震划分为六个级别:3级为小地震,3~4.5级为有感地震,4.5"--6级为中强地震,6~7为级强烈地震,7~8级为大地震,8级以上的为巨大地震,是国家根据相关的历史、地理和地质方面的经验资料,经过勘查和验证,对进行地震分组的一个经验数值,它是地域概念。抗震设防有甲、乙、丁类建筑,在我国大部分的房屋抗震等级是8度,可以抵抗6级地震的作用。国家设计部门依据有关规定,按照建筑物的分类和设防标准,根据房屋高度、结构等方面,采用不同的抗震等级。比如,在钢筋混凝土结构中,抗震等级可以分一般、较为严重、严重和很严重这4个级别。

在高层建筑的抗震设计中,混凝土结构应高根据建筑的高度、建筑的结构和设防的烈度运用不同的抗震等级,而且应该符合相应的计算和措施要求。

2 影响建筑物抗震效果的因素

研究高层建筑结构的抗震设计,必需明确建筑物抗震效果的主要影响因素。下面,将从建筑结构本身的设计效果、施工材料施工过程以及建筑场地情况3个方面进行分析。

2.1 建筑结构建造过程中所使用的材料和施工过程

建筑结构的材料是影响抗震效果非常重要的因素,但是这个因素往往被人们忽视,工作人员需要明确这样一点:在一般情况下,地震对建筑物作用力的大小与建筑物的质量成正比。在同等地震环境下,建筑物材料使用越好,其受到的地震作用力也相对较小;反之,建筑物就会遭到来自地震的很大的作用力。所以,在实际的建筑物的建设中,建议他们多采用隔断、板楼、维护墙等构件,广泛采用空心砖、加气混凝土板、塑料板材等质轻的建筑材料,这将会有利于建筑物抗震性能的提高。建筑结构施工过程同施工材料共同影响整个建筑工程的质量,在施工过程中,每一个环节都可以影响建筑结构抗震效果。所以,高层建筑在具体施工中,要加强监管和规范,严格做好高层建筑施工管理,从建筑结构的质量上来提高抗震效果。

2.2 建筑物自身的结构设计

建筑物的结构设计是影响抗震效果极为关键的一个因素,建筑物若要达到抗震目的,必须进行合适的结构设计,保证抗震措施合理,能够基本实现小地震不坏、大地震不倒这样的目标。无论点式住宅或是版式住宅,都要进行合理的结构设计,提高建筑结构的抗震性能。如果建筑物对平面的布置较为复杂,质心与

刚心不一致,在地震情况下,将会加剧地震的作用影响力,破坏性增强。所以,建筑物的结构平面布置尽量保证建筑物质心和刚心重合,提高建筑物的抗震能力。

在建筑结构的设计中,出屋面建筑部分不宜太高,以降低地震过程中的鞭梢影响;平面布置不规则的房屋注意偏离建筑结构刚心远端的抗震墙等等。

2.3 建筑物所处地质环境情况

在地震中,对建筑物造成破坏的原因是多方面的,比如:岩石断层、山体崩塌、地表滑坡等使得地表发生运动,造成建筑物的破坏;海啸、水灾等次生灾害对建筑物造成破坏。在造成建筑物破坏的诸多原因中,有些是可以通过工程措施加以预防的。所以,在选择建筑工地的位置之前,要进行详尽的勘探考察,分析地形和地质条件,避开不利地段,挑选对建筑物抗震有利的地点。

3 高层建筑抗震设计的方法

对高层建筑结构的抗震设计时,要从减小地震作用力的输入和增强地震抵抗力两个方面进行考虑。下面将从五个方面进行分析:尽可能减小地震作用能量的输入,运用高延性设计、推广消震和隔震措施的运用,注重抗震结构的设计,重视建筑材料的选择,增多抗震防线的建设。将减小地震作用力和增强建筑的地震抵抗力二者结合起来,从两方面入手,进行建筑抗震的设计施工。

3.1 减少地震发生时能量的输入

在具体的设计中,积极采用基于位移的结构抗震方法,对具体的方案进行定量分析,使结构的变形弹性满足预期地震作用力下的变形需求。对建筑构件的承载力进行验收的同时,还要控制建筑结构在地震作用下的层间位移限值;并且更具建筑构件的变形和建筑结构的位移之间的关系,确定构件的变形值;根据建筑界面的应变分布以及大小,来确定建筑构件的构造需求。对于高层建筑来讲,在坚固的场地上进行建筑施工,可以有效减少地震发生作用时能量的输入,从而减弱地震对高层建筑的破坏程度。

3.2 运用高延性设计、推广消震和隔震措施的运用

现在在我国,许多高层建筑进行抗震设计时,多采用延性结构,也就是适当的空着建筑结构的刚度,允许地震时结构的构件进入到具有很大延性的塑性状态,从而消耗地震作用时的能量,使地震反应减小,减弱地震给高层建筑带来的破坏和重大损失。如果某高层建筑的承载能力较小,但是具有较高的延性,那么在地震中它也不容易倒塌,因为延性构件可以吸收较多的能量,经受住很大的结构变形。延性结构的运用,在很多情况下是有效的,它可以消耗地震能量,减轻地震反应,使结构物“裂而不倒一。

3.3 注重抗震结构的设计

高层建筑抗震设计的结构应该得到人们的重视。我国150 m以上的建筑,采用的3种主要结构体系(框.筒、筒中筒和框架.支撑体系),都是其他国家高层建筑采用的主要体系。我国钢材生产数量已较大,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。

我国传统文化中“以柔克刚”具有价高的思想价值,可以指导很多实际问题。在高层建筑结构的抗震设计中,可以从传统的硬性为主的抗震模式向以柔性为主的抗震模式转变,实现以柔克刚、刚柔相济,有效地减弱地震作用过程中释放的冲击力。比如,在高层建筑的拱形结构中有这样一个例子迪拜帆船酒店,外观如同一张鼓满了风的帆,一共有56层、321 m高,就是运用拱结构抗震减灾的很好的例子。

4 高层建筑结构抗震设计前景展望

今后若干年,中国仍将是世界上修建高层建筑最多的国家,这将会给高层建筑抗震设防带来新的难题。21世纪,高层建筑结构抗震将有如下变化:

(1)高层建筑的抗震结构体系将从以硬性为主向柔性为主的结构抗震转变,通过“以柔克刚”方式,调整建筑结构构件的隔震、减震和消震来实现抗震目的。

(2)建筑材料对结构抗震的影响越来越得到重视。建筑材料的各个抗震指标的提升可以提高高层建筑的抗震能力,研制新的建筑材料可推动高层建筑结构抗震技术的发展。通过优化的抗震方法设计,来实现高层建筑的抗震要求。

(3)计算机模拟抗震试验得到广泛应用。将制作好的模型或结构构件放在模拟地震振动台上,台面输入某一确定性的地震记录,能够较好地反映该次确定性地震作用的效果。计算机模拟环境可以拟真抗震效果,帮助科学改进各因素,有效抗震。

另外,高层建筑结构的抗震设计的计算方法也有了新的转变:从线性分析向非线性分析转变,从确定性分析向非确定性分析转变,从振型分解反应分析向时程分析法转变 。

5 结语

高层建筑结构的抗震设计方法和技术是不断变化和进步的,我们需要在具体的实践中对高层建筑所处的地质和环境进行详细的分析和研究,选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。

上一篇: 新公共管理内容 下一篇: 公共管理创新案例
相关精选
相关期刊