自然灾害综合风险评估汇总十篇

时间:2023-07-20 16:30:29

自然灾害综合风险评估

自然灾害综合风险评估篇(1)

一、国内农业气象灾害的评估现状

农业气象灾害对农业造成的破坏和影响主要是依据农业气象灾害指标体系对其进行评价的,我国的学者通过多种控制条件、实验和对气象灾害数据的统计分析,逐渐形成了以农业为主的气象灾害指标体系,并以此为基础,建立了各种农业气象灾害评价的数学模型,使我国的气象灾害逐渐由定性评价向定量评级进行转变。其中,主要的研究对象包含洪涝、干旱、台风、暴雨、寒潮等农业气象灾害。目前,我国国内外对农业气象灾害的评估内容主要有灾害风险区划及管理、人类社会经济损失和作物产量损失等,评估的模型主要有灾害风险评估、作物模型评估和综合模型评估。

1.农业气象灾害风险评估

灾害风险分析最早起源于国外,分析领域主要集中在重大自然灾害和经济领域,而对农业气象灾害的风险分析相对较少,起步较晚,我国的农业气象灾害风险分析,经过几十年的发展,现在主要是通过灾害影响评估的风险化、数量化技术和方法,构建风险评估的技术体系,主要内容包含了气象灾害的风险分析,后期的跟踪与评价,灾后的评估以及应对的措施等等。农业气象灾害风险评估是一项综合性的、多因子的评估分析工作,主要涉及对气象灾害的危害性、危险程度,对灾害的预测、承载体系的承受能力以及降低灾害措施的分析等方面。

2.农业作物模型评估

目前,在国际上的农业作物模型评估类型比较多,例如澳大利亚的APSIM模型、美国的DSSAT模型、荷兰de W it学派的系列模型等,而我国目前采用的主要是CCSODS模型。该模型主要面向国内的农田管理者以及农业管理者,具有通用性和机理性的特点,经实践证明,在气象灾害评估方面具有较强的实用性,能够提供作物的优化栽培体系。

3.综合模型评估

综合模型评估所要考虑的因素主要有灾害的覆盖面积、灾害的强度、农作物对灾害的敏感度、农作物的防御能力以及当地在某一时间段所拥有的生产力水平等,在此基础上构建气象灾害评估的指标体系,然后通过模糊数学方法、回归分析法、层次分析法,以及灰色聚类分析和BP神经网络等方法的选择与利用,建立农业气象灾害的综合评估模型,以此实现对农业气象灾害的定量分析和定性分析。目前,我国的很多专家和学者都根据当地气象灾害和农业发展的实际,对综合评估模型进行创新和发展,确定了科学的评估手段和方法。在该模型中,农业气象灾害定量评估主要依据对农作物受灾后产量的损失评估,农业部门主要是计算受灾面积、成灾面积和绝收面积对粮食的损失。

二、国内农业气象灾害评估的发展趋势

1.农业气象灾害评估中将加强作物模型的应用

农业作物模型主要是对农作物的生理过程和土壤、气象等一系列影响因素进行数值模拟,把农作物的成长过程进行模拟再现,对农作物的生长过程与环境因素的相互关系做定量的描述,这对于农业气象灾害的评估有非常重要的价值。基于作物模型的特殊作用,在我国的农业气象灾害评估系统中将会得到广泛应用。从作物模型的发展来看,将依据简单、精准、大众化为基本准则,研究方向将有专业的上层研究转向基层的广大生产用户。农业评估模型也将结合数学模型融合专家知识模型,最终建立成综合系统的评估专家系统,实现作物模拟的专业化和可视化。

2.农业气象灾害风险评估将得到进一步完善

随着经济的进步和科学技术的发展,许多新的理论和方法都将被引入到农业气象灾害的风险评估体系中,并将得到进一步发展和完善。首先,通过农业灾害相关机理的研究,对于承灾体的易损伤性、致灾因子的不稳定性以及区域防灾能力的脆弱性将得到深入分析和研究。其次,因为不同的自然环境孕育出不同类型的气象灾害,而在风险评估过程中不同的风险因素的影响效果也是不一样的,对不同的风险模型评估和风险指标体系的看法也是千差万别,这就导致风险评估结果的不统一,所以,通过不断构设标准统一的风险评估体系,在未来的风险评估指标和风险评估模型的标准方面会得到进一步的统一和规范。

3.农业气象风险综合评估技术将朝向多元化方向发展

农业气象灾害是受多方面的因素影响的,然而在对农业受灾损失进行定量评估时,一般都比较看重给农业带来的经济方面的损失,对于生态环境、社会生活等方面的损失关注力度不够。随着经济社会的不断发展,农业气象灾害评估将朝向多元化方向发展,与之相配套的风险综合评估技术也将出现多元化。对于气象灾害的影响,除了灾害性天气之外,植被地标状况、区域地形结构等也成为气象灾害的影响因素。综合来看,农业气象灾害评估将发展成为地面监测与3S技术相融合的一体化的灾害评估系统,对农业气象灾害进行全面评估。

三、总结

综上所述,通过我国农业气象灾害评估的现状分析和对未来发展趋势的研究可以看出,我国要不断加强对农业气象灾害的评估与相关作物模型的分析研究,切实提高农业生态环境的气象保障能力,使作为我国基础性产业的农业能够持续、稳定、健康的发展,为我国这个人口大国提供可靠的保证,这也是我国能够实现独立自主发展的先决条件。只有加强农业气象灾害的评估,才能为农业的长远发展保驾护航。

参考文献:

[1] 常彦军,董津瑞.我国农业气象灾害评估现状和发展趋势[J].黑龙江科技信息,2011,(06).

自然灾害综合风险评估篇(2)

1.1资料来源及处理东北三省共86个气象台站(黑龙江省31个站点,吉林省28个站点,辽宁省27个站点)的1961-2012年逐日平均气温数据和农气观测站1991-2012年水稻生长发育期资料由中国气象数据共享网提供。单季稻实际总产及播种面积资料来自各省历年统计年鉴。研究区范围及气象站点分布如图1所示。

1.2东北水稻冷害指标及其辨别东北三省1961-2012年水稻冷害的辨别主要依据气象行业标准《水稻、玉米冷害等级》(QX/T101-2009)。表1和表2分别列出东北水稻延迟型冷害和障碍型冷害等级指标。逐年逐站点将日平均气温按月份合成月平均气温,再累加成5-9月月平均气温总和∑T5-9。计算∑T5-9与距平基准年T5-9(1981-2010年∑T5-9平均值)之差,得到各站点1961-2012各年5-9月月平均气温总和距平ΔT5-9,并根据指标表判断每个站点发生一般和严重延迟型冷害的年份,并统计各类延迟型冷害发生频率。对农气站观测的水稻生长发育期资料进行统计,得出东北三省水稻普遍孕穗期范围和普遍抽穗开花期范围分别在儒略日(DOY)189-207(7月中旬至下旬)和DOY209-227(7月下旬至8月上中旬)。分生育期范围按障碍型冷害指标,逐年逐站点地分析DOY189-207和DOY209-227间的日平均气温数据,判别每个站点水稻孕穗期、抽穗开花期轻度、中度及中度障碍型冷害发生的年份,并统计各类障碍型冷害发生频率。

1.3产量分离作物产量的形成是自然环境因素和社会生产力综合作用的结果。通常把长时序产量数据分解为趋势产量、气象产量及随机“噪声”3部分,一般情况下可假设忽略“噪声”的影响。趋势产量可由多种方法进行模拟和预报[13],本文选择不损失样本且模拟效果较好的直线滑动平均法,设滑动步长为11,具体步骤参见文献[14]。按QX/T101-2009行业标准,定义水稻减产率为实际产量与其趋势产量的差值占趋势产量的百分比(即相对气象产量)的负值。

1.4综合风险评估及区划方法在GIS平台下利用反距离权重插值法(inversedistanceweighting,IDW)对各单项评价指标进行空间化表达。采用熵值法(entropymethod,EM)和层次分析法(analytichierarchyprocess,AHP)相结合的综合赋权法和加权综合评分法(weightedcomprehensiveanalysis,WCA)构建水稻冷害风险综合评估模型。对空间分布的单项风险要素评价指标叠加计算,并利用ArcGIS中自然断点分类法NaturalBreaks(Jenks)对综合风险评价指标进行区划。熵值法和层次分析法原理及操作步骤可参见文献[12]。

2东北三省水稻低温冷害综合评估指标的构建

2.1致灾因子危险性评估指标致灾因子危险性评估是以农业气象灾害的自然属性为基本出发点,通过分析致灾因子历史活动的频繁程度和强度,来确定致灾因子的危险性大小及其发生的可能性。本文选择从水稻生育期热量条件变异系数、延迟型冷害气候风险概率、障碍型冷害发生频率及冷害气候风险指数4方面来综合体现致灾因子危险性。

2.1.1∑T5-9的变异系数有研究表明5-9月的热量条件与东北地区水稻产量呈显著正相关[15],且年际间热量条件的稳定性直接关系到水稻低温冷害发生的风险大小[3]。因此本文通过计算∑T5-9的变异系数CVh来表明各地水稻生长季内热量条件稳定程度大小,即评估致灾因子风险强度大小。

2.1.2冷害气候风险概率同冷害发生频率相比,当统计样本足够大时,冷害概率值不随统计年份的增加而改变,更具有客观性和稳定性。计算概率前,需采用偏度-峰度检验法对气候样本序列进行正态分布检验,不满足检验的序列需要进行偏态分布正态化处理[14]。经检验,东北地区所有站点∑T5-9和ΔT5-9历年序列分布曲线均满足正态性。因此,可以引入冷害气候风险概率的概念,用正态分布密度函数揭示各地发生延迟型冷害的风险性大小。概率密度函数公式为:式中,一般冷害指标ΔT1和严重冷害指标ΔT2可参见表1。分别计算各站点的一般冷害和严重冷害的风险概率(F1和F2),其值越大,表明发生延迟型冷害的风险性越大;反之,发生低温冷害的风险越小。

2.1.3冷害气候风险指数冷害气候风险指数是冷害强度和冷害发生频率的综合指标[16],能较客观地反映冷害的风险程度。将每个台站出现冷害的年份按一般冷害和严重冷害分为两组,求出每组达到相应冷害等级的ΔT5-9的频数Di和组中值Hi,再按式(5)计算冷害气候风险指数RI,其中n为总年数:

2.1.4障碍型冷害频率以上3类指标都只能反映延迟型冷害风险大小。但用于判断障碍型冷害发生与否的数据序列是非连贯的,因此无法利用概率密度函数求解风险概率。由于本研究数据属大样本时序(超过30),故可用历史发生频率反映障碍型冷害风险程度。分孕穗期和抽穗开花期分别统计不同等级障碍型冷害频率,即发生相应冷害的年份总频数占总年数的百分率(同时发生不同程度同种障碍型冷害时不重复统计)。孕穗期和抽穗开花期水稻障碍型冷害综合频率由相应的轻度、中度和重度障碍型冷害分别赋予0.2,0.3和0.5权重加权平均求和得到,分别记为scdf1和scdf2。

2.2承灾体脆弱性评估指标某地区水稻对低温冷害反应的脆弱性不仅取决于当地水稻生产布局,还与当地水稻生产水平占整个研究区水平的比例有关。因此本文的承灾体脆弱性评估模型从承灾体物理暴露性和区域抗灾性能两指标来构建。

2.2.1水稻物理暴露性(Ve)物理暴露性的评估指标可分数量型和价值量型两种[8]。本文采用相对水稻面积作为承灾体物理暴露性指标,定义相对水稻面积为各县(市)水稻种植面积与其行政范围国土面积之比。水稻种植密度越大,暴露性越大,一旦遭遇生育期的低温,则水稻产量损失的可能性也就越大。

2.2.2抗灾性能指数(Vd)抗灾性能反映的是区域人类社会为保障承灾体免受、少受某种灾害威胁而采取的基础的及专项的防备措施力度大小[8]。目前对抗灾性能指数的定义多以产量为基础,有的用实际单产与理论极大单产的比值(K)来表示,其中理论极大单产可用历史最高单产或光温产量替代[17-19];有的是为作物历年趋势产量序列随时间的一元线性回归方程斜率,即生产趋势指数(PT)[20];有的为区域单产占全研究区单产总和的平均值所代表的区域农业水平指数(AL)[21];还有利用歉年受灾率与相对波动产量样本序列的相关性来比较各地区间抗灾性能的强弱[22],其中受灾率与受灾面积与作物播种面积有关。由于单独的水稻冷害受灾面积资料相对缺乏,本文仅对比计算了K,PT和AL这3种指数与各地区多年平均单产的相关系数,结果分别为0.597,0.899和0.138。AL能代表某一地区相对于全区域的生产实力,当发生全域性严重气象灾害导致普遍减产时,区域农业水平越高表明当地防灾抗灾能力越强。因此本研究选择AL作为区域抗灾性能指数。

2.3承灾体灾损度评估指标

作物产量受到光、温、水等气象要素及其他生态环境影响。对于农业气象风险损失度的评估方法,国内多以建立作物产量灾损风险评估指标和模型为主。以前人研究为基础,本文选择历年平均减产率、灾年减产率变异系数、不同减产率范围出现的概率和灾损减产风险指数四方面指标综合评估水稻灾损度风险大小。

2.3.1平均减产率灾年的水稻减产率可以反映某地区水稻受灾导致的产量损失的平均水平。参照表1,定义减产率大于5%的年份为灾年,减产率5%~15%的为一般减产年,减产率大于15%的为严重减产率。按式(6)-(7)计算研究区各县(市)不同减产程度的平均减产率。

2.3.2灾年减产率变异系数减产率变异系数大的地区说明水稻轻度减产或重度减产的年份均很多,生长环境相对脆弱,受到外界条件影响而减产的风险更大。本文定义减产率大于5%的年份为灾年,按式(1)计算灾年水稻减产率变异系数CVl,以描述灾年中历年水稻产量损失的波动程度。

2.3.3减产风险概率作物产量形成过程的不确定部分主要由气候因素的波动所造成。由此推断,分解得到的相对气象产量(即减产率)序列也可能具有正态性分布的特点,因此可计算减产率风险概率。按式(2),(8)-(9)求算东北三省各县(市)减产率风险概率。

2.3.4灾损风险指数与冷害气候风险指数相似,灾损风险指数也是减产幅度和减产频率的综合反映,因而可以较客观全面的反映低温冷害的灾损风险程度。按式(5)对一般减产率和严重减产率出现频率及组中值乘积求和,得到冷害灾损风险指数RIl。

2.4东北水稻低温冷害风险综合评估模型

2.4.1冷害风险综合评估模型建立综合评估模型之前,需按式(10)对各单项评价指标进行标准化处理以消除量纲差异。其中xi和xi''''分别为标准化前后的评价指标值。

2.4.2指标权重的确定熵值法和层次分析法分别为应用较广的客观赋权和主观赋权方法,两者各有利弊。为融合两者优点、避免其不足,本文采用基于这两种方法的综合赋权法确定各评价指标权重,使得权重的确定更加科学合理。熵值法得到的权重(wE)由指标数值直接通过数学模型得到,本文重点说明AHP确定权重(wA)的打分原则。在参考专家经验[3,25]的基础上,本文认为重要性致灾因子危险性>水稻脆弱性>水稻灾损度。因为致灾因子危险性的低温冷害针对性强,而水稻灾损度无法实际指代低温冷害这单一灾种造成的损失。在对单项评价指标的重要性判定上基本保持等权重原则,但需要体现出严重冷害重要性大于一般冷害,障碍型冷害重要性大于延迟型冷害;风险指数(RIh和RIl)因综合考虑了致灾强度和频率两方面,故打分相对较高。赋权过程在AHP分析软件yaahpV6.0中实现。经检验,Risk,Hazard,Vulnerability和Losses的判断矩阵的随机一致性比率分别为0.0088,0.0653,0.0000和0.0257,均满足小于0.1的一致性要求,表明权重分配是合理的(风险评估判断矩阵表略)。令综合权重W=λwA+(1-λ)wE,其中λ为主观偏好系数;1-λ为客观偏好系数,且0≤λ≤1。本文确定λ=0.6。由此得到的评估指标熵值法权重、AHP权重及综合权重值如表3所示。

3东北三省水稻低温冷害综合风险区划

3.1基于不同冷害风险要素的风险区划

对计算得到的致灾因子危险性、承灾体脆弱性及承灾体灾损度综合评估指标值分别通过自然断点法进行等级划分,得到基于不同要素的冷害风险区划图(图2(a)-(c))。从空间分布(图2(a))来看,冷害致灾因子危险性风险具有从东北向西南方向逐渐减弱的显著趋势。黑龙江省黑河、牡丹江和吉林省延边州、通化地区的水稻生长季内热量条件较少且稳定性较差,在气候条件上具有较高的发生冷害风险的可能。除西南部地区以外,黑龙江省其他地区水稻也可能有中等程度遭受低温冷害影响的风险。吉林省中西部地区及辽宁全省热量条件充足,发生冷害的气候风险概率很低。黑龙江省虎林、双鸭山、宝清、佳木斯北部及哈尔滨中部地区,吉林省白城及吉林地区和辽宁省盘锦、沈阳和营口地区的水稻物理暴露性相对较大,而区域抗灾性能由北致南大体逐渐加强(图略)。综合起来,如图2(b)所示,水稻脆弱性较强风险区主要集中在水稻物理暴露性较大的东北平原地区。从图2(c)可知,东北地区水稻灾损度风险也存在明显的地域性差异。黑龙江省东北及西部地区受灾后水稻产量稳定性较差,减产风险概率较高。辽宁大部分地区及吉林省中部地区水稻灾损度风险较低。东北西部部分地区的中等灾损度风险可能来源于农业干旱的影响。

3.2综合风险区划

由综合风险评估指标等级区划图(图4)可知,东北水稻冷害高风险区位于黑龙江黑河北部、佳木斯北部、牡丹江东南部以及吉林延边州东部地区。黑龙江北部及吉林东部大范围地区都因冷凉的气候具有较高的水稻冷害风险。吉林省西部及辽宁省大部分地区热量条件充足且稳定,冷害风险较低,仅在水稻暴露性较高的大洼和营口地区可能存在一定冷害风险。3.3冷害综合风险评估及区划验证根据先前对研究区1961-2012年各地不同程度延迟性冷害和障碍性冷害的辨识结果,选择1964,1965,1966,1969,1972,1976,1977,1981,1986,1987,1989,1995,2002,2003及2009年作为典型冷害年,统计各地冷害年平均减产率,并对各县(市)灾年平均减产率与冷害综合风险指数Risk平均值的相关性进行分析,以验证冷害综合风险指数的数值科学性。由图3可知,冷害综合风险指数与典型冷害年水稻单产平均减产率的回归关系显著,决定系数R2为0.483,达0.01极显著相关水平(n=133)。因此,由致灾因子危险性、承灾体脆弱性和灾损度构建的冷害综合风险评估模型在数值上可靠,可一定程度反映冷害造成的水稻减产程度。除此以外,本文还利用灾害频率分布法对冷害综合风险区划进行空间分布的合理性验证。统计1961-2012年辨识有任意类型冷害发生的地点和年份。如同年某一地区同时发生不同程度或不同生育期障碍型冷害,或发生混合型冷害(延迟型和障碍型冷害并发),均记为一次任意冷害。求算研究区各地任意冷害频次占总年份的百分比,利用IDW插值法得到1961-2012年水稻任意冷害年发生频率分布(图5)。对比图4和图5可知,任意冷害发生频率超过60%的区域与冷害综合风险区划中较高以上风险区域基本一致,从空间尺度证明了本文冷害综合风险评估模型的准确性,体现了其应用价值。

自然灾害综合风险评估篇(3)

近年来由于全球气候变化影响,灾害的发生频次、强度不断增加,影响的范围逐年增大。而旅游业由于自身的高敏感性,当灾害发生时,旅游系统中某旅游因素由于受灾害影响,产生负向变化或外界依托因素的负向变化,都有可能引起旅游业的波动震荡。因此,旅游业成为整个国民经济中最易受到冲击的行业。

中国针对旅游灾害方面的研究起步较晚,且定性研究较多,定量研究较少。20世纪70年代由于世界范围内受到能源危机的影响,国际旅行协会对危机开始重视。此后世界旅游组织把旅游目的地的灾害事件也做了相关定义:影响旅游者信心,并会危及到该地旅游业持续正常运转的任何不曾预见的事件。刘浩龙等从致灾因子的危险性、旅游资源易损性和风险防治能力三个方面选取8个评估指标,建立内蒙古克什克腾旗的景区旅游资源灾害风险综合评估模型。罗振军等从旅游者自身、景区管理和社会综合因素等方面分析了旅游景区事故的主要风险和发生机理。袁红从区域旅游资源自然灾害、区域旅游资源社会灾害、区域旅游资源旅游发展灾害三个方面详细论述了区域旅游资源灾害风险管理的特点与措施。赵黎明等从灾害发生的频度和破坏性来评价灾害的危险性:从旅游者、旅游资源、旅游生态环境和旅游经济四个方面来评价系统的脆弱性:根据预警和救灾恢复两方面评价防灾救灾能力。席建超等选取交通、治安、卫生、住宿、气候、旅游线路、医疗救援7个层面共有14个评估指标,建立旅游风险评价模型。

综上所述,国内对于旅游灾害风险评价都是从其灾害的致灾因子的危险性、承灾体的易损性及防灾减灾三个方面上进行评价研究,并且评价尺度都是从行政区尺度或景观尺度进行区划。一般而言,自然灾害风险形成机制是从致灾因子的危险性、承灾体的暴露性及易损性(脆弱性)3个方面进行研究。区域旅游资源灾害既具有自然属性,也具有社会属性,所以除以上3个方面外,防灾减灾能力也是灾害风险形成中不可缺少的重要因素。

本研究利用现代灾害风险评价理论为基础,从行政区尺度和网格尺度对吉林省区域旅游资源灾害进行风险评价,尝试打破行政区的限制,在小空间尺度上应用灾害风险指数对区域旅游资源灾害进行风险评价。并提出区域旅游资源灾害风险是危险性、暴露性、脆弱性和防灾减灾能力共同作用的结果。

7.结论

本研究根据自然灾害风险评估基本理论,以行政区、网格为评价单元,从两种空间尺度对吉林省旅游资源灾害风险进行评价,讨论了两种空间尺度风险评价方法。在对比分析研究过程和研究结果后,得出以下结论。

自然灾害综合风险评估篇(4)

雷电灾害风险的评价与管理工作,是当前国际减灾防灾管理中较为先进的模式,已经成为灾害科学等学科的发展方向和研究课题。雷电灾害的风险评估是指在一定时限范围内,对风险区遭受到雷击灾害的概率,以及可能造成的后果进行定量分析和评估。其内容主要包括2个层面:一是对发生雷击灾害可能性较大的区域,进行雷击风险的评价;二是对评估区域内发生的雷击灾害进行综合性分析。通过对雷击灾害风险进行识别、估测、评价,并以此为基础对各种防控风险的方式进行优化组合,就可有效管控雷击灾害带来的损害并且妥善处理损失,以最小的成本来获得最大的安全保障目标。

2雷电灾害风险评估的目的及作用

就减轻雷电灾害带来的损失而言,通常有3种方式:一是加强雷灾天气的预警工作,提醒人们在雷电灾害到来之前做好相关预控措施,例如关闭各种用电设备等;二是防雷项目的建设,有利于提高建筑物的防雷能力;三是强化事故抢险救援工作的能力。我们国家虽然对雷暴的临近预警能力有了很大的提高,但是依旧处于起步阶段,对于一些特殊的公共行业来说(电力、医疗等),要求在雷暴来临之际关闭所有的电力设备有些不切实际。而目前的技术对雷电灾害救援工作来说也还不够成熟,所以进行防雷建设的就成为最重要工作,防雷措施可以大大提高建筑物的防雷击能力。雷电风险评估是根据评估目标所在地雷电活动时空分布特征及雷电灾害特征,分析、评估、计算雷电可能导致的人员伤亡、财产损失程度与危害范围等方面的综合风险,达到优化项目选址、合理功能分区布局、确定防雷类别(等级)和最佳防雷措施,并能实时应急处理雷电灾害事故的目的。雷电风险评估是雷电防护目标实现综合雷电防护的首要程序,为科学设计、经济投资、应急处置雷害提供准确的数据,是实现预防为主,科学防雷理念的必要条件。因此,一方面要加强雷暴灾害的预警工作,另一方面要通过对雷灾风险的研究,确定雷电灾害高发区域的范围,以此来有效地提高防雷资金的可利用效率,合理安排防雷工程的建设,根据雷电灾害风险程度依次确定最佳的防雷计划,对不同目标采用差异化的防护,使防护措施有最高的性价比,防止防雷工程的盲目性建设。

3雷电灾害风险评估方法

雷电灾害带来的风险与其他自然灾害的风险本质相同,都是多种自然因素相互作用的结果,它往往受到某个区域自然系统、社会系统等因素的影响。在相同的区域内,因雷电造成灾害的风险机制大致相同,孕灾环境也别无二致,因此可以采用相同的风险评估办法,来表示该区域内雷电灾害风险的大小以及对比关系。以历史气象灾害统计的相关数据为依托,采用模糊数学法、灰色系统法等数学方法,对当前的雷灾风险作出预测。当前公认评价较好的自然风险形成机制,主要包含的内容为:在某区域内发生自然灾害的风险,由自然灾害危险性(H)、暴露(E)、承灾体的易损性(V)、防灾减灾能力(C)4个风险因素相互交织而成,表达式为:R=H•E•V•C。但是这些因素比较抽象笼统,因此需要与雷电灾害的形成机制相互结合,再采用多元分析法或者分层分析法等数学方法,对其进行量化,得出该区域的雷电灾害风险评估计算公式才可以更加准确、详细地对雷电风险进行预测,而且可操作性更强。

4雷电灾害风险评估表达式

由于文中涉及雷电风险评估的主要研究对象是人以及建筑物,因此建筑物遭受雷击风险的通用表达式为:此外,若该建筑物使用类似避雷针等预防雷击的装置,那么建筑物遭到雷电打击的风险大小可以依据该装置的避雷效果呈现降低趋势。

5雷电灾害风险评估系统的设计

把建筑物所受到雷击评估的流程与计算机技术相结合,设计成雷电评估数据库,进而建立雷灾风险评估系统。该系统能够对建筑物受到的雷击风电度做出快速的评估,然后依据评估的结果,以最快的速度找出有效防治雷击的措施,进而减小损失。设计的内容主要包括以下几点。1.建立雷击灾害风险评估界面,同时要求设计数据处理窗体,存储输入、修改评估参数。2.建立数据库,主要用于保存雷电闪击次数及损害几率等常量,在该系统运行时,能够有效、快速地对建筑物所受到的雷灾风险值进行估算,进而采取适当的防雷保护措施。3.评估系统由很多功能不同的窗体组合在一起,每一个窗体都表示一定的功能块,所以用户可以在相关窗体下执行相应功能模块的操作。评估系统模块组成图如图1所示。

自然灾害综合风险评估篇(5)

一、前言

地质灾害风险评估是一项极具现实意义的重要研究课题和减轻灾害损失的非工程性重要措施,其研究成果具有广泛的应用价值,主要体现在:为区域发展及中长远规划提供基础背景资料;为评价建设工程用地的适宜性及基础设施布设提供依据;为受灾害威胁的地区制定应急措施以及为保障生命及财产安全提供工作基础;直接为科学而经济地组织实施防灾减灾工程服务;为灾害保险及发生次生灾害的可能性及损失提供参考依据。地质灾害风险评估也是地质灾害风险分析的核心内容和重要组成部分,为深入认识地质灾害灾情、制定防灾政策、规划防治区域、实施防治措施以及优选防灾项目、进行项目管理奠定了坚实基础。我国在一些领域进行的灾害评估,已经在减灾、防灾中发挥了重要作用。例如在我国一些区域或城市完成的洪水灾害评估、地震灾害评估等,不但为国家经济规划和工程建设提供了重要依据,而且直接指导了减灾工作。

二、地质灾害风险评价在减灾和国民经济发展中的作用

地质灾害风险评价在国民经济发展中具有重要的作用,可以为国土资源规划,重大工程选址以及地质灾害治理、监测、预报及制定救灾应急措施和保护环境提供科学依据。目前,我国已相继开展了全国和区域性的风险评价与区划;开展了部分地区-多发县(市)的地质灾害调查与危险性评价;部分建设用地的危险性和风险性评价;重大工程(如三峡水库、青藏铁路等)的危险性和风险性评价。

1、为国土资源规划和重大工程选址提供依据。通过对地质灾害进行全国和区域性的风险评价与区划,可以为各种重大工程建筑的选址,合理利用土地资源和环境保护提供依据。各种工程活动和土地开发利用,都必须以可持续发展为前提。各种重大工程建筑应建在地质灾害风险程度较低的地区。

2、为防治地质灾害提供依据。通过对地质灾害进行危险性评价、易损性评价,可以为地质灾害的防治提供依据;对发生规模不同的地质灾害采取不同的防治措施进行治理或综合治理。如果地质灾害危险性低、易损性小,则宜采用工程防治措施;如果地质灾害危险性高、易损性大,则应采用躲避或搬迁措施;在无法躲避、无合适搬迁地址,或不允许搬迁时,则宜采用高标准的工程措施。

3、为地质灾害监测、预报、预警提供依据。通过对地质灾害危险性评价、期望损失分析,可以为建立地质灾害监测站的选点提供依据。对重点地区的地质灾害进行实时监测并及时对各种地质灾害信息进行分析,作出预报、预警,使损失降低到最低程度。

4、为地质灾害的应急措施提供依据。根据地质灾害危险性评价、易损性评价、风险评价,提出在发生不同规模地质灾害时的应急方案,并为灾后重建提供依据。

5、为环境保护和可持续发展提供依据。地质灾害除受自然因素控制外,主要是由于人类不合理的开发利用资源环境而引起,因此,合理开发利用资源环境、控制地质灾害的发生或减小地质灾害损失是保持国民经济可持续发展的基础。

三、地质灾害评估级别

1、一级评估是指重要建设项目。由建设单位或委托单位提交危险性评估报告书,必须对评估区内分布的地质灾害是否危害建设项目安全、建设项目是否诱发地质灾害、预测评价工程建设可能诱发的灾害类型及危险性、因治理地质灾害增大的项目建设成本等进行全面的评估。一级评估由省级国土资源厅组织,邀请专家5~7 人,最少不低于5 人,省级国土资源厅备案。

2、二级评估是指较重要的建设项目。与一级评估一样,由建设单位或委托单位提交危险性评估报告书,对评估区内地质灾害对建设项目的影响或危害以及建设项目是否会诱发地质灾害进行分析或专项分析,基本查明评估区内存在的地质灾害类型、分布、规模,以及对拟建项目可能产生的危害、影响。对评估区内重大地质灾害应参照一级评估要求进行评价。二级评估由市级国土资源局组织,邀请专家 3~5 人,最少不低于 3 人,市级国土资源局备案。

3、三级评估是指一般建设项目。可以从简,由建设单位或委托单位提交危险性评估说明书,县级国土资源局备案。

四、地质灾害危险性评估的主要内容

1、现状评估是指已有地质灾害的危险性评估。任务是根据评估区地质灾害的类型、规模、分布、稳定状态、危害对象进行危险性评价。对稳定性或危险性起决定作用的因素作较深入的分析,判定其性质、变化、危害对象和损失情况。

2、预测评估是指对工程建设可能引发或加剧的地质灾害的危险性以及工程本身可能遭受的地质灾害的危险性进行预测。任务是依据工程项目类型、规模、预测工程项目在建设中和建成后,对地质环境的改变及影响,评价是否会诱发地质灾害以及灾害的范围。以郭屯煤矿为例,预测工程建设可能引发或加剧采空塌陷、砂土液化和地面沉降地质灾害的危险性小; 以可采 3 煤在全部开采的情况下,预测评估工程建设遭受采空塌陷地质灾害的危险性小; 遭受砂土液化地质灾害的危险性中等;遭受地面沉降地质灾害的危险性小。

3、综合评估的任务是根据现状评估和预测评估的情况,采取定性、半定量的方法综合评估地质灾害危险场地的建议。

五、 地质灾害评估报告的编写

1、建设单位要委托有资质的勘探设计单位编写报告书。勘探设计单位首先要根据建设用地所处的地质环境条件,确定评估范围和评估灾种,如煤矿则以采空塌陷和地面沉降为主要评估灾种。进行地质灾害调查,充分收集资料,分析研究评估区附近气象、水文、地质、水工环等地质资料。

2、评估报告在综合分析全部资料的基础上进行编写。报告书力求简明扼要、相互联贯、重点突出、论据充分、结论明确、附图规范、时空信息量大、实用易懂、图面布置合理、美观清晰、便于使用单位阅读。报告书的主要内容包括: ①征地地点及范围;②项目类型及平面布置图;③评价工作级别的确定;④地质环境条件;⑤地质灾害类型及特征;⑥工程建设诱发、加剧地质灾害的可能性;⑦工程建设本身可能遭受地质灾害的危险性;⑧综合评价与防治措施;⑨结论与建议。

3、评估报告提交国土资源部门指定的委托审查的专家会评审,形成审查意见。国土资源部门对专家审查意见和所报资料进行审查备案,出具《×项目地质灾害的危险性评估成果备案证明》,以文件形式印发。

4、专家审查意见是国土资源部门行文备案的主要依据,在一定意义上是代表政府进行审查,审查专家认真负责,审查意见规范、实事求是。审查意见对评估单位评估报告所确定的评估范围和评估灾种是否合理、预测评估方法是否正确、危险性评估结果是否可信、评估依据是否充分、结论是否可靠、报告中提出的地质灾害防治措施与建议是否可行等要明确表明。

5、地质灾害危险性评估报告书评审通过后,及时上报国土资源部门审查,同时填写《地质灾害危险性评估报告备案登记表》、《地质灾害危险性评估报告备案登记表》,一并上报审查备案。

六、结语

地质灾害风险评价是风险管理和减灾管理的基础。针对不同目的实施不同种类的地质灾害风险评价,包括点评价、面评价和区域评价。根据地质灾害风险评价的结果,依据风险程度的不同,管理部门可以制定出相应的减灾政策,部署实施减灾工程,使减灾管理做到有的放矢。风险评价成果可以为国土资源规划,重要工程选址,地质灾害治理、监测、预报及制定救灾应急措施和保护环境提供科学依据。

地质灾害风险评价的发展趋势是其研究理论与方法不断完善,并将与多种自然科学相融合、交叉,特别是与社会科学紧密相结合。地质灾害风险评价总体上是向着内容越来越丰富、评价定量化和模型化、以GIS为技术支撑的管理空间化的方向发展。

参考文献:

[1]黄崇福.模糊信息优化处理技术及其应用.北京:航空航天大学出版社,1995.145-159.

[2]向喜.地质灾害风险评价与风险管理,地质灾害与环境保护,2000,11(1) :38-41.

自然灾害综合风险评估篇(6)

中图分类号:C35文献标识码: A

0 引言

随着我国经济建设快速发展,基础设施建设的规模越来越大,各种工程遍布全国,且都面临着滑坡、崩塌、泥石流等不同地质灾害的威胁。不同地区由于地质条件的的差异,受不同地质灾害影响的程度也有所差异。本文以天津渤海开发区某建设项目为例,在对该项目实地考察的基础上,对建设用地地质环境条件、地质灾害类型、地质灾害危险性做出评价,并对该建设用地的适宜性进行评估,为今后其它建设用地地质灾害危险性评估工作积累经验。

1.地质环境背景

地质灾害是在一定的地质环境条件下形成的,它受诸多因素的控制,如地形地貌、地质构造、地层岩性、气象条件以及人类工程活动等。不同地区的地质灾害其形成条件各异,因而就要求我们在进行危险性评估时,必须充分掌握评估区内的地质环境条件[2]。

建设项目为该开发区较重要建设项目,主要负责该地区工业与民用天燃气供应,供气能力预计达到50万m3。地质灾害评估级别为二级。

评估区气候属温带大陆性季风气候,具海洋气候特征。区内多年平均气温12.5℃,多年平均降水量1862mm,蒸发量2190mm。风向以西南风为主。建设项目位于华北冲积平原东部的滨海平原,地势低平、开阔,是由冲海积海积作用所形成的微斜滨海低平原,地势从西向东呈陆地向海域的缓坡状,微地貌单元为平地小区。评估区场地原为盐池及海滩,地势略有起伏,近期内经过人工回填,平整后的标高为2.8~3.0m。综上所述,评估区地形简单,地貌类型单一。

从区域稳定性分析,建设项目所处区域存在3条断层,但距建设用地较远。且在晚更新世中晚期以来没有明显活动迹象,不会对拟建区域稳定性产生影响,建筑区域稳定。地质构造复杂程度为简单。评估区地震动峰值加速度为0.05g,相对应的地震基本烈度为Ⅵ度,一般建筑物不会产生饱和砂土地震液化问题。所以评估区所处区域地壳稳定性等级为基本稳定区。

评估区位于华北沉降带的Ⅲ级构造单元埕宁台拱区内,新生代以来,经过长期沉降,堆积了较厚的新生界地层,下伏中生界奥陶系灰岩。评估区第四系为滨海相沉积,主要岩性特征自下而上分别为:下更新统厚约100m左右,以棕红、黄棕色粘土与灰绿色、锈黄色粉细砂组成,密实块状,水平层理发育;中更新统厚约120m左右,为黄棕色、灰绿色粘土,粉质粘土及细砂、中细砂和中砂组成;上更新统厚约110m左右,为灰黄色、灰色、灰绿色、黄灰色粘土,粉质粘土,粉土组成。全新统厚约10m左右,主要由浅灰色、黄灰色、灰黄色粉土、粉质粘土、粘土、粉砂等组成。

场地地层除表层填土外,分布较稳定,场地稳定性较好;从地层分布规律及物理力学性质看出,各层地基土除表层素填土外都较均匀,属均匀地基。场地地下水位埋深约0.50~1.60米,属第四系孔隙潜水,主要受大气降水及潮汐的影响,地下水位年变化幅度约0.50~1.00米,地下水对混凝土结构强腐蚀性。所以评估区的工程地质条件复杂程度为中等。

2.地质灾害危险性评估

2.1地质灾害危险性现状评估

危险性现状评估是指在工程建设之前,根据野外地质灾害调查,结合工程实践对评估区内存在的地质灾害的类型、规模、分布范围、稳定状态,及对稳定性或危险性起决定性作用的因素作较深入的分析,判定其性质、变化、危害对象等,并对其危险性进行评估,它是地质灾害危险性评估的基础[1] [3]。评估区位于华北冲积平原东部的滨海平原,据实地调查和有关资料综合分析,区域内存在的地质灾害类型为地面沉降、土壤盐渍化。

2.1.1 地面沉降

地面沉降是自然和人为作用下发生的地面下降的地质作用。造成地面沉降的因素很多,如:构造运动、开采地下水、建筑物荷载、软土固结等。评估区地面沉降产生原因主要是由于过量开采深层地下水,由于地下水的持续超量开采,造成了地下水水位大幅下降,地下水位的下降造成了地下应力的改变,使得由岩土体承担的有效应力增加,致使岩土体体积压缩变小,而深层地下水的补给又是非常困难的,从而造成了地面的永久变形。地面沉降可能造成的危害主要有:地面高程资料的大范围失效、加大了风暴潮灾害、建筑物基础沉降、地面开裂、地下管道断裂等。

评估区处于黄骅沉降区东部,距离沉降中心约40km左右,截至2010年评估区累计沉降量约510mm左右,年沉降速率约29mm/a。按年均沉降速率推测至2020年,评估区累计地面沉降量约900mm。

根据沿海地区地面沉降现状评估标准:累计沉降量<500mm,为危险性小;累计沉降量为500mm~1000mm,为危险性中等;累计沉降量>1000mm,为危险性大。根据现场调查,目前地面沉降造成了地面标高损失,加重了风暴潮灾害发生的可能性,为造成其它明显危害,依据以上现状评估标准,确定评估区地面沉降地质灾害危险性中等。

2.2.2土壤盐渍化

评估区位于滨海平原,地势低平,由于浅层地下水埋深浅,蒸发量较大,在土壤毛细作用下,易产生土壤盐渍化,所以评估区土壤盐渍化程度较严重。土壤盐渍化产生的主要威胁是腐蚀评估区建筑物的基础,尤其是混凝土基础。由于盐渍土对建筑物基础的影响是一缓变过程,确定评估区土壤盐渍化地质灾害危险性小。

综上:建设项目所处区域目前的地质灾害为地面沉降、土壤盐渍化。其中,地面沉降地质灾害危险性中等,土壤盐渍化产生地质灾害危险性小。

2.2 地质灾害危险性预测评估

工程建设可能诱发地质灾害的危险性预测评估,主要是指项目区在工程建设施工的过程中或建成后,会影响和改变自然环境现状,从而可能产生新的地质灾害或诱发原己存在的地质灾害。根据项目区所处区域的地质环境条件,评估区工程建设可能遭受的地质灾害主要为地面沉降、软土地基变形、风暴潮和土壤盐渍化。

2.2.1 地面沉降

引起地面沉降的因素有自然因素和人为因素。自然因素包括构造活动、软弱地层的自重压密固结;人为因素(超采深层地下水)是导致地面沉降的主要原因。

评估区及周边地区地处华北冲积平原东部的滨海平原,深层地下水一直以来是评估区附近的主要用水水源,随着当地经济的快速发展,深层地下水的开采量还将进一步加大,评估区地面沉降有加剧的趋势,但今后随着南水北调等地表供水工程的相继运营,深层地下水的开采量将逐步减少,地面沉降将会有所缓和。

目前评估区地面平均沉降速率为29 mm/a,2010年累计沉降量约为518mm,地面沉降处于较快扩展的较活跃状态,稳定状态中等。依据沿海地区地面沉降预测评估标准,且考虑评估区本身地面标高较低,并且由于地面沉降,将构成其它灾害,如土壤盐渍化、风暴潮等将进一步加重,预测评估区地面沉降地质灾危险性中等。

2.2.2 软土地基变形

据评估区附近勘察资料显示,评估区主要为软土、中软土,部分地层处于流塑~软塑状态,属于不良工程地质层。软土层具有触变性,软土地基易产生侧向滑动,造成地基沉降及基底面向两侧挤出等现象,从而使地基失稳。同时,软土层的不均匀性容易造成地基的不均匀沉降,影响建筑物的正常运营。但对建筑场地的地基土进行合理的地基处理后,会大大降低因地基土不良而产生的危险性。因此,预测评估软土地基变形危险性小。

2.2.3 风暴潮

渤海湾一直是风暴潮多发地段,风暴潮所造成的损失有越来越大的趋势,评估区处于风暴潮最大侵陆范围边缘地区,随着评估区地面沉降的持续,海堤也不可避免的降低,风暴潮的危害也将进一步加大。由于我国对风暴潮灾害非常重视,近几年投入较多人力、物力,加强了对风暴潮灾害的预测和防治工作,取得较好的效果。所以预测评估风暴潮危险性小。

2.2.4 土壤盐渍化

评估区浅层地下水水位埋深浅且为咸水,近期开采利用的可能性较小,其水位不会有很大的下降。随着地面沉降的不断发生,浅层水水位会相对上升,主要威胁评估区的建筑物的混凝土基础。由于盐渍土对建筑物基础的影响是一缓变过程,预测评估区可能遭受土壤盐渍化地质灾害危险性小。

3 建设场地地质灾害危险性综合评估和适宜性评价

3.1 地质灾害危险性综合评估

根据对评估区的历史和现状调查,对环境地质条件进行了综合分析,认为建设场地范围内地质环境条件中等。现状评估主要地质灾害为地面沉降和土壤盐渍化,其中地面沉降危险性中等,土壤盐渍化危险性小;预测评估主要地质灾害为地面沉降、土壤盐渍化、风暴潮和软土地基变形,其中地面沉降危险性中等,土壤盐渍化危险性小,风暴潮危险性小,软土地基变形危险性小。随着沧州市经济建设的发展,工农业、市民日常生活等的用水量将持续增加,短期内深层地下水的开采不可避免,不过随着南水北调设施的相继完工投入运营,地下水的开采将得到缓解,地面沉降也将得到有效控制。综上所述,综合评估建设项目地质灾害危险性中等。

3.2 建设场地适宜性评价

评估区现状评估地质灾害危险性中等,预测工程建设遭受地质灾害危险性中等,综合评估地质灾害危险性中等。根据《地质灾害危险性评估技术要求》建设用地适宜性评估标准分类,评估区作为建设项目的建设用地基本适宜。

4 地质灾害防治对策

在工程建设中,需要对现有和将来可能遭遇到的地质灾害要采取有效的防治措施,来维护建筑的安全运营。因此建议采取以下防范措施:

(1) 建筑物要适当考虑地面沉降因素,适当的垫高建设场地。

(2) 评估区土壤盐渍化严重,威胁建筑物的混凝土基础,建筑物基础采取抗腐蚀措施。

(3) 对于软土地基变形,地基基础设计采取相应的地基处理措施。

(4) 建筑物建设过程以及运营过程中,关注海洋天气预报,提前做好防风暴潮的准备。

参考文献

[l]国土资发(1999)392号附件《建设用地地质灾害危险性评估技术要求》.

[2]肖平新,2004,认真学习《地质灾害防治条例》―全面做好地质灾害危险性评估工作,国土资源部地质环境司.

[3]陈孟春 黄成民 张骏 建设用地地质灾害危险性评估方法探讨,工程勘察[J],2006增刊.

Explore the methods for geological hazard evaluation of construction area of coastal plain

LIU Guo-xing, FENG Wen-li

自然灾害综合风险评估篇(7)

突发事件指突然发生,造成或者可能造成重大人员伤亡、财产损失、生态环境破坏和严重社会危害的紧急事件。非常规突发事件是指前兆不充分,具有明显的复杂性、潜在次生衍生危害性和破坏严重性,采用常规管理方式难以有效应对的突发事件。随着社会经济的发展,非常规突发事件发生的频率和强度逐年提高,严重影响了经济社会的可持续发展,对非常规突发事件影响的研究现状进行综述异常重要。

一、国外研究现状

发达国家在灾害研究开始较早且处领先地位。如美国、日本在20世纪50年代开始投入大量人力、物力,对自然灾害进行研究。Brannen(1954)对1953年德克萨斯经历的大灾难进行了研究;Kunreuther和Fiore(1966)、Hirshleifer(1966)研究了灾害与发展的关系;Nelson 和Winter(1964)、Kunreuther(1968)、Dacy和Kunreuther(1969)的评估模型都具有开创性作用。Kates(1971)、Tierney(2001)运用调整跨学科综合研究的分析框架,强调不同风险类别的判别、理解决策过程和社会脆弱性;Cole(1994)运用社会核算矩阵模型估计出灾害对区域经济的生产、家庭、政府、企业等方面的综合影响;Rose、 Benavides、Chang、Szczesniak和Lim(1997)说明了投入—产出模型在综合工程模拟与调查数据方面反映灾害条件方面的有效性,包含空间特征的线性规划模型解释了通过市场或者行政手段进行资源分配可以达到效用最大化; Cohen和Noll(1981)解释了政府参与设立减缓措施标准的基本原理;Cornell和Tagaras(1986)开发了联合可能性模型,分析大坝修建失败的相互依赖性;Berke,Kartez和Wenger(1993)探讨了在灾难以后一段时期内可持续发展的条件;Authony Fish、David Fullerton、Nile Hatch和Peter Reinet(1995)利用东海湾市政设施区(EBMUD)旧金山水利系统的模拟模型得出大型的城市储水区应对干旱的方法;Lester Lave和Tunde Valvanyos(1998)认为风险收益分析可以有效地作为风险管理工具加以运用;Kleindorfer和Kunreuther(1999)对完善建筑法规以及相应的风险基础保险政策的经济影响做了经验分析;SungbinCho、Peter、Gordon、James、Richardson、Shinozuka和Sthphanie(2001)阐述了基础设施状况、交通网络与双区域投入—产出模型相结合能够更精确的测度灾害影响;George Horwich(2002)认为神户大地震后日本迅速恢复的主要因素包括相对较少的死亡人数,转移城镇人力资源的能力和交割导向的市场反应。Johannesburg(2012)提出了全新的突发事件应急管理方法。西方学者对自然灾害影响的评估模型如表1-1所示。

西方国家政府已经认识到突发事件管理的重要性。如美国联邦紧急事务管理局(FEMA)是联邦应急管理的核心协调机构,通过减缓、预备、响应和恢复重建等一系列应急程序协调各部门、机构减少各种突发事件对经济、社会的破坏。英国内阁2001年在内阁办公室设立了非军事意外事件秘书处,以协调各个部门的紧急应变工作。秘书处还负责确定突发事件处理过程中的轻重缓急,改善各级政府、各公共和私营部门,以及志愿者的应对能力。日本政府建立了从中央到地方的管理体制,政府在首相官邸建立了全国“危机管理中心”,并针对国家安全、社会治安和自然灾害等不同危机类型建立了不同的危机管理机制。

资料来源:根据国家社科基金委员会网站统计。

二、国内研究现状

在学术层面上,我国初期研究着重从经济学的角度研究灾害预测、防治、控制和善后过程中的规律性。包括处理灾害经济问题的基本原理,治理灾害及变害为利措施的经济效果的指标体系,提高除灾、治灾和救灾经济效果的评价方法,不同区域的最优决策体系等。近年来,灾害影响评估显现了向定量以及模型分析方向发展的趋势,但主要以单灾种的直接经济损失研究为主,而作为国民财富重要组成部分的自然资源与环境损失却往往被忽视。如刘芳芳等(2005)分析了灾害评估的系统组成和灾害评估的基本过程,从性质分类上总结了灾害评估的内容和方法。黄崇福教授(2006)介绍了自然灾害风险分析的理论和方法,包括致灾因子分析、承灾体研究、损失风险评估等主要内容。高庆华等(2007)分析了自然灾害直接经济损失评估的基本模式和方法、自然灾害评估指标体系和标准,并对中国地震、地质、洪涝、气象等重大自然灾害分类评估。赵悦(2007)把模糊数学中的模糊综合评价技术与模糊聚类技术应用到具体的地质灾害评估中。武汉工业学院(湖北省)非传统安全研究中心的学者也较早涉足灾害经济损失评估领域,并取得了较好的成果,杜为公(2011)对防灾减灾征用补偿、自然灾害经济损失评估方法进行了尝试性研究。我国重视对突发事件影响的研究,据不完全统计,1996年至2012年国家社科基金相关项目共28项,另有重大专项课题和招标课题。如表1-2所示。

在实践层面上,由于重大的自然灾害不断出现,如1998年特大洪水、2003年SARS事件、2004年禽流感事件、2008年冰雪灾害、2008年汶川地震,以及频繁发生的矿难等,使灾害评估、防灾政策的研究更具实践性。我国灾害研究与管理部门已建立了用于单灾种研究的灾害信息管理系统,开始关注应急监测与评估研究及相应技术,如水利部、科学院的实时洪水监测系统及水灾风险评估系统,中国科学院与国家气象局的台风、暴雨、洪涝灾害信息及减灾系统,中国科学院、国家教委所属有关科研、教学部门的应急气象卫星对小区域自然灾害进行应急评估的技术系统等。我国在灾害预测、工程减灾、灾害管理及灾害立法等方面取得了可喜成就。同时开展了自然灾害形成综合机制研究和综合预报,以及综合减灾的理论方法研究。

三、研究现状评述

国外研究存在的许多不足主要表现在:涉及的评估因子及数据的采集与测算与我国国情有很大差别。国内的研究多是研究经济损失,而对基于自然、经济和社会因素的非常规突发事件影响预评估方法研究较少。

参考文献:

[1]张政宏,陈曦.我国自然灾害应急管理体系问题研究[J].价值工程,2010,3.

自然灾害综合风险评估篇(8)

中图分类号 S513;S42 文献标识码 A 文章编号 1007-5739(2016)19-0207-02

Abstract Luxi Plain is not only major corn-producing areas,but also prone areas of meteorological disasters,thus it is very significant to enhance summer maize meteorological disaster risk assessment and zoning in Luxi Plain. A case study of Dong′e County,using local meteorological data,combined with GIS technology,risk assessment and zoning of drought,high temperature,waterlogging and other weather disasters were conducted. The results showed that integrated agricultural meteorology disaster risk degree of Maize was between 0.25 to 0.30,integrated meteorological disaster risk degree in the townships were slight.Niujiaodian corn integrated meteorological disasters risk degree was minimum(0.25);Yaozhai corn integrated meteorological disaster risk degree was maximun(0.30).Corn meteorological disaster risk in the whole county is small,which is suitable for the cultivation of corn.

Key words summer corn;agriculture meteorological disaster;risk assessment and zoning;Dong′e Shandong

东阿县位于东经116°12′~116°33′、北纬36°07′~36°33′之间,土地总面积729 km2,人口40万人,依黄河57 km。属温带季风气候区,气候温暖,光照充足。东阿县下辖高集镇、大桥镇、鱼山镇、铜城街道办事处、新城街道办事处等10个乡镇(街道)和1个经济开发区,是部级生态示范区、中国最佳养生休闲旅游名县。该文以东阿县为例,利用当地气象观测数据,结合GIS技术对夏玉米的干旱、高温、渍涝等气象灾害进行风险性评估与区划,以期为当地玉米产业发展提供依据。

1 资料来源

采用东阿国家气象观测站1981―2014年地面观测资料,各乡镇2007―2014年区域站资料以及周边聊城市、阳谷等台站观测资料。如乡镇无观测点,则利用差值法计算。夏玉米生育期观测资料取自聊城国家基本农业气象站。

2 区划方法

2.1 农业气候区划原理

农业气候区划是在分析地区农业气候条件的基础上,采用对农业生产有重要意义的气候指标,遵循农业气候相似原则,将一个地区划分为有自身气候特点、发展方向和利用改造途径的若干个农业气候区域[1-6]。具体步骤:①找出关键性气候因子和关键时期,确定指标,分析农业气候条件;②确定区划系统与区划指标值并分区;③分区评述[7-9]。

2.2 农作物气象灾害风险指标

该次区划中的热量指标为0 ℃农业界限温度期间的积温、年平均气温日较差、作物生长期平均气温日较差、最热月平均气温以及最冷月平均气温;水分指标为降水量。此外,还有极大风速和光照等其他指标。除主要的气象条件指标外,辅助指标结合土壤、地形等自然景观的差异作为补充指标[10-20]。

2.3 气象资料插值方法

本次评估根据实际情况,没有区域站时段采用线性回归方法。线性回归模型描述2个要素之间的线性相关关系,如2个要素间相关关系显著,即可建立二者之间的线性回归方程,其表达式为:

有区域站时段,无气象资料乡镇采用反距离加权插值法。

3 东阿县玉米气象灾害风险评估与区划

玉米气象灾害主要有干旱、洪涝、高温、大风等灾害,此次玉米风险评估为综合性气象风险评估[21-22]。高温灾害为各生长期造成危害的极端高温;出苗期极端最低温度小于15 ℃的灾害未出现;干旱考虑苗期到成熟期的缺水情况。玉米生长后期,在高温多雨条件下,根系常因缺氧而窒息坏死,造成生活力迅速衰退,植株未熟先枯,对产量影响很大,因此考虑积水日数和倒伏灾害。

3.1 干旱灾害风险区划

因玉米从苗期到成熟水分条件对生长均有较大影响。以生长期缺水量与玉米生长最低需求375 mm比值为指标,按实际造成灾害情况,分为3级:>0.3、>0.5、>0.8。

东阿县玉米生长期缺水造成的干旱风险度在0.13~0.33之间(图1),各乡镇累年平均干旱风险度0.5以下,属干旱低风险灾害地区,其中鱼山镇干旱灾害风险度最大,为0.32;牛角店镇最小,为0.13。

3.2 高温灾害风险区划

玉米生育期间,高温天气主要是玉米芽期和开花期日最高气温≥30 ℃,育苗期日最高气温≥26 ℃,灌浆结实期平均温度≥25 ℃。定义其在度函数如下:

式(3)中,DGTD为苗期及成熟期≥26 ℃和出苗至花期 ≥30 ℃灾害风险度,取值范围为0~1。其分为3级:>0.3、>0.5、>0.8。

东阿县玉米高温灾害风险度为0.13~0.20(图2),东阿县各乡镇高温灾害风险度均在0.3以下,属高温轻微风险灾害区,其中新城街道办事处和牛角店镇干旱灾害风险度最大,均为0.20;铜城街道办事处高温灾害风险度最小,为0.13。

3.3 积水灾害风险区划

据调查,玉米生育期间,在抽雄前后一般积水1~2 d,对产量影响不太明显,积水3 d减产20%,积水5 d减产40%,积水10 d减产100%。积水灾害风险度取值范围为0~1,其分为3级:>0.3、>0.5、>0.8。

东阿县玉米田间积水灾害风险度在0~0.15之间(图3),东阿县各乡镇整体积水灾害风险度在0.3以下,属轻微积水灾害风险区,其中姚寨镇积水灾害风险度最大,为0.15;铜城街道办事处未出现积水灾害。

3.4 倒伏灾害风险区划

玉米拔节至成熟期出现降雨和大风天气时出现倒伏现象,以当时的降水量和极大风速为指标,降水量在中雨以上且极大风速8级以上时为1个倒伏日,定义玉米倒伏灾害灾度函数为:

式(4)中,DDF为玉米倒伏灾度,取值范围为0~1,其分为3级:>0.3、>0.5、>0.8。

东阿县玉米倒伏灾害风险度为0.53~0.70(图4),各乡镇整体倒伏灾害风险度在0.80之下,属中倒伏灾害风险区,其中高集镇倒伏灾害风险度最大,为0.70;牛角店镇最小,为0.53。

3.5 综合风险区划

评估玉米生育过程中的灾害风险概率,各气象灾害风险度等权平均得到东阿县各乡镇玉米生产农业气象灾害综合风险度。为了定量分析干旱、高温、积水、倒伏对玉米产量的影响风险程度,将灾害影响分为灾年、轻灾年、歉年,即减产率>10%、5%~10%、>0~5%。以聊城市农业代表站计算综合风险区划指标,减产率为当年玉米产量与未出现气象灾害累年产量比值,具体见表1。

东阿县玉米综合农业气象灾害风险度为0.25~0.30(图5),东阿各乡镇综合气象灾害风险度均在轻微灾害风险区。牛角店镇玉米综合气象灾害风险度最小,为0.25;姚寨镇最高,为0.30。全县玉米气象灾害风险较小,适合玉米的种植。

4 参考文献

[1] 章国材.气象灾害风险评估与区划方法[M].北京:气象出版社,2014.

[2] 蔡菁菁.东北地区玉米干旱、冷害风险评价[D].北京:中国气象科学研究院,2013.

[3] 王文毅,黄敏,李长军,等.山东省主要农林作物气象指标及农业气候区划研究[C]//山东省重点学术研究成果(2008).济南:山东气象学会,山东省气象信息中心,山东省气候中心,2009:25.

[4] 王明田,张玉芳,马均,等.四川省盆地区玉米干旱灾害风险评估及区划[J].应用生态学报,2012(10):2803-2811.

[5] 成林,刘荣花.河南省夏玉米花期连阴雨灾害风险区划[J].生态学杂志,2012(12):3075-3079.

[6] 石淑芹,陈佑启,李正国,等.基于空间插值分析的指标空间化及吉林省玉米种植区划研究[J].地理科学,2011(4):408-414.

[7] 杨平,张丽娟,赵艳霞,等.黄淮海地区夏玉米干旱风险评估与区划[J].中国生态农业学报,2015(1):110-118.

[8] 高晓容,王春乙,张继权,等.东北地区玉米主要气象灾害风险评价与区划[J].中国农业科学,2014(24):4805-4820.

[9] 蒋春丽,张丽娟,姜春艳,等.黄淮海地区夏玉米洪涝灾害风险区划[J].自然灾害学报,2015(3):235-243.

[10] 张琪,张继权,佟志军,等.干旱对辽宁省玉米产量影响及风险区划[J].灾害学,2010(2):87-91.

[11] 余卫东,陈怀亮. 河南省夏玉米精细化农业气候区划研究[J].气象与环境科学,2010(2):14-19.

[12] 张文宗,王鑫,康西言,等.河北省玉米干旱风险评估及区划方法[J].华北农学报,2008(增刊2):367-372.

[13] 陆魁东,黄晚华,方丽,等.气象灾害指标在湖南春玉米种植区划中的应用[J].应用气象学报,2007(4):548-554.

[14] 王俊,刘亚玲,萨其荣贵.通辽市特种玉米种植气候区划分析[J].内蒙古民族大学学报(自然科学版),2009(5):519-522.

[15] 唐红艳,牛宝亮.基于GIS技术的内蒙古兴安盟春玉米种植气候区划[J].中国农学通报,2009(23):447-450.

[16] 徐虹,张丽娟,赵艳霞,等.黄淮海地区夏玉米花期阴雨灾害风险区划[J].自然灾害学报,2014(5):263-272.

[17] 边超钧.陕西省玉米干旱风险评估及区划研究[D].南京:南京信息工程大学,2014.

[18] 张超,吴瑞芬.内蒙古玉米干旱风险区划方法研究[J].中国农业资源与区划,2015(7):134-141.

[19] 白彩云.中国东北地区玉米种植的气候适应性研究[D].石河子:石河子大学,2010.

自然灾害综合风险评估篇(9)

中图分类号:F416.1 文献标识码:A

1概述

地质灾害是在地质作用下,地质自然环境恶化,造成人类生命财产损毁或人类赖以生存与发展的资源、环境发生严重破坏的过程或现象,是对人类生命财产和生存环境产生损毁的地质事件。因而,从该意义上来讲,地质灾害不仅是一种自然现象,而且带有明显的社会经济属性。

在以往工程地质领域对于地质灾害的研究中, 多考虑地质灾害的自然属性,评价预测也多从其内外影响因素入手,把地质灾害仅作为一种地质动力活动,着力于灾害形成机制与诱发条件、发展规律等自然特征的分析,度量的指标多为稳定性程度等。而对地质灾害的社会属性和与之密切相关当破坏效应等注意的不够。这种状况越来越不适应社会经济发展对减灾研究的需要。诚然,对于单体地质灾害而言,地质灾害自然属性研究必不可少,但如果从一个更深的层次来看,这显然没有考虑到地质灾害的社会经济属性。人类防治地质灾害的最终目的并不是杜绝引起地质灾害的地质现象或地质事件的发生,而是确保这些地质现象或地质事件不对人类造成不可接受的危害。所以从社会减灾防灾意义上讲,除了考虑其自然因素,更应该考虑其社会属性因素,由此才有了地质灾害风除评价的概念的产生。

2 对地质灾害风险概念的认识

目前对灾害风险和地质灾害风险还没有统一的认识。在联合国教科文组织的一项研究计划中,Varnes(1984年)提出了自然灾害及风险的术语定义,随后得到了国际地质灾害研究领域的普遍认同,成为了对地质灾害危险性、易损性和风险评估的基本模式。地质灾害的风险可定义为:在一定的区域时间限度内,特定的地质灾害现象对生命财产、经济活动等可能造成的损失,即地质灾害风险是潜在地质灾害危险性和社会经济易损性的函数,它可表示为:

式中:R(Risk):地质灾害的风险,指特定的地质灾害现象可能造成的损失;H(Hazard):一定地区范围内某种潜在的地质灾害现象在一定的时间内发生的概率,即地质灾害的危险性;E(Element):给定区域内受特定地质灾害威胁的对象,包括人口、财产、基础设施、经济活动等;v(Vulnerability):特定的地质灾害以一定的强度发生而对受威胁对象所造成的损失程度,即受威胁对象的易损性,它用0~1来表示,0表示无损失,1表示完全损失。

综上所述我们可以看出,地震灾害的危险性(H)和受威胁对象(E)的易损性(v)共同决定了地质灾害的损失大小,是控制地质灾害风险的(R)的基本条件。因此,地质灾害风验评价应从下述两方面进行:(1)地质灾害的危险性评价,其与历史地质灾害活动强度和周期性规律(即灾害发生的频次、规模、分布强度)以及地质灾害孕育的环境与形成条件(即地形地貌、地质背景、水文气象、植被和人类工程活动等影响因素)密切相关;(2)区域社会经济易损性评价,包括了直接易损性评价(受威胁对象分布与抗灾能力)和间接易损性评价(地区社会经济与防灾能力)2个方面内容。

由于实际情况的复杂性,在地质灾害风险评估中很难对H、E、V等进行精确的定量表示。在这种情况下,可以采用“等级”的概念,先对地质灾害的危险性、社会经济易损性进行分级,然后再采用适当的方法进行最终的风险评估。

3 地质灾害风险评价模型

目前有关地质灾害风险评价的模型有信息量模型、层次分析等模型,在这里简述信息量模型。

根据实际情况,将影响地质灾害风险因素的实测值转化为信息量值,并用信息量来表征地质灾害风险影响因素的“贡献”大小,进而评价地质灾害的风险程度。信息量用条件概率计算:

I(X,A)=lg(P(X/A)/P(X)) (3)

式中:I(X,A)为单因素(指标)X影响地质灾害风险A的信息量;

P(X/A)为地质灾害风险恶化条件下出现X的概率;

P(X)为研究区影响因素X出现的概率。具体运算时,总体概率用样本频率计算,即:

式中:I为某一单元P种因素组合情况下地质灾害风险恶化的总信息量;

S为样本区总单元数:

N为该区己知地质灾害风险恶化的单元总数;

S1为含有影响因素X的单元个数;

N1为含有影响因素X的地质灾害风险恶化单元个数。

用总信息量I值作为该单元多种因素共同作用下的地质灾害风险改善的综合指标。对I值进行统计分析(主观判断或聚类分析))找出突变点作为分界点,将区域分成若干个地质灾害风险等级,由此建立的信息量模型,将作为研究区的风险预测模型。只要查明研究区各因素的情况,根据样本区计算出的信息量值,并将各评价单元的诸影响因素的信息量值叠加便可预测地质灾害风险等级。

信息量模型适合于各地质灾害影响要素的信息量比较丰富的地质灾害风险评价,按统计方法对各影响要素进行聚类分析,按照一定的阈值,将评价区域进行地质灾害风险分区。

4 基于GIS技术的地质灾害风险分析

地理信息系统(GIS)是有效表达、处理以及分析与地理分布有关的专业数据的技术,它为人们提供了一种快速展示有关地理信息和分析信息的新的手段和平台。从20世纪80年代以来,GIS在灾害管理中得到逐步深入的应用。

各种地质灾害都是在地球表层一定空间范围和一定时间限度内发生的,尽管不同种类的地质灾害之间、同一种类的地质灾害的不同个体之间大都形态各异,形成机理也是千差万别,但它们都是灾害孕育环境与触发因子共同作用的结果,而这些都与空间信息密切相关,利用GIS技术不仅可以对各种地质灾害及其相关信息进行管理,而且可以从不同空间和时间的尺度上分析地质灾害的发生与环境因素之间的统计关系,评价各种地质灾害的发生概率和可能的灾害后果。

GIS与传统意义上的信息系统的根本差异在于:它不仅可以存储、分析和表达各类对象的属性信息,而且还可以管理空间(图形)信息,可以使用各种空间分析方法,从空间特征和属性特征两个方面对多种不同的信息进行综合分析,寻找空间实体间的相互关系,分析和处理一定区域内分布的现象和过程。GIS软件提供了一些基本的空间分析工具,如区域叠加分析、缓冲分析、矢量栅格数据转换、属性数据查询检索、数字高程模型、数字地面模拟分析等,但仅仅直接利用这些基本的工具进行地质灾害的风险分析显然是不现实的,还需要结合专业地质灾害风险评价模型,如将信息量模型与GIS平台相结合,应用于地质灾害风险评估分析中。

信息量法模拟和层次分析评价模型与GIS的结合可以从以下几个方面考虑:

(1)利用GIS采集数据及进行基础数据处理。GIS具有强大的数据采集与空间分析功能,可以利用它来采集评价所需的数据并进行管理。GIS对数据的预处理一是将定性数据按照一定的原则定量他;二是利用GIS的自动划分功能形成用于评价的图元区域。

(2)应用信息量法模型可扩充GIS的分析评价功能。利用GIS的二次开发功能,选定合适的信息量法模型对GIS进行二次开发,扩充GIS的分析评价功能,实现传统分析方法与GIS的结合。把GIS已经剖分的图元区域的各种信息存入预先确定的数据库,然后通过编写接口,信息量法模型就可以直接调用这部分数据供分析之用。

(3)利用GIS强大的成图功能,将信息量法模型分析结果返还到GIS处理成图,形成最终成果。

这样就可以在建立一个基于GIS技术的地质灾害风险评估系统,首先在建立评估区信息数据库的基础上,结合地质灾害风险评价分析模型(信息量模型),运用GIS的空间分析功能(缓冲区分析、叠置分析等)、数据融合技术以及高精度计算实现对多种不同类型的地质灾害(如滑坡、泥石流、岩溶塌陷等)进行危险性分析、易损性分析和最终的风险评估。整个地质灾害风险评估工作都是有序进行的,其基本程序见图1所示。

结论

(1)地质灾害风险评估包括地质灾害危险性评价、社会经济易损性评价两大内容。危险性评价应以历史危险性(灾害发生的频率、规模、程度)和影响灾害发生的主要因素(基于灾害发育机理研究)的综合分析进行;易损性评价应包括受威胁对象的易损性分析和受威胁对象的价值分析2个方面。

(2) 运用GIS开展地质灾害风险评估是必然趋势,国外已有许多成功的范例。GIS技术为地质灾害在专业评价模型(如信息量模型)条件下的风险评估提供了有效的技术支持。基于GIS技术的地质灾害风险评估系统较好的实现了GIS技术与地质灾害风险评价模型的结合,能够充分利用GIS的图形编辑、属性管理、空间分析、数字高程分析等功能优势,快捷方便的实现一般分析方法与手段难以解决的问题。它可以根据变化了的情况与资料,实时性的进行地质灾害风险分析,进一步缩减风险分析的模糊性与不确定性,具有较强的准确性与客观性,而这正是常规分析手段所难以比拟的。

参考文献

自然灾害综合风险评估篇(10)

农业灾害的发展虽由不可抗拒的自然因素决定, 但通过深入探究,认识灾害发生和发展规律,可以通过监测预警采取措施,减少农业灾害损失。

一、农业气象灾害评估研究

在农业生产中影响农业产量以及农作物产量最大的就是农业气象灾害,因此对此项所造成伤害进行了农业气象灾害评估。

(一)作物模型评估方法

随着科技的不断发展和进步,人们将信息技术与农业气象灾害研究进行了有效结合,而且在农业气象灾害研究的过程中建立了作物模型进行定量评估。进行作物模型评估的好处是直观的看出农作物的生长过程、发育时期各个阶段的温度变化、对土壤进行分析以及降水量,而且还可以对天气进行实时监管,从这些优势中显现出其较强的机理性。

(二)综合模型评估方法

综合模型评估方法就是综合受灾的程度、受灾的范围、抵抗能力、作物对灾害的敏感度和社会生产力水平等多种因素进行评估,然后依据其建立灾害评估指标机制。在构建农业气象灾害评估的综合模型评估进行定量、定性评估时,可以结合模糊数学方法、层次分析法、回归分析、灰色聚类分析以及BP神经网络等多种方法进行综合评定。一些学者在实际建立综合模型评估中采用了逐步筛选聚类分析法和产量逐级分离模拟的方法,以便于其建立受灾等级查询和受灾程度分析。

(三)灾害风险评估方法

实施灾害风险评估方法的好处是可以对已存在的危险因子在一定年限内的可发生性以及危险程度进行预测,这样就可以预知其危险程度、危害性的大小以及社会承受灾害的能力。在对农业气象灾害进行灾害风险评估的同时还要实施灾害风险管理,这样做的好处是可以对以预测到的灾害进行科学有效的防控和处理,将灾害的程度降低到最小化,保证其在社会的承受范围之内。

二、现状分析

当前,世界上农业气象灾害对农业危的影响评估的根据往往是农业气象灾害体系,中国在改革开放之后,经济得到了飞速发展,对于农业气象灾害的评估技术越来越先进,在20世纪80年代,有了质的飞跃,国内的一些专家学者以大田实践为前提,对相关资料进行深入地分析,并且以相关的研究成果作为根基,构建了多种数学模型用于评估不同的农业气象灾害。在全球气候变化的新形势下,对于气象灾害的评估工作显得更为重要,当前我国对于气象灾害的评估主要运用了3种评估模式,分别是综合模型评估、作物模型评估、农业气象灾害风险评估。下面对这3种评估模式进行简要分析:

①综合模型评估,这种评估方式的着力点往往放在气象灾害的危害级别、对农作物的影响程度、农作物的抵御能力、当前社会的生产力水平等等,在对这些要素分析的基础上,成功建立一个灾害评估指标体系,并且,结合了众多的数学方法,例如回归分析、模糊数学方法、层次分析法等。从定性与定量的角度评估气象灾害对农业的危害性,气象灾害对农作物造成的损失是采用综合模型进行定量评估的依据。相关的单位对于粮食损失的计算考虑的因素往往是绝收面积、成灾面积、受灾面积3种。

②作物模型评估,我国主要采用的是CCSODS模型,这种模型最大的特征是具有很强的通用性与机理性,并且非常实用,目前普遍运用于我国一些基层的农业管理者身上,能够为农作物的种植提供改进方案。

③农业气象灾害风险评估,这种评估方式的着力点是气象灾害的具体要素,例如灾害的危险程度、对其的预测与减灾,这些要素往往具有变动性,考虑的因素众多,在上世纪九十年代我国开始对此技术进行运用,发展到现在,对此技术的运用更着重于灾害影响评估的风险性,并且运用了中队的数量化技术方法。

三、加强气象为农业防灾减灾的有效措施

(一)建立适应现代农业发展的观测站网

气象部门要根据近几年来农业结构和农业种植结构的情况,农行生产布局变化对农业防灾减灾气象服务要求的变化,建立起区域性的观测网络。针对气象不能为小区域农业减灾防灾服务的现状,要建立起高时空密度、自动化和多要素的现代化气象综合检测网络,对相关的气象资料进行实时、准确的监测,提高气象检测的能力。

(二)提高对灾害的预测和预防能力

灾害的预测和预防体系是气象部门加强农业防灾减灾服务的重要环节,只有对灾害进行准确的预测和预报,才能对灾害做出及时的预警和采取可行的防灾减灾措施。因此气象部门要根据现代农业发展的实际情况和新农村建设要求,开展针对性的灾害预警工作。在做好对常规天气预测准确、及时的同时,也要重点做好对灾害性天气的预警,针对当地的农业特色,做好防旱、防洪、防涝以及防冻等农业气象的灾害预防措施。除此以外,气象部门还要适当增加适合农业生产的气象服务,针对不同农作物与农作物的不同生长阶段的发育要求,对农民进行有效地指导。

(三)完善农村气象体系建设

气象科技服务是为农民服务的一项工作,深入农村,了解农村地区的实际需求,针对不同板块开发出适用的农业气象服务。让气象信息第一时间出去,明确气象部门主动传递信息的责任,及时更新和气象信息。健全村级组织为农民服务的制度,让专职的气象员在农村收集气象信息,并通过电视、广播或者黑板等载体,及时告知当地农民天气情况。同时,还可以加强通过报纸、广播、电视以及网络等公共媒体,为农民及时传达气象信息,让农民能够在第一时间了解到气象的变化。除此以外,利用短信信息、短信专题等渠道,也可以为农民及时的传递气象信息。为了提高农民自己识别气象的能力,还可以深入农村,加强对气象科技知识的宣传,让农民也了解和掌握到相关的气象知识。

(四)农业生产气象灾害防御与调控

农业气象灾害的防御是一个系统工程, 需要在综合监测的基础上, 建立一个防灾减灾的综合应变决策服务系统,针对不同的灾种需要采取不同的防御技术或几种防御技术组合使用才能达到防御的目的。

(1)农业干旱、涝渍灾害防御与调控

应用农业生产气象信息服务保障系统, 根据不同气候类型地区、不同作物及其不同生育阶段灾害的发生规律和危害机理, 重点发展利用气象信息的非工程性节水农业技术,根据农业生产气象信息,建立防灾抗灾与农业增产相结合的基础体系。

(2)作物低温灾害防御与调控

利用农业生产气象信息数据库,推广新型增温、助长、促早熟的制剂及不同气象条件的制剂使用技术, 形成投入少、效果明显、可操作性强、便于推广应用的综合防霜技术体系。

(3)不利气候环境的长期宏观调控

从降低风险、趋利避害的角度研究农业生产主要气候灾害对农作物的影响和风险, 为防灾减灾宏观调控和风险管理提供科学依据,研制根据气候资源、农业生态环境动态变化和短期气候预测结果主动防御不利气候环境的宏观调控技术。

四、未来发展方向

由于所处国情的限制,我国对于农业气象灾害评估存在一定缺陷不足为奇,总的来说,对于农业气象灾害的评估,呈现出了蓬勃发展的势头,未来的发展方向也有一定的势头表现。

上一篇: 初一数学的概念 下一篇: 劳动教育随笔
相关精选
相关期刊