智能化电气工程汇总十篇

时间:2023-03-21 17:02:47

智能化电气工程

智能化电气工程篇(1)

伴随国内经济的全面发展,电气工程自动化的智能化水平也随之得到了完善。现阶段,智能化技术已渗透至电气工程自动化控制与管理,是电气工程自动化主要的构成因子,同时起到了无可替代的作用。为了电气工程自动化的长远发展,设计工作者要持续深化设计水平,开发出前沿的智能化技术,使智能化技术推动电气工程自动化的发展。文章将以基于电气工程自动化的智能化技术应用分析作为切入点,在此基础上予以深入的探究,相关内容如下所述。

1电气工程自动化与智能化技术概述

1.1智能化技术基本理念

此理念即仿真人类的思维予以评定或分析事物,能够予以自主操作及控制,智能化技术在其应用环节侧重于计算机技术,完善的传感技术,全球定位技术跨学科的应用。现阶段,智能化技术在智能机器人方面已全面开展,同时效果也十分显著,能够实现整体的智能化操作。智能化技术的特性即节能环保,同时深化了机器的自动化水平。完善了操作人员作业条件,降低了工作强度,深化了作业品质及有效性。深化了设施的稳定性,减少了维护投资。

1.2电气工程自动化的基本概念

电气工程与自动化技术涵盖了电子电气技术以与计算机技术,电气工程自动化现阶段主要被应用于工业生产。其特性即自动化的体系与相关理念。自动化的理念与技术体系是工业与生产制造领域的核心技术。但是,伴随市场经济的全面发展,常规的电气工程与自动化技术已无法满足于市场需求,进而深化原技术已成为大势所趋,而智能化技术的广泛应用是深化电气工程自动化的先决条件。因此,为了有效的匹配于市场需求,促进电气工程自动化的发展,智能化技术的应用已成为大势所趋。

2电气工程自动化的智能化技术应用

2.1故障分析

电气工程自动化运行环节,一些设施无可避免会发生故障问题,而智能化技术可以对电气设施故障予以实时测检。我们都知道电气设施故障可能会造成连锁反应,针对此情况能够通过智能化技术对电气设施予以整体测检,辅助工作者第一时间实施维护,进而有效处理设施故障。常规的人工检测无法评定故障因素,但是通过智能化技术就能够根据实际情况去明确故障因素,在此基础上缩小故障范围,进而找到故障因素,这在一定程度上节约了检测耗时。

2.2智能化技术控制

目前智能化技术在很多领域都可以满足其自身需求,同样适用于电气自动化控制。智能化应用于电气工程自动化运行,可以深化电气系统智能控制,智能技术在电气工程自动化中的有效应用,满足了电气工程自动化智能控制的需求,深化了无人操作化及远程化的发展。智能化技术应用范围涵盖了实时处理及采集电气系统撒气量、开关量数据,监督各种电气系统与设施运行情况等,同时可以予以在线诊断。

2.3完善设计

对电气设施予以完善的设计即电气工程自动化控制的核心构成因子,电气设施的设计环节具有繁琐的特性,且涵盖了很多学科的知识内容,其中有电气、电路以及磁力等学科,常规的手工设计举措在方案调整环节会存在一定的困难。伴随计算机自动化技术的全面发展,常规的手工设计已被计算机设计所代替,现阶段的设计基本都依附于CAD技术和计算机辅助软件,不但缩减了产品的周期,且有效控制了产品的投资,折让国内产品设计的品质有了质的飞越。

2.4可编程逻辑控制技术的应用

众所周知,电气工程自动化设备是较为常用的一类工业设施,对电气工程自动化设备予以按时的安全性检测是企业安全运行的有力保障,因为电气工程自动化设备存在运输安装繁琐的特性,所以可靠性一般性检测通常要在工程现场进行。若依附于以往的人工操作,那么检测则无法达到十分精准,更无法满足当今安全检测的相关需要。因此检测装置要方便接线,方便携带、可靠性高,控制灵活。而可编程逻辑控制技术能够达到上述的相关需要。近年来国内科技已趋于世界的前沿,可编程逻辑控制技术也被应用于很多行业,在机电控制方面意义深远。所以,能够通过可编程逻辑控制技术达到电气工程对于电力运行的一系列需要,更好地匹配于电力生产,因此深化控制电气工程自动化运营。可编程逻辑控制软继电设备在很大程度上可以代替电气工程系统实物元件的应用,可编程逻辑控制技术可以使供电系统自动切换,完善了电气工程供电系统的稳定性及可靠性。所以,相关系统要持续拓展可编程逻辑控制技术在电气工程领域的应用,因此从根本控制电气工程的稳定运营。

3结论

综上所述,自动化的理念与技术体系是工业与生产制造领域的核心技术。但是,伴随市场经济的全面发展,常规的电气工程与自动化技术已无法满足于市场需求,进而深化原技术已成为大势所趋,而智能化技术的广泛应用是深化电气工程自动化的先决条件。因此,为了有效的匹配于市场需求,促进电气工程自动化的发展,智能化技术的应用已成为大势所趋。在智能化技术应用方面,我们都知道电气设施故障可能会造成连锁反应,针对此情况能够通过智能化技术对电气设施予以整体测检,辅助工作者第一时间实施维护,进而有效处理设施故障。智能化应用于电气工程自动化运行,可以深化电气系统智能控制,智能技术在电气工程自动化中的有效应用,满足了电气工程自动化智能控制的需求,深化了无人操作化及远程化的发展。伴随计算机自动化技术的全面发展,常规的手工设计已被计算机设计所代替,现阶段的设计基本都依附于CAD技术和计算机辅助软件,不但缩减了产品的周期,且有效控制了产品的投资。通过可编程逻辑控制技术达到电气工程对于电力运行的一系列需要,更好地匹配于电力生产,因此深化控制电气工程自动化运营。可编程逻辑控制软继电设备在很大程度上可以代替电气工程系统实物元件的应用,可编程逻辑控制技术可以使供电系统自动切换,完善了电气工程供电系统的稳定性及可靠性。

参考文献

[1]张培铭,缪希仁,江和,李光辉.展望21世纪电器发展方向———人工智能电器[J].电工技术杂志,2015(4).

[2]林因,张明龙,王大光,鄢庆锰,张明建.福建电力系统与外部互联传输能力的初步研究[J].福建电力与电工,2012(1).

[3]中国高等学校电力系统及其自动化专业第21届学术年会会议纪要[J].电力系统及其自动化学报,2015(6).

[4]孙宏斌,孙元章,陈永亭,姜齐荣,童陆园.电力系统本科专业课的研究型教学模式[J].中国高教研究,2013(3).

智能化电气工程篇(2)

【关键词】电气工程 自动化控制 智能化技术

随着科学技术的不断发展,智能化技术被研发出来并被广泛应用于很多领域,电气工程自动化控制就是其中之一。智能化技术的应用,改变了传统自动化控制效率低下的状况,促进了电气工程自动化控制效率的提升,为电气工程的发展提供了新的动力。目前,智能化技术在电气工程自动化控制中还有很大的发展潜力,随着应用技术的不断发展,将会被更广泛的应用。

1 智能化技术在电气工程自动化控制中应用的理论基础

智能化技术是一种新兴的科学技术,其本质上是计算机技术的一个高端分支,它也具有计算机技术所具有的改变人们工作和生活方式的能力。智能化技术不仅仅基于计算机技术,它的理论基础还涉及到了语言学、控制学、信息学等诸多学科,是一项综合了许多种类学科的综合性技术。智能化技术的主要应用方式是,利用智能化技术使机器具有一定的思维能力,能够独立的收集信息并进行处理,从而代替人类进行危险、高难度或者其他类型的工作。

电气工程自动化控制控制的主要工作是收集并处理信息,智能化技术在这方面有很大的应用空间。在电气工程自动化控制应用智能化技术的主要目的是提高电气工程自动化控制的效率,使企业的资源分配更加合理化,同时降低企业成本和工人的劳动强度,促进电力企业的快速发展。

2 智能化技术在电气工程自动化控制中应用的优势

2.1 无需建立控制模型

传统的控制器由于技术问题存在着一些缺陷,例如,当传统的控制器遇到控制对象包含复杂动态方程时,就会造成其不能对控制对象进行有效的掌控,这种情况下,会对控制对象模型的设计工作产生影响。智能化技术则避免了这些不良影响的发生,智能化技术在电气工程自动化控制中应用可以有效的帮助人们控制和处理复杂动态问题。应用了智能化技术的控制器面临上述问题时,则会将控制对象模型设计的内容进行删除,从而使电气工程自动化控制摆脱控制模型的影响,在没有控制模型的基础上进行调节和控制等相关工作。利用智能化技术,使电气工程自动化控制更具时效性,让自动化控制能够解决更复杂的问题。

2.2 无人化操控

智能化技术的最大优势就是能够代替人类进行各种工作,与传统的自动化控制器相比,智能化控制器的工作更具效率和准确性。智能化控制器在实际的工作中通过对下降时间、响应时间和鲁棒性变化等条件的准确操控,来保证电气工程自动化控制工作的正常进行,这个过程完全可以不用人为操控。智能化技术通过调节这三方面因素,实现无人化操控下电气设备的自我调节,从而对工作和人力资源的利用效率进行提升,促进企业的健康发展。

2.3 智能化控制器的一致性

智能化控制器的准确性很高,这一点主要表现在不同数据的处理问题上。对于输入的不同数据,无论数据常用还是不常用,智能化控制器都会迅速的开始评估,从而达到自动化控制的要求。智能化控制器的控制结果会因为控制对象的不同而产生差异,有着控制对象没有在指令发出后迅速的行动,但是同样可以产生良好的控制效果。同时,智能化控制也不能够全面化的控制所有对象,这是因为控制对象复杂并且多样,使得智能化控制不能产生理想的结果,这是智能化控制技术需要解决的问题。

3 智能化技术在电气工程自动化控制中的具体应用

智能化技术在电气工程自动化控制中的具体应用主要有三方面:

(1)可以实现整个电气工程的自动化操作与控制,这主要利用了模糊控制、专家系统控制和神经网络控制等方法,利用智能化技术使得电气设备的运行相较于传统的控制设备控制下有明显的提升。

(2)智能化技术能够优化电气工程的整体设计,利用智能化技术,使得工作人员在电气工程设计时避免了对设计方案进行反复的实验和改良,更多的是对相关数据进行调整和修正,这使工作效率有了明显的提升。

(3)智能化技术能够对电气工程自动化控制中的病因诊断,在电气工程的实际运行中,电气工程系统以及相关设备都需要通过病因诊断来对运行状态进行检测,智能化技术可能代替人工诊断方法,提高工作效率和质量。

例如,在水电站中应用智能化控制技术,可以减少工作人员的实用,避免因工作人员技术不熟练而造成的运行故障,提高其运行效率。同时智能化装置可以对发电机组进行实时、动态、自主的监控、保护、调节,保证发电机组的各项指标都处在标准范围内,保证发电机组的正常运行。智能化控制控制装置通过对水电站中所有系统实施精准、快速、动态的检测、并且进行记录与报警,可以使发电机组免遭各类故障侵袭,并且对发生的事故做出迅速、准确的处理,使发电机组保持平稳运行,提升水电站的正常工作。

4 结论

智能化技术是计算机技术的一个分支,具有改变人们生产生活方式的能力,将智能化技术应用到电气工程自动化控制之中,能够充分发挥其特点,使其能够被应用于实现电气工程自动化操作与控制、优化电气工程整体设计以及对电气工程自动化控制病因分析等方面,促进电气工程自动化控制的发展。智能化技术在电气工程自动化控制中的还有很大的应用潜力,例如如何实现利用智能化技术实现全面化的控制所有对象还需要人们不断的研究,拓展智能技术在电气工程自动化控制中的应用,将是研究人员的重要目标。

参考文献

[1]柯志敏.智能化技术在电气工程自动化控制中的相关应用[J].企业技术开发月刊,2016,35(03):55-55.

[2]林集武.智能化技术在电气工程自动化控制中的应用[J].城市建设理论研究:电子版,2012(19).

智能化电气工程篇(3)

智能技术又被称作人工智能技术,它并不是21世纪的产物,而是在20世纪50年代就已经诞生。经过了长时间的摸索和发展,人工智能技术趋向于成熟,已经被运用在世界工业生产的各个领域并取得了一定的成就,给人们的生活带来了诸多便利。在电气工程领域中,我们可以研究智能化技术和电气工程自动化的结合效果,对电气工程系统发展进行进一步完善,推动着我国电气工程自动化工程行业朝着信息化的方向不断迈进。智能化技术通过大数据的运用,能够展开大规模的数据分析,在当前的电信工程发展中,智能化技术能够很好地解决传统的电气工程问题,服务于电气工程的现代化发展。

1智能化技术在电气工程自动化控制中的作用和价值

1.1减少不可控因素

在传统的自动化工程当中,工作人员必须要对电气工程进行模型设计才能对整个电气控制系统进行管控,这就会使电气自动化工程在运行过程中出现机械化的状况,无法动态的估算未来运行状态,导致整个估算预测工作缺乏精准性。自动化控制的整个流程中会出现很多不可控因素,这些不可控因素会导致建模控制的效率低下,阻碍了电气工程全面自动化的实现[1]。智能化技术的参与能够使电气自动化工程不需要建立模型就可以实现全过程的自动化控制,电气智能化技术在运行过程中能够帮助电气自动化系统减少诸多不可控因素的产生,全面提高电气工程自动化控制的运行效率,以及系统的安全可靠性。

1.2让操作更加便捷

使用了智能化技术之后的电气自动化控制系统在操作上更加简单便捷,智能化设备只需要根据电气工程的部分数据就能够采取合理化的反应措施,通过数据检测系统能够对全部自动化控制设备进行有效的监控,准确地判断电气自动化系统的运行状态。相比于传统的自动化技术,智能化技术的参与能够显著提高系统操作和控制的灵敏程度,能够适应电气自动化复杂多变的工程环境,这也是现代智能化控制系统的相对优势;另外一方面,智能化的自动化控制技术减轻了工作人员的工作压力,不需要人员的操作就可以自动完成控制指令,结合数据的分析结果完成自动调节的工作[2]。此外,在运行的过程中也不需要工作人员手动操作就可以进行远程控制,以上种种优势使得智能化控制技术当前已经成为我国电气工程自动化控制领域的中流砥柱。智能化技术能够更加广泛地运用到电气工程自动化控制领域中,一方面可以使更多的劳动力得以解放,减少资金和成本的消耗,另外一方面也能够显著提高电气自动化领域的工作管理效率,减少出现失误的可能性。

1.3提升系统工作的一致性

在智能化技术的参与下,电气工程自动化控制领域表现出了极高的一致性,在系统的运行过程中,如果设备能够捕捉到数据信息的差异性,那么智能化设备就会辨别数据的真伪,特别是当系统无法按照熟悉的路径采集数据时,智能化控制设备可以对数据分析流程进行精准的控制。在这个过程中,工作人员可以根据不同的控制对象作出有针对性的决定,大大提高控制设备的精准程度[3]。智能化技术在电气工程自动化控制领域的应用,能够按照操作的步骤循序渐进地检查控制措施,加速系统数据的计算和处理,在控制过程中给设备一定的缓冲机会,解决了盲目控制所带来的困扰,大大提高了电气工程自动化控制设备的精准程度和工作效率。

2智能化技术在电气工程自动化控制中的具体应用

2.1电气自动化的智能控制应用

通过长时间的工业实践我们可以发现,把智能化技术应用到电气工程自动化控制领域,能够帮助电气工程自动化工程系统实现进一步的优化和完善。智能化技术能够帮助工作人员及时判断系统故障发生的区域和原因,有针对性地提出解决对策,能够提高当下我国电气工程行业的整体发展,提高系统运行的安全稳定性。电气工程自动化工程领域必须要针对产品进行优化设计,工作人员要根据现代工厂自动化工程的运行需求构建完善的电子系统。在当前信息技术和高新产业的进一步发展下,各种信息化设备层出不穷,也导致信息设备在使用步骤上更加复杂,如果信息系统出现问题,将会直接影响到电气工程自动化控制体系的整体运行[4]。因此,在电气工程系统中一旦发现运行问题,工作人员需要及时发现并给予解决方案,不能任由问题扩大,否则将会降低电气工程的整体运行效率,也不利于电气企业的可持续发展。在这个过程中,我们可以运用智能化技术弥补传统电气工程自动化控制工作中出现的问题,保障电气工程系统操作更加顺畅,提高电气控制的准确性,工作人员也可以在智能化技术的基础之上建立全程监控系统,让智能化技术更好地在电气工程自动化控制领域发挥自身的作用,推动我国电气工程获得可持续发展的动力。

2.2电气自动化优化设计的应用

传统的电气工程自动化工程领域中会涉及到大量的人工操作,在设计过程中也容易受到周边环境的影响,包括天气温度、设备条件,这些情况会导致电气工程控制设备在运行过程中容易产生诸多故障,如果不注重提高设备的精密程度,就会导致运行效果较差,但是高密度的仪器和设备也会带来操作难度的提升,同样无法收获良好的工作效果,也会给工作人员带来繁重的工作压力。同时在电气工程策划控制工作中,需要大量的电气设备进行辅助操作,这些电气设备形成了逻辑严密的操作系统,在这个系统中如果某一个环节出现问题,那么将会导致整体性的安全事故,比如设备短路、爆炸、燃烧等,有可能会威胁到工作人员的生命财产安全,也无法促进技术的进一步发展。在这一基础之上,智能化技术需要解决以上问题,全面提高电气工程自动化控制的安全稳定性[5]。工作人员需要把握智能化技术的运用,让电气企业获得可持续发展的能力。电气企业需要重视系统的优化设计,保障电气系统设备的稳定运行。除此之外,智能化技术在电气工程自动化控制系统中的运用也必须要与时俱进,发挥出更大的价值和作用,体现出智能化技术和高新技术产业的优势。电气系统的工作人员要不断的提高自身的专业能力和专业水平,采用硬件和软件相互协作的形式,对传统的电气工程自动化控制工作流程进行精简,设计科学的工作方案,减少问题出现的概率。

2.3系统故障诊断的应用

上文已经叙述,如果电气工程自动化控制系统出现故障,将会导致电气工程整体运行质量下降,因此故障诊断的自动化非常重要。工作人员需要通过智能化技术减少故障和问题发生的频率,同时要对电气系统运行过程进行全过程的监控,如果发现某一部位的系统和仪器出现故障,工作人员可以利用智能化系统进行问题的诊断,把问题出现的部位大概地确定下来,找出故障出现的原因,制作成数据化的反馈结果传递给工作人员,这样的操作能够方便工作人员及时地采取处理措施解决问题,在一定程度上提高了电气工程自动化工程设备的系统运行效率。当前我国电气工程在工作时会运用到很多的仪器和设备,设备的质量是否良好、运行状况是否正常会决定着电气工程的系统运行效率。如果设备运行不当,将会导致设备使用出现故障,扰乱电气工程正常的系统运作[6]。传统的故障检测主要凭借工作人员的工作经验,在维修过程中也存在着瞎子摸象的尴尬情况。如果工作人员工作经验欠缺,或者粗心大意,将会导致同一个设备多次出现同样的问题,导致负面连锁反应,拉低了设备的整体运行效率,减短设备的使用寿命,给电机企业的发展带来损失。智能化技术运用在电气自动化控制的故障诊断中能够及时地分析电气工程系统的运行状态,对出现异常的数据进行及时检测,按照约定的指令向工作人员发出报警信息,把异常情况的全过程传递到工作人员手中,方便工作人员开展抢修工作。除此之外智能化技术也能够对电气工程自动化控制的设备和内部结构进行精简,成熟地使用自动诊断功能,减少系统发生问题的可能性。

2.4CAD软件设计应用

智能化电气工程篇(4)

1智能化技术的概念

智能技术在我国电气工程之中应用普遍。它广泛应用于低压配电系统、变电站系统、电力照明系统等,是一种能精确模拟人脑思维和判断的智能工作模式。主要采用自动化作业辅助智能控制,实现智能化自动化作业。智能技术是自动化技术的先进表现,它能精确地提高电气工程的安全性和稳定性。

2智能化技术应用在电气工程及其自动化的优势

2.1无需建立模型

在传统的电气工程自动化系统中,控制系统的不错管理需要控制器的辅助。要想充分发挥控制器的作用,就必须建立科学合理的控制模型,但一旦建立了控制模型,就不能根据工作环境的变化而变化,使装置的控制模型的作用不能发挥好,而且操作的准确性和可操作性也不低自然系统的管理得不到很好的保证。将智能技术应用到相关的电气工程和自动化之中,可以精确地解决上述问题。这使得电气工程的管理更加完善,灵活性和准确性可以大大提高,从而大大提高了电气工程的稳定性。

2.2调整控制系统

智能电气系统的优点是可以调节控制过程。电气设备的更换过程可根据具体情况进行控制。例如,通过改变时间来控制响应时间和下降时间,从而提高自动控制的时间和工作效率。效率保证了工作的每一步。由此可见,电气自动化控制精确地解决了人工控制的过程调节问题。这是自动控制的优点,可以应用到电气工程的实际工作之中。精确地减少了不适当的问题,大大提高了电力设备的平稳运行。

2.3控制器具有一致性

智能静态已成为电气工程工作的重点,它能使原来不相同的工作变得统合,从而提高工作效率,保证每一个数据都能准确地确定到规定的数字。晚期的电气工程需要人工控制。操作过程之中有一些工作步骤,导致一些工作步骤需要同时完成,但智能技术的引入解决了这个问题,它可以同时工作,使工作的每个环节都可以同时完成。当今的电气工程正逐步向自动化控制转变。通过反复的实际应用和操作,自动控制可以在不熟悉的数据眼前做出精确的判断。在工程之中,要注意对工作细节的控制,严肃检查每一个环节。

3电气工程及其自动化中智能化技术的应用

3.1故障诊断的应用

在实际应用过程中,智能故障诊断技术主要是查找变压器故障的具体位置或故障的大概范围,并准确计算出变压器在运行过程中产生的气体。当前,随着中国科学技术的飞速发展,电气工程和电气自动化领域的问题日益突出。智能技术在电气工程中的应用越来越广泛,受到了广泛的关注。在稳定的条件下,人员无法立即检测到电气设备出现问题,也无法确定电气设备故障的确切位置。通过智能检测技术的精确应用,可以准确监控电气设备的实时工作状态。如果电气设备存在严重故障,则自动检测技术可以确定故障的确切位置,然后发出故障信号。立即通知相关设备的维护人员可以准确地提高设备处理的效率,还可以解决电气自动化过程中的许多问题。

3.2变电站中的应用

随着人们生活水平的提高,人们对生活质量的要求也随之提高。电气工程是人们日常生活中非常关键的应用。因此,智能技术不断优化和完善,可以应用到日常生活中,显然可以满足人们的生活质量需求。变电站是电气工程的核心。如果将智能技术应用于变电站,它不仅可以优化传统的操作方法和监视步骤,还可以降低手动操作的复杂性和手动操作的门槛。因此,将智能技术应用于变电站是一个不错的选择。同时,系统可以完全联网。使用计算机代替电源信号可以提高信息传输的稳定性和准确性。

3.3调度电网的应用

电网调度是变电站的关键组成部分,能够精确调度多区域的电力平衡。计算机网络系统、显示器、服务器等设备共同构成电网调度,使电厂的电力得到很好的控制,电网的实际运行得到很好的控制。将智能技术引入电网调度,使电网运行随时处于监控和管理状态。

3.4优化设计的应用

智能化电气工程篇(5)

1引言

随着科学技术的不断发展,人们对电力系统的需求越来越高,电气工程在发展中面临许多挑战。电气工程在社会的各个行业和领域已经得到了非常广泛的应用,已经逐渐的成为了现代科技领域中电气发展的重要方向。智能化技术不仅可以保障电气工程的工作质量,还能使电气工程朝着自动化方向发展,使电气工程的稳定性得以保障,为电力企业的发展奠定基础。

2电气工程及其自动化概念

电气工程及其自动化是将计算机技术、智能化电子技术以及信息网络技术等结合为一体。在当今社会,电气工程及其自动化几乎将所有的与电子、光子有关的工程涵盖在内。电气工程及其自动化在未来的发展中容易受到科学技术的影响,在当前市场化的产业结构中,电气化工程以及相关的控制系统有了新的创新技术,在系统体系统一、接口标准化的同时,市场产业化能使配置资源的工作效率有效提升,电气自动化工程控制系统在发展的过程中使其逐渐的向安全防范的方向不断发展和提高,进一步提高设备操作和使用过程中的准确性和安全性,最大程度的减少了与其相关的安全事故的发生,也为人们的生命安全提供了一定的保障[1]。

3智能化技术特点及应用的优势简述

就目前来看,智能化技术在实际的应用中有着很多的优势,它充分的结合了现代化的信息技术,成为了各个企业和工业发展中最重要的技术之一。智能化技术具有更高的工作效率,实现机器操作的自主化和无人操作化,可以自动化生产及对机器灵活的操作是智能化技术在应用中最显著的特点。在以往传统的电气自动化工程应用中,需要工作人员进行一系列复杂的操作,在操作和控制的过程中很容易出现失误,而且只要其中一个操作系统出现一点失误就会导致机器无法正常工作,由于机器系统相对来说比较复杂,就会为后期的修理工作带来很多的困难。这样不仅会影响系统运行的效率,而且因为会产生一些安全隐患。但是,智能化技术具有一定的灵活性,在实际的操作和应用中可以很好的弥补上文中所说的缺陷。智能化技术应用于电气化工程可以操作系统变得更加简单,可以实现对相关系统更加精准和智能化的操作,减轻电气工程管理中的超负荷工作,加强对资源的优化性能,对系统管理进行强化[2]。在电气工化工程中应用智能化技术,其最主要的目的就是逐渐的提高电气自动化的工作效率,一方面可以有效的降低工程成本,节省人力物力,推动电气工程的发展,另一方面对电气工程自动化中传统控制的弊端得以解决,对系统稳定性有所控制,进一步提高了电气自动化工程设备运行的效率,进而加强和完善电气自动化设备的控制系统。

4电气自动化工程以及智能化技术的应用

4.1电气工程自动化中PLC技术

PLC技术在电气工程及其自动化技术在获得广泛应用,PLC技术的应用逐渐取代控制器设备。利用PLC技术可有效对电气工程进行优化改进,同时PLC技术是提高电气工程及其自动化生产效率核心,对电气设备的掌控可利用PLC技术充分体现,将设备运行的效率极大提高[3]。PLC技术与传统的控制器相比系统元件较为先进,在设备应用中能发挥更大的效果,能够自动切换供电系统,使电气工程运行的稳定性有所提高。智能化技术发展到一定时期时,PLC技术是其发展的产物,在各行各业中广泛应用,智能控制在电气工程中起到了关键决定性作用。为实现电气工程及其自动化中远程化控制与无人操作技术效果,要通过合理有效的操作技术措施来提高系统的自主高效性,明确系统的应用范围,在不同系统与设备之间能够进行良好的监督与使用,使得对电气工程及其自动化的帮助更加全面。

4.2控制系统自动化技术

在我国现阶段,各个行业的发展都是以优化资源配置为目的,电气工程及其自动化的发展也是为了更好的实现资源优化配置。智能化技术在电气化工程中得以应用,可将办公操作程序合理优化,智能化控制可对机械中存在的设备故障进行检测,对机械中的数据进行采集,将设备在维修及养护中投入的人力、物力、时间等有所降低,进而节约了资源。智能化技术的应用使电气工程自动化的利用效率、精度及速度等水平均有所提升。

4.3电气工程优化设计技术

电力工程设计的科学性合理性对电力系统安全稳定运行有一定的关系,技术操作人员除了要了解电气工程及其自动化的相关知识外,还应将智能化技术的有关知识及技能有所掌握,为电力系统设计优化提高保障。同时,利用远程监控技术可对电气系统随时进行监控,在相关技术人员掌握电力系统运行后,采用信息共享等方法实现电力系统的实用性。智能化技术不仅促进了电气工程系统的进一步优化,而且还促进了智能化相关的各种技术在各个领域的应用,使智能化技术取得更好的发展。

智能化电气工程篇(6)

关键词:

智能化技术;电气工程;自动化控制;应用

0引言

随着我国社会的不断发展,经济的进步,我国的电气行业也得到了迅猛的发展,电气工程行业逐渐的得到了人们的重视。自动化控制在电气工程中起到关键的作用。在传统的电气工程中,自动化技术还没有足够的完善,对生产的效率没有有效的提高,对电气工程的发展产生了一些影响。在自动化技术中引入了智能化技术,不仅加强了电气工程的发展,而且使电气工程生产中的效率提高。

1智能化技术的基础理论

智能化技术实际的运行中包含了控制学、语言学、信息学等多门技术,其具有较强的综合性。这项技术是研究在生产工作中极其的自动管理,不需要人员的控制来完成一些工作[1]。可以通过计算机技术对智能化技术加以强化,使其在实际工作中具有更加重要的作用。自能化技术是现今电气工程行业里不可缺少的一项内容,通过计算机的编程技术编辑出自动化的软件并加入进设备中去,使其在生产工作中来完成一些人工进行困难的工作,提高了工业生产工作的效率。因此,在现阶段的发展中加强智能化技术的发展是社会经济发展的需求,可以使企业的投入成本降低,减少了人工的工作需求,更好的解决人力资源上的问题。

2自能化技术的特点

2.1无人化管理

在传统的电气工程自动化控制工作中,往往都需要工作人员在旁边进行监管,保证工作的正常运行,而加入了智能化技术之后,在工作中往往是机器自动的运行,发现问题自主的发出警报并进行简单的处理,可以减少企业对人力资源的需求。同时电气设备还可以通过自动化技术来完成自我调节,更加减少了人员的使用,使企业的投入成本大大的降低了。

2.2无需控制模型

在自动化过程中,传统的自动化控制技术往往需要控制模型来进行设备的控制的,但被控设备常常会出现一些无法预测的变化,不能准确的测量出数据,增加了设备的控制难度,无法对设备进行有效的控制。而在加入智能化技术后,对设备的监管就不需要控制模型了,它是从根源上解决了设备的变化问题,使自动化控制在测量阶段变得更加的准确[2]。

2.3智能化控制器有很强的一致性

在对于数据的处理时,智能化控制器能准确的对数据进行分析并加以处理,各个控制对象,即使在对一些不长用数据的处理也能快速准确的进行,使自动化技术在工作中稳定的运行。在控制不同的对象时,由于被控制对象的不同,一些控制并不能立刻就进行,控制效果达不到预计的效果,降低了控制器的准确性。使用智能化控制器后,他能对被控对象进行具体的分析,根据其工作的实际情况进行对被控对象的控制,有效增强了控制过程中的准确性。因此要加强智能化控制化技术的加强,加快社会经济大发展步伐[3]。

3智能化技术在电气自动化控制中的具体应用

3.1智能控制

智能化技术在电气自动化控制的使用,可以使设备控制更好的管理,对设备进行远程超控,加强生产工作的效率,为自动化控制提供了良好的环境氛围与有效手段。智能化技术在电气自动化工程的应用,是人们对智能技术的认可,为智能化技术在其他行业的发展提供了保障,为人们的生活工作带来了便利。

3.2优化设计

在传统电气工程设计时存在着很多的困难与麻烦,这就需要大量的设计人员进行参与进来。因为设计工作的复杂,设计人员往往不可能完全的考虑每一个问题,使之后的工作进行带来麻烦,往往会出现大量的问题,这样就需要设计人员加强专业知识,并且要根据以往的工作经验,细致的对设计进行检验。智能化技术在电气工程自动化控制中的就完美的解决了这一问题,设计人员可以通过计算机上的设计软件进行设计,加强了设计时各项数据的准确性,丰富了设计的内涵,加快了设计的完成,同时加强了对设计各环节的监管,更好的实现了电气工程自动化控制。

3.3自动化控制整个电气工程

在电气工程中,很多的工作都包含了控制环节,所以就要在电气工程自动化系统中加入智能化技术,使其在工作中发挥更好的作用。智能化技术主要是以神经网络控制多层次的对电气工程自动化进行控制,神经网络控制能具有学习功能,很好的解决了复杂的非线性、不确定、不确知系统的控制问题。在神经网络控制的子系统中,子系统转子的速度可以通过对系统参数的判断和调控得出,另一个子系统可依照此参数判断和调控定子的速度。因为其的优秀功能,使其在在智能控制中得到了有效的应用。

3.4故障诊断

在电气工程工作过程中,电气设备常常会发生一些问题,在问题发生之前会出现一些有关系的症状,在症状出现时及时的发现问题,进行快速的解决。会对之后出现的故障更好、更快的解决,这就要使用智能化技术来完成。在电气设备中,变压器在生产工作中具有重要作用,因此,对变压器的管理相当的重视,时常的对其进行维护与检修,降低其发生故障的概率,即使这样也不能完全避免电气设备故障的出现,所以加入智能化技术就完好的解决了这一问题,使故障的出现率降到了最低,减少了电气工程工作中的损失。

4总结

智能化技术在电气工程自动化中的使用,不仅使企业的生产效率得到提高,同时还减少了企业的投入成本,降低了企业对人力的需求。使企业各项生产工作向着以自动化建设目标为主的方向进发,增强了企业在市场生的竞争力与生存力。推动着企业快速稳定的发展。

作者:王宁洁 单位:江苏海事职业技术学院

参考文献:

智能化电气工程篇(7)

近年来,电气工程智能化技术在社会经济发展中发挥越来越重要的作用。传统电气工程自动化技术在应用中,效率相对较低,已经无法适应现代社会经济发展的要求,在这种情况下,电气工程自动化中开始融合智能化技术,极大地提升了工作效率,同时人工操作任务量也明显减少,在整个操作过程中,精度较高、速度较快,为相关领域的运行节约了大量成本。

1智能化技术与电气工程自动化概述

1.1智能化技术

智能化技术即在控制、操作和判断过程中,需要对人类大脑进行模拟。实际应用智能化技术的过程中,通常需要对精密传感技术、GPS定位技术和计算机技术等进行综合应用。现阶段,智能化技术在智能机器人研究领域中的地位已经不容忽视。智能化技术实际应用中呈现出如下特点:成本低且不会对环境产生污染;设备运行中能耗量较低;工作人员操作量明显减少,人为误差率降低;改善了操作人员工作环境;设备操作简单且利于后期维护等。

1.2电气工程及自动化技术

电气技术、计算机技术等都属于电气工程及自动化技术范畴,现阶段这一技术内容被广泛应用于各个工业生产领域。自动化理念以及模式是该技术产生和应用的基础,能够极大推动工业生产制造领域的进步,提升运行效率并降低运行成本。但是,近年来我国社会经济飞速发展,对电气工程及自动化技术也提出了更高的要求,传统的技术内容已经无法满足现代市场经济发展要求,因此积极加大电气工程及自动化技术研究和创新力度势在必行[1]。智能化技术就是在这种情况下被应用于这一研究领域当中,可以说在电气工程自动化领域中充分应用智能化技术,能够更加高效的搜集、挖掘和处理相应数据信息。据有效数据显示,电气工程领域发展中,智能化技术的应用效果已经得到了普遍认可,并在推动电气工程自动化发展的过程中,促进了我国市场经济的高速运行。

2智能化技术在电气工程自动化的应用优势

2.1有助于系统控制流程的简化

在电气工程自动化领域中使用智能化技术,能够促使相应控制流程以及整个系统内部结构得到简化,更重要的是,系统实际运行中的效率也能够得到明显提升。在以往长期使用的电气工程自动化中,相关操作和控制需要以人工的方式来实现,同时操作过程过于复杂。同时,整个系统运行中,人为因素造成的失误和偏差概率较高,在这种情况下,影响控制系统运行的因素相对较多,系统运行稳定性下降。如果系统故障是由数据错误导致,由于系统过于复杂,那么在进行系统故障检修和维护工作的过程中,时间相对较长,将对整个生产工作造成影响,甚至会产生严重的经济损失。由此可见,传统电气工程自动化运行中,系统安全性、稳定性较低。而智能化技术有效弥补了这一缺陷,在简化操作控制系统的基础上,影响系统运行稳定性的因素减少,且维修、维护工作能够顺利开展,有助于系统长期处于稳定的运行状态下,节省了设备长时间检修中产生的经济损失。

2.2有助于电气工程自动化的完善

在电气工程自动化中合理应用智能化技术,可以促使稳定性和可靠性在系统中有效提升。在以往使用电气工程自动化时,人工智能化并没有真正实现,人工操作始终是操作控制、数据搜集和处理的主要方式。而在将智能化技术同电气工程自动化进行融合的过程中,人工智能化在生产过程中真正得到了实现,各项数据在系统中能够被完整的搜集,同时可以自动、准确的对数据进行分析和处理,促使系统能够高效、稳定、长期运行。2.3有助于无人化操作的实现电气工程自动化系统无人化操作的实现是在对智能化技术进行充分应用基础上实现的,在这一过程中,减少了人为操作量,因此人工成本相对较低。智能化操作基础上,系统运行中发生故障和误差的概率相对较低,因此系统实际运行中的维修和定期检测资金花费减少,系统可以对故障进行及时的判断,并能够进行自动检测,为维修工作人员提供数据依据,系统故障导致的经济损失将明显减少。

3智能化技术在电气工程自动化的具体应用分析

3.1故障诊断中的应用

复杂性是电气自动化系统的主要特点,因此导致设备故障的因素也相对较多。实际使用系统前,应做好充分的故障检测和设备维护工作,将系统发生故障的概率降到最低。在对智能化技术进行应用的过程中,能够实时监控、诊断电气自动化系统的运行状态,发生故障时,渗漏油在变压器中会对气体进行自动分解,这样就可以对故障进行及时准确的判断,并明确具体故障点,为工作人员及时展开维修工作奠定基础[2]。整个过程中,不仅维修时间减少、故障检测难度降低,更有助于延长设备使用时间。

3.2自动化智能控制中的应用

在电气工程自动化的智能控制中,智能化技术的功能和作用是不可取代的。在传统的管理、控制电气工程自动化系统模式中,通常以人工操作为主,人为因素对系统运行稳定性具有直接影响。而在对智能化技术进行充分应用的过程中,电气工程自动化真正实现了智能化控制,因此即使在无人值班的基础上,系统也能够始终处于自主、高效的运行状态下。在电气工程自动化系统中合理利用智能化技术,还有助于远程控制的实现,因此设备运行状态以及电气系统的情况能够得到实时监控,可以即使发现并做好故障诊断工作,为提升系统运行效率奠定良好基础。

3.3电气设备优化设计中的应用

电气工程自动化系统的运行离不开电气设备,在展开相关研究的过程中,必须采取有效措施努力优化电气设备设计,但是在实际展开设计工作时,通常需要耗费较长的时间,效率相对较低,由于电气设备具有较强的复杂性,因此实际设计中容易产生各种误差,在这种情况下,要求相关电气设备设计人员具备较强的专业能力和综合素质,能够综合掌握电路、机械以及电气等多方面内容,在长期实践中积累丰富的工作经验,只有这样才能够提升设计方案的适用性。在以往的设计和方案修改工作中,存在很多缺陷,而现阶段传统手工设计已逐渐被系统辅助设计取代。计算机辅助技术、CAD技术被综合应用于电气方案设计中,产品设计周期被缩短,设计的效率和质量明显提升。遗传算法在电气工程自动化设计中的应用,可以在统一的处理器上集中多个功能模块,此时处理器的运行负担增加,系统运行的效率和速度会降低。但是在对智能化技术进行合理应用的过程中,可以远程监控相关设备,促使相关材料在系统中运行时损耗量降低,因此产品设计、研究、开发成本减少,而整个系统的使用性能却明显提升,对于电气设备设计方案的优化具有促进作用。

4结束语

综上所述,智能化技术在电气工程自动化控制中的应用,能够有效提升生产效率、降低运行成本,因此我国相关领域发展中,必须顺应时展要求,提升智能化技术应用水平,从设计、实际应用等多个角度出发,加大智能化技术的研究力度,最终才能够为不断推动我国电气工程自动化领域的全面发展做出重要贡献。

参考文献:

智能化电气工程篇(8)

引言

我国电力行业发展迅速,为人们的生产生活提供了便利,随着人们生活水平的不断提升,人们对于电气工程自动化的要求也越来越高。在电气工程自动化中引入人工智能技术,由机器人代替人工完成电气工程操作工作,能够实现智能控制,不仅节省了人力,也有效减少了电气工程运行中产生的误差,其良好的技术优势获得了一致好评。由此,在电气工程自动化中应用智能技术,有效满足了人们对于电力的需求[1]。

1人工智能技术及电气工程自动化含义

1.1人工智能技术

在传统的电力行业中,所有工作都是依靠人力完成。人工智能技术出现后,替代了手工劳动,减少了工作量。人工智能技术借助编程对人类的行为和思维模式进行模仿,使机器拥有人类相同的行为、思维和感知能力,利用机器完成人类的劳动任务。人工智能应用领域较多,如语言学、计算机科学等,其属于思维科学技术,发展中离不开数学的支持,只有将数学与人工智能联系起来,才能够促进人工智能技术的不断发展和进步[2]。

1.2电气工程自动化

电气工程需充分利用电能、电气技术和相关设备改善并维持一些限定空间、环境,主要研究方向是如何转化利用电能。电气工程及自动化技术在很多领域都有应用,如电力电子技术、计算机技术和网络控制技术、信息技术等,综合性较强。电气工程自动化技术常应用在电气设备制造公司或者供电、发电企业中,对人民生活质量和国民经济水平有一定影响[3]。

2电气工程自动化中人工智能技术的优势

2.1误差小

人工智能技术在电气工程运行中的应用,能够促使电气工程控制器抗干扰能力得到有效增强,最大化避免电气工程运行误差的出现,对于与电气工程相关产品的规范性和一致性的提升有一定帮助。人工智能技术在应用过程中,需要将相关的参数和数据一起输入到控制器中,机器就能够实现自动化生产,避免了电气工程运行中许多干扰因素的影响。此外,人工智能技术也能够科学有效地评估电气工程,促使电气工程获得更为长远的发展。

2.2强化控制效果

人工智能技术在电气工程运行中的应用,能够有效提升电气工程的控制效果,保证电气工程能够规范性、一致性地运行。当前,我国电气工程自动化水平相对较低,传统电气工程控制上,需要将电气工程控制对象预先设计好,根据实际情况开展控制策略,虽然取得了一定效果,但是无法准确地控制对象,影响电气工程的运行效果。情况严重时,还会对电气工程的操作水平产生影响。而人工智能技术的应用,能够促使电气工程设备的运行效果得到显著提升[4]。

2.3不会过多受到外界因素限制

传统的电气工程在运行中会因外界因素的变化而产生影响,不仅电气工程的运行质量会受到影响,且会对设备安全造成威胁。基于此,在电气工程中,需要重点应用人工智能技术,借助机械手段完成人工操作难以完成的工作,甚至代替人工工作,电气工程自动化水平就会得到全面提升[5]。在实际应用过程中,可以借助控制器操作电气工程,建立电气工程自动化模型并完成计算工作,确保电气工程能够顺利完工。在传统的电气工程运行中,仍然使用低端的控制器,因数值计算类型与模型的参数出现问题,导致数值计算产生错误,引发电气工程出现多种问题。而人工智能技术在应用后,有效减少了电气工程故障,自动化模型的准确性也有了显著提升,且对模型参数和自动化模型的要求也相应有所降低。

2.4操作流程有所优化

传统的电气工程中,自动化控制器在操作上较难掌握,且要求操作人员具备专业的知识,一旦工作人员出现操作失误,会导致电气工程无法正常运行。而人工智能的应用,能够有效简化操作流程,且不需要操作人员掌握更多的专业知识,只需要按照操作程序和语言完成相关操作即可,能够有效避免工作人员在操作上的失误。

2.5减少了后续维护工作

传统的电气工程运行涉及变压器和线路等多种电气设备,多种设备同时运行会加大工作负担,同时也对后期的维护工作造成不良影响。如果电气设备长时间未得到维护,会导致设备老化,影响正常运行。在维护、保养过程中,需要聘请多名专业人员同时操作,这会直接增加维修维护成本。如果电气工程自动化中加入人工智能技术,就能够有效减少设备的使用数量,后期的维护工作压力也会减小,对于企业提升经济效益、减少成本有一定积极意义[6]。

3电气自动化中人工智能技术的实践应用

3.1人工智能与电气设备的融合

人工智能技术在电气工程中的应用,能够改变传统电气设备的设计和运行方法,满足电气工程的实际需求,代替传统电气设备完成更复杂的程序,全面提升电气设备的稳定性、可靠性,电气维修的成本也会显著降低。电气工程中电气设备与人工智能的结合,能够提升工作效率,降低运行成本,简化操作流程,保证满足人们的各项需求。人工智能技术通过简化电气工程操作界面,利用各项指令指挥电气设备完成工作,工作效率和查询效率得到显著提升。

3.2能够有效排除故障

如果发电机和发动机等电气设备长期处于运行中,会加重设备运行负荷,出现安全隐患。在电气设备运行中,需要根据实际运行情况进行分析,避免安全事故出现。在排除故障问题上,传统方法不仅耗费大量时间,且需要利用变压器油气体进行故障查找,在收集和检验环节耗费大量的人力、物力和财力,检验准确率也相对较低。人工智能的应用,可以借助模糊理论技术和神经网络诊断出电气设备存在的安全问题,并进行自动诊断,能够有效排除各项故障[7]。人工智能技术也能够对设备运行故障问题进行诊断,当前常用的诊断方法主要包括三种,分别为基于案例诊断、基于故障推理和利用故障树模型进行诊断。三种方法可以联合使用,也可以只使用一种。在诊断上,积极开发了人工智能算法,并充分结合数据采集技术和传感技术,设计出了故障诊断系统,能够及时并精准地找到故障点。诊断系统包括故障诊断规则库、故障推理机、故障诊断过程解释机、故障诊断数据库等,相比于传统查找方法,人工智能系统的应用有效缩短了查找时间,降低了维修成本。案例库收集与故障相关的知识和案例,可以直接提取相关参数,参考案例特征对案例进行归纳整理,为系统推理提供参考基础。故障诊断阶段提取故障特征,利用人工智能敏感特征对比方法进行诊断,能够有效发现设备存在的故障,并做出有效的处理[8]。

3.3在产品设备中的实践应用

电气设备的设计工作涉及多种学科和内容,对设计人员的专业水平有较高的要求。为了保证设计的电气产品具有科学性、可靠性特点,需要在设计中积极融合科学设计和知识、经验。人工智能的应用有效解决了以上问题,不仅能够代替人脑解决繁琐的计算工作,也能够模拟程序,有效提升工作效率,缩短设计周期,最终设计出的产品也具备科学性特点,实用性较强。但是,其对设计工作有一定要求,要求设计人员对于智能软件的应用和设计有丰富经验,设计出符合不同需求的产品[9]。

3.4能够实现电气工程的保护功能

智能化电气工程篇(9)

【文章摘要】

我国经济和科技的迅速发展使得电气工程自动化技术被广泛应用到电力领域,并促进着电力产业的高速发展。作为近年来在电气工程自动化中新兴起的一门技术,人工智能技术的应用不仅提高了电气工程的自动化水平,而且对于电力产业的整体发展也起到了重要的推动作用。本文通过对人工智能的概念和应用领域进行简要分析,在结合其在电气工程自动化中应用优势的基础上,对人工智能在电气工程自动化中的应用方法展开了深入研究。

【关键词】

人工智能;电气工程自动化;电力系统

0 前言

人工智能在近年来被人们研究并应用,其研究范围不仅包括了智能控制、图像识别和语言识别,还包括了人工神经网络和专家系统等方面的研究。而电气工程自动化则主要研究与电气工程相关的系统运行和自动控制技术以及电子电气技术和信息处理技术。通过将人工智能科学地应用到电气工程自动化当中,可以使电气自动化系统对相关的数据进行实时分析并处理,从而实现电力的自动化生产。故本文针对人工智能的概念及其在电气工程自动化中应用的优势,对其在电气工程自动化中的应用进行了详细分析。

1 人工智能简述

1.1 人工智能的概念与应用领域

人工智能是研究并开发用来模拟、延伸并扩展人的智能的理论、方法以及技术和应用系统的一门计算机科学的分支学科。作为一门极富挑战性的学科,人工智能企图对智能的实质进行了解,并产生一种以与人类智能相似的方式对事物做出反应的智能系统或机器。近年来,人工智能在机器翻译、智能控制、机器人学、专家系统、航天应用以及遗传编程和庞大信息处理与语言图像识别等领域均得到了不同程度的应用。

1.2 人工智能在电气工程自动化应用的优势

人工智能在电气工程自动化中的应用主要是通过人工智能控制器来实现的, 根据人工智能控制器自身非线性函数近似器的相关特性,可将其在电气工程自动化中的应用优势总结为如下几方面:

1.2.1 受外界影响因素较小。传统的电气工程控制器在进行自动化模型的构建时通常会受到模型参数变化、不同数值计算类型等诸多不确定因素的影响,而基于人工智能控制器的电气自动化系统则无需获得精准的动态模型,同时,在自动化模型的建立过程中,对参数和模型环境的运行要求也相对较低。因此,基于人工智能的电气工程可以大幅提高其自动化水平。

1.2.2 参数调节便利。与传统控制器相比,人工智能控制除了具有简单易学和适应能力强等特点外,还可通过参照相关数据,利用语言与响应信息进行自动化模型参数的设计,为参数的调节提供了较大便利。

1.2.3 电气产品性能的一致性较好。与传统的基于特定目标的控制方法相比,基于人工智能的电气自动化系统具有较高的一致性,在忽略部分外部影响因素的基础上,即使向系统中输入任何未知的相关数据也可以使得到的结果产生很高的估计值,在提升了产品规范性的同时,保证了产品本身的一致性。

1.2.4 操作过程的误差较小。人工智能技术在电气工程自动化系统中应用时,由于受外部因素的影响较小,且控制器自身的抗干扰性较强,这就使得经设定过的参数在运行过程中出现的误差较小。

1.2.5 节省资源。基于传统控制器的电气操作,通常会涉及到线路、变压器以及电线和电缆等多种电气设备,又需要专业的工作人员对相关电气设备进行管理和维修,增加了人力和物力等大量资源的消耗。而与传统的控制器相比,人工智能可以减少系统对线路、变压器以及电线、电缆的依赖,进而减少人力和无力的投入。

2 人工智能在电气工程自动化中的应用方法

2.1 人工智能在电气设备中的应用

人工智能在电气设备中的应用主要是指人工智能对电气设备的优化设计。电气设备的优化设计工作较为复杂,不仅要求设备的优化与设计人员具备电路、电磁场以及电机和电器等方面的知识,还需要其具有丰富的经验和较强的应变能力。传统的以人工手动制作为基础的产品设计方式已经无法满足当前电气工程自动化的具体要求,而以计算机辅助设计为产品设计方法,即CAD 的产品设计方法的应用有效缩短了产品的开发周期。在电气设备的设计过程中,将人工智能引入CAD 中, 可以有效提高产品的设计质量与设计效率。就现阶段而言,人工智能在电气设备设计优化方面主要体现在遗传算法和专家系统两个层次上。由于遗传算法对自动化模型的计算方法较为先进且其计算结果具有较高精度,因此,遗传算法经常被应用于相关电气产品的优化设计中。在专家系统的应用方面,由于电气设备在出现故障前是存在相关征兆的,根据电气设备故障的非线性与不确定性的特点,在专家系统中加入人工智能,可以最大限度地发挥专家系统对产品合理性的设计作用,从而提高电气产品的整体性能。

2.2 人工智能在电气控制过程中的应用

电气控制过程对于电气工程自动化技术以及电气技术的整体应用具有决定性的作用,确保电气系统高效稳定的运行是电气自动化研究领域长期以来备受讨论的问题。对于技术人员而言,电气控制过程的要求是较为严格的,其控制过程也相对繁琐,经常出现的问题是由于技术人员的操作不当使得电气设备发生故障或降低了设备的运行效率。人工智能在电气工程中的应用一方面可以使技术人员提高对电气控制过程的精准度,另一方面, 对于提高电气系统的整体运行效率也具有重要作用。首先,人工智能通过借助计算机自动计算的核心技术,实现了代替部分人工智能工作的电气控制功能,在节省了人力和物力的同时,提高了控制精度。其次,人工智能的应用以界面化的形式简化了控制流程,不仅提高了电气系统的控制效率,而且也实现了对电气系统的远程控制。再次,人工智能的应用使得系统可以及时地将相关的重要信息与数据进行保存,进而通过自动生成报表的形式,降低人力物力的投入,并为技术人员日后的数据查询工作提供较大便利。最后,在人工智能的模糊控制中,还可以根据电气系统传统控制过程的交、直流传动实现对整个电气系统的控制。一方面,在以直流传动为主的电气控制过程中,人工智能的模糊逻辑控制主要包括了Sugeno 与Mamdani,Mamdani 主要用来对电气系统的运行速度进行调控,而Sugeno 则是Mamdani 的一种特殊情况。另一方面,在以交流传动为主的电气控制过程中,则主要应用基于人工智能理论的模糊控制器来代替传统的电气调速控制器来实现电气系统的各方面功能。 

2.3 人工智能在电气设备故障诊断中的应用

对电气工程自动化系统及其运行过程进行分析可知,电气设备例如发电机、发动机以及变压器等均容易频繁出现相关事故。传统的故障诊断方法为:对所收集的变压器油所产生的气体进行分析,进而根据所收集气体样本的分析结果判断存在故障与否。基于传统方法下的电气设备故障检测除了需要耗费大量时间外,还需要相关维护人员对设备检测进行实时监控,加之电气设备故障自身具有较强的突发性和不确定性,大幅增加了设备故障诊断的难度。基于人工智能的电气设备故障诊断方法在设备诊断过程中加入了模糊理论以及基于人工智能技术的神经网络和专家技术,进而有效提高了电气设备故障诊断的效率,并在提高电气工程生产效率的同时,也减少了人力和物力资源的输出。

2.4 人工智能在电力系统中的应用

就现阶段而言,人工智能中的专家系统和人工神经网络在电力系统自动化中的应用比较普遍。其中,专家系统是一个较为复杂的程序系统,其通过集大量的规则、知识和经验于一身,通过对电力系统中的问题进行分析和判断,进而模拟专家决策的过程来解决相关问题。在应用专家系统对电力系统进行优化和调控时,应该根据系统运行的实际情况和相关要求,更新电力系统中的数据库、规则库以及知识库中的数据信息,从而使其与电力系统的应用需要相适应。

在人工神经网络的应用方面,由于该种方法本身具有高度灵活的学习方式,其存储方式也呈现出完全的分布式,因此, 其被广泛应用于电力系统大规模数据的处理当中。人工神经网络通过对模型进行合理分类,进而科学选择相关输入,以此来构建不同类型的季节性时间模型,利用该模型可以对电力系统的短期负荷进行有效预测,从而帮助技术人员对故障可能出现的系统环节进行全面分析,提高系统运行效率。

3 结论

本文通过对人工智能的概念和应用领域进行分析,并结合其在电气工程自动化中的应用优势,进而对其在电气设备、电气设备故障诊断以及电气控制过程中的应用展开了深入探讨。可见,未来加强对人工智能在电气工程自动化中的研究和应用力度,对于提高电气工程的自动化水平并促进电力产业健康、全面发展具有重要的历史作用和现实意义。

【参考文献】

智能化电气工程篇(10)

一、智能化技术简介

智能化技术出现于20世纪中旬,随着技术的发展,在人们的生活、生产中发挥着越来越重要的作用,并逐渐形成了一整套系统的、全面的技术。智能化技术包含的范围十分广泛,包括了计算机技术、心理学技术、自动化控制技术、数学逻辑技术能,是一门综合性很强的技术。智能化技术的基础是计算机技术、编程技术以及控制理论,通过对这些技术的研究,并结合神经网络、遗传算法、自控技术、电机技术等,模仿人类等的行为或者思维方式,来实现对技术的控制。究其根本,智能化技术是计算机技术发展到一定阶段的产物,通过对由技术所获得的数据进行分析与回馈,形成人们所需要的结果。

二、智能化技术在电气工程自动化中的应用分析

1、对机器故障进行自动化的检测

电力能源在传输上具有很高的要求,对电力设备的运行状况也有很高的标准。因为电力设备的周期性较强,因此,很多的电力设备在长期的使用状态下会出现性能下降、老化的现象,在日常保养维护方面没有足够的重视,致使设备在出现故障时需要花费大量的时间和精力投入,情况严重的话还可能需要换新的设备,从而增加成本。

2、智能化控制系统

智能化控制系统中,最为重要的就是由英国大学所研发的模糊逻辑控制技术,模糊逻辑控制技术的发展取代了传统的PID控制器,并通过灵活地数字控制系统实现其对控制对象的有效控制。当前,运用得较为广泛的是S型和M型的模糊控制器,不论哪种控制器,都具有相应的数据库,并被称为模糊数据库集。假设模糊数集为F与K,那么iks为F,在这种情况下,Y是K,那么W=(fY,K),这是S型的控制器计算方法。而M型控制器则主要应用于知识库以及模糊化过程,其中,应用得最为广泛的是模糊化,在进行智能化技术控制的过程中,通过模糊化控制,模拟人类的行为,并以人类的思维方式为前提,进行行为的推测,并作出相应的行为;而知识库则主要由数据库以及语言行为控制库来组成,统称为规则库,规则库有自己的控制模式与控制方法,通过使用神经网络推理控制器以及模糊数据逻辑控制器,对控制对象的行为进行分析与预测,并结合相关专家的知识,最终通过数字表现在智能化技术中,并通过一定的行为表达出来。模糊逻辑控制主要是通过不同的函数图像与计算方式来实现的,通过对变量的测量与计算,实现对对象的控制,其中模糊化技术应用于数字化,而规则推理则应用于量化管理。

3、对电气工程的产品设计进行优化

电气工程是一项综合复杂的工程,对所需要的产品较为繁琐。从我国的电气工程实际来看,由于传统因素的影响,电气的产品设计还是以理论和经验结合实现的,没有一定的技术支持,造成工作的效率不高、产品设计不规范,增加了工作难度。通过智能化技术的应用,可以采用科学的计算方法,根据电气工程实际操作当中遇到的状况,对所需的产品规格进行精确的计算确定,从而有效提高电气工程的工程效率。

4、光互联技术在电力工程中的应用

现阶段智能技术已被广泛运用到电力工程建设中,光互联技术就是基于智能技术发展而成,其在实际应用中可以实现三维网络、互联数大、互联密度高以及无接触互联等多项优势性能,对促进我国电力工程领域在新时期的高速发展有着重要意义。电力工程建设中一般都会将光互联技术运用到机电控制系统中,同时也会将光互联技术运用到自动控制系统中,并可以实现对电力系统集成度的有效提升,可以帮助电力企业加强对电力系统运行和使用中的有效监管,而且该技术在实际应用中不会受到平面或应电容性负载量等多方面的限制,而且其抗干扰性能远远优于其他技术,这对加强电力数据传输过程中的实用性与便捷性有着重要意义,因此,基于智能技术的光互联技术现已被广泛运用到电力工程的各个环节中。

5、 智能化技术在电力系统中的应用

5.1 神经网络系统应用

这种系统于20世纪40年代开始被研发,到现在不论在结构上,还是在功能上,都实现了许多突破和飞越。它具有模型结构,并能够进行运算。神经网络之所以应用在电力系统中,主要得益于以下几个方面。①具备非线性特性,并能够对一些运行数据进行分析处理。②能够将大量的神经元连接在一起,组成神经网络,上面储存信息;根据这行信息,可以进行靠权值调换,从而实现信息的不同维度转换。由于神经网络系统具备优越性能,所以受到电力企业的广泛关注。目前,其研究主要集中在模型和结构领域,同时在神经网络的算法研究等方面也有所进展。

5.2 专家控制系统应用

目前,为了提高电力系统运行效率,专家系统被广泛应用。该系统具有广阔的应用范围。如能够应用在电力系统运行管理中;为系统运行提供紧急处理、控制;并能将缓慢的操作进行切换,使其加速;还能将出现的运行故障进行隔离,单独处理。另外,该系统能够实现电力运行自动化,减少其运行荷载,并能偶进行静态及动态分析,提高电力运行效率。目前,出于适应电力系统运行要求,专家系统被广泛应用,有效提高了与你运行效率,但同时也存在不少问题。如缺乏创新性,同时具有浅层的知识,使得对电力运行中出现的深层次问题不能有效解决,不能对新出现的问题进行合理分析;此外,该系统不能提高提供学习机构,从而对出现的复杂问题,不能深层挖掘机解决。

5.3 模糊控制理论应用

模糊理论是在语言变量和模糊推理的基础上形成的,是一种能够推理的智能技术。该技术具有最显著的特点,即能够将人的决策过程进行模拟,从而被应用在电力系统运行中。模糊理论运用在电力系统中,将输入的电力信号进行分析,处理,并进行推导,通过糊涂控制的形式被输出,输出结果具有三个组成部分,分别为模糊化、模糊推理及判决。目前,随着电力系统运行规模不断扩大,运行环节不断增加,模糊理论也引入其中,极大提高了运行准确性。这种理论具有以下优势。①能够对电力系统运行中出现的一些不确定问题,进行有效处理,还能够对一些噪音造成的运行故障给予解决。②专家语言通过模糊理论处理之后,将和认为表达方式一样,从而提高了表达和抽样的可行性。③能够对电力系统运行中出现的问题进行有效解决。如,在电力系统运行中,会出现网络拓扑图或者环境因素发生变化,这时,应用模糊理论,便能得到有熊解决。

结束语

综上所述,在人们的日常生产生活中,电气工程扮演着十分重要的角色,电气工程自动化程度对于电气工程的效率及安全有着直接的影响,在电气工程自动化过程中,利用智能化技术能够极大的提高自动化程度,保证电气行业的迅速稳定发展。

参考文献

上一篇: 护理风险管理论文 下一篇: 中外文学比较论文
相关精选
相关期刊