永磁传动技术论文汇总十篇

时间:2023-03-21 17:01:04

永磁传动技术论文

永磁传动技术论文篇(1)

Abstract:Newdevelopmentonmagneticdrivinginforeigncountryissyntheticallyreviewed.

Applicationsfieldisbecomewideandtechnicalpropertyisimproved;Newtechnique,

technologyandconstructionappear;Magneticdrivepumpsbecomehighefficiency,

rliabilityandlonglifebyusingadvancedmanufacturetechniqueandmanagement.

Keywords:magneticdrive;Mag-drivepumps;newtechnique.

[中图分类号]TM351[文献标识码]B文章编号1561-0330(2003)07-00

1引言

1940年英国人Charles和GeoffreyHwward首次解决了具有危险性介质化工泵的泄漏问题,解决的方法是用磁力驱动泵。在以后30多年里永磁传动技术由于磁性材料的原因进步十分缓慢。1983年高性能钕铁硼(NdFeB)永磁材料的问世,为磁力驱动泵的快速发展提供了关键部件的材料。近年来永磁传动技术已从泵类向其它密封机械扩展,技术上集中于提高设备的可靠性、抗介质腐蚀新材料的研究,流体技术及制造装配的精度。磁力泵代表着一个国家制造技术的水平,近年来工业发达国家的磁力泵在效率、寿命、制造周期、成本、可靠性等方面有了突破性的进展。

永磁传动技术是将原动机的动力通过其轴上的外磁部件传递给工作轴上的内磁部件,内外磁部件由隔离罩分开,从而工作轴无须伸出所要封闭的空间,取消了动密封,实现无密封、零泄漏。永磁传动技术主要应用于化学工业、石油化工、医药、食品工业中的泵和压缩机、搅拌机与阀门等。目前我国流体机械大量使用的传统机械密封在国外的这些部门已逐渐被永磁传动所取代。

2应用领域拓宽、技术性能提高

2.1磁力传动是密封领域最有效最安全的解

永磁传动即永磁联轴器对于需要密封的机械,对有害、有毒、污染、危险、纯净、贵重的产品和生产过程是一最安全解,它的应用范围很宽。石油化工、医药、电影、电镀、核动力等行业中的液体大都具有腐蚀性、易燃、易爆、有毒、贵重,泄漏会带来工作液体的浪费与环境污染;真空、半导体工业要防止外界气体的侵入:饮食、医药要保证介质的纯净卫生。永磁传动技术在这些领域找到了用武之地。英国Howard机械发展有限公司(HMD)从1946年就致力于无密封泵的制造,至今在全世界37个国家已销售近7万台,每年销售额达28百万英镑[1]。美国一家制药厂有上百个装有机械密封的离心泵,处理各种酸类,这些泵由于设计问题常常干运转,仅能使用2~3个月就自行破坏,换用了Ansimag公司生产的K1516系列磁传动泵,自1993年投入运行(每天操作4.8小时每年365天)至1998年还在运行[2]。美国中西部的容器板厂,合成苛性纳是回转叶片泵密封的极大问题,这里的工程师称这些泵是“维护黑夜里的天”安装了Ansimag公司的ETFE衬里无密封磁力泵,运行11个月没有停机[3]。美国一大型化工厂面临着输送甲醇的严重困难。因甲醇易燃,60℃接近沸腾,流量仅7m3/h,压差高达250m。问题的解决靠的是Dickow磁传动多级端吸泵,它的流量是15m3/h,压差400m,确保了甲醇的零泄漏,保证操作人员与工厂的安全,并解决了甲醇中含有气泡输送问题[4]。

2.2磁力泵在技术性能上向微型,大型化发展

为满足国内外市场需要,石油化工公司成套设备向大型化发展,我国必须有一批年产千万吨级的炼油厂、百万吨级的乙烯装置。机械装备要满足重负荷、长周期、低能耗,并符合环保要求。我国在仿制国外产品中发现,制造磁力泵的材质和工艺要求是很高的。即使11~13kW的中小功率泵,其可靠性制造成本也无法让用户接受。对于耐强腐蚀、高压、高温的大功率泵尚属空白。目前磁力泵的发展极限应由HMD公司的产品来描述:流量由1m3/h到681m3/h,压差由10m到500m,温度范围由-100℃到450℃,系统压力从真空到400bar,原动机功率达350kW。微型泵是专门为某些部门研究开发出来的,例如激光器的冷却、分析仪器的供料、化学剂的补充、生物工程、冷却循环,以至于打印机的喷嘴等。齿轮泵与电机一体化封闭联接,适用24V、36V直流电源,速度人工自动控制。最低流量为10ml/min,压差7bar。日本Iwaki公司为电镀、冷却循环用的MD系列微型磁力传动齿轮泵的流量范围是7.5~288L/min,传动功率1/25~1/3马力。

2.3各种类型的泵均可改造为磁力传动泵

离心泵是磁力泵的主导产品,磁传动回转位移泵虽有25年的历史,仅近七八年在设计制造水平以及大扭矩能力方面才有广泛的基础。重点是磁力传动齿轮泵与螺杆泵,最大传动能力达400Nm,转速3500r/min时功率为150kW。地处美国边界犹地州气体动力厂,透平压缩机的泵是常轨的外啮合齿轮泵。油泵因高压差平均每两个月便过度磨损而报废,造成压缩机关闭。1992年改用磁传动三螺杆泵后,一直连续运转,不用任何维护。英国Tuthill成功地应用了它的磁传动齿轮泵为Scottish公司的过程水系统中泵入添加剂,该泵取代了螺杆泵,符合卫生安全条例。

2.4磁力传动压缩机

磁力传动的内轴承位于所密封的空间内,它用密封的介质和冷却。鉴于我国材料制造水平,磁力传动在气体输送机械中尚未应用。加拿大Nova磁有限公司生产的超压风机,在170bar氦气压力下,泄漏率小1cm3/h,轴承寿命超过10000h。另一系列的加压风机,自由排放流量750m3/h,在400m3/h流量时系统压差35MPa,实现了零泄漏。此外,磁传动的特殊性能同样应用于无泄漏的搅拌器、阀门等设备。在冷冻机中的应用还未得到相关信息,笔者为实现将磁力传动应用于冷冻压缩机正在作探索工作,因冷冻剂尤其是氟里昂的外泄会造成严重的环境问题。

3新技术、新工艺、新结构

磁力传动技术并非只是简单的利用磁体的同性相斥、异性相吸作用,它是传动技术、材料技术、制造技术的集成。世界一流的专业生产厂,他们的产品在世界享有声誉,以至于我们无法仿制,其原因就在如此。现在这些“老手”还在进行效率和质量的改进,减少成本,延长两次检修之间的平均时间。

3.1新材料、新工艺

磁性材料的选用各国基本认识统一,NdFeB材料工作温度低于150℃,SmCo材料工作温度低于250℃,对于微型泵可选用钡铁氧体。泵体材料分金属、非金属两大类。金属不锈钢不意味着对一切液体都是不锈的,它主要用于与其兼容的过程液体、贵重液体、超纯净液体。非金属是专门为腐蚀性应用而研制的。它又分为2种情况。其一是纯塑料泵,用纯聚丙稀或乙烯氟化物热塑铸模。如英国VantonCGM泵流量为136m3/h,扬程84m(温度135℃),电机功率32kW。其二是衬里泵,是目前流行的耐腐蚀泵内衬塑料的一种方法。一般泵体可用可锻铸铁制造,FEP、PP、PFA、PVDF、ETFE无缝衬里。Magnetix新的MTA系列无密封泵与其它衬里泵的关键优势是应用了它的先进PFA氟聚合物衬里,PFA以它独特的广泛的耐化学剂腐蚀的能力,比ETFE,PVDF或其它非金属材料而闻名。采用专利技术:浇铸压膜工艺,联接的PFA衬里厚而均匀,与旋转模铸相竞争。应用于高纯度和高温流体更为理想。ISO泵PTFE衬里最小厚度3mm,用榫槽压入泵壳,泵壳用硼硅玻璃制造。隔离罩是密封的关键部件,它的破裂会导致流体泄漏发生灾难性的危害。单层金属封罩应用范围很广,尽管涡流会产生热量有能量损失,若采用高强度、高电阻材料可以限制到最小损失,如:哈氏合金C-4(2.4610)。由Taiani发明的金属叠层隔离罩取得5国专利,在许多设计中已被应用,它的效率可达99%,传动功率150马力。单层陶瓷ZrO2(氧化锆)隔离罩,耐苛性溶液,酸的腐蚀,具有高硬度和良好的滑动性能,及高的机械强度和弹性(E=2×105N/mm2),已用于工作压力250bar。但陶瓷罩壁厚较大,不能塑性加工。1999年初获得美国专利的IMO泵,新的隔离罩用碳纤维与环氧树脂制造,厚度小于2.8mm,与不锈钢法兰相联。适于操作压力31bar、温度232℃,传动扭矩407Nm,在3600r/min下功率达149kW。双层隔离罩提供了双保险和可供检测的空间。日本IWAKIMDE系列泵双层罩由玻璃纤维增强塑料制造。AnSimag双层环氧树脂隔离罩磁传动泵为造纸厂输送氧化铝,运转2年没有更换任何部件。隔离罩焊接是结构的薄弱点和腐蚀的敏感源,先进的制造方法是塑性成型,如深拉、旋压、延伸旋压。轴与滑动轴承由高耐磨性SiC制造。干运转按惯例是无密封磁力泵的凶兆。精心的流体平衡设计,后部密封圈与叶轮孔联合作用,平衡液体轴向推力减小叶轮的压力。入口调整阀防止低流量时的预旋,减小湍流,保证低流量操作。两个烧结SiC轴承优化设计支承点,轴套中的螺旋槽帮助冲洗和轴径,提供干运转30min的保证,可使操作者有时间调整系统,恢复正常运转,避免灾难性破坏。德国ITTRichter公司的MNKA系列泵的纯SiC轴承,在2900r/min下可以干运转1h。

3.2新技术

以最优的物理尺寸保证经济有效地利用磁体的体积,静磁脱开扭矩与温度的相关性通过有限元计算和广泛的试验。轴向与径向轴承由泵送介质来进行。流道提供必须的流量。新的自动调节轴承可承受大的轴向推力和径向力。具有超群的抗腐蚀和耐磨能力的SiC或碳石墨制造的滑动轴承,它缩装在金属外壳内,保证机械运转的稳定性,即使轴肩破坏,仍保持轴承的可靠性和可维修性。另一技术是流体平衡,使轴承所受的力限制到最小。目前内轴承的寿命可达到10000h。高温问题:KSB热油泵用环形冷却器来包围联轴器室,保持磁体附近的温度在材料最大允许温度之下,尽管介质平均温度是350℃。HMD的涡流型联轴器具有独特的“扭矩圈”设计,扩大温度范围至450℃不需要冷却。专利技术—风机自动冷却:在各种速度范围内磁联轴器可自动冷却,不需要外部冷却系统,仅用环形气室传动子自动完成。完全可靠性:在磁联轴器上装有摩檫圈以保护磁体;为防止干运转,流量传感器可以安装在用户管线上,确定断流或低流;国外机组随机装备数字式功率控制监控器来确定超载条件,泄漏传感器、温度传感器,使用PLC(可编程控制器)实时监控磁传动的工作情况。连续监视外轴承的运转间隙,监视任一球轴泵的磨损,使轴泵在损坏前及时更换。

3.3新结构

几乎所有的磁力传动泵均采用“后拉出”结构。整个联轴器部件、轴承部件分别作为一个单元,拆卸时不必从管路、底坐上拆出泵壳,益于检修服务。例如日本富士山胶片化学公司以前使用双机械密封离心泵,由于化学品的腐蚀磨损,轴封至少一个?????????更换一次。该密封的更换是很昂贵的,通常占泵总价值的25%,更换时间要花费5个小时。改用Global磁传动泵后,运行了2年完全成功。与双机械密封相比,检修周期增加了1倍,装拆一次减少到15min。1997年年内全部输送泵均更换为磁力泵,并将泵的预期寿命(不用任何服务)规定为5年。ALLweiler理智的提出无叶轮轴设计,叶轮安装在SiC轴承中间,标准间隙正在申报专利。风机应用分开式电马达,插入式套筒内轴承,无论是检修马达还是风机轴承均可在30min内完成。零部件大范围的与EN22858/ISO2858、ANSIB73.1、API610、DIN、BS等标准泵互换。平衡按API/ISO实施。

4先进制造技术与管理

为适应全球化竞争与合作,世界泵业都在发展自已的技术优势,扩大产品范围以适应世界大市场的多样性、个性化需求。产品在满足功能要求的同时,毫无疑问应充分满足严格的安全性、可靠性和生态环保要求。先进制造技术是产品先进的主题。磁传动泵的先驱者HMD三年前推出了长远生产方式和完全的研究计划,最后重新设计它的装配设备。投资100万英镑来扩充HMD的产品能力,又花费70万用于新的高速加工系统,购买了6套加工中心。然而不单是用先进的机器来增加产量,重要的是建立挠性加工,减少循环时间。以往扭矩圈要围绕工厂传送540m,在制造链上要花费8~9周时间,今天,制造是家庭式的组织,许多机器均连于公司的CAD/CAM系统,工程师根据用户迅速对标准件做出创造性改革,直接上载到加工中心。同一扭矩圈运行30m,在线上仅需要花2天时间。由于快速制造,材料泵可以很迅速交货,某种情况下少许3天。按他们的话说“竞争优势将使我们代入下世纪,开创更多商机”。[1]先进的产品来自先进的设计与严格的试验,3D设计与模拟,无图纸加工,虚拟制造、快速成形都在进行。高强度合金材料的冶金学试验制作,泵体、叶轮及隔离套受强腐蚀作用确保长寿命:非磨损的SiC轴泵的冷却系统在化学过程工业中进行广泛的试验,包括高的系统压力345bar,自吸和热套设计。每一部件、组件和系统都周密地检查和评定。HMD认为制造与需求的原则是:超前战略性原材料;发展关键的供应关系;通过组织制造循环,减少制造周期;减少排队,加速进程。笔者在网上查询了20几家著名的磁传动公司,发现他们在世界各地均有子公司及销售网。质量设计和制造由全世界技术精湛的泵发行者来决定,才能对市场战略性地迅速作出反应。服务包括解答用户遇到的应用问题,泵的选择,特种泵专门设计,每天24小时为用户技术咨询。21世纪制造技术不但将继续制造常轨条件下运行的机器与设备,而且将制造出极端环境下运行的机械设备。21世纪制造的产品应是符合生态环保,与人友好的绿色产品,磁力传动技术正是适应这一发展态势,让我们借鉴国外先进经验推动这一技术的发展吧!

参考文献

[1]HMDSeamless.PumpManufacture,atMaximumVelocity[J].WorldPumps,1999,(7):33-36.

永磁传动技术论文篇(2)

中图分类号TK22 文献标识码A 文章编号 1674-6708(2013)82-0152-02

0引言

某炼油厂自备电站有3台130t/h燃油、燃气中温中压锅炉,承担着满足全厂各种用热工况的需求和保障全厂蒸汽的供给,是确保炼油装置的安全平稳运行的关键,每台锅炉配备一台送风机和引风机。

1问题发现及分析

按全厂正常运行工况,电站3台锅炉接带负荷仅为50t/h~60t/h,原设计风机选型流量偏大,满负荷运行时风门挡板开度仅需40%,实际运行中存在以下问题:1)锅炉长期在低负荷下运行,造成电能浪费;2)由于采用风门挡板调节,开度小受力大,调节频繁易造成损坏;3)调节精度不够,影响运行;4)风机挡板调节存在滞后性、炉膛负压波动较大甚至造成部分火嘴熄灭,为保证提负荷速率,满足平衡蒸汽的需要,需采用适量放大氧含量的做法,增加了能耗。

通过调研,确定采使用永磁节电调速技术。

2理论依据

2.1工作原理

永磁调速技术通过导体和永磁体之间的间隙实现由电动机到负载的转矩传输。该技术实现了在驱动(电动机)和被驱动(负载)侧没有机械链接。其工作原理是一端永磁体和另一端感应磁场相互作用产生转矩,通过调节永磁体和导体之间的间隙就可以控制传递的转矩,从而实现负载速度调节。

2.2系统构成

永磁节电调速系统主要有永磁调速器、隔音散热罩、电动执行器、可编程控制器和温度及转速传感器等组成。锅炉风机压力、流量和其它过程控制变量可被控制系统收集并输出,并作用到智能电动执行器,以满足控制要求。

3 整改措施

5 结论

永磁调速技术先进、节能效果明显,能够很好地适应生产的需要,相信在不久的将来必将迎来永磁节电调速技术在各行各业的更广范围应用。

参考文献

永磁传动技术论文篇(3)

1 引言

随着经济的发展,人类社会对能源的需求也日益增加,石油、煤炭等不可再生资源也日益枯竭,能源紧张也成为了全球共同关注的话题,党的十六届五中全会强调,要加快建设资源节约型,环境友好型社会。同时,国家也提出了推广变频永磁电动机技术的要求,在这种背景下,低速永磁同步电动机技术也日益成熟,广泛运用到了各个行业中。

2 低速永磁同步电动机的特点

永磁同步电动机与传统感应电动机工作原理基本相同,都是由定子产生磁场带动转子,其不同之处在于低速永磁同步电动机由永磁体励磁替代了传统感应电动机的电励磁。永磁同步电动机具有低速大扭矩、结构简单、功率因数高、效率高、体积小、噪声低、可靠性高等显著优点。

低速大扭矩、结构简单。与传统电动机相比,低速永磁电动机的气隙磁场是有永磁体产生的,加上永磁体形状及磁路设计的多样性,这样就可以简化电动机结构,根据需要灵活设计电动机的外形尺寸。传统感应电动机在起动时存在最小转矩,通常来说其最小转矩倍数小于1,而低速永磁同步电动机是变频起动,在起动时无最小转矩倍数的限制,只要负载所需起动扭矩小于最大转矩,都可以顺利起动。在某些领域,传统感应电动机低起动转矩的特性,使其在选型时不得不提高电动机功率来增大起动转矩,以永磁同步电动机设计转速100rpm为例,由公式

可知,相同功率的低速永磁同步电动机与传统4P电动机相比,其起动扭矩是传统电动机的15倍。

效率、功率因数高。传统感应电动机因存在定子电阻和定子电流损耗,稳定运行时风磨耗也占据一定比例,这些因素限制了功率因数的提高;低速永磁同步电动机在运行时不产生无功励磁电流,且风磨耗、杂耗、机械耗等损耗都低于传统感应电动机,这些因素都使永磁同步电动机的效率、功率因素高于传统感应电动机。大量统计表明,就效率而言,同规格永磁电动机比传统感应电动机提高了2~8%。图1是低速永磁同步电动机和传统感应电动机不同负载下的效率、功率因数曲线,从图中可以看出,低速永磁同步电动机在25%~120%额定负载范围内均可以保持较高的功率因数和效率,而传统感应电动机在低负载率或者高负载率时效率、功率因数同额定负载率相比下降很多,在低负载率时下降尤为明显。低速永磁同步电动机这种高效率、高功率因数的优点是传统感应电动机所不具备的。

体积小。对于传统驱动系统,尤其是末级传动需要较低速度时,一般需要异步电动机加减速机或者是异步电动机加2~3级皮带轮减速来实现,这种机构体积庞大且笨重,不仅增加了设计成本,在设备安装方面也占据了大量的空间。而低速永磁同步电动机直驱系统的体积和重量通常不到传统驱动系统的一半,加上可以灵活设计永磁电动机的结构,在设备的安装、调试等方面要求大大降低。

噪声低,运行平稳。应用低速永磁同步电动机的直驱系统取消了减速机、皮带轮等机械减速装置,消除了齿轮啮合或皮带轮传动时的噪声,系统高速运转时由于各个部件中间不平衡带来的噪声、震动大大降低。

可靠性高。机械减速传动装置的取消,消除了中间传动环节的机械故障,同时,由于设备磨损、机械变形、零部件松动等带来的油泄露问题也不复存在,大大提高了传动系统的稳定性,如图1所示。

3 低速永磁同步电动机应用现状

自1831年科学家巴洛发明世界上第一台永磁电动机以来,各国的科技工作者一直在探索永磁同步电动机的发展,但由于永磁材料性能的限制,一直停滞不前。二十世纪三十年代以来,随着铝镍钴和铁氧体材料的先后出现,永磁材料的性能得到了很大的提升,用永磁体做成的电动机也不断的出现在军事装备、工业生产设备、日常家电等领域。但是,由于铝镍钴和铁氧体材料矫顽力偏低、剩磁密度不高等缺陷,永磁电动机性能并没有达到预期效果,加上当时永磁电动机成本较高,在一定程度上限制了永磁电动机的发展。1983年,铷铁硼(NdFeB)永磁材料的出现,极大的提高了永磁材料的各项性能,且加上价格相对便宜,加快了国内外对永磁电动机研究的步伐,研究的重点也逐渐的转移到了工业装备自动化和日常生活领域。随着科学工作者对永磁材料研究的不断深入,永磁材料的电磁性能、耐高温性能也在不断的提升。同时,伴随着电力电子控制技术的发展,与传统电励磁电动机相比,永磁电动机高效节能的优势更加明显,低速永磁同步电动机也朝着大功率化、高转矩化、微型化、智能化等多个方向发展。

目前,由于低速永磁同步电动机低速大扭矩、体积小、输出平稳、高效节能等优点,已经在很多方面作为驱动装置得到应用,如电动车辆、煤炭开采、石油开采、冶金、电梯等领域。在电动车辆方面,日本已将其用于低地板式电动车、独立车轮式电动车上;德国、法国也将永磁同步电动机用于高速列车组和低地板车;在煤炭、石油、冶金、港口起重等工业装备自动化领域,低速永磁同步电动机在保证高性能、高效率、高精度需求的同时,省去了传统传动系统中的机械减速装置,已经成功得到应用;在电梯曳引机上,由于低速永磁同步电动机可以实现无需机械减速装置的直驱运行,日本三菱公司首先采用了永磁同步电动机作为动力源,美国奥迪斯公司研发的GEN2系统也广泛采用了永磁无齿轮曳引机技术。

4 低速永磁同步电动机的发展趋势

目前来看,去除减速机、多级皮带轮等机械减速装置,采用低速永磁直驱系统,更能够充分发挥低速永磁同步电动机的优势。低速永磁同步电动机作为驱动系统动力提供者,正向着专用化、高性能化、轻型化、机电一体化等等方向发展。

4.1 专用化发展

在工业生产领域,有很多设备需要减速机等机械减速装置来减速进而驱动负载,这就需要电动机行业技术人员仔细分析其负载特性,专门设计一种性能优良、运行可靠且价格合理的低速永磁同步电动机,来替代传统传动装置。据统计,有些专用低速永磁同步电动机节电率可以达到20%左右,如油田用到的抽油机电机、泥浆泵电机,陶瓷行业用到了陶瓷球磨机电机等。

4.2 高性能方向发展

S着工业的发展,对电动机的要求不仅仅是简单的提供动力,而是提出了各种各样的性能要求。如航空航天领域要求具备高性能同时,还要具备高可靠性;化纤行业、数控机床、智能加工中心等设备要求电动机具有高调速精度。

4.3 轻型化方向发展

由于安装空间、携带等方面的因素,都对永磁同步电动机提出了重量轻、体积小的要求。如地下煤矿开采、数控机床、医疗器械、船舶推进、便携式机电一体化产品等都有这方面的要求。

4.4 机电一体化方向发展

高性能的永磁电动机是实现机电一体化的基础,电力电子技术、微电子控制技术和永磁同步电动机技术的结合催化出了一批新型且性能优异的机电一体化产品。

5 结语

我国具有丰富的稀土矿产资源,且对以稀土作为原材料的永磁材料和永磁电动机技术研究都已位列世界先进水平,充分发挥这种优势,加快低速永磁同步电动机技术的研究和推广,对加快我国经济建设具有十分重要的意义。低速永磁同步电动机较传统电励磁电动机在性能上有很大优势,但目前在我国工业领域并没有得到广泛应用,其市场还正处在推广阶段。相信随着永磁材料技术的发展、电力电子和驱动装置技术的进步,以及人类社会环境保护意识、能源问题社会意识的提高,在不久的将来,低速永磁同步电动机作为动力的驱动装置会慢慢渗透到工业和日常生活的各个方面,低速永磁同步电动机也将得到广泛应用。

参考文献

[1]杨萌.起重用低速大扭矩永磁同步电动机研究与设计[D].华中科技大学(硕士学位论文),2013.

[2]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.

[3]王秀和.永磁电机[M],北京:中国电力出版社,2007.

[4]闫萍,吴梦艳.现代永磁电机技术的研究[J].防爆电机.2014.

[5]王帅.抽油机直驱用低速大转矩永磁电机及其控制系统研究[D].沈阳工业大学(硕士学位论文),2010

作者简介

永磁传动技术论文篇(4)

一、概述

从70年代后期到80年代初期,随着微处理技术,大功率高性能半导体功率器件技术和电机永磁材料制造工艺的发展,其性能价格比的日益提高,交流伺服技术-交流伺服电机和交流伺服控制系统逐渐成为主导产品。 目前 ,高性能的伺服系统大多采用永磁同步型交流伺服电机,永磁同步电机交流伺服系统在技术上已趋于完全成熟,具备了十分优良的低速性能并可实现弱磁高速控制,能快速、准确定位的控制驱动器组成的全数字位置伺服系统。并且随着永磁材料性能的大幅度提高和价格的降低,特别是钕铁硼永磁的热稳定性和耐腐蚀性的改善和价格的逐步降低以及电力 电子 器件的进一步发展,加上永磁电机 研究 开发经验的逐步成熟,经大力推广和 应用 已有研究成果,其在 工业 生产领域中的领域也越来越广泛,正向大功率化(高转速、高转矩)、高功能化和微型化方面发展。

二、永磁同步电机伺服系统的基本结构

永磁同步电机伺服系统除电机外,系统主要包括驱动单元、位置控制系统、速度控制器、转矩和电流控制器、位置反馈单元、电流反馈单元、通讯接口单元等。

1.永磁式交流同步伺服电机。永磁同步电机永磁式同步电机具有结构简单、体积小、重量轻、损耗小、效率高的特点。和直流电机相比,它没有直流电机的换向器和电刷等需要更多维护给应用带来不便的缺点。相对异步电动机而言则比较简单,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好,但存在最大转矩受永磁体去磁约束,抗震能力差,高转速受限制,功率较小,成本高和起动困难等缺点。与普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。

2.驱动单元。驱动单元采用三相全桥自控整流,三相正弦pwm电压型逆变器变频的ac-dc-ac结构。设有软启动电路和能耗泄放电路可避免上电时出现过大的瞬时电流以及电机制动时产生很高的泵升电压。逆变部分采用集驱动电路,保护电路和功率开关于一体的智能功率模块(ipm)。

3.控制单元。控制单元是整个交流伺服系统的核心, 实现系统位置控制、速度控制、转矩和电流控制器。具有快速的数据处理能力的数字信号处理器(dsp)被广泛应用于交流伺服系统,集成了丰富的用于电机控制的专用集成电路,如a/d转换器、pwm发生器、定时计数器电路、异步通讯电路、can总线收发器以及高速的可编程静态ram和大容量的程序存储器等。

4.位置控制系统。对于不同的信号,位置控制系统所表现出的特性是不同的。典型的输入信号有三种形式:位置输入(位置阶跃输入)、速度输入(斜坡输入)以及加速度输入(抛物线输入)。位置传感器一般采用高分辨率的旋转变压器、光电编码器、磁编码器等元件。旋转变压器输出两相正交波形,能输出转子的绝对位置,但其解码电路复杂,价格昂贵。磁编码器是实现数字反馈控制性价比较高的器件,还可以依靠磁极变化检测位置,目前正处于研究阶段,其分辨率较低。

5.接口通讯单元。接口包括键盘/显示、控制i/o接口、串行通信等。伺服单元内部及对外的i/o接口电路中,有许多数字信号需要隔离。这些数字信号代表的信息不同,更新速度也不同。

三、对当前两种不同的永磁同步电机伺服系统的分析

由于转子磁钢的几何形状不同,当转子旋转时,在定子上产生的反电动势波形就有两种:一种为正弦波;另一种为梯形波。这样就造成同步电动机在原理、模型及控制 方法 上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(pmsm)调速系统;而由梯形波(方波)永磁同步电动机组成的调速系统,在原理和控制方法上与直流电动机系统类似,故称这种系统为无刷直流电动机(bldcm)调速系统。

pmsm不需要励磁电流,在逆变器供电的情况下不需要阻尼绕组,效率和功率因素都比较高,体积也较同容量的异步机小。pmsm通常采用矢量控制和直接转矩两种控制方式。矢量控制借助与坐标变换,将实际的三相电流变换成等效的力矩电流分量和励磁电流分量,以实现电机的解耦控制,控制概念明确;而直接转矩控制技术采用定子磁场定向,借助于离散的两点是调节,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能,其控制简单,转矩响应迅速。pmsm的矢量控制系统能够实现高精度、高动态性能、大范围的速度和位置控制,但是它的传感器则给调速系统带来了诸如成本较高、抗干扰性和可靠性不强、电动机的轴向尺寸较长等缺陷。另外,pmsm转子磁路结构不同,则电动机的运行特性、控制系统等也不同。根据永磁体在转子上的位置的不同,永磁同步电动机主要可分为:表面式和内置式。在表面式永磁同步电动机中,永磁体通常呈瓦片形,并位于转子铁心的外表面上,这种电机的重要特点是直、交轴的主电感相等;而内置式永磁同步电机的永磁体位于转子内部,永磁体外表面与定子铁心内圆之间有铁磁物质制成的极靴,可以保护永磁体。这种永磁电机的重要特点是直、交轴的主电感不相等。

bldcm组成的伺服系统具有转速平滑,响应快,易于控制等特点,但若按照常规的控制 方法 ,其转速直接与电压相关,易受电源波动和负载波动的 影响 。bldcm类似于pmsm转子上也有永磁磁极,定子电枢需要交变电流以产生恒定转矩,其主要区别是前者的反电势为梯形波,而后者的反电势为正弦波。但由于电磁惯性,bldcm的定子电流实际上为梯形波,而无法产生方波电流,并由集中绕组供电,所以bldcm较pmsm脉动力矩大。在高精度伺服驱动中,pmsm有较大竞争力。另一方面,pmsm单位电流产生的力矩较bldcm单位电流产生的力矩小。在驱动同容量的电动机时,pmsm所需逆变器容量大并且需要控制电流为正弦波,开关损耗也大很多。

pmsm的交轴电抗和直轴电抗随电机磁路饱和等因素而变化,从而影响输出力矩的磁阻力矩分量。pmsm对参数的变化较bldcm敏感,但当pmsm工作于电流控制方式时,磁阻转矩很小,其矢量控制系统对参数变化的敏感性与bldcm基本相同。当电机转速较高,无刷直流电机反电势与直流母线电压相同时,反电势限制了定子电流。而永磁同步电机能够采用弱磁控制,因此具有较大的调速范围。

四、永磁同步电机伺服系统的国内外 发展 现状

早期对永磁同步电机的 研究 主要为固定频率供电的永磁同步电机运行特性的研究,特别是稳态特性和直接起动性能的研究。v.b.honsinger和m.a.rahman等人对永磁同步电机的直接起动方面做了大量的研究工作。在上个世纪八十年代国外开始对逆变器供电的永磁同步电机进行了深入的研究,其供电的永磁同步电机与直接起动的永磁同步电机的结构基本相同,但多数情况下无阻尼绕组。并在该时期发表了大量的有关永磁同步电机数学模型、稳态特性、动态特性的研究论文。a.v.gumaste等研究了电压型逆变器供电的永磁同步电动机稳态特性及电流型逆变器供电的永磁同步电动机稳态特性。

随着对永磁同步电机调速系统性能要求的不断提高,g.r.slemon等人针对调速系统快速动态性能和高效率的要求,提出了 现代 永磁同步电机的设计方法。可设计出高效率、高力矩惯量比、高能量密度的永磁同步电机。

近年来微型 计算 机技术的发展,永磁同步电动机矢量控制系统的全数字控制也取得了很大的发展。d.naunin等研制了一种永磁同步电动机矢量控制系统,采用了十六位单片机8097作为控制计算机,实现了高精度、高动态响应的全数字控制。八十年代末,九十年代初b.k.bose等发表了大量关于永磁同步电动机矢量控制系统全数字控制的论文。

九十年代初期,r.b.sepe首次在转速控制器中采用自校正控制。早期自适应控制主要 应用 于直流电机调速系统。刘天华等也将鲁棒控制 理论 应用于永磁同步电机伺服驱动。自适应控制技术能够改善控制对象和运行条件发生变化时控制系统的性能,n.matsui,j.h.lang等人将自适应控制技术应用于永磁同步电机调速系统。仿真和实验结果表明,自适应控制技术能够使调速系统在电机参数发生变化时保持良好的性能。滑模变结构控制 由于其特殊的“切换”控制方式与电机调速系统中逆变器的“开关”模式相似,并且具有良好的鲁棒控制特性,因此,在电机控制领域有广阔的应用前景。

     随着人工智能技术的发展,智能控制已成为现代控制领域中的一个重要分支,电气传动控制系统中运用智能控制技术也已成为 目前 电气传动控制的主要发展方向,并且将带来电气传动技术的新纪元。目前,实现智能控制的有效途径有三条:基于人工智能的专家系统(expertsystem);基于模糊集合理论(fuzzylogic)的模糊控制;基于人工神经 网络 (artificialneuralnetwork)的神经控制。b.k.bose等人从八十年代后期一直致力于人工智能技术在电气传动领域的应用,并取得了可喜的研究成果。

【 参考 文献 】

[1]林正,钟德刚,陈永校,等.同步型永磁交流伺服系统控制技术评述[j].微电机,2005,(38).

[2]高性能交流永磁同步电机伺服系统现状[j].自动化控制系统,2007.

永磁传动技术论文篇(5)

DOI:10.16640/ki.37-1222/t.2016.14.151

随着科学技术和电子计算机技术的发展,永磁直线同步电机因其高速度、高精确以及其控制方便、驱动能源较易获取、环保无公害等优势被广泛应用于数控系统和一些高密数字测量等场合,但永磁直线同步电机在运作过程中也极易受到外部干扰而影响参数,因此本文将从永磁直线同步电机的原理分析,对矢量控制进行研究搭建直线矢量控制系统,对永磁直线同步电机伺服系统的扰动进行分析。

1 直线电机发展现状

永磁直线同步电机在数控系统及生产生活中已广泛运用,直线电机的发展经过了160年的历程,到1971年开始投入到开发阶段,并进入实用商品阶段,国外一些国家对直线电机的研究越来越感兴趣,随着科技的发展,到90年代之后,直线电机作为系统进入工业生产中,后来被运用于不同的领域,而且越来越深受人们的推崇,直线电机目前具有不可估摸的发展前景。

由于直线电机具有装置简单可靠、直线速度可以不受任何限制、机械损耗小、噪声小、应用场合广、散热性能好、使用灵活性较大、节能环保等优点,直线电机在国外应用非常广泛,但在国内发展还需进一步地研究,虽然有一些院校在直线电机方面进行深入研究,但在投入使用方面还要进一步发展,不断创新,提高直线电机及其伺机系统的控制领域的水平,减小与其他国家在这一方面差距。

2 伺机系统

伺机系统是指按照控制信号的要求而动作:控制信号到来之前,被控制对象是静止不动的;接收到控制信号后,被控制对象则按要求动作;控制信号消失之后,被控制对象又能自行停止。正是基于执行机构这一特点,我们称之为伺机系统。伺机系统主要是根据信号要求而进行运作,这在一定程度上对直线电机的速度及效率上有所改进和提高。

3 直线电机的工作原理

在传统意义上,一般应用于工业上的都是旋转电机,但随着科学技术和电子计算机的发展,直线电机将逐渐取代旋转电机,它是旋转电机的一种演变和延伸,从直观图形看,可以想象将一台旋转电机沿着它的内径切开,然后舒展成平面图,将圆周面摊开,这样就形成了直线电机的平面图(如图1),这就减少了旋转电机在旋转过程中因旋转而造成的消耗运动,直线电机提高了运行的速度和效率。

直线电机的分类有很多,永磁直线同步电机主要是运用高能电磁体,具有控制快,效率高、速度快等特点,永磁直线同步单机可分为平面型和圆筒型,工作原理都是将初级制成动子,次级的永磁体作为定子,在初级绕组通入交流电源,则在气隙中产生行波磁场。次级在行波磁场的切割下,产生感应电动势从而产生电流,该电流与气隙中的磁场相互作用就产生电磁推力。如果初级固定,则次级在推力的作用下做直线运动;反之,次级固定,则初级作直线运动。直线电机就这样把电能直接转变为直线运动的机械能而无需任何中间变换装置。

4 直线永磁直线同步电机的伺服系统的控制策略

直线电机具有高速度和高效率等许多优点,但要将直线电机的众多优势发挥出来,还需要对直线电机的伺服系统的控制进行严密而精确的研究,目前主要有传统控制理论运用、现代控制理论运用和智能控制理论三个部分的研究,传统控制理论是运用最成熟、最广泛的策略,但由于直线电机是个强耦合的设备,所以PID控制算法不能达到解耦,实现变量的单独控制,但这种方式比较实惠,成本低,对直线电机有一定的作用。

现代控制理论相对于传统控制理论而言操作更为复杂,这主要是因为直线电机的系统比较复杂,在运用过程中有一些不可预计的的干扰量会加大工作量,如直线电机会受到温度的影响等,这就使现代控制理论不能单独控制直线电机。

智能控制理论主要是采用神经网络控制和模糊控制技术,工作原理就是模仿人脑神经系统进行控制,并将专家的一些有效的经验融合到直线电机控制中,模糊控制技术因其控制精确度高而得到广泛地应用,在应用过程中,模糊控制技术最好跟其他控制系统一起使用才能取得更好的效果。

5 小结

综上所述,要研究永磁直线同步电机伺服系统的控制策略需要在了解直线电机的工作原理的基础上进行研究,本文主要分析了几种伺服控制系统的优缺点以及在运行过程中会出现的干扰因素研究出一种可以应用于新的控制系统运用于永磁直线同步电机伺服系统,随着科学技术的发展和社会大环境的要求,永磁直线同步电机将具有很好的发展前景和趋势,研究直线电机伺服系统的控制策略也具有一定的意义。

参考文献:

[1]方涛.永磁直线同步电机伺服系统的控制策略研究[D].2015(06).

[2]张晴.直线电机直接驱动技术在高速精密加工中的应用[J].机电工程技术,2006.

永磁传动技术论文篇(6)

一、电磁悬浮技术原理

磁悬浮技术是指利用磁力克服重力做功从而使得物体处于悬浮状态的一种技术。点磁悬浮技术的实现形式多种多样,但主要可以分为系统自稳的被动悬浮以及系统不能自稳的主动悬浮等等。磁悬浮技术的系统,主要是由转子、传感器、控制器和执行器4部分组成,这其中的执行器包括电磁铁以及功率放大器两部分。假设在参考位置上,转子受到一个向下的扰动,转子就会偏离其参考位置,这个时候传感器就能检测出转子偏离参考点的位移,之后作为控制器的微处理器便会将检测的位移变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流便可以在执行磁铁中产生磁力,从而其所产生磁力驱动转子返回到原来平衡位置,也就是当初的参考位置。所以,无论转子受到向上或者向下的扰动,转子始终都能处于稳定的平衡状态。

二、当今电磁悬浮技术简介

1、磁悬浮技术类型。当今社会的磁悬浮类型是要分为三种:1、以德国为代表的常导电式磁悬浮2、以日本为代表的超导电动磁悬浮3、以中国为代表的永磁悬浮。前两种磁悬浮技术都需要用一定的电力来产生磁悬浮动力。而第三种,它利用特殊的永磁材料,不需要任何其他动力支持,在当今世界磁悬浮技术属于先进行列。

2、磁悬浮技术在中国的应用以及发展情况。2006年8月17日,我国的“中华01号”永磁悬浮路车模型在大连举行的2006 中国际专利技术与产品交易会上亮相。该模型是大连3000米永磁悬浮试验线路的仿真微缩型产品,专门为了城市之间的区域交通设计。列车在高架的磁轨上运行,列车的设计时速230公里,既可运送货物,又可载客运行,十分适合在大都市圈进行交通运输。根据半岛晨报报道:原来只有在小说、科幻电影中才能听到、见到的“空中悬浮”列车即将出现在大连人的视野之中。并且记者专交会上了解到,3000米永磁悬浮试验线拟定在2006年年底在开发区建设。2006年8月17日上午,在大连世界博览广场所举办的运行中的磁悬浮列车“2006年中国国际专利技术与产品交易会”上,“中华01号”1/10槽轨永磁悬浮微缩路-车格外引人注目。据调查显示,目前世界上有3种类型磁悬浮技术,即德国的常导电磁悬浮、日本的超导电动磁悬浮以及中国的永磁悬浮。永磁悬浮技术是中国大连拥有核心及相关技术发明专利的原始创新技术。据技术人员介绍,日本和德国的磁悬浮列车在不通电的情况下,车体与槽轨是接触在一起的,而利用永磁悬浮技术制造出的磁悬浮列车在任何情况下,车体和轨道之间不论在有电无电的情况下都是永不接触的。中国永磁悬浮技术与国外磁悬浮技术相比有五个方面的优势:1.悬浮力强。 2.经济性好。3.节能性强。4.安全性好。5.平衡性稳定。

三、磁悬浮技术的应用

磁悬浮键盘:通常来说,影响笔记本厚度的配件有很多,比如屏幕、硬盘、机身接口等,但往往很少有厂家会从键盘方面入手,这主要是因为大多数用户都比较看重键盘手感,而一旦键盘牺牲了厚度,就势必会影响手感。不过,2014年台北电脑展上一家名为Darfon的公司展示了一款磁悬浮键盘,不仅超薄,还号称能以电子方式调整回弹力度,如图1。

该键盘借用了磁性的魔力,以取代一般键盘中的标准胶皮,由于超薄磁悬浮键盘没有了传统键盘采用的胶皮,键盘明显更薄。该公司在现场演示了采用这种键盘的纤薄笔记本电脑,键盘是如此接近的笔记本电脑机身,以至于参观者误以为两者是一体成型。同时该公司表示,这款键盘能以电子方式调整回弹力度,所以按键都会根据客户喜好进行不同程度调整,这个发明的按键不需安装现有按键中的弹性件,可有效延长按键的使用寿命。唯一美中不足的就是这种键盘在防水性能和触摸手感方面还有待改进,不过给人一种未来的即视感,还是很有发展前景的。

磁悬浮鼠标:一般情况下,人的手腕在争产活动是不会妨碍正中神经的,但是在操作电脑的时候,由于键盘和鼠标有一定的高度落差,手腕必须背屈到一定角度才能使用,这个时候手腕部就处于一个相对强迫的位置,不能向自然情况下伸展,长时间后自然出现手部麻木、灼痛、手动作不灵活等,实乃现代人尤其是IT行业中最让人无奈的“现代职业病”。不过,俄罗斯设计师Vadim Kibardin设计的磁悬浮鼠标(BAT Mouse)或许将会成为众多鼠标手的福音。与传统鼠标有所变化的是,磁悬浮鼠标通过将下方的鼠标垫变为磁性基座,使鼠标可以在使用过程中悬浮于鼠标垫上,鼠标则是由一个悬浮导航器和磁力底圈组成。设计师Vadim Kibardin表示,这种设计可以预防和治疗腕管综合征,并且消除因使用鼠标而带来的手部麻木,刺痛以及肌肉损伤。如图2所示

磁悬浮列车:磁悬浮列车是当今社会中最先进的交通工具之一,它便是主要运用了电磁悬浮技术来实现稳定、快速以及安全的运输乘客。由于电磁力的缘故,列车与轨道之间可以实现无接触的悬浮,再通过直线电机产生的电磁力牵引列车向前运行。由于列车与铁轨没有接触,除了空气阻力几乎没有其余阻力,所以磁悬浮列车的速度可以是普通火车三倍至四倍之多,极大的减少了中端距离的运输时间。磁悬浮列车的产生得益于德国的工程师赫尔曼・肯佩尔(Hermann Kemper)在1992年提出的电磁悬浮原理,并且在当时申请了专利继而申请了专利。1970年后,随着各个国家不断发展工业化,经济实力逐步增强,交通运输效率的提升也成为了当务之急,为了适应经济的发展,各个发达国家如德国、美国、日本等国家都开展了对磁悬浮运输系统的研究。磁悬浮列车的发展与壮大讲带动一个国家的变频、电子设备制造以及对外技术合作等一大批产业的发展,其应用也是十分广阔的。

四、心得体会

本片调研论文完成的初衷也是为了了解我国电磁悬浮技术的发展现状,同时希望自己通过本子调研论文的撰写可以对未来类似于电磁悬浮技术的发展有所展望。磁悬浮技术作为当今社会的新兴技术,也是我国的重点发展对象,作为这样一门技术在与电信、通信方面也是密不可分的。电磁不分家,初中物理就学过奥斯特通过实验表明通电导线周围和永磁体周围一样都存在磁场,法拉第的电磁感应定律也对应了电磁之间的相互关系。从小就学过磁铁磁极之间存在着一种看不见的磁力,同极相斥,异极相吸也是人人都知道的常识。但是通过对电磁悬浮技术调研后发现:即便是人人都知道,十分简单的物理知识,只要勇于创新并且加上自己的思考,结合社会实际情况,从最开始理论上的可能,通过不断得实验尝试,最终便可以完成让当今世人叹为观止的电磁悬浮新兴产品。虽然自己现在只是一名高中生,但是通过此次调研论文的撰写,感觉自己距离社会新兴技术更近了一步,对新兴技术的渴望与好奇给自己带来了强烈的使命感。希望以后在大学中可以更加努力的学习专业知识,可以为中国新兴技术的发展贡献出自己的绵薄之力。在此还是要感谢在我论文撰写过程中对我提供帮助的朋友!

结束语:磁悬浮技术作为一种新兴技术还在不断的探索当中,每一次科研的进步都会为人类生活带来便利,在磁悬浮技术的探索道路上洒下自己的汗水,为中国乃至世界贡献出自己的力量!

参 考 文 献

永磁传动技术论文篇(7)

 

一、永磁同步电机应用于电梯驱动技术

永磁同步电机无齿轮传动系统采用正弦波永磁同步电动机(简称永磁同步电动机),由于其减少了变速箱以及齿轮机械结构,减小了体积。论文参考网。同时永磁同步电机较之于以往交流异步电动机,应用于电梯拖动系统时有以下几个特点:

1、永磁同步电机机械噪音小,转矩波动小,转速平稳,动态响应快速准确。同步电动机比异步电动机对电压及转矩的扰动有着更强的承受能力,能做出比较快的反应。异步电动机当负载转矩发生变化时,电机的转差率也发生变化,转速也就随之变化,这样电机的转动部分的惯量就会阻碍电机做出快速的反应;而同步电机当负载转矩发生变化时,只要电机的功角做出相应的变化,而转速维持在原来的转速,这样电机转动部分的惯量就不会影响电机的快速反应。

2、相对于传统有齿轮传动系统,以永磁同步电机为主要技术的无齿轮曳引技术实现了无机房化,降低了建筑面积,整个电梯系统的成本降低,维护方便,减少了机械传动系统,噪音降低。

3、体积小,重量轻,随着高性能永磁材料的应用,转子无需励磁,相对于异步电机减少了变速用的变速箱,所以永磁同步电机功率密度不断增加,比起同容量的异步电机,它的体积,重量都要减小许多。

4、损耗小,效率高,永磁同步电机相对于异步电机无需励磁电流,无功电流分量,显著的提高了功率因数;由于高性能永磁材料的应用,提高了磁负荷,在相同功率的情况下,在设计过程中可以相应的减少电负荷,这样随之减小定子电流和定子铜耗。转子采用表面磁钢形式,在稳定运行时无转子铜损提高了效率。

5、性能价格比高。论文参考网。随着电力电子技术的成熟,电子器件的价格的降低,人们越来越多得用变频电源来驱动永磁同步电机,这就使整个驱动系统的成本不断降低。

二、国内外电梯驱动用永磁同步电动机的发展现状

国际上对电梯驱动用永磁同步电动机的研究己经进行了多年。从上世纪90年代起,电梯行业内的有关企业就开始了对电梯驱动用永磁同步电机的探索。日本三菱公司首先在高速电梯曳引机上使用永磁电机,提高了电梯的运行性能。日本在永磁电机应用于电梯的研究也己经进行了多年,并且取得了很大的成绩,其中以日本安川为代表的一些企业己经生产出了此类产品并获得了应用。他们在控制方式、转子位置检测、驱动变频器及电机本体设计等方面己经有了很多产品且申请了相关的专利。其产品经过实际测试,得到了国内同行的高度评价。论文参考网。东芝公司外旋转无齿轮永磁同步电动机曳引机的曳引轮与电机成为一体,实现了小型化、轻量化。

三、永磁同步电动机的分类

永磁同步电机按主磁场方向的不同,可分为径向磁场式和轴向磁场式;按电枢绕组位置的不同,可分为内转子式(常规式)和外转子式;按转子上有无起动绕组,分为无起动绕组的电动机(用于变频器供电的场合,利用频率的逐步升高而起动,并随着频率的改变而调节转速,常称为调速永磁同步电动机)和有起动绕组的电动机(可在某一频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);按供电电流波形的不同,可分为矩形波永磁同步电动机(简称无邪}J直流电动机)和正弦波永磁同步电动机(简称永磁同步电动机)。永磁同步电机无齿轮传动系统采用的正是正弦波永磁同步电动机(简称永磁同步电动机)。

四、变频调速永磁同步电动机的设计要求

由于采用变频器对电机实行变频变压调速时,经变频器输入电机的电源是一个含有大量谐波分量的电压或电流发生源,它对电机的性能产生很大影响,主要表现在:电机振动、电磁噪声、损耗增大、起动转矩下降,温升升高等现象,而电梯的运行恰在这几方面要求比较严格,为此必须有针对性地采取措施。

(一)电动机低速平稳性的改善

电动机服务于电梯传动系统,因此对于运行的平稳性、动态响应性能和运行中的低噪声提出了较高的要求,尤其是对电机低速运行的平稳性要求更为严格,因为低速平稳性是保证电梯电机性能的重要指标。影响电动机低速平稳性的主要原因是电动机低速运行时的脉动转矩,该脉动转矩通常分为两种:一是由感应电动势或电流波形畸变而引起的纹波转矩,二是由齿槽或铁心磁阻变化而引起的齿谐波转矩。针对这两种情况,减小电动机低速脉动转矩的措施主要有以下几点:

1、使电机空载磁场气隙磁通密度的空间分布尽量接近于正弦形,以减少由谐波磁场引起的谐波转矩以及由谐波转矩引起的电磁振动。

2、合理选择定子槽数,使在该槽数下采用绕组短距、分布的方法来有效地削弱高次谐波电动势。

3、当转子有槽时,应该选择与定子槽数相配合的转子槽数。

4、增大电机的气隙长度,以减小气隙磁场齿谐波及相应的齿谐波转矩。

5、采用定子斜槽或转子斜极削弱齿谐波电动势,从而减少相应的齿谐波转矩。

6、减小定子槽的开口宽度或采用磁性槽楔,以降低由定子槽开口引起的气隙磁导的变化,从而减小了气隙磁场齿谐波。

7、采用阻尼绕组,以减小电枢反应磁链的脉动,可以有效地减少纹波转矩。

8、增大交轴同步电抗,使凸极永磁同步电动机的交轴同步电抗与直轴同步电抗的差距增大,从而增加电机的磁阻转矩,以增强电机低速运行时的输出能力。

(二)电动机低速平稳定位转矩的抑制

高精度的调速传动系统通常要求系统具有较高的定位精度。影响永磁同步电动机停转时定位精度的主要原因是电机的定位转矩,即电机不通电时所呈现出的磁阻转矩,该转矩使电机转子定位于某一位置。定位转矩主要是由转子中的永磁体与定子开槽的相互影响而产生的。

(三)提高弱磁扩速的能力

永磁同步电动机的励磁磁场由永磁体产生,不像电励磁同步电动机那样可以调节,这样在控制手段上就只能通过增大电机的直轴去磁电流以达到弱磁扩速的目的。

针对这一情况,对永磁同步电动机本身提出的要求是:

1、增大直轴同步电抗,以增强电机直轴电流的去磁能力。

2、选用抗去磁能力强的永磁体,并在电机结构上对永磁体加强保护,以避免永磁体发生不可逆性去磁。

3、充分利用电机的磁阻转矩,使永磁磁链设计得较低,从而增强电机的弱磁扩速能力。

4、保证电机转子具有适合高速运行的足够的机械强度。

五、结论

永磁同步电动机和异步电动机不同,永磁体提供的磁通量和磁动势随着磁路的饱和程度、材料尺寸、电机的运行状态变化而变化,而且由于转子磁路结构形式多种多样,不同的转子磁路结构,其空载漏磁系数各不相同,对电机的性能有着重要影响。据有关人士预计,在2010年新增的电梯90%以上是由低速、大转矩的永磁同步电动机直接驱动的无齿轮曳引电梯,永磁同步电动机在无齿轮曳引电梯中的应用将有很好的发展前景。

参考文献:

[1]廖富全.基于DSP的永磁同步电机交流伺服控制系统[J]兵工自动化,2005,(03).

永磁传动技术论文篇(8)

引言

发展和提高永磁同步电机的制造水平, 开发相应的高性能控制器产品, 提高资源的利用率和附加产值应该是我国未来的一个发展方向。

一、闭环调节器的控制

永磁同步电机的数学模型与异步电机相比,简单了不少,但仍具有非线性,强耦合,多变量等特点,寻求比普通PID 调节器更优良的控制策略是提高交流伺服系统性能的有效途径之一。

(1) 基于现代控制理论的控制策略

基于现代控制理论的电机控制方法有许多,典型的如滑模变结构控制,自适应控制等。其中,自适应控制能够抑制系统运行时参数变化的影响,获得有用的模型信息,使控制器的控制参数能够得到自动调整。但这些方法均存在两个问题,一是模型复杂,运算繁琐; 二是校正和辨识的时间较长,实时性不佳。

此外,还有许多现代控制理论被用到转速控制器设计中,包括自适应逆推、反馈线性化、鲁棒控制等。

( 2) 基于智能思想的控制策略

典型的智能控制方法如模糊控制是模糊数学与控制理论相结合的产物。现实中,有些被控对象是难以建立精确的数学模型的,这时,使用模糊控制的方法是一种非常不错的选择。当前,在永磁同步电机的控制方面的,模糊控制的应用与研究已取得了许多成果,在电机的控制领域,仍有不少与模糊控制相结合的控制方法出现。

神经网络控制也是一种基于智能思想的控制策略,其并行处理,分布存储,自组织,自学习及神经计算能力,使其成为一种很有前途的控制方法,目前已有不少文献对此进行研究。

二、电机自身的控制

交流伺服系统中对电机自身的控制方法主要有: 压频控制、磁场定向控制,解耦控制与直接转矩控制。

( 1) 压频控制

压频控制是一种开环控制方法,不需要电机位置、速度等反馈信息,其控制方法简单,无复杂的控制算法,方便实现。缺点是无法获取电机的电磁转矩和工作状态。因此只适用于一般的水泵和风机等场合。

( 2) 矢量控制

矢量控制是德国西门子公司的F.Blashcke 在七十年代提出的。该方法的主要思想是将三相磁链矢量、电压矢量、电流矢量,通过坐标变换为两相矢量。目前,矢量控制的方法在理论上与应用上都十分成熟,具体包括: 最大转矩与电流比控制、id控制、弱磁控制、最大输出功率控制、cosφ = 1 控制、恒磁链控制等。

在所有的控制方法中,使id = 0 的控制方式最为简单,它能够将三相电流转变为两相dq 电流,然后对dq 电流分别进行控制,使得只存在q 轴电流,进而实现永磁同步电机的稳态解耦。这里的q 轴电流就相当于直流电机的控制回路的转子电枢电流。这样,对永磁同步电机的控制就相当于对直流电机的控制。这种控制方法结构相对简单,计算量小。缺点是当电机负载增加时,电机的功率因数会降低,而定子电压则会升高,所以要让电机正常运行,其逆变器必需要有足够的容量。

(3) 解耦控制

对永磁同步电机的电压方程进行相应的拉氏变换,用结构图表示其传递函数见图1所示。从图中可以明显的看出,永磁同步电机的dq 轴分量相互耦合,不能实现Ud和Uq对id和ωM分别的控制,因此,要实现系统高性能控制的关键在于解耦控制。

矢量控制可以实现永磁同步电机的稳态解耦,前提是定子磁链必须到达稳定状态,但动态过程仍相互耦合,其动态响应不能令人满意。

对永磁同步电机的控制而言,已有许多解耦控制方法出现: 如将永磁同步电机解耦成二阶线性转速子系统和一阶线性磁链子系统,进而实现转速和磁链动态解耦控制; 针对dq 坐标系下提出的反馈解耦控制方案,在负载转矩波动下,对指令速度有良好的转速跟踪性能; 还可以对永磁同步电机数学模型进行可逆性求解,得出逆系统进而构造相应神经网络,实现永磁同步电机转速和定子磁链的动态解耦。

三、信号反馈技术

通常要获得更高性能的控制效果,交流伺服系统需要运行于闭环控制状态下,因而需要获得电机转子的位置、速度信息等,一般的方法是在电机转轴上安装光电编码器或测速电机等。但装上传感器,会出现许多问题: 伺服产品成本增加; 由于同心度问题,转子位置出现偏差; 连接线缆增加,使得系统容易受到干扰,系统可靠性降低; 电机的体积增大; 易受到振动、湿度和温度等条件的影响。

为了克服这些缺陷,无位置/速度传感器伺服系统的研究成了当前的热点,根据容易测出的定子电压、定子电流等物理量,通过相应的算法,估算出当前转子的位置与转速信息。无速度传感器控制策略大体上可分为3 类:

一类是根据永磁同步电机的数据模型来估算的方法,如通过获得定子电流和电压后进行直接计算的方法; 通过比较电压计算值与实测值得到转子位置的电感变化估算方法; 反电动势积分法; 扩展反电动势法等。

另一类是基于各种观测器模型的闭环算法,如模型参考自适应、降阶状态观测器、扩展卡尔曼滤波器、全阶状态观测器、滑模观测器等。这类方法是通过永磁同步电机的电压方程推算出感应的反动势,再从中提取出位置信号,适用于高速运行状态下的位置与速度估算,当电机转速较低时,反电动势信噪比小,不能准确估算转子和位置。

还有一类是以基于电机理想特性的算法,如高频信号注入法和低频信号注入法。高频信号注入法不依赖于任何电机的参数和运行的情况,因而可以工作于低速运行状态,但电机必需是凸极性的。而低频信号注入法要求电机不能具有凸极效应,而且电机转子不能有较大的转动惯量,否则检测精度会变差。

四、结束语

本文给出了永磁同步电机运行的两种基本模式,并将其控制策略归纳为三个方面。针对这三个方面,分别进行了综述性的介绍。为了满足各种场合应用的需求,需要将各种控制方法相互渗透,以提高当前伺服系统的整体性能。永磁同步电机控制系统作为一个多学科交叉的研究领域,其研究方向还可以从其它方面更进一步: ① 优化的直接转矩控制技术; ② 定子电流死区补偿技术; ③ 无位置/速度传感器控制技术; ④ 多种方法相结合的闭环调节器控制策略的研究; ⑤ 电机转子初始位置检测等。

参考文献:

[1]张锐,白连平.永磁交流伺服电机控制系统的研究[J].电气技术.2011(03)

[2]谢玉春,杨贵杰,崔乃政.高性能交流伺服电机系统控制策略综述[J].伺服控制.2011(01)

永磁传动技术论文篇(9)

电力系统的发电环节设计发电机组的多种设备,电力电子技术的应用以改善这些设备的运行特性为主要目的。

大型发电机的静止励磁控制。静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点,被世界各大电力系统广泛采用。由于省去了励磁机这个中间环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有力条件。

水力、风力发电机的变速恒频励磁。水力发电的有效功率取决于水头压力和流量,当水头的变化幅度较大时(尤其是抽水蓄能机组),机组的最佳转速亦随之发生变化。风力发电的有效功率与风速的三次方成正比,风车捕捉最大的风能的转速随风速而变化。为了获得最大的有效功率,可使机组变速运行,通过调整转子励磁电流的频

率,使其与转子转速叠加后保持定子频率即输出频率恒定。此项应用的技术核心是变频电源。

二、永磁无刷电动机及其“直流变频”调速

永磁无刷电动机采用永磁代替电流激磁,可使电机效率提高4-8个百分点。当它用位置传感器或靠软件计算代替位置传感器信号按电子换向器控制工作、电枢电流为方波运行的,即为永磁无刷直流电机模式,又称“自控式同步电机”。当它靠外加变频器控制、电枢电流为正弦波运行的,则为永磁同步电动机模式,又称为“他控式同步电机”。这种电机兼有交-直流电动机二者的优点,调速范围宽,电机结构简单,低速转矩比较大,对电动机械来讲有可能做到在很宽速度范围内直接驱动,从而减少噪声(免去变速箱或皮带传动),还有电机惯量小等长处。

三、在高压直流输电(HVDC)方面的应用

直流输电在技术方面有许多优点:(1)不存在系统稳定问题,可实现电网的非同期互联;(2)可以限制短路电流;(3)没有电容充电电流;(4)线路有功损耗小;(5)输送相同功率时,线路造价低;(6)调节速度快,运行可靠;(7)适宜于海下输电。随着大功率电子器件(如:可关断的晶闸管、MOS控制的晶闸管、绝缘门极双极性三极管等)开断能力不断提高,新的大功率电力电子器件的出现和投入应用,高压直流输电设备的性能必将进一步得以改善,设备结构得以简化,从而减少换流站的占地面积、降低工程造价。

四、在电力谐波治理方面的应用

有源滤波是治理日益严重的电力系统谐波的最理想方法之一。有源滤波器的概念最早是在20世纪70年代初提出来的,即利用可控的功率半导体器件向电网注入与原有谐波电流幅值相等、相位相反的电流,使电源的总谐波电流为零,从而实现实时补偿谐波电流的目的。随着中国电能质量治理工作的深入开展,使用以瞬时无功功率理论为理论基础的有源滤波器进行谐波治理将会有巨大的市场潜力。

五、电力电子技术在电动车驱动系统中的应用

下图给出了电动车驱动系统的大致框图,其中主要由电机、功率变换和控制技术三部分组成。

电动车用电机及其控制图如下:

为了满足电动车驱动系统性能和现有电机控制技术的需要,目前国外电动车实际应用的电机主要有交流永磁同步电机和开关磁阻电机。

以交流同步电机和无刷直流电机为代表的交流永磁电动机具有低重量、低损耗、高效率、高能量密度、高可靠性和免维修等优点,使得交流永磁电动机在电动车中得到了广泛应用。然而传统的交流电机控制方法如变压变频(VVVF)并不能满足电动车进一步改进性能的要求。一个主要原因就是直交轴互相作用的非线性动态模型。随着微机时代的出现,磁场定向矢量控制(FOC)技术目前已发展成熟,广泛应用于交流电机。

永磁传动技术论文篇(10)

1.引言

油田抽油杆在抽油工作过程中由于受结构、制造、安装等条件限制,油井出油口与抽油杆圆周的局部磨损非常严重,大大缩短了抽油杆的使用寿命。目前国内外油田上普遍应用的抽油机防偏磨装置驱动技术有撞击式、拉线式和压差式油杆旋转器。

撞击式抽油杆旋转器是利用抽油杆直线往复运动时,扇形摆杆所带动的碰撞器碰撞井口产生作用力使抽油杆旋转;组合拉线式旋转器是利用一根拉线连接在抽油机上,通过抽油杆直线往复运动时扇形摆杆带动拉线式旋转器使抽油杆转动;压差式抽油杆旋转器是利用抽油杆直线往复运动时,把油管与套内的压力差转换为机械能迫使抽油杆旋转。

以上三种旋转器存在的缺点是:撞击式抽油杆旋转器在与井口碰撞时产生很大的噪音,且安装在悬绳器以上受两边钢丝绳长度影响大部分油井不能安装且容易被人破坏;拉线式旋转器采用棘轮机构易损坏寿命短故障率高;压差式抽油杆旋转器采用碟簧式旋转,当地层压力不足时,则不起任何作用。

“抽油机防偏磨装置磁驱动技术”是一种:非接触、不磨损、无动力驱动技术,符合当前“节能减排国策”的技术发展趋势,同时也提高了抽油杆驱动的安全性和可靠性。

2.磁铁的磁性及磁力驱动技术

2.1磁铁是指可以产生磁场的物体或材质,传统上可分作“永久性磁铁”与“非永久性磁铁”。磁铁有磁性就是因为它实际上是有很微小的晶格构成的,这些微小的晶格有一个特点,它们有绕着其某一个轴心的环行电流,而且环行电流的轴心都几乎相同。一个环行电流就相当于一个微小的磁体,大量的南北极相同的小磁体就构成了磁性较大的磁铁。

2.2磁力驱动技术

永磁体是一种高能量密度的储能材料,可以在一定空间内产生恒定磁场。天然永磁铁不单单是铁氧体(四氧化三铁),还有铁钴镍合金、铁的稀土合金等各种永磁材料,如铝镍钴、钐钴、钕铁硼,这些也很常见,磁性非常强,这些物质能够被磁场恒磁场磁化,而且磁化后本身具有磁性且不消失。

磁力驱动技术可以完全利用永磁铁的磁力作用来实现力或转矩无接触传递的新技术,磁力驱动是以现代磁学的基本理论,应用永磁材料或电磁铁所产生的磁力作用,实现力或转矩无接触传递的一种技术。在防止油田抽油杆偏磨的技术难题上就是利用两块永磁铁的斥力作用来实现力无接触传递的新技术。

3.抽油机防偏磨装置磁驱动技术

3.1抽油机防偏磨装置磁驱动的工作原理

抽油杆防偏磨装置主要是在驴头固定一块圆形铁氧体磁铁的永磁铁及悬绳器外壁上固定一个圆形永磁铁托盘块,托盘可调,托盘内固定一块圆形铁氧体磁铁的永磁铁,并使其中一块永磁铁N极面对另一块的S极。并在悬梁器改造在内部增加了一套蜗轮蜗杆机构并使用蜗轮和抽油杆紧配合。

当抽油机驴头提升至最高点时,两块圆形永磁铁靠近,产生斥力,经试验两圆形永磁铁直径为80mm厚15mm,相对端面工作距:18mm时产生可推动蜗杆转的力,所用蜗轮蜗杆的模数为2.5,蜗轮齿数为48,蜗杆的头数为1。该力通过80cm长的蜗杆轴推杆转变为大约34N-m的力矩,可驱动蜗杆转动10~20°,从而带动蜗轮和抽油杆转动一个小的角度。

抽油机防偏磨装置磁驱动的应用使抽油杆在直线往复运动的同时,附加了一个缓慢的转动,从而把抽油杆的局部磨损变为抽油杆圆周的均匀磨损,使抽油杆使用寿命得到延长。

图1 抽油机防偏磨磁驱动装置总示意图

3.2抽油机防偏磨装置磁驱动装置结构及参数

抽油机防偏磨装置驱动技术利用磁驱动的工作原理解决了抽油机户外作业不便用电驱动的难题,利用磁铁同性之间的斥力使蜗轮蜗杆机构转动,从而蜗轮带着抽油杆旋转。

3.2.1磁驱动技术结构

“抽油机防偏磨装置磁驱动技术” 是在蜗杆轴的轴头装配了一个带有超越离合器的推杆。在推杆的另一端和抽油机扇形摆杆上分别设计了一个在x、y、z方向位置可调的圆形永磁铁托盘。当抽油机扇形摆杆摆动到上死点时,推杆与扇形摆杆上的圆形磁铁的圆心恰好在同一条直线上,磁铁同性之间的斥力使蜗杆轴的推杆按顺时针转动,同时蜗杆也随之转动,从而蜗轮带着抽油杆转动。当抽油机扇形摆杆反方向摆动时,蜗杆轴推杆的超越离合器及扭簧使的推杆复位。周而复始的上述运动就使抽油杆在直线往复运动的同时,附加了一个缓慢的转动。

3.2.2抽油机防偏磨装置驱动改进技术主要参数

蜗杆轴推杆转动角度: 10°~20°

蜗杆轴推杆转动力矩: 25NM~ 34NM

圆形永磁铁托盘可调行程X ×Y ×Z :80×80×150 mm

两圆形磁铁相对端面工作距: 10~ 18mm

抽油杆直线往复运动周期:15~20 s

4.抽油机防偏磨装置磁驱动技术试验

4.1抽油机防偏磨装置驱动力矩

现场实测力矩

1号油井:蜗杆轴推杆转动力矩: 25NM

2号油井:蜗杆轴推杆转动力矩: 34NM

3号油井:蜗杆轴推杆转动力矩: 40NM

4.2抽油机防偏磨装置驱动转角

现场实测转动角度

1号油井:蜗杆轴推杆转动角度:10°

2号油井:蜗杆轴推杆转动角度:10°

3号油井:蜗杆轴推杆转动角度:20°

4.3试验地点及使用仪器、量具:

试验地点:山东凯文科技职业学院工程实训中心、胜利油田现场2号油井

试验仪器及量具:测力仪、万能角度尺、光电计时仪、钢板尺、游标卡尺

4.4抽油机防偏磨装置磁驱动技术运动计算试验内容及结果:

蜗杆轴推杆转动角度: 10°

蜗杆轴推杆转动力矩: 34NM

抽油杆直线往复运动周期: 15s

抽油杆转动周期: 7.2h/r

抽油杆转动周期7.2h/r=(360°÷10°)×15s×48÷3600

通过以上试验结果,充分展示了抽油机防偏磨装置磁驱动技术的成功研制。抽油机防偏磨装置磁驱动技术已成功推广应用在现实的油田当中。

5.结束语

抽油机防偏磨装置磁驱动技术课题组历时三个月设计完成了抽油机防偏磨装置驱动改进技术。该项目的试验成功受到了省科协有关领导、当地党政领导及设备生产、使用企业的一致好评并已在推广使用。现已成功申请专利,专利号为ZL 2011 2 0461403.8。

上一篇: 讨论法论文 下一篇: 会计实践教学论文
相关精选
相关期刊