数控车床论文汇总十篇

时间:2023-03-20 16:06:57

数控车床论文

数控车床论文篇(1)

一、问题的提出

数控车削加工主要包括工艺分析、程序编制、装刀、装工件、对刀、粗加工、半精加工、精加工。而数控车削的工艺分析是数控车削加工顺利完成的保障。

数控车削加工工艺是采用数控车床加工零件时所运用的方法和技术手段的总和。其主要内容包括以下几个方面:

(一)选择并确定零件的数控车削加工内容;(二)对零件图纸进行数控车削加工工艺分析;(三)工具、夹具的选择和调整设计;(四)切削用量选择;(五)工序、工步的设计;(六)加工轨迹的计算和优化;(七)编制数控加工工艺技术文件。

笔者观察了很多数控车的技术工人,阅读了不少关于数控车削加工工艺的文章,发现大部分的使用者采用选择并确定零件的数控车削加工内容、零件图分析、夹具和刀具的选择、切削用量选择、划分工序及拟定加工顺序、加工轨迹的计算和优化、编制数控加工工艺技术文件的顺序来进行工艺分析。

但是笔者分析了上述的顺序之后,发现有点不妥。因为整个零件的工序、工步的设计是工艺分析这一环节中最重要的一部分内容。工序、工步的设计直接关系到能否加工出符合零件形位公差要求的零件。工序、工步的设计不合理将直接导致零件的形位公差达不到要求。换言之就是工序、工步的设计不合理直接导致产生次品。

二、分析问题

目前,数控车床的使用者的操作水平非常高,并且能够独立解决很多操作上的难题,但是他们的理论水平不是很高,这是造成工艺分析顺序不合理的主要原因。

造成工艺分析顺序不合理的另一个原因是企业的工量具设备不足。

三、解决问题

其实分析了工艺分析顺序不合理的现象和原因之后,解决问题就非常容易了。需要做的工作只要将对零件的分析顺序稍做调整就可以。

笔者认为合理的工艺分析步骤应该是:

(一)选择并确定零件的数控车削加工内容;(二)对零件图纸进行数控车削加工工艺分析;(三)工序、工步的设计;(四)工具、夹具的选择和调整设计;(五)切削用量选择;

(六)加工轨迹的计算和优化;(七)编制数控加工工艺技术文件。

本文主要对二、三、四、五三个步骤进行详细的阐述。

(一)零件图分析

零件图分析是制定数控车削工艺的首要任务。主要进行尺寸标注方法分析、轮廓几何要素分析以及精度和技术要求分析。此外还应分析零件结构和加工要求的合理性,选择工艺基准。

1.选择基准

零件图上的尺寸标注方法应适应数控车床的加工特点,以同一基准标注尺寸或直接给出坐标尺寸。这种标注方法既便于编程,又有利于设计基准、工艺基准、测量基准和编程原点的统一。

2.节点坐标计算

在手工编程时,要计算每个节点坐标。在自动编程时要对零件轮廓的所有几何元素进行定义。

3.精度和技术要求分析

对被加工零件的精度和技术进行分析,是零件工艺性分析的重要内容,只有在分析零件尺寸精度和表面粗糙度的基础上,才能正确合理地选择加工方法、装夹方式、刀具及切削用量等。

(二)工序、工步的设计

1.工序划分的原则

在数控车床上加工零件,常用的工序的划分原则有两种。

(1)保持精度原则。工序一般要求尽可能地集中,粗、精加工通常会在一次装夹中全部完成。为减少热变形和切削力变形对工件的形状、位置精度、尺寸精度和表面粗糙度的影响,则应将粗、精加工分开进行。

(2)提高生产效率原则。为减少换刀次数,节省换刀时间,提高生产效率,应将需要用同一把刀加工的加工部位都完成后,再换另一把刀来加工其他部位,同时应尽量减少空行程。

2.确定加工顺序

制定加工顺序一般遵循下列原则:

(1)先粗后精。按照粗车半精车精车的顺序进行,逐步提高加工精度。

(2)先近后远。离对刀点近的部位先加工,离对刀点远的部位后加工,以便缩短刀具移动距离,减少空行程时间。此外,先近后远车削还有利于保持坯件或半成品的刚性,改善其切削条件。

(3)内外交叉。对既有内表面又有外表面需加工的零件,应先进行内外表面的粗加工,后进行内外表面的精加工。

(4)基面先行。用作精基准的表面应优先加工出来,定位基准的表面越精确,装夹误差越小。

(三)夹具和刀具的选择

1.工件的装夹与定位

数控车削加工中尽可能做到一次装夹后能加工出全部或大部分代加工表面,尽量减少装夹次数,以提高加工效率、保证加工精度。对于轴类零件,通常以零件自身的外圆柱面作定位基准;对于套类零件,则以内孔为定位基准。数控车床夹具除了使用通用的三爪自动定心卡盘、四爪卡盘、液压、电动及气动夹具外,还有多种通用性较好的专用夹具。实际操作时应合理选择。

2.刀具选择

刀具的使用寿命除与刀具材料相关外,还与刀具的直径有很大的关系。刀具直径越大,能承受的切削用量也越大。所以在零件形状允许的情况下,采用尽可能大的刀具直径是延长刀具寿命,提高生产率的有效措施。数控车削常用的刀具一般分为3类。即尖形车刀、圆弧形车刀和成型车刀。

(四)切削用量选择

数控车削加工中的切削用量包括背吃刀量ap、主轴转速S(或切削速度υ)及进给速度F(或进给量f)。

切削用量的选择原则,合理选用切削用量对提高数控车床的加工质量至关重要。确定数控车床的切削用量时一定要根据机床说明书中规定的要求,以及刀具的耐用度去选择,也可结合实际经验采用类比法来确定。一般的选择原则是:粗车时,首先考虑在机床刚度允许的情况下选择尽可能大的背吃刀量ap;其次选择较大的进给量f;最后再根据刀具允许的寿命确定一个合适的切削速度υ。增大背吃刀量可减少走刀次数,提高加工效率,增大进给量有利于断屑。精车时,应着重考虑如何保证加工质量,并在此基础上尽量提高加工效率,因此宜选用较小的背吃刀量和进给量,尽可能地提高加工速度。主轴转速S(r/min)可根据切削速度υ(mm/min)由公式S=υ1000/πD(D为工件或刀/具直径mm)计算得出,也可以查表或根据实践经验确定。

三、结语

数控机床作为一种高效率的设备,欲充分发挥其高性能、高精度和高自动化的特点,除了必须掌握机床的性能、特点及操作方法外,还应在编程前进行详细的工艺分析和确定合理的加工工艺,以得到最优的加工方案。

数控车床论文篇(2)

本文介绍了采用数控车床的主轴驱动中变频控制的系统结构与运行模式,并阐述了无速度传感器的矢量变频器的基本应用。

2数控车床主轴变频的系统结构与运行模式

2.1主轴变频控制的基本原理

由异步电机理论可知,主轴电机的转速公式为:

n=(60f/p)×(1-s)

其中P—电动机的极对数,s—转差率,f—供电电源的频率,n—电动机的转速。从上式可看出,电机转速与频率近似成正比,改变频率即可以平滑地调节电机转速,而对于变频器而言,其频率的调节范围是很宽的,可在0~400Hz(甚至更高频率)之间任意调节,因此主轴电机转速即可以在较宽的范围内调节。

当然,转速提高后,还应考虑到对其轴承及绕组的影响,防止电机过分磨损及过热,一般可以通过设定最高频率来进行限定。

图1所示为变频器在数控车床的应用,其中变频器与数控装置的联系通常包括:(1)数控装置到变频器的正反转信号;(2)数控装置到变频器的速度或频率信号;(3)变频器到数控装置的故障等状态信号。因此所有关于对变频器的操作和反馈均可在数控面板进行编程和显示。

2.2主轴变频控制的系统构成

不使用变频器进行变速传动的数控车床一般用时间控制器确认电机转速到达指令速度开始进刀,而使用变频器后,机床可按指令信号进刀,这样一来就提高了效率。如果被加工件如图2(1)所示所示形状,则由图2(1)中看出,对应于工件的AB段,主轴速度维持在1000rpm,对应于BC段,电机拖动主轴成恒线速度移动,但转速却是联系变化的,从而实现高精度切削。

在本系统中,速度信号的传递是通过数控装置到变频器的模拟给定通道(电压或电流),通过变频器内部关于输入信号与设定频率的输入输出特性曲线的设置,数控装置就可以方便而自由地控制主轴的速度。该特性曲线必须涵盖电压/电流信号、正/反作用、单/双极性的不同配置,以满足数控车床快速正反转、自由调速、变速切削的要求。

3无速度传感器的矢量控制变频器

3.1主轴变频器的基本选型

目前较为简单的一类变频器是V/F控制(简称标量控制),它就是一种电压发生模式装置,对调频过程中的电压进行给定变化模式调节,常见的有线性V/F控制(用于恒转矩)和平方V/F控制(用于风机水泵变转矩)。

标量控制的弱点在于低频转矩不够(需要转矩提升)、速度稳定性不好(调速范围1:10),因此在车床主轴变频使用过程中被逐步淘汰,而矢量控制的变频器正逐步进行推广。

所谓矢量控制,最通俗的讲,为使鼠笼式异步机像直流电机那样具有优秀的运行性能及很高的控制性能,通过控制变频器输出电流的大小、频率及其相位,用以维持电机内部的磁通为设定值,产生所需要的转矩。

矢量控制相对于标量控制而言,其优点有:(1)控制特性非常优良,可以直流电机的电枢电流加励磁电流调节相媲美;(2)能适应要求高速响应的场合;(3)调速范围大(1:100);(4)可进行转矩控制。

当然相对于标量控制而言,矢量控制的结构复杂、计算烦琐,而且必须存贮和频繁地使用电动机的参数。矢量控制分无速度传感器和有速度传感器两种方式,区别在于后者具有更高的速度控制精度(万分之五),而前者为千分之五,但是在数控车床中无速度传感器的矢量变频器的控制性能已经符合控制要求,所以这里推荐并介绍无速度传感器的矢量变频器。

3.2无速度传感器的矢量变频器

无速度传感器的矢量变频器目前包括西门子、艾默生、东芝、日立、LG、森兰等厂家都有成熟的产品推出,总结各自产品的特点,它们都具有以下特点:(1)电机参数自动辩识和手动输入相结合;(2)过载能力强,如50%额定输出电流2min、180%额定输出电流10s;(3)低频高输出转矩,如150%额定转矩/1HZ;(4)各种保护齐全(通俗地讲,就是不容易炸模块)。

无速度传感器的矢量控制变频器不仅改善了转矩控制的特性,而且改善了针对各种负载变化产生的不特定环境下的速度可控性。图3所示,为某品牌无速度传感器变频器产品在低频和正常频段时的转矩测试数据(电机为5.5kW/4极)。从图中可知,其在低速范围时同样可以产生强大的转矩。在实验中,我们同样将2Hz的矢量变频控制和V/F控制变频进行比较发现,前者具有更强的输出力矩,切削力几乎与正常频段(如30Hz或50Hz)相同。

3.3矢量控制中的电机参数辨识

由于矢量控制是着眼于转子磁通来控制电机的定子电流,因此在其内部的算法中大量涉及到电机参数。从图4的异步电动机的T型等效电路表示中可以看出,电机除了常规的参数如电机极数、额定功率、额定电流外,还有R1(定子电阻)、X11(定子漏感抗)、R2(转子电阻)、X21(转子漏感抗)、Xm(互感抗)和I0(空载电流)。

参数辨识中分电机静止辨识和旋转辨识2种,其中在静止辨识中,变频器能自动测量并计算顶子和转子电阻以及相对于基本频率的漏感抗,并同时将测量的参数写入;在旋转辨识中,变频器自动测量电机的互感抗和空载电流。

在参数辨识中,必须注意:(1)若旋转辨识中出现过流或过压故障,可适当增减加减速时间;(2)旋转辨识只能在空载中进行;(3)如辨识前必须首先正确输入电机铭牌的参数。

3.4数控车床主轴变频矢量控制的功能设置

从图1中可以看出,使用在主轴中变频器的功能设置分以下几部分:

(1)矢量控制方式的设定和电机参数;

(2)开关量数字输入和输出;

(3)模拟量输入特性曲线;

(4)SR速度闭环参数设定。

4结束语

对于数控车床的主轴电机,使用了无速度传感器的变频调速器的矢量控制后,具有以下显著优点:大幅度降低维护费用,甚至是免维护的;可实现高效率的切割和较高的加工精度;实现低速和高速情况下强劲的力矩输出。

数控车床论文篇(3)

本文介绍了采用数控车床的主轴驱动中变频控制的系统结构与运行模式,并阐述了无速度传感器的矢量变频器的基本应用。

2数控车床主轴变频的系统结构与运行模式

2.1主轴变频控制的基本原理

由异步电机理论可知,主轴电机的转速公式为:

n=(60f/p)×(1-s)

其中P—电动机的极对数,s—转差率,f—供电电源的频率,n—电动机的转速。从上式可看出,电机转速与频率近似成正比,改变频率即可以平滑地调节电机转速,而对于变频器而言,其频率的调节范围是很宽的,可在0~400Hz(甚至更高频率)之间任意调节,因此主轴电机转速即可以在较宽的范围内调节。

当然,转速提高后,还应考虑到对其轴承及绕组的影响,防止电机过分磨损及过热,一般可以通过设定最高频率来进行限定。

图1所示为变频器在数控车床的应用,其中变频器与数控装置的联系通常包括:(1)数控装置到变频器的正反转信号;(2)数控装置到变频器的速度或频率信号;(3)变频器到数控装置的故障等状态信号。因此所有关于对变频器的操作和反馈均可在数控面板进行编程和显示。

2.2主轴变频控制的系统构成

不使用变频器进行变速传动的数控车床一般用时间控制器确认电机转速到达指令速度开始进刀,而使用变频器后,机床可按指令信号进刀,这样一来就提高了效率。如果被加工件如图2(1)所示所示形状,则由图2(1)中看出,对应于工件的AB段,主轴速度维持在1000rpm,对应于BC段,电机拖动主轴成恒线速度移动,但转速却是联系变化的,从而实现高精度切削。

在本系统中,速度信号的传递是通过数控装置到变频器的模拟给定通道(电压或电流),通过变频器内部关于输入信号与设定频率的输入输出特性曲线的设置,数控装置就可以方便而自由地控制主轴的速度。该特性曲线必须涵盖电压/电流信号、正/反作用、单/双极性的不同配置,以满足数控车床快速正反转、自由调速、变速切削的要求。

3无速度传感器的矢量控制变频器

3.1主轴变频器的基本选型

目前较为简单的一类变频器是V/F控制(简称标量控制),它就是一种电压发生模式装置,对调频过程中的电压进行给定变化模式调节,常见的有线性V/F控制(用于恒转矩)和平方V/F控制(用于风机水泵变转矩)。

标量控制的弱点在于低频转矩不够(需要转矩提升)、速度稳定性不好(调速范围1:10),因此在车床主轴变频使用过程中被逐步淘汰,而矢量控制的变频器正逐步进行推广。

所谓矢量控制,最通俗的讲,为使鼠笼式异步机像直流电机那样具有优秀的运行性能及很高的控制性能,通过控制变频器输出电流的大小、频率及其相位,用以维持电机内部的磁通为设定值,产生所需要的转矩。

矢量控制相对于标量控制而言,其优点有:(1)控制特性非常优良,可以直流电机的电枢电流加励磁电流调节相媲美;(2)能适应要求高速响应的场合;(3)调速范围大(1:100);(4)可进行转矩控制。

当然相对于标量控制而言,矢量控制的结构复杂、计算烦琐,而且必须存贮和频繁地使用电动机的参数。矢量控制分无速度传感器和有速度传感器两种方式,区别在于后者具有更高的速度控制精度(万分之五),而前者为千分之五,但是在数控车床中无速度传感器的矢量变频器的控制性能已经符合控制要求,所以这里推荐并介绍无速度传感器的矢量变频器。

.2无速度传感器的矢量变频器

无速度传感器的矢量变频器目前包括西门子、艾默生、东芝、日立、LG、森兰等厂家都有成熟的产品推出,总结各自产品的特点,它们都具有以下特点:(1)电机参数自动辩识和手动输入相结合;(2)过载能力强,如50%额定输出电流2min、180%额定输出电流10s;(3)低频高输出转矩,如150%额定转矩/1HZ;(4)各种保护齐全(通俗地讲,就是不容易炸模块)。

无速度传感器的矢量控制变频器不仅改善了转矩控制的特性,而且改善了针对各种负载变化产生的不特定环境下的速度可控性。图3所示,为某品牌无速度传感器变频器产品在低频和正常频段时的转矩测试数据(电机为5.5kW/4极)。从图中可知,其在低速范围时同样可以产生强大的转矩。在实验中,我们同样将2Hz的矢量变频控制和V/F控制变频进行比较发现,前者具有更强的输出力矩,切削力几乎与正常频段(如30Hz或50Hz)相同。

3.3矢量控制中的电机参数辨识

由于矢量控制是着眼于转子磁通来控制电机的定子电流,因此在其内部的算法中大量涉及到电机参数。从图4的异步电动机的T型等效电路表示中可以看出,电机除了常规的参数如电机极数、额定功率、额定电流外,还有R1(定子电阻)、X11(定子漏感抗)、R2(转子电阻)、X21(转子漏感抗)、Xm(互感抗)和I0(空载电流)。

参数辨识中分电机静止辨识和旋转辨识2种,其中在静止辨识中,变频器能自动测量并计算顶子和转子电阻以及相对于基本频率的漏感抗,并同时将测量的参数写入;在旋转辨识中,变频器自动测量电机的互感抗和空载电流。

在参数辨识中,必须注意:(1)若旋转辨识中出现过流或过压故障,可适当增减加减速时间;(2)旋转辨识只能在空载中进行;(3)如辨识前必须首先正确输入电机铭牌的参数。

3.4数控车床主轴变频矢量控制的功能设置

从图1中可以看出,使用在主轴中变频器的功能设置分以下几部分:

(1)矢量控制方式的设定和电机参数;

(2)开关量数字输入和输出;

(3)模拟量输入特性曲线;

(4)SR速度闭环参数设定。

4结束语

对于数控车床的主轴电机,使用了无速度传感器的变频调速器的矢量控制后,具有以下显著优点:大幅度降低维护费用,甚至是免维护的;可实现高效率的切割和较高的加工精度;实现低速和高速情况下强劲的力矩输出。

数控车床论文篇(4)

如果对所用的普通车床和长时间使用的车床不进行改造,仅购买新的数控车床,则会增加许多生产厂家设备方面的成本。所以生产厂家对普通车床及长时间使用的车床进行数控化改造是必经之路。

由于进行数控化改造对于改造厂家来说,较杂又乱,但如何对改造的数控机床进行质量控制则是我们一直以来需要探讨的问题,在此谈一下如何进行改造数控车床的质量控制。

普通车床数控改造分为新机改造和旧机改造,新机改造是用户购买普通车床或普通光机(指仅带床头箱和纵、横向导轨的车床),改造厂家根据其要求进行数控化改造。旧机改造是指用户将已经使用过的普通车床或数控车床进行翻新并进行数控化改造。其中旧机改造包括大修车床改造和用户旧机部件改造。在此浅谈改造数控车床在机械方面的质量控制方法、着重控制点和检验过程。

1新机改造和旧机大修车床改造都必须经过如下相同改造

(1)更换X轴、Z轴丝杆、轴承、电机。

(2)增加电动刀架和主轴编码器。

(3)增加轴向电机的驱动装置,限制运行超程的行程开关,加装变频器(客户需要)以及为了加工和安全所需的电气部分。

(4)X轴、Z轴的丝杆两端支承面的配刮、滚珠丝杆副托架与床鞍的配刮、床身与床鞍导轨副进行配刮。

(5)据需要增加防护设施,如各向丝杆的防护罩,安全防护门,行程开关的防护装置。

2新机改造和旧机大修车床改造的不同点

(1)新机改造的主轴和尾座部分未进行改动,主轴部分和尾座部分无须进行再改造。

(2)旧机大修车床由于经过长时间使用,导轨已磨损,为了保证大修后,能继续长时间使用而不变形,必须经过淬火工序,然后磨导轨,且磨导轨后必须保证导轨硬度≥HRC47。

(3)旧机大修车床应根据客户需要对主轴部分和尾座部分进行改造和调整。

3新机改造和大修机床改造的精度检验是检验的重要项目

精度检验执行JB/T8324.1-1996《简式数控卧式车床精度》。

4新车床改造的精度质量控制如下

(1)铲刮检验。新车床改造经过对X轴、Z轴的丝杆两端支承面的进行配刮、对滚珠丝杆副托架与床鞍进行配刮、床身与床鞍导轨副进行配刮等。车床的主轴、尾座部分未拆动。检验方法如下:用配合面进行涂色,相互配合面进行结合,并相对摩擦,然后对铲刮面进行铲刮点数检验,并对结合处用塞尺进行结合程度检验,其中刮研点不得低于6点/25*25mm,0.03mm的塞尺塞结合处,不入。

(2)丝杆与导轨平行度检验:装配丝杆时,丝杆与导轨的平行度必须≤0.02mm。

(3)精度检验的G1项中导轨在垂直平面内的直线度(只许凸)应由普通车床厂家进行保证,不作为重点检验项目。

(4)精度检验中的主轴部分精度G4、G5、G6项也应由普通车床厂家进行保证,不作为重点检验项目。

(5)G11项床头、尾座两顶尖的等高度由普通车床厂家进行保证,不作为改造厂家质量控制的重点项目。

5用户大修车床改造的精度检验

由于进行了磨导轨,基准面已变动,所以精度检验中的所有项目必须进行检验,且应严格进行控制,以保证改造后的使用性能。

6大修车床改造和新机改造的其它质量重要控制点

(1)锈蚀检查:各横、纵向导轨面,主轴、主轴法兰盘,尾座空心套和各

(2)外露非油漆表面都必须采取防锈措施,如清洗干净后,用脂等进行防锈检查:铲刮面、丝杆和轴承在进行装配前必须清洗干净,不得留有红丹粉、铁削和其它脏物质;电箱内侧、防护罩内侧无灰尘、脏物。

(3)渗漏检查:大修车床改造的主轴轴承和齿轮等必须保持,大修车床改造和新车床改造的轴向丝杆和轴承必须有,必须有冷却装置,且以上和冷却中接头处,油、水箱等处都不得有渗漏现象。

(4)机床噪声、温升、转速、空运转试验:

①主轴在各种转速下连续空运转4min,其中最高转速运转时间不小于2小时。整机空运行时间≥16h,对圆弧、螺纹、外圆、端面等循环车削进行模拟空运行试验。

②主轴轴承温度稳定后,测轴承温度及温升滚动轴承:温度≤70℃,温升≤40℃;滑动轴承:温度≤60℃,温升≤30℃。

③机床噪声声压级空运转条件下≤83dB(A),且机床有无不正常尖叫、冲击声。各轴方向进给运动进行应平稳,无明显振动、颤动和爬行现象。

④机床连续空运转试验在规定连续空运转时间内,无故障,运行可靠,稳定。

(5)用户更换部件(包括机床部分的维修)的改造:由于车床更换部件的改造项目较多,主要是更换主轴轴承、轴向丝杆、轴向电机、轴向轴承和系统。

①更换主轴轴承:由于更换主轴轴承是为了保证加工外圆和端面的精度,必须在更换轴承后,先行检验主轴的噪声在无异常的情况下,整机噪声声压级不得超过83dB(A),然后进行加工精度检验,并检验加工工件的表面粗糙度。

数控车床论文篇(5)

二误差分析及改进方法

下面依次分析车削加工各类零件表面形状引起的差异以及采取的措施。

1.车刀刀尖圆弧半径对加工圆柱类零件表面的影响

众所周知,被加工零件表面的成形是由车刀与零件表面接触间切点的运行轨迹保证的。

对于主偏角kr=90度的车削加工,参见图1.1示,被加工零件表面的轴向尺寸由刀尖圆弧顶点A保证。

当(D-d)/2=ap>r时,由图可知,由刀尖圆弧半径引起的轴向尺寸变化量Δa为

Δa=b-a=r

式中:b——零件轴向尺寸;a——实际轴向位移量;r——刀尖圆弧半径。

此时,刀具实际轴向位移是长度a为:

a=b-Δa=b-r

当(D-d)/2=ap

Δa=BC=

此时,刀具实际轴向位移长度a=b-Δa=

对于主偏角KF<90°的车削加工,当完成轴向加工即处于图1.1c位置时,被加工零件的已加工表面部由车刀刀尖点A保证,零件的加工表面由刀具型面AC和CE形成。显而易见,当刀具轴向位移长度为a时,则达到零件要求的轴向长度。所以轴向尺寸变化量Δa为:

Δa=b-a=BC+DE

因为BC=rsinKr

DE=CEctgKr=(ap-r+rcos,Kr)ctgKr

所以Δa=rsinKr+(ap-r+rcosKr)ctgKr……

此时,刀具的实际轴向位移长度a为:

a=b-Δa=b-rsinKr+(ap-r+rcosKr)ctgKr……

当(D-d)/2=ap

由此可得结论:

对于圆柱类零件表面的加工,由于车刀刀尖圆弧半径与车刀主偏角的存在,使得被加工零件的轴向尺寸发生变化,且轴向尺寸的变化量随刀尖圆弧半径的增大而增大;随车刀主偏角的增大而减小。所以,在编制加工程序时,应相应改变其轴向位移长度。刀具几何参数对此类零件的径向尺寸无影响。

2.车刀刀尖圆弧半径对加工单段锥体类零件表面的影响

车削加工中,车刀与被加工零件的位置关系见图1.2。

车刀处于初始加工点即位置I时,刀尖圆弧上B’点与锥体小端起点相切,因为编程一般是以车刀刀尖圆弧中心位置为准进行的,所以锥体小端部的轴向尺寸变化量为B′C′;当完成锥体加工即车刀处于位置II时,刀尖圆弧上B点与锥体相切,而此时须使刀尖圆弧顶点处于圆柱体部要求的半径位置上。由此分析可知:当刀具位移a时,形成锥体轴向长度b′,大端半径R=BH,而此时当转人加工圆柱体时,刀尖顶点A形成的零件加工半径R′=EG,锥体部的轴向长度减短,从而使得锥体部轴向长度由b′变为b,所以锥体轴向变化量Δa为:

Δa=a-b

因为B′C′=BC=rsinα

所以a=b′

即Δa=b′-b=BF

因为刀尖圆弧同时相切于锥体和圆柱体的B、A两点,由几何关系得:

Δa=rcosαtg(α/2)

此时刀具实际轴向位移是长度a为:

a=b=rcosαtg(α/2)

由此可得结论:

对于单段外锥体零件的加工,由于车刀刀尖圆弧半径的存在,锥体的轴向尺寸、径向尺寸均发生变化,且轴向尺寸的变化量随刀尖圆弧半径的增大而增大,随锥体锥角的增大而增大,径向尺寸随刀尖圆弧半径的增大而减小,随锥体增大减小。

3.车刀刀尖圆弧半径对加工球体类零件表面的影响

车削加工中,车刀刀尖与被加工零件的位置关系如图1.3所示。

设定由内向外走刀。当加工整半球时,刀尖处于位置I。由于加工是按刀具圆弧的中心轨迹运行的,所以此时轴向尺寸的变化量均为Δa=b-a=r而当加工非整半球面时,刀具处于位置II,因为此时刀尖圆弧是B点而不是A点与零件相切,所以加工中轴向尺寸的变化量Δa为:

Δa=b-a=EF=rsinα

α——零件球面夹角

此时刀具的实际轴向位移长度a为:

a=b-Δa=(R-r)sinα

同理可知,当加工外球面时,Δa应取负值。

因为在加工中,刀具各点依次陆续进入切削,其轴向尺寸的变化量Δa=EF,当完成球体加工而进行球体大端面加工时,则应使刀尖圆弧顶点A与端面相切,此时,轴向应移动EF+AE而非EF,否则必定使得球面的径向尺寸发生变化,并造成零件报废。由此引起的径向尺寸变化量Δd为:

Δd=2BF=2bcosα

此时球体实际最大盲径Dmax为:

Dmax=D-Δd=D-2bcosα

因为b′=b-AE

所以b′<b

这在实际加工中应特别引起足够的重视。

由此可得结论:

对于内球面零件的加工,由于车刀刀尖圆弧半径的存在,使得被加工零件的轴向尺寸发生变化,且轴向尺寸的变化量随刀尖圆弧半径的增大而增大,随球面夹角的增大而增大,同理亦可得加工外球面时轴向尺寸的变化量及其位移长度。此处略。

4.车刀刀尖圆弧半径对加工锥体接球体类零件表面的影响

车削加工中,车刀与被加工零件的位置如图1.4所示。

当刀具处于图示位置时,刀尖圆弧与锥体部相切于B点,同时与球体部相切于E点,图中DBLEF为理论要求轨迹,由于刀尖圆弧半径的存在,正确的实际形成轨迹为DBEF,其中BE由刀尖圆弧形成。刀尖圆弧半径的存在,必使零件的轴向尺寸、径向尺寸发生变化。图示中,设定∠BO1A=∠α,为锥体部斜角,∠LOO′==∠θ为理论球面起点与轴线夹角,∠EOO′=∠β为实际球面起点与轴向夹角,则锥体部轴向尺寸的变化量Δa为:

Δa=b1-a1=LC=(R+r)cosβ-Rcosθ-rsinα

所以锥体部的实际轴向位移长度a1为:

a1=b1-Δa1=b1-(R+r)cosβ+Rcosθ+rsinα

此时球体部轴向尺寸的变化量Δa2为

Δa2=b2-a2=R(cosθ-cosβ)

球体部的实际轴向位移长度a2为

a2=b2-Δa2=b2-R(cosθ-cosβ)

由于轴向尺寸的变化,使得零件径向尺寸也随之发生变化,锥体径向尺寸的变化量Δdl为

Δdl=2BC=2[(R+r)cosβ-Rcosθ-rsinα]tgα

所以锥体部最大直径d1max为

dlmax=d-Δdl=d-[(R+r)cosβ-Rcosθ-rsinα]tgα

同理球体部径向尺寸的变化量Δad2为

Δad2=2R[sinβ-sinθ]

所以球体部最小直径d2min为d2min=2Rsinβ

由此可得结论:图1.4

对于锥体接球体类零件的加工,由于车刀刀尖圆弧半径的存在,使得被加工零件的轴向尺寸、径向尺寸均发生变化;且锥体部轴向尺寸的变化量随刀尖圆弧半径的增大而增大,随体斜角的增大而增大;球体部轴向尺寸的变化量随刀尖圆弧半径的增大而增大,随刀尖零件切点处与轴线间夹角的增大而增大;其径向尺寸的变化量为:锥体部大端的径向尺寸随刀尖圆弧半径的增大而减小,随锥体斜角的增大而减小;球体部小端径向尺寸随刀尖圆弧半径的增大而增大,随刀尖零件切点处与轴线间夹角的增大而增大。所以加工中应随之变换其位移长度。

同理可得加工凹球面、内球面与锥体部相接时轴向尺寸、径向尺寸的变化量及其位移长

度。此处略。

5.误差的消除方法

消除方法(1):编程时,调整刀尖的轨迹,使得圆弧形刀尖实际加工轮廓与理想轮廓相符。即通过简单的几何计算,将实际需要的圆弧形刀尖的轨迹换算出假想、刀尖的轨迹。

消除方法(2):以刀尖圆弧中心为刀位点编程步骤如下:

绘制件草图以刀尖圆弧半径r和工件尺寸为依据绘制刀尖圆弧运动轨迹计算圆弧中心轨迹特征点编程。

在这个过程中刀尖圆弧中心轨迹的绘制及其特征点计算略显繁琐,如果使用CAD软件中等距线的绘制功能和点的坐标查询功能来完成此项操作则显得十分方便。

另外,采用这种方法加工时,注意以下两点:

1.检查所使用刀具的刀尖圆弧半径的r-值是否与程序中的r值相符;

数控车床论文篇(6)

2项目教学法在数控车床编程中的应用

2.1对项目进行确定

首先需要对项目进行确定,了解项目中的任务。项目中的任务也需要合理的计划,这是实施项目教学的首要前提,在项目确定的时候有几个因素需要考虑:第一,在项目进行选择的时候要按照教学中的内容,结合教学大纲中的要求,将教学大纲中的知识和每一个项目结合在一起,还需要一定的想象空间,这样不仅能够提高学生学习知识的能力,还能培养学生的创新能力。其次,根据学生的学习水平、学习层次来制定项目的难易程度,来提高学生的学习兴趣,每一个项目都尽量能让学生接受。最后,设定的项目要有一定的实用价值,例如:在在数控车床编程中可以选用一些小酒杯来作为项目中的教学,分析小酒杯中的零件图纸,通过图纸上的尺寸要求,来对尺寸进行控制并进行加工。

2.2制定相应的计划

要制定计划的时候,需要提供相应的资料。可以将学生分为几个小组,并从其中选出一个组长,在老师的指导下,对本组人员进行职务上的分配。老师给学生提供相应的零件加工资料,并且告诉学生需要完成的项目是什么以及这个项目的操作顺序,这样可以减少学生在操作中容易出现差错。每个小组可以根据酒杯的零件图纸来进行加工,小组成员通过一起商量和探讨来进行编写,教师可以通过对加工工艺的程序进行相应的指导,对小组中出现程序错误的进行改正。这样一来,不仅能够提高学生的合作能力、交流能力,还能达到教学中的目的。

2.3对计划的实施

在确定好项目之后,教师需要对项目在实施过程中遇到的一些问题进行解决,这样能够总结经验,来更好的对学生指导。在教学中,可以给学生展示一些关于数控车床编程中的案例,来提高学生的学习兴趣。在实施项目计划的过程中,教师要不断地激励学生勇敢的尝试,提高学生的自主学习能力,学生之间也可以互相的交流和合作,来对项目中的任务更好的完成。学生在项目完成之后,老师可以通过阶段性测试,来检验学生对知识的掌握程度,学生也能清楚的知道自己哪方面知识不足,教师也可以看到学生知识存在的漏洞,可以进行再次的讲解和指导,来增加学生的理解能力和学习兴趣,更好的完成项目中的任务。

2.4进行总结和评价

在学生对项目加工完之后,教师可以让每一组学生的作品结果进行展示,找出符合加工要求、质量比较高的小组,来进行讲评和总结。对在加工中出现问题的小组,找出出现问题的原因,并进行一定程度上的指导,给出相应的解决办法。例如:学生在对酒杯进行加工的过程中,内孔刀的选择和切削用量对准确对酒杯的内表面的加工质量是比较重要的。因此,教师可以让学生对项目加工中需要注意的事项进行总结,以及学生在项目学习过程中的表现进行评价,教师对这些问题进行纠正,并给出相应的建议,方便学生在下一个项目任务中更好的表现。

数控车床论文篇(7)

 

1.前言

数控车床是一种高精度、高效率的自动化机床。它配备多工位刀塔或动力刀塔,机床就具有广泛的加工艺性能,可加工直线圆柱、斜线圆柱、圆弧和各种螺纹、槽、蜗杆等复杂工件,数控车床又称为 CNC车床,即计算机数字控制车床,是目前国内使用量最大,覆盖面最广的一种数控机床,约占数控机床总数的25%。数控车床是数控机床的主要品种之一,它在数控机床中占有非常重要的位置,几十年来一直受到世界各国的普遍重视并得到了迅速的发展。

2. 如何合理使用数控车床

(1)做好试运转前的准备

数控车床几何精度检验合格后,需要对整机进行清理。用浸有清洗剂的棉布或绸布,不得用棉纱或纱布。论文写作,润滑管理。清洗掉数控车床出厂时为保护导轨面和加工面而涂的防锈油或防锈漆。清洗数控车床外表面上的灰尘。在各滑动面及工作面涂以数控车床规定使滑油。仔细检查数控车床各部位是否按要求加了油,冷却箱中是否加足冷却液。数控车床液压站、自动间润滑装置的油是否到油位批示器规定的部位。 检查电气控制箱中各开关及元器件是否正常,各插装集成电路板是否到位。 通电启动集中润滑装轩,使各润滑部位及润滑油路中充满润滑油。做好数控车床各部件动作前的一切准备。

(2)数控车床操作、维修人员必须是掌握相应数控车床专业知识的专业人员或经过技术培训的人员,且必须按安全操作规程及安全操作规定操作数控车床;数控车床的PLC程序是数控车床制造商按数控车床需要设计的,不需要修改。不正确的修改,操作数控车床可能造成数控车床的损坏,甚至伤害操作者;除一些供用户使用并可以改动的参数外,其它系统参数、主轴参数、伺服参数等,用户不能私自修改,否则将给操作者带来数控车床、工件、人身等伤害;修改参数后,进行第一次加工时,数控车床在不装刀具小型数控铣床和工件的情况下用数控车床锁住、单程序段等方式进行试运行,确认数控车床正常后再使用数控车床;数控车床全部连接器、接头等,不允许带电拔、插操作。非专业人员不得打开电柜门,打开电柜门前必须确认已经关掉了数控车床总电源开关。

(3)正确进行超程复位和急停复位。

数控车床在运行过程中或手动运行时出于操作不慎或程序问题,导致往某一方向的运行超出数控车床的行程(即超程),此时行程开关压下,数控车床在这一运动方向上自动锁住运行,应往相反方向运行数控车床直至解除超程报警,恢复正常。

当加工操作过程中发生紧急情况时,按下操作面板上的“急停”按钮采取白我保护后,计算机仍继续工作,但伺服电源和电动机已断电。经手工控制使得数控车床恢复正常后,可继续进行加工操作。

(4)重视工作环境,避开阳光直射,安装防振装置,并尽量远离振动源。数控车床附近不应有电焊机、高频处理等数控车床,避免高温对数控车床精度的影响。始终保持数控车床的清洁与完整,周围工具、刀具及附属数控车床要整齐摆放。数控车床需要的压缩空气压力应符合标准,并保持清洁。通风管路严禁使用镀锌铁管,防止铁锈堵塞过滤器。要定期检查和维护气、液分离器,严禁水分进入气路。要有保护环节与装置。润滑装置要保持清沾、油路畅通,各部位润滑良好。油液必须符合标准,并经过滤。过滤装置要定期清洗、更换滤芯,经检验合格才能使用。电气系统的控制柜和强电柜门,应尽量少开。防止灰尘、油雾对电子元器件的腐蚀及损坏。论文写作,润滑管理。经常清理数控装置的散热通风系统,使数控系统可靠地运行。数控装置的正常工作温度为55℃-60℃。有超温情况时,一定要立即停机检测。论文写作,润滑管理。数控装置储存器(RW)的电池由系统自行随时测定报警,及时更换才能继续维持RW中的参数和程序等数据。更换电池时要在通电情况厂,切忌在断电情况下拔掉电池,防止数据丢失。插板、印制电路板(如EPROM块等)不能在通电情况F插拨,否则会出现一些无法补救的故障。也不要经常进行断电插拨。论文写作,润滑管理。论文写作,润滑管理。在加工工件前,必须先对各坐标进行检测加工。操作者必须齐数控车床启动后进行“归零”操作,防止数据丢失。数控车床精密测量装置不能随意拆动。复查程序,经模拟试验后再正式开始停机两周以上时应及时给数控车床通电,数控车床参数设置不能随意修改,以免影响数控车床性能发挥。误操作时要即时向维修人员说明情况,进行即时处理。数控车床外部结构简化,密封可靠,自诊断功能日益完善,在对其的日常维护中除需对必要部分进行清洁擦拭外,不得任意拆卸其他部位。

(5)加强数控车床润滑管理

数控车床润滑管理是数控车床管理的重要内容之一,是企业数控车床管理中不可忽视的环节。数控车床润滑是防止和延缓零件磨损和其他形式失效的重要手段之一。加强数控车床的润滑管理工作,并把它建立在科学管理的基础上,按技术规范的要求,正确选用各类润滑材料,并按规定的润滑时间、部位、数量进行润滑,以降低摩擦、减少磨损,使数控车床有良好的润滑是数控车床安全、稳定、持续、高效运行的重要保证,对于企业减少能耗,降低成本,降低数控车床故障发生率,延长数控车床使用寿命,保持数控车床完好并充分发挥数控车床效能和社会经济效益都具有十分重要的意义。

掌握润滑工作重点,即保持清洁,合理用油,按时定量,方法得当,不漏防堵。要求他们在主管人员的指导下,遵守换油规程,执行数控车床润滑卡片的规定,做好数控车床润滑循检工作,并认真填写好记录。可以将润滑部位、名称及加油点数;每个加油点润滑油脂牌号;加、换油时间;每次加、换油数量;每个加、换油点的负责人编制成图表。维护人员要认真执行,并做好运行记录。专业人员要定期检查和不定期抽查图表执行情况,发现问题及时处理。论文写作,润滑管理。点检人员必须随时注意数控车床各部润滑状况,发现问题及时报告和处理。

参考文献:

[1]龚洪浪.提高数控车床加工质量的措施[J].电气制造,2006,(03).

[2]孙伟.回转工作台式加工中心工件坐标系的快速确定[J].机械制造,2002,(03).

[3]陆凤云,李景慧,苏显清.采用CAD作图法完成数控编程各节点的计算[J].机械制造,2002,(07).

数控车床论文篇(8)

关键词:数控车床 理实一体化 中职

2005年国务院《关于大力发展职业教育的决定》明确提出,大力发展职业教育,加快人力资源开发,是落实科教兴国和人才强国战略。国家的科技兴国战略使得数控加工行业快速发展,从事数控加工的工人相对缺乏。迫切要求职业学校培养出大量的在一线从事数控加工的技术工人。作为中职学生,学习数控车工技术的目的是使学生能掌握数控基本原理、各大模块的功能、数控车床的编程知识,熟悉相关的仿真a软件和自动编程软件,并通过实训、实习,提高学生的动手能力、创新能力和吃苦耐劳的精神,达到知识、技能、素质的全面发展。

1、普通车床实训是数控车床实训的基础

对于零基础的学生来说,普通车床实训是学习车工的第一步。普通车床实训是以后进行数控车床实训的基础。我们可以把学习普通车床的操作技能比作学走路,把数控机床的学习比作学跑步,只有走好了才能跑起来。

现在学校中的数控专业,大都是在原有的车工专业的基础上,又购置了数控车床和数控铣床、加工中心而形成的。数控车床的价格相比于普通车床要贵许多。大多数学校数控车床的数量相比于普通车床也是要少很多的。综合上述原因,学校在安排数控车床实训之前,都要安排一定课时的普通车床实训。这样可以使学生在初学阶段利用普通车床学习基本操作技能,为以后学习数控机床打下基础,利用普通机床进行基本操作技能训练在目前是不可缺少的一个环节。现代制造技术是在传统的技术上发展起来的,自动化的数控机床离不开传统的车、铣、刨、磨的加工技术,一个数控工作人员,如果不懂得刀具角度,切削用量和制造工艺,就不能成为一个合格的数控人员。我们培养适应现代社会需要的数控加工人才就是先要从最基本的知识抓起,要使学生学习好掌握好基本功,要使学生牢固掌握普通车床的基本知识,了解普通车床的基本性能和基本构造,熟练掌握普通车床的正确操作:车外圆、车端面、切断和车槽、钻中心孔、车孔、镗孔、车螺纹、车圆锥面、车成形面、滚花等等。这些基本技能、技巧在现阶段,我们不可能在数控机床上安排大量时间进行练习。反过来,我们可以利用普通车床台数比较多这样的条件,进行这些基本技能操作训练。基本操作技能学的好与不好,直接影响到以后在数控机床实训的效果。在这个过程中,普通车床实训起到了一个承上启下的作用。

2、中职学校数控车床理实一体化教学的流程

学生学完普通车床以后,开始进入数控车床的学习。现在技工院校使用最普遍的是沈阳机床厂生产的FANUC系统的机床。因为涉及到中、高级工的考试,所以在学习数控实践操作的时候,还要兼顾到中、高级工理论的学习。综合以上考虑,教学安排如下:

(1)了解数控机床的总成、面板(主要包括CRT显示器、系统操作区域、机床操作区域),并掌握操作面板按钮的功能。

(2)认识数控机床的坐标系(x轴、z轴)。

(3)三个基本操作:回零操作、MDI操作(转速及换刀)、手作。

(4)对刀操作、对刀的目的。

(5)掌握基本的编程方法、G指令、M指令,及简单的编程过程。

(6)G71切削循环指令。

(7)外螺纹、镗孔、内螺纹的编程。

(8)中、高级工理论、实践的模拟练习。

3、提高学生数控车床操作工的考试通过率

数控车床中、高技工的鉴定考试都包括理论和实践操作两个部分。只有理论和实践操作都通过,才可以取得相应的数控车床操作工的等级证书。针对学校数控车床中、高级工考试通过率不高,提出以下几点建议:

(1)理论知识

现在数控车床中、高级工的理论主要涉及机械制图、机械基础、公差配合与技术测量、金属材料与热处理、车工工艺、数控技工工艺、机械制造工艺、电力拖动、数控机床编程与操作、职业道德、企业管理等科目。知识比较复杂,除了多读、多看、多练之外,还要学会总结。比如G71、G72、G73、G90、G92、M21、M22、M23等指令很容易混淆,要对比记忆。

(2)实践操作

数控车床的实践操作技能是衡量数控车床操作工水平的重要指标,也是数控车床操作工鉴定的关键环节。考试之前,一定要认真阅读零件图纸,注意公差、表面粗糙度、同轴度的要求等,然后再编程。同时,要注意心态,一定要沉着冷静。例如,在考试中,某一个尺寸误差做大了,头脑一定要冷静。要相信:只要别的尺寸做对了一样可以顺利通过。要及时调整情绪,在思想上要有个充分的应试心理准备,要相信自己有足够的能力通过鉴定考试。

(3)考试技巧

在数控车床中、高级工考试中,理论上要本着先易后难、先主后次的做题原则,不要轻易放弃每一道题,必要时使用排除法、验证法等技巧。实践操作考试中,装夹工件一定要装夹牢固,工件跳动量越小越好。在编写程序时,要先写工艺,然后按照工艺流程的顺序来编程及工件的加工操作。在实践操作考试完毕以后,要进行机床的清理和保养。

随着社会的发展,对数控机床操作工、编程人员的要求也越来越高,同时对数控专业人才的培养提出了更高的要求。本文从数控车床实训与普通车床实训的关系、中职学校数控车床理实一体化的教学流程、如何提高数控车床操作工的考试通过率三个方面提出了一些自己的建议。

参考文献:

数控车床论文篇(9)

中图分类号:TG519 文献标识码:A 文章编号:1671-7597(2013)23-0098-01

数控车床在现代化工业制造中是一个非常重要的机械,数控机床的可靠性与否直接影响着一个国家制造技术发达与否,还影响着国家的经济状况。制造技术的发展与数控车床的低故障率和较高的可靠性成正比的,能否提高数控机床的可靠性已成为我国能否走出国门的一个重要因素。而数控车床故障分布的规律,是进行可靠性分析的一个重要指标。因此,对数控车床故障分布规律及可靠性进行分析研究是非常有必要的。

1 数控车床的故障分布规律分析

如果数控车床在特定的时间内,无法规定的功能或者性能参数超出允许的范围的情况,这种现象就是表明数控车床发生了故障。故障有两种,一种是非关联性故障,第二种是关联性故障。非关联性故障就是外界条件引起的数控车床的故障,关联性故障就是产品自身质量引起数控车床的故障。本文在进行可靠性指标的分析计算时,主要是对关联性故障进行考虑,同时也记录了非关联性故障以方便日后分析和判断。

对故障数据进行预处理。根据文献[4]提出的方法计算出各故障点的故障总时间及数控车床的故障时间间隔。求得每个故障数据所对应的经验分布函数值,并作出相应的散点图。为后面的分析计算提供依据。

估计故障分布函数的参数与检验假设是否成立。根据实际情况,假设数控车床故障间隔时间的分布威布尔分布。具体步骤:利用最小二乘法对参数进行估计;最终初步确定该数控车床控制系统故障间隔时间的分布规律。其中,这两种分布的参数估计和假设检验过程相似。

对分布函数拟合优度进行检验。即将所获得的故障数据理论分布与实际使用中得到的分布y两种分布曲线进行分析,计算出拟合误差面积比指数R。比较在试验数据理论曲线分别符合指数分布和威布尔分布的假设下求得的R,将最小R对应的分布类型定位最优分布类型。其中拟合误差面积比指数R的求取方法如下:

①计算出故障数据实际分布y和理论分布之间的关系用以下函数来表示:

y=+e(x) (1)

②计算出偏差e(x)曲线与横坐标围成的面积Se:

Se=dx=dx=yi-idx (2)

式中m为分割区间的个数。由公式(2)可知,Se越小,拟合的分布就越能反映车床的故障分布规律(即理论和现实相似度较高)。

③计算出理论曲线与横坐标所围成的面积S:

S=(x)dx=dx=idx (3)

④计算拟合误差面积比指数R。由于在采样的试验过程中,数据点个数有限,且区间不太可能被数据点均等分割。所以R可依下式求得:

R= (4)

表1是以20台相同系列数控车床的试验数据为基础,计算得出其对应的误差面积比指数R。

表1 误差面积比指数表

分布类型 Se S R

威布尔分布 0.552 385 8.020 424 0.068 870

指数分布 1.467 753 6.776 039 0.216 610

显然,由表中数据比较可得,这批试验数据优先符合威布尔分布。从而可以利用表中数据确定故障间隔时间的分布类型及其分布函数F(t)。

2 数控车床可靠性分析指标

在实际工程应用中,往往通过某些特定的指标来评估数控车床的可靠性水平。在对可靠性进行分析时,参数的点估计和区间估计往往也需要给出,因为一般情况下,是通过从主体中抽取一定数量样本进行试验之后,所得结果的统计量来评估主体的。

故障间隔时间的数学期望E(t),表示的是平均故障间隔时间。公式如下:

TM、F==E(t) (5)

其中f(t)为故障间隔时间概率密度函数,由F(t)求得:

f(t)=Fˊ(t) (6)

置信水平一般取值为90%。

3 提高数控机床可靠性的措施

要想提高数控机床的可靠性必须从数控机床早期故障的排查、数控机床的设计环节、数控机床的配件质量等方面入手。

1)加强早期故障的监测、分析、排除。“防患于未然”永远是正确的,如果没有及时的发现并将故障排除,那么在日后的生产中会造成无法估计的损失,同时也损害了厂家的信誉。使得我国厂家走出国门的路途增加障碍。

2)提高配件的可靠性。“千里之堤,溃于蚁穴”,配件就是数控机床这个“大堤”的“蚁穴”,只有加强“蚁穴”的管理,才可以保证“大堤”永驻。提高数控机床可靠性的关键是配件的可靠性,我们应选择可靠性较高的配件,最好是相同厂家生产的原件,不能贪图小利使用劣质配件。

3)加强设计环节的把关。设计这个环节就是把知识用于实践的关键环节,是提高数控机床可靠性的基础,“万丈高楼平地起”,只有“基础”牢固,才能建造可靠地“大厦”,在设计前就要考虑到用户的方面,只要有部分使用户使用起来不方便,就要坚决改进,不可抱有侥幸心理,同时加强与用户的沟通,切实可行的帮用户解决问题。

4 总结

现代化工业制造技术的进步需要数控车床在具备一定的自动化功能基础上,保证其功能与性能具备高度保障性、可靠性、维修性及维持性。通过上述方法可以实现对数控车床故障分布规律的确定以及对其可靠性的分析,从而为数控车床的深入研究打下坚实的基础。

参考文献

[1]侯光宇.数控车床故障分布规律及可靠性分析[J].机床与液压,2008.

[2]王昕,吕长松.数控车床故障分析与提高可靠性的措施[J].机床与液压,2008.

数控车床论文篇(10)

中图分类号:G712 文献标志码:A 文章编号:1674-9324(2017)06-0176-02

高职数控专业中,普车与数控车的实践技能训练是专业实践教学体系的核心,也是《数控车床编程与操作》课程的重要组成部分。由于数控车床的操作技能是建立在普车操作技能的基础上,二者的关系应是普车技能为基础,数车技能为提高,相互融合,相互促进。故在教学中,如何开展普车与数车(以下简称“普数车”)一体化教学,具有实际的意义。

一、认识普车基本技能训练的重要性

虽然现代数控机床技术正在向着智能化、柔性化及集成化等方向快速发展,但是数控机床的机械结构、加工工艺和基本的操作技能,仍然是基于普通车床的。因此,掌握普车基本的理论知识和技能是学好数车技能的基础,也是开展普数车一体化实践教学的必要条件。现实中,由于普车实习条件和数控车实习相比,存在苦、脏、累的特点,数控专业的学生对普车实习的积极性普遍不高。故在教学过程中,教师要向学生阐明:普车不是简单的配合数控车的学习,只有充分认识普车的结构、原理、刀具的刃磨及加工工艺,熟练操作普通车床,才能更好地掌握数车的理论知识及技能。

二、普数车一体化实践教学模块安排

由于普数车实践教学采用一体化教学模式,故普车与数车实践教学模块应按照相互融合、相互促进,共同提高这一原则统筹安排。普数车一体化实践教学共包含四大模块。

1.车床与数控车床的简单轴类零件加工训练。本模块包含了对简单轴类零件外轮廓的加工训练,包括:零件的外圆、端面、退刀槽和零件切断的普数车加工工艺分析,外圆刀和切断刀合理选择及刃磨训练,零件加工程序的调试,刀具补偿的正确应用,等等内容。本模块着重使学生掌握普数车的基本操作技能,刀具的刃磨以及零件程序的现场调试,培养学生良好的安全操作意识,细致的工作作风以及精益求精的职业态度。

2.车床与数控车床的螺纹加工训练。本模块包含了螺纹退刀槽的加工,三角牙螺纹车刀的刃磨,外螺纹的加工工艺,螺纹循环指令的应用及程序调试等内容。本模块着重使学生掌握普数车三角牙螺纹加工的工艺步骤、刀具的刃磨、螺纹加工程序的编制及上机调试等理论与技能知识。

3.车床与数控车床的零件内轮廓加工训练。本模块中的零件内轮廓主要包含了零件内孔的加工、退刀槽的加工、内螺纹的加工、镗刀和内螺纹刀的刃磨、零件内轮廓的综合程序编制等内容。本模块着重使学生掌握普数车对零件内轮廓面的加工工艺步骤、刀具的刃磨、程序的编制及上机调试等理论与技能知识。

4.数车综合加工训练。本模块主要任务是对学生已学的知识进行综合性的训练,通过训练使其系统掌握零件的加工工艺、刀具的选择、切削用量的合理确定、程序的编制以及程序的仿真与调试,以期达到国家劳动部门对数控车床工的理论与技能要求。

三、普数车一体化实践教学内容的组织

确定好普数车一体化实践教学模块及教学目标后,即可针对每一个模块安排具体的教学内容,并协调好彼此之间的关系。因为普车与数控车的技能训练要交替进行,相辅相成,方可在有限的教学时间内,最大程度的提高学生的工艺能力、编程能力及程序调试能力等。图1为普数车一体化实践教学内容流程图,该流程图反映了诸模块下教W内容之间的组织与联系。

从图1中可以看出,在车床与数控车床的简单轴类零件加工训练这一模块中,学生首先通过车床训练掌握了基本的机床操作能力,然后练习简单轴类零件的外圆、端面、槽及切断的加工训练,初步掌握刀具的刃磨及零件的切削加工能力,为数车的基本操作奠定了良好的基础。学生有了车床的基本功,在进入数车学习时,就比较容易掌握数车的操作,从而可以将精力主要放在零件程序的编制与调试上。

经过了普数车的基本训练,学生掌握了普数车的基本操作技能及程序调试能力后,即可转入外螺纹加工训练环节。由于数车上切削螺纹多采用循环程序,进退刀速度快,加上螺纹切削走刀速度快,如果没有普车的螺纹切削基础,极易出事故,故需要学生先要在普车上扎实地掌握螺纹切削工艺与技能,然后再转到数车上练习,这样就不易在操作过程中出现问题了。

一个回转体零件除了外轮廓外,常常有内轮廓需要加工,所以学生经过前面两个模块的练习后,就可以进行第三个模块――内轮廓的练习了。一般来讲,内加工表面切削时,存在刀具刚性差、尺寸不易测量、切削液不易进入等不利因素,导致零件的内加工表面的精度不易控制,故零件内轮廓加工训练一般安排在外轮廓之后进行。学生掌握了零件外轮廓的加工方法后,有利于其更好的在普车与数控车上进行零件内轮廓的加工,包括镗刀和内螺纹刀的刃磨、内外轮廓的综合程序编制与调试等内容。

学生经过了零件内外轮廓常用加工面的普数车加工方法和程序调试训练后,即可进入数车的综合加工训练模块。如前所述,本模块主要任务是对学生已学的知识进行综合性的训练,学生在掌握已学知识并灵活应用的前提下,还应依据技能考核要求,拓展所需的理论与技能知识,如双线螺纹的加工、梯形螺纹的加工、端面槽的加工、非圆曲线的加工等内容,力争使学生的综合应用能力得到提高。

四、结语

在高职数控专业《数控车床编程与操作》课程中,开展普数车的一体化实践教学:一是能提升教师普数车的理论知识水平和实践能力,避免数控教师仅重视数控教学而轻视普车教学,使其更符合双师型教师的要求。二是开展普数车的一体化实践教学后,科学的训练内容使得学生能将学到的知识相互融合、相互贯通,使其更易成为具有较强操作能力的数控应用型和操作型人才。三是将普数车的实践训练内容一体化后,可使教师在实施教学时,能灵活安排教学内容,科学使用实训设备,充分挖掘实习基地的潜力,降低办学成本,提高教学效率。

参考文献:

上一篇: 用药护理论文 下一篇: 数学素养论文
相关精选
相关期刊