电机设计论文汇总十篇

时间:2023-03-17 17:57:12

电机设计论文

电机设计论文篇(1)

二、变频电机设计特点

对于变频电机,其设计必须与逆变器、机械传动装置相匹配共同满足传动系统的机械特性,如何从调速系统的总体性能指标出发,求得电机与逆变器的最佳配合,是变频电机设计的特点。设计理论依据交流电机设计理论,供电电源的非正弦以及全调速频域内达到满意的综合品质因数是变频电机设计中需要着重注意的两个问题,设计中参数的选取应做特别的考虑。与传统异步电机相比,一般变频电机设计有如下一些特点:

1.用于变频调速的异步电动机要求其工作频率在一定范围内可调,所以设计电机时不能仅仅考虑某单一频率下的运行特性,而要求电机在较宽的频率范围内工作时均有较好的运行性能。如目前大多调速异步电动机的工作频率在5Hz~100Hz内可调,设计时要全面考虑。

2.变频电机在低速时降低供电频率,可以把最大转矩调到起动点,获得很好的起动特性,因而在设计变频电机时不需要对起动性能作特别的考虑,转子槽不必设计为深槽,从而可以重点进行其它方面的优化设计。

3.变频电机通过调节电压和频率,在每一个运行点都可以有多种运行方式,对应多种不同的转差频率,因而总能找到最佳的转差频率,使电机的效率或功率因数在很宽的调速范围内都很高。因而,变频电机的功率因数和效率可以设计得更高,功率密度得以进一步提高。现有数据表明:在额定工作点,逆变器供电下的异步电机效率比普通电机高2%~3%,功率因数高10%~20%。

4.变频电机采用变频装置供电,输入电流中含有较多的高次谐波,产生电机局部放电和空间电荷,增大了介质损耗发热和电磁振动力,加速了绝缘材料的老化,所以应加强电机绝缘和提高整体机械强度,变频电机的绝缘强度一般要达到F级以上。

5.变频供电时产生的轴电压和轴电流会使电机轴承失效,缩短轴承使用寿命,必须在设计上要加以考虑。对较小的轴电流,可以适当增大电机气隙和选用专用脂;另外,增加轴承的电气绝缘或者将电机轴通过电刷接地,可以有效解决轴承损坏问题;对过高轴电压,应设法隔断轴电流的回路,如采用陶瓷滚子轴承或实现轴承室绝缘。同时,在逆变器输出端增加滤波环节,降低脉冲电压dU/dt也是一种有效的方法。

三、电磁设计

在普通异步电动机设计基础之上,为进一步提高变频调速电机的性能,对变频调速异步电动机的设计参数也要进行更加细致的考虑。满足高性能要求时的变频电机设计参数的变化与设计目标之间的关系。在设计参数和性能要求之间还必须折衷选择。电磁设计时不能仅限于计算某一个工作状态,电磁参数的选取应使每个频率点的转矩参数满足额定参数要求,最大发热因数满足温升限值,最高磁参数满足材料性能要求,最高频率点满足转矩倍数要求,额定点效率、功率因数满足额定要求。由于谐波磁势是由谐波电流产生的,为减小变频器输出谐波对异步电动机工作的影响,总之是限制谐波电流在一定范围内。

四、绝缘设计

电机运行于逆变电源供电环境,其绝缘系统比正弦电压和电流供电时承受更高的介电强度。与正弦电压相比,变频电机绕组线圈上的电应力有两个不同点:一是电压在线圈上分布不均匀,在电机定子绕组的首端几匝上承担了约80%过电压幅值,绕组首匝处承受的匝间电压超过平均匝间电压10倍以上。这是变频电机通常发生绕组局部绝缘击穿,特别是绕组首匝附近的匝间绝缘击穿的原因。二是电压(形状、极性、电压幅值)在匝间绝缘上的性质有很大的差异,因此产生了过早的老化或破坏。变频电机绝缘损坏是局部放电、介质损耗发热、空间电荷感应、电磁激振和机械振动等多种因素共同作用的结果。变频电机从绝缘方面看应具有以下几个特点:(1)良好的耐冲击电压性能;(2)良好的耐局部放电性能;(3)良好的耐热、

耐老化性能。

五、结构设计

在结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般应注意以下问题:

1.普通电机采用变频器供电时,会使由电磁、机械、通风等因素所引起的振动和噪声变得更加复杂。在设计时要充分考虑电动机构件及整体的刚度,尽力提高其固有频率,以避开与各次力波产生共振现象。

2.电机冷却方式:变频电机一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动,使其在低速时保持足够的散热风量。

3.对恒功率变频电机,当转速超过3000r/min时,应采用耐高温的特殊脂,以补偿轴承的温度升高。

4.变频电机承受较大的冲击和脉振,电机在组装后轴承要留有一定轴向窜动量和径向间隙,即选用较大游隙的轴承。

5.对于最大转速较高的变频电机,可在端环外侧增加非磁性护环,以增加强度和刚度。

6.为配合变频调速系统进行转速闭环控制和提高控制精度,在电机内部应考虑装设非接触式转速检测器,一般选用增量型光电编码器。

7.调速系统对传动装置加速度有较高要求时,电机的转动惯量应较小,应设计成长径比较大的结构。

六、结论

与普通异步电动机不同,变频调速异步电动机采用变频器供电,其运行性能与电机本体和调速系统的设计都密切相关。这一方面使变频调速电机的设计要同时兼顾电机本体和调速系统;另一方面也使得变频调速异步电动机的设计变得灵活,但同时也增加了高性能变频调速系统设计的复杂程度。只有结合变频器和一定的控制策略,从整体上进行电机的设计和优化,才能获得最理想的运行性能。

参考文献:

[1]ANDRZEJM.TRZYNADLOWSKI著,李鹤轩,李扬译.异步电动机的控制.北京:机械工业出版社,2003.

[2]陈伯时,陈敏逊.交流调速系统(第2版).北京:机械工业出版社,2005.

[3]沈本荫.牵引电机.成都:西南交通大学出版社,1990.

电机设计论文篇(2)

1、引言

从物理或数学意义的角度讲,不同电压等级网络的综合规划对获得全局最优解,得到总体上最大的经济效益是必要的。然而,输配电系统的同时综合规划长期以来并不被人们所重视,在实践中,人们普遍采用将各电压等级系统分层规划的策略。造成这种状况的原因主要是:

①输配电系统的网络结构不同,进而导致优化算法不同;

②各电压等级综合规划导致问题规模激增。另外,各级电网的分层管辖也是造成分层规划的一个实际原因。

本文对多电压等级、不同网络结构的输配电系统综合规划问题进行了研究,提出了基于知识的最短路遗传算法的解决方法[1].文献[1]利用最短路遗传算法求解了配电系统重构问题。实际上,网络规划问题与网络重构问题可被看成一类问题,只不过是弧费用的计算方法不同而已,即规划问题的弧费用需要用分段函数来表示,从而考虑固定投资和不同的线型。

2、不同电压等级的开环系统综合规划

在电力系统中,为了避免电磁环网,高中压配电网必定是开环运行的。这时就能利用能生成树状网络的最短路遗传算法来求解不同电压等级的开环系统综合规划问题。对于规划问题中根据安全性和可靠性的要求需要闭环设计的系统,可以先应用本文的方法得到树状网络,然后采用文献[2]的方法进行专门的联络线优化,以构成环网。最短路遗传算法是在同一个电压等级中实现的[1],这样才能直接将负荷潮流迭加到各弧的流量上。对于多电压等级系统,只需仿照标幺值计算的原理将各电压等级的电气量折算到某一选定的电压等级上,就可以采用最短路遗传算法进行网络的全局优化。

3、开环与非开环混合输配电系统综合规划

如果需要进一步将开环与非开环系统综合规划,或配电系统允许弱环运行,最短路遗传算法就不能直接应用了。

但是,经过下述2个改变以后,最短路遗传算法即可近似地求解上述问题了。

3.1节点入度限制

首先,应允许在不需要放射运行的节点构成环。这可通过检测和限制节点入度数的方法来实现。最短路遗传算法中,在形成寻路网络Gm时,当某个中间节点k的入弧数Nin-x-m=1时,则其余指向该节点的有向弧(潮流必为0)均舍弃,这保证了最终形成的网络为放射状。现在,对每一节点规定最大入弧数,即最大入度Nin_k_MAX,若节点k属于放射状运行系统,则令其为1,否则令其为该节点最大允许的进线数。Nin_k_m记录节点k入弧数的变化情况,其初始值为0,并有机会逐渐增加。当时,其余指向该节点的有向弧(潮流为0)均舍弃。即实现了不同运行方式系统对网络结构的要求。经过以上改进的最短路遗传算法就可以解决开环与非开环系统综合规划在网络结构方面的要求。虽然,从原理上说它得到的只是较优解。

但可证明当各负荷大小趋近于0时,这种方法得到的解就会与全局最优解一致。当负荷越大时,其解越可能偏离最优解,因为此时该负荷有很大可能是由多个实际电源点供电。由于负荷通常在较低电压等级,而允许成环网运行的网络是在很高的电压等级,且低压负荷的容量比高压环网系统中元件的容量要小得多,所以,可近似地认为负荷点是由一个(实际)电源点供电,因此用最短路遗传算法获得的解将接近于实际最优解。

3.2有功潮流

由于网孔的出现,使得以负荷复电流(或功率)直接迭加构成线路中潮流的方法失去了合理性。因为只有一个虚拟源点,对于同时由2条以上供电路径供电的节点来说,可能会导致矛盾的节点电压。为了避免这种情况,此时可只考虑有功功率的优化。实际上对于允许环网的系统规划问题,现有的方法[3]也全是只考虑有功优化,而无功配置和电压控制由专门的无功优化来完成。这是因为:一方面,无功设备的投资一般要比线路、变压器和有功电源的投资小得多;另一方面,无功潮流在一定程度上可独立于有功潮流的控制。

4、基于知识的高效最短路算法

尽管最短路遗传算法不会有维数灾问题。

但是基本的Dijkstra最短路算法的计算时间复杂性是O(N2),其中N是规划问题的网络流模型的节点数,因此,基于最短路算法的局部优化算法的计算时间复杂性是O(N3)(认为负荷数与节点数成一定比例);若遗传算法的种群个体数和最大代数取固定值,则最短路遗传算法的计算时间复杂性是O(N3)。可见随问题规模的增大,最短路遗传算法的计算时间也将很长。实际上,直接在输配电系统规模非常庞大的网络上利用常规的最短路算法为某一个负荷点寻找供电路径是很不必要的。对于一个负荷点来说,整个系统中可能为其供电的元件只是很小的一部分。如果能根据输配电系统的实际信息把这一小部分元件提取出来后再应用最短路算法,则最短路算法的寻路时间将大大缩短。而由前面的分析可知,最短路算法的计算时间复杂性决定了整个算法的计算时间复杂性。我们称这个被提取出来供寻找负荷m的最经济供电路径的网络为寻路网络Gm.用以提取寻路网络的方法应具备以下特点:

①易于计算机实现。

②在保证不丢失最优解的基础上,尽可能缩小寻路网络。下面,以一个实例来说明如何实现基于输配电系统知识的最短路算法。

若现有10kV,66kV,220kV,3个电压等级系统,要寻找负荷m的最优供电路径,则可按以下步骤提取寻路网络Gm.

(1)将输配电系统按电压等级分层,负荷点通常在最底层10kV层,虚拟电源点在最高电压等级层220kV层。

(2)定义元件Aij到负荷点m的距离为式中为元件Aij的起点坐标;XB-ij、yE-ij为元件Aij的终点坐标;Xm、Ym为负荷点m的坐标;Kij-m为元件Aij到负荷点m的距离调节系数,通常取1,可用于考虑一些特殊供电情况。按最大供电半径Rm选择出可能给负荷点m供电的10kV区域:若10kV元件(线路、变压器或变电站)与负荷点m的距离大于Rm,则认为其不可能为m供电,因此不加入寻路网络。反之,则将相应的元件加入负荷点m的寻路网络。

(3)通常希望尽可能通过具有主干线型或可靠性高的主干网络传送电能,并且减少电能在主干线型和次要线型间的转换。因此,规定最大精细寻路半径rm.在此半径之外,凡是具有非主干线型或位于次要分支线路或非主干路由(对于规划问题由于许多路由上线型未确定,因此这里用“非主干路由”一词)上的元件都不加入寻路网络,而在此半径之内的元件全加入寻路网络。

(4)经上述步骤形成的10kV系统范围内的寻路网络Gm_10包含有若干66kV/10kV变电站,它们对于10kV负荷点m来说是可能的供电点,而对于66kV系统来说是可能的负荷点。对这些变电站的每一个均采用与步骤(2)、(3)类似的方法,可得到其在66kV系统范围内的寻路网络,这些网络的并集构成负荷m在66kV系统范围内的寻路网络Gm_66.

(5)同理,Gm_66中所包含的220kV/66kV变电站也可看成220kV系统的负荷点。采用与步骤(4)同样的方法可获得负荷点m在220kV系统范围内的寻路网络Gm_220.当然,Gm_66中也可能包含发电厂,此时,可认为其是通过一条无损耗、无费用的虚拟弧,由设于220kV系统的虚拟源点供电。

(6)获得负荷点m在整个输配电系统的寻路网络为显然,经过以上步骤处理后,得到的负荷点m的寻路网络Gm要比初始的整个网络要小得多,因此最短路算法的计算量也将大大缩小。

5、结论

本文对多电压等级、不同网络结构的输配电系统的综合规划问题进行了研究。在解决了电压等级折算问题后,给出了基于最短路遗传算法的纯开环输配电系统综合规划的方法。以此为基础,通过控制节点出入度,并且只针对有功潮流进行优化,又提出了开环与非开环混合的输配电系统综合规划问题的近似解决方法。为了解决输配电系统规模大而造成的计算量问题,给出了基于输配电系统知识的最短路算法的实现方法。

参考文献

电机设计论文篇(3)

机电一体化机械系统通过运用计算机技术,由计算机系统进行协调及控制,从而完成运动、能量流和机械力等各项动力学相关的任务,同时其各个机电部件相互联系、相互配合和相互协调,组成完整的系统结构。基于该系统结构的程序性和任务性,在机电一体化机械系统的设计与研究上应该站在“系统”的相关角度,以便进行有效科学的安排设计。

1机电一体化机械系统的设计要求

1.1保证较高的精确性

机电相关产品的精确程度直接关系着系统整体的质量和效益,机电一体化机械的技术性能、工艺水平及功能都要求选择优质产品,也就是说,机电一体化产品的首要标准和要求便是高精确度。

1.2反应性能要强

机电系统具有良好的反应性能,即在系统接受某一指令后,能够较短时间内对该指令进行任务的执行,从而保证系统能够更加精确地完成任务。另外根据系统的运行状况,做好准确、及时获得相应指令的控制,能够增加任务完成和执行的准确性。

1.3具有较强的稳定性

在机电一体化机械设计中,为了保证更好的系统精确度和反应性能,往往会在无间隙、低摩擦、高刚度和高谐振频率等方面对系统提出较高的要求。另一方面,还要求机电一体化机械系统有寿命长、体积小、重量轻和可靠性高等优点。

2机电一体化机械系统的构成

机电一体化机械系统通常是由传动机构、导向机构和执行机构三部分构成。

2.1传动机构

机电一体化机械系统中的传动机构,不仅仅是转速和转矩的转换器,耗时伺服系统中的重要组成部分,因此,在机电一体化机械系统设计要求中,传动机构首先要具有较高的精确度,同时必须满足重量轻、噪音低、体积小、运转速度高和可靠性高等方面的要求和特点,结合机电一体化机械系统中对伺服控制的要求和标准进行传动机构的设计研究,以便更好地提升系统机械结构中的伺服性能。

2.2导向机构

导向机构在机电一体化机械系统中主要起到的是导向作用和支撑作用,一般包括导轨和轴承等。导向机构的正常作用的发挥可以有效保证机电一体化机械系统中的组成部分和各个装置能够安全、准确完成指定的任务运动。

2.3执行机构

执行机构,是指在机电一体化机械系统中直接完成任务指令的操作装置和部分,一般情况下,执行机构所具备的高灵敏度和精确度以及高重复性能和可靠性,可以保证其根据不同的任务指令和相关要求,在动力源的推动下完成预先设定的各种操作任务。在目前经济快速发展的社会,计算机的应用能通过其强大有效的功能,使传统机电的动力发动机转换成为可变速、动力和执行的多功能发动机,从而使得执行机构和传动机构得到进一步的简化。

3机电一体化机械系统的设计思想

3.1动态设计思想

在机电一体化机械系统的设计中,通过静态设计的有效协助,为了更好的研究整个机械系统结构的频率特点和性质,完成各个系统环节数字模型的建立,推动促进机电一体化机械系统的传递函数,必须充分有效地通过自控方法进行频率特性的计算,这便是动态设计。机械系统的频率特性,在一定程度上不但能够反映出整个系统在不同信号频率下的相应反应,还决定了系统的工作最大频率、抗干扰性和稳定性。

3.2静态设计思想

静态设计是指按照机电一体化各个机械系统的功能要求,通过相关的研究和经验初步、大体上制定出机械系统设计的步骤及方案。方案中主要涉及整个系统部件之间的控制、连接以及部件的种类和对能源的需求等。基本方案设计完成后,应以技术手段为基础,设计出系统中各部件的运动关系、参数及结构,确定部件及相应零件的材料、精确度和结构方式,并对执行元件发电功率、参数和过载能力进行验算,对其他相关的元件和部件进行配置系统的选择等等。

4机电一体化机械系统的性能分析

想要使机电一体化机械系统良好的伺服性能得到保证,不但需要从机械系统的静态特征方面得到更好的满足,同时还要充分的运用理论研究和自动化的控制方法对整个系统体系进行动态设计和分析。另外,机械系统的动态设计应该以系统静态的数字模型为基础,根据自动化控制的要求和方法研究分析系统的整个频率特性,并通过调整相应的频率,改善系统整体的伺服性能。

4.1数字模型的建立

机电一体化机械系统数字模型的建立和电气系统的数字模型的建立在一定程度上基本相似,即都是通过折算将比较负责的结构装置简单化,转为等效的数学函数关系,并用数学中的线性微分方程表达式将其表达出来。机电一体化机械系统的数字模型分析通常情况下都是输入与输出的联系。比如,把比较复杂的系统机械参数,弹性模量、阻尼和系统惯量等统一进行处理,并对各个机械参数进行数学方式的分析,从而得出它们对整个机械系统的影响。在数字模型的建立之前,需要先对机械系统中的不同物理量进行折算,使它们直接转化到某个元件上,从而把多变、复杂的多轴传动变为单轴传动,在此过程中,必须严格按照总机械系统性能不变的原则。这样,以单轴为基础的输入量和输出量的关系,就能够建立相关的数学表达式,从中反应出机械的相应性能,从而应用并指导实际中的设计。

4.2性能参数的影响

机电一体化机械系统设计要求必须要工作可靠、精确度高、运行平稳等,既是静态设计中的研究问题,也是动态设计对伺服机构的要求,这就应该通过对有关参数的调整,优化整体系统的性能。

5结语

通过以上论述,从机电一体化机械系统的性质、概念等方面进行相关分析,分别从机电一体化机械系统的设计要求、基本构成、设计思想和性能分析四个方面进行了研究分析,机电一体化机械系统设计研究进行了详细的论述。

作者:朱翔宇 王玉乐 单位:聊城大学机械与汽车工程学院 青岛科技大学自动化与电子工程学院

参考文献:

[1]农明武.技校生参加"机电一体化"技能竞赛的指导策略[J].中小企业管理与科技(下旬刊),2016(01).

电机设计论文篇(4)

我国目前面临确定最优备用容量克服风电机组出力的间歇性和波动性影响,支持消纳大规模风电并网的问题。合理确定快速响应火电机组规模,过多火电机组备用容量会增加运行成本,因此需要考虑到系统的经济性。本文的研究基础是新建快速响应火电机组来解决面临的风电并网及消纳问题,不考虑对现有火电机组升级改造的情形。大规模风电并网背景下快速响应火电机组的规划面临2种不确定性:1)快速响应火电机组参数的不确定性,包括燃料可用性、碳排放成本、折现率、投资成本等;2)系统调度水平的不确定性,包括随机停运(机组、输电线路等)、负荷和风速预测误差等。本文假定发电商向调度机构提出快速响应火电机组建设申请,调度机构结合规划模型最终确定快速响应机组规划方案,因此,快速响应机组参数的不确定性可以不用考虑。同时,假定电力系统的随机性与系统元件停运相关,负荷和风速预测误差与发电备用容量最优水平相关。同时,本文采用蒙特卡罗模拟方法来仿真电力系统的随机特性。假定风速服从威布尔分布[17],由于风速预测误差的存在,蒙特卡罗仿真将设定大量情景,并得到每个情景下每小时的风力发电量。考虑到发电机组和输电线路的随机性停运,在蒙特卡罗仿真中引入2个向量X和Y。其中,Xmht=1表示第m个发电机组在第t年时段h时运行,Xmht=0则表示停运;Ynht=1表示第n条输电线路在第t年时间段h时可用,Ynht=0则表示不可用。本文将年尖峰负荷预测表示为基本负荷与年增长率的乘积[18]。年增长率包括年平均增长率和随机增长率2部分,随机部分反映了不确定的经济增长或天气变化对负荷预测的影响。每个节点的每小时负荷是基于年系统尖峰负荷在使用既定负荷分布因素的情况下得出的。每个情景都有一定的发生概率,由生成的情景数目分布得到。情景总数对基于情景的优化模型的计算工作量影响很大。因此,对于大型计算系统,采用有效的情景精简方法对提高计算效率是十分重要的。精简技术要求在尽量与原始系统接近的情况下得到最少的情景。因此,本文设定情景子集采用基于该子集的概率测度方法,该方法在概率度量方面与初始概率分布最为接近。另外,本文利用通用代数建模系统(generalalgebraicmodelingsystem,GAMS)中的SCENRED工具提供的精简代数式设定情景子集,并对情景进行最优概率分配。

1.2基于Benders分解算法的规划模型

大规模风电并网时,系统调度机构的目标是在满足规划和运行约束条件的前提下实现规划总成本最小,如式(1)所示。式中:t为规划年,t=1,2,…,T;h为时段,h=1,2,…,H;m为发电机组序号,m=1,2,…,M;k为情景,k=1,2,…,K;Cmt()为第t年机组m的投资成本;Gmts为k情境下第t年机组m的安装状态,1为已完成安装,否则为0;d为贴现率;pk为情景k发生的概率;Omht为第t年的h时段发电机组m的运行成本;Sht为相应的运行小时数;Pmhtk为k情境下第t年h时段机组m的调度电量。根据大规模并网背景下系统的不确定性及目标函数的特点,本文利用Benders分解法将快速响应火电机组规划问题分解成1个主问题和2个子问题:主问题是不考虑可靠性的最优投资规划问题,2个子问题是可靠性和最优运行问题。其中,可靠性子问题的可行域受主问题影响,而最优运行子问题受可靠性子问题可行域的影响,也就是说可靠性子问题的约束中除含有自身决策变量还包括主问题的决策变量,同样,最优运行子问题约束中除含有自身决策变量还包括可靠性子问题决策变量。在图1中,发电商向系统调度机构提供快速响应机组的候选集,考虑规划限制情况下,调度机构以新机组投资总成本最小为目标,确定新机组的最优投资方案。其中,规划限制因素包括机组最大数量和候选机组的建设时间等。其中主问题同样确定了目标函数的下界,并用该下界检验规划的最优性。除了规划限制因素,子问题中产生的Benders割也作为主问题附加约束条件。主问题中包含所有的变量,而且所有的限制条件是线性的。主问题是一个混合整数线性规划问题。通过子问题提供的可靠性和最优运行对主问题的组合优化状态进行修正。可靠性检查子问题对主问题提出的规划中涉及到的系统可靠性限制因素的可行性进行检测。该子问题不仅保证每个节点是电力平衡的,而且满足输电安全和发电机组物理限制因素的要求。在可行性不允许的情况下,会形成可靠性割,用以分析主问题中规划问题的派生情况。直到确定可靠的规划后该派生过程才会停止。一旦满足了系统可靠性,最优运行的子问题将考虑规划方案的最优性,直到满足给定的收敛标准,该问题的派生过程才会停止。具体计算步骤如下:

1)系统调度机构

最初获得的信息包括投资候选快速响应火电机组的经济性和技术性数据、机组断电数据、输电线路数据以及负荷和风速预测误差数据。然后利用蒙特卡罗模拟法设定一系列情景。随机长期规划问题本质上很复杂。本文用代数建模系统(GAMS)对情景进行精简。

2)本文模型

包括1个混合整数线性规划主问题和2个线性规划子问题。主问题研究最优投资规划,子问题进行可靠性检查并确定最优市场运行状态。主问题确定最优投资规划,其目标是新确立的快速响应发电机组的投资成本最小,如式(2)所示。式中:Bm为快速响应机组m的建设时间;Mmht为第t年发电机组m启停状态,1为开机,0为停机。其中,式(3)—(5)分别为建设时间约束条件、装机情况约束条件、快速响应机组的组合优化状态约束条件。主问题的解包括最优投资规划、新机组的组合优化状态和规划目标函数的下界。在第1派生阶段,对机组的组合优化状态没有系统限制约束,因此变量赋有随机值。但是,在接下来的派生过程中,来自于可靠性检查和优化运行子问题中的Benders割为机组状态设定了限制因素。如果出现意外情况(如图1所示主问题求解环节出现无解的情况),则调度机构需要采取一系列预防措施,如切负荷、激励市场参与者提供额外的容量作为快速响应备用等。

3)主问题确定

第t年发电机组m的最优安装状态mtG及其在h时段的启停状态mhtM后,可靠性检查子问题基于主问题的解将系统偏差降到最小。在电力平衡变量中引入松弛变量,目标函数(6)即是将松弛变量最小化。式中:Vitk为k情境下第t年的松弛变量;,1ijhtkL为第i次迭代k情境下第t年h时段j母线上的预期发电缺口;,2ijhtkL为第i次迭代k情境下第t年h时段j母线上的发电剩余;Phjtk为k情境下第t年h时段j母线上的调度电量;Dnjtk为k情境下第t年输电线路n上来自母线j的有功潮流;Qjhtk为k情境下第t年h时段母线j上的负荷;Mmhtk为k情境下第t年发电机组m在h时段的开停机状态;Pmhtk为k情境下第t年h时段机组m的调度电量;Pmin,m为机组m的最小出力限制;Mmht为第t年h时段机组m的启停状态;Xmthk为k情境下第t年h时段机组m的发电机可用状态,0为处于停机状态,否则为1;Pmax,m为机组m的最小出力限制;Dnhtk为k情境下第t年h时段输电线路n上的有功潮流;Ynhtk为k情境下第t年h时段输电线路n的输电可用状态;I为从线路n上某点注入的注入功率;θnchtkθndhtk为k情境下第t年h时段输电线路n两端电压的相角差;xn为输电线路n的电抗;Rm、Rm为机组m爬坡加速/减速极值。其中,式(7)为目标函数的节点电力平衡约束条件,式(8)为发电机组安装状态,式(9)为主问题确定的组合优化状态,式(10)为发电限制,式(11)为直流电力潮流,式(12)为输电线路限制,式(13)(14)为爬坡加速/减速限制。随机规划解将满足长期可靠性指数,如电量不足停电损失率η。当第t年第h小时的η值比其目标值大时,第r次迭代时产生Benders割,相应的可靠性信号会反馈给主问题。将η作为约束条件限制未供给的每小时负荷数。年度负荷总数满足年度η要求。但是,使用基于小时指标的优点在于能够阻止某些时段发生大规模甩负荷的情况。第t年h时段的η由式(6)中的预期发电缺口Lijhtk,1除以第t年第h小时的预测负荷所得。式(15)所示的可靠性限制会使发电剩余Lijhtk,2为0。如果式(15)中有任何一个式子不能满足,则会产生Benders割。式中:αits和βihts分别为优化过程中对应于各约束的拉格朗日乘子最优值,均为常量;Fhtk为k情景下第t年h时段的负荷;ηht为第t年h时段电量不足的概率。式(16)的Benders割表示现有机组组合优化状态和候选机组安装状态的耦合信息。割表示在t年通过调整投资规划无法减轻电网受到的扰乱程度。

4)最优运行

子问题的目标是基于提交的竞标发电量和用电需求使社会福利最大化。社会福利定义为基于竞标值的电力消费支付额和生产成本之间的差额。该子问题的构建基于安全约束的经济调度模型,并检查所求解的最优性。当电力需求没有弹性时,目标函数是基于给定的投资规划和机组组合优化状态使系统成本最小,如式(17)所示。在一些情景下,发电机组和输电线路断电会导致无可行解。为了计算此种情况下的价格,假设原发电机组由虚拟发电机组以更高的价格提供所需电量。利用电量不足期望值来表示虚拟发电机组提供的电能。(1)111(1)111min(1)(1)THKqhtmhtmhtkktthkTHJhtjhtjhtktthjSOPWdSCPd(17)s.t.111MJJmhjtkjhtkjhtkmjjPPQ(18)UPEQ+PAD(19)0,jhtkPj(20)式中:Wqk为系统运行成本;jhtkP为k情境下第t年h时段母线j上虚拟机组的可调度容量;jhtC为第t年h时段母线j上虚拟机组的成本;U为母线机组关联矩阵;E为母线负荷关联矩阵;P为虚拟机组可调度容量向量;A为母线支路关联矩阵;D为有功潮流矩阵;P为有功功率向量;Q为负荷向量。类似于可靠性检查子问题,最优运行的目标函数受到物理因素限制,如式(8)—(14)所示。该子问题的解为主问题目标函数提供了上界,用于检查解的最优性。如果提出的投资规划方案不是最优的,会产生如式(21)所示的Benders割现象,并会添加到下一迭代过程中的主问题中。(1)(1)1111111111()(1)()()KTMqmtmtkmtkkktktmKTMkmtkmtkmtktmKTHMkmhtkmhtkmhtkthmCGGZpWdpGGpMM(21)Benders分解法的重要特点是可以在每一迭代阶段为最优解提供上下界,从而提供了收敛标准。收敛标准如式(22)所示。YZYZ(22)式中是最小的正数,表示接受最优解的临界值。

2、算例分析

本文通过一个6节点系统的算例来分析集中式和分布式风电扩张情形,如图2所示。本文研究给定风电并网水平情况下快速响应火电机组的规划问题。基于风速预测数据,该系统分为3个区域,其风电容量参数分别为31%、38%和49%。风电容量参数是1a内实际风力发电量与装机容量全部投入使用时的发电量的比值。本文研究的快速响应火电机组安全经济规划期和年峰负荷预测期均为10a。表1列出了系统数据,图3给出了基准案例情况下年尖峰负荷预测情况。节点2、4和5的负荷比例分别为50%、30%和20%。假设负荷在该段时期内拥有相同的分布参数。年尖峰负荷预测值是基准负荷(如307MW)与年增长率(如2.5%)的乘积。假定尖峰负荷随机部分增长率和风速预测误差服从正态分布[19],中值为0,标准差为0.01,每小时负荷参数和每小时风力发电系数借鉴伊利诺伊理工大学提供的6节点系统小时数据。表2所示为候选发电机组数据。风电每小时成本忽略不计。风电容量为150MW,在情形I中是集中式,情形II—IV分布式。5种情形如下:1)情形I,风电机组集中在节点3的规划问题。2)情形II,风电机组分布在节点2、3和6的规划问题。3)情形III,风电机组分布在节点2、3和6,但是在第8年线路4-5部分停运的规划问题。4)情形IV,风电机组分布在节点2、3和6,但是在第8年机组2停运的规划问题。5)情形V,风电机组分布在节点2、3和6,但是在第8年线路4-5部分和机组2同时停运的规划问题。情形I:在该情形下,风电机组全部安置在区域C的节点3处,因为此处风速预测最为理想。第1年该节点接入装机容量为150W、容量参数为49%的风电机组。但是,这样的规划导致无法用其他机组降低节点3较大风速误差带来的影响。表3列出了各机组投入使用的年份。机组3一直投入使用,机组1在尖峰投入时使用以满足负荷需求,将运行成本降到最小。总的投资和运行成本为1336元/MW,其中运行成本为553元/MW。起初,机组3在节点3,机组2在节点2(系统最大的负荷中心)。表3中的其他机组在以后年份风电容量和负荷增加时逐步投入使用。风电集中安装情况下没有足够多的输电通道。情形II:图2显示了风电机组在3个区域分布式安装的结果。风电机组装机容量50MW,区域A和B的容量参数小于区域C的容量参数。表4给出了候选机组的安装年份。与情形I类似,机组1在第5年安装,机组2在第1年安装。但是,在第7年机组3才在节点1安装。节点3处的风电机组WG3年发电容量为12.5MW(容量参数为25%),线路2和3没有阻塞。低成本的WG3在某些时候低于其容量参数运行是因为系统慢加速限制因素。因此,在第7年接入快速响应机组后,WG3平均发电量上升到22.5MW,容量参数为45%,仍然低于WG3的容量参数49%,这是由于输电和运行条件限制(如火电机组最低发电量限制、系统慢加速限制、开关限制等)。与情形1相比,总投资和运行成本降低至1072元/MW,其中运行成本上升到了601元/MW。在情形II中,由于区域A和B较低的容量参数,总风电机组利用率与情形I相比降低了28%,这将导致更多的昂贵的火电机组的使用,并增加运行成本。如果区域A和B的容量参数与区域C相同(49%),则运行成本将降低至540元/MW。图4把运行和总成本描述为风电容量参数的函数。初始值是现有的风电并网水平。图4显示随着快速响应机组投资额的增加,运行成本降低。由社会成本可以看出,容量参数的最优增长为20%,此时社会成本最低。尽管区域A和B的风电容量参数较低,但是风电在3个区域的分布降低了总成本,提高了机组使用率。这是因为一个区域的风力间歇可以由其他区域来补充,同时,快速响应机组投入减少。情形III:该情形考虑在第8年尖峰时段4-5线路停运的情况。与情形II类似,机组2在第1年投入使用,机组1在第5年投入使用,机组3在第7年投入使用,如表5所示。另外,作为预防措施,机组4在第8年投入使用,机组6在第10年投入使用。线路4-5的停运减少了区域A和区域B的输电通道,因此有必要在区域B接入机组4和6。与情形2相比,总成本增加至1227元/MW。情形IV:第8年尖峰时段机组1的停运将改变情形II中的规划方案。机组2在第1年投入使用,机组1在第5年投入使用,机组3在第7年投入使用,如表6所示。另外,机组6在第8年投入使用,作为机组2停运的补充。该预防措施使规划成本上升至1162元/MW,运行成本升至601元/MW。情形V:在第8年,线路4-5和机组2同时停运,如表7所示。此处考虑尖峰和非尖峰时段2种情况。同之前情形类似,机组3在第1年投入使用,机组4和6在第8年投入使用作为停运的补充。总成本升至1232元/MW,是所有情形中最高的,但是运行成本和情形4和5相比变化不大。

电机设计论文篇(5)

2提高高职毕业设计教学质量的对策

2.1充分做好机电类专业毕业设计的选题工作

选题是毕业设计的基础,决定了毕业设计的方向。毕业设计的内容应涵盖专业的主干课程,符合所学专业的人才培养目标,这样才有利于学生巩固所学知识。目前,绝大部分职业院校毕业设计选题多采用指导教师给定题目,学生3-5人组成项目组的形式,这种选题模式限制了学生自主创新能力的发挥。高职学生的培养的是技术应用能力强,服务于生产和管理等一线岗位的高技能应用型人才,因此,结合学生自己的兴趣或以后的工作需要来选择题目比较切合实际,学生可以从自己熟悉和感兴趣的方面着手,缩短理论与实际工作的差距,一旦走上工作岗位以后,可以很快融入角色,增强自身的竞争能力,也为该专业的学生就业提供了良好的平台。

2.2完善机电类专业毕业设计管理机制

毕业设计是重要的实践性教学环节,为确保毕业设计顺利进行,要成立专门的机构制定具体的措施和办法,制订完善毕业设计教学管理制度和管理文件,成立毕业设计领导小组,对毕业设计的整个过程实行全面质量跟踪和管理,举行毕业设计指导讲座,组织学生结合自己的兴趣或以后的工作需要选择题目,制订《毕业设计工作计划》对教师何时下达毕业设计任务书、学生何时进行有关技术资料、数据的收集、学生何时完成毕业设计初稿、教师何时对学生的初稿提出反馈意见、学生何时完成毕业设计修改稿、何时完成毕业答辩做出系统的安排。制订《毕业设计书写格式》,毕业设计说明书要有统一格式,内容一般应包括名称、摘要、正文和参考资料四部分。正文是说明书的核心,一般应包括:本课题的目的和意义、目标分析及总体方案的确定、设计的思想和依据、实体设计、软硬件调试和结果分析,必要的计算、图表、总结。说明书文字叙述力求简练通顺,字数不得小于6000字,设计说明书的撰写力求概念准确,条理清楚,材料丰富,数据可靠,论述深入浅出,做到科学性、先进性和实用性相结合。制定《毕业设计管理制度》,对设计的选题、设计的指导、设计的答辩以及毕业设计的成绩评定等各方面工作做出相应的管理制度。加强加强毕业设计检查监督工作,按照《毕业设计工作计划》的要求对通过毕业设计考核,确定学生所做的毕业设计是否达到教学要求,了解学生的设计的实际水平,对于抄袭和代做的毕业设计应严肃处理。

2.3改革毕业设计答辩模式

毕业设计答辩对毕业设计起着举足轻重作用,通过答辩可以检查学生毕业设计质量,考查指导教师的指导水平。要成立毕业设计答辩工作领导小组,精心组织答辩工作,对答辩场地、人员安排、答辩时间、答辩记录等工作都要进行周密的安排。学院可以邀请企业专家、专业技术人员与学院的指导教师共同组成答辩考评委员,此外,学校的指导教师同样可以到企业去,与企业的专业技术人员组成现场答辩委员,在企业现场进行答辩。在答辩前几天答辩考评委员的成员要阅读学生的毕业设计,精心准备答辩问题,除此之外,还要组织相关专业的年轻教师参加答辩,使年轻教师的专业知识水平得以提高。

电机设计论文篇(6)

由于每届或每班的指导教师不同,设计题目、内容、要求、难易程度偏离太大。如有数控机床改造设计、伺服系统控制设计、交通灯控制设计等,要求、工作量也不相同。有的设计任务偏难,有的设计任务又太简单。

(2)设计资料缺乏。

由于机电一体化是一门新兴的技术和专业,这方面的知识内容都在相关的杂志刊物登载,书籍相对少一些。要进行课程设计,收集这方面的资料较困难。没有现成的资料汇编及设计手册,学生要花费较多的时间找资料,往往是教师帮助寻找资料。而且没有像机械零件设计那样的系统完整的课程设计指导书。在设计中盲目性较大。

(3)师资不足。

最早几年机电专业方向只有一个班或两个班,指导教师有2~4人即可。一般由主讲或熟悉机电一体化控制系统课程的教师指导。近几年随着学生的扩招,机电专业扩展到4~5个班,指导教师需要8~10人,明显不够,因此有必要进行培养。

2机电一体化课程设计改进措施

(1)编写合适的机电一体化课程设计指导书,配齐设计资料。

到目前为止未见过公开出版的机电一体化课程设计指导书,所以有必要编写合适的机电一体化课程设计指导书,并收集较全的资料进行汇编,与指导书汇编成册。

(2)规范设计题目,统一要求。

规范设计题目不是整个设计都用同一个题目,而是在一个范围内选择题目,教师根据所选的题目按统一的要求下达任务书。设计题目一般以简易数控机床设计、数控机床改造设计、机器人及控制设计较为合适。在市场上可见的机电产品多得很,不是所有的机电产品都适合做题目,因其难易程度是不同的。机电专业的课程设置是以机床设计、机器人设计控制为典型产品的,在机电一体化课程设计中要反映课程设置的内容。机电专业方向课程有机电一体化系统设计、计算机控制技术、机械制造装备设计、机器人导论等课程。这些课程的内容在电的方面主要介绍了以计算机为核心的控制系统;机械方面介绍了机械运动、机械传动、机械结构及相关的标准部件,如滚动导轨、滚珠丝杠等。在选题及设计中要反映上述的内容。因此规范化的题目主要为数控车床(或铣床、钻床等)设计、车床(或铣床、钻床等)数控化改造设计、或是工业机器人及控制设计。这些都具有一定的机械部分内容,如数控机床进给轴传动部件,机器人的腰身、手臂运动部件及滚珠丝杠、导轨的应用等。电的方面包含数控系统电路设计,计算机控制系统设计及对机械部分的控制;从而实现了机电结合。对规范化的题目、要求及上述设计内容都已编入指导书中。

(3)指导教师的培养。

首先被培训的教师可以跟班听课,熟悉掌握相关的课程内容,然后在机电一体化课程设计进行中跟班辅导,以培养出合格的指导教师。

(4)加强督察。

当指导教师接到指导课程设计任务后,首先拿到机电一体化课程设计指导书,根据要求写出课程设计任务书;并由教研室主任或院教学指导委员会审查,合格才可向学生下达任务。指导中,教师要填写指导日志,随时记录指导中的难点、及出现的问题和解决方法,并进行小结,以便下一次指导时提高设计水平。

3机电一体化课程设计指导书主要内容

3.1设计题目确定及要求

3.2总体方案确定

(1)总体方案设计;

(2)绘制总体方案图。

3.3伺服系统机械传动部件设计

(1)切削力计算;

(2)滚动丝杠螺母副的计算与选型;

(3)伺服系统传动设计;

(4)步进电机当量扭矩计算及选型;

(5)机械传动结构设计(绘制一个轴的机械装配图)。

3.4控制系统硬件电路设计

(1)确定控制系统方案及绘制系统框图;

(2)单片机的选用;

(3)存储器的选用与扩展;

(4)译码电路设计;

(5)接口电路设计;

(6)绘制控制系统硬件电路原理图。

3.5基本的参考图表汇编。

4近一届学生机电一体化课程设计进行情况

4.1教师配备

近一届机电专业学生,每届有四个班进行机电一体化课程设计,共配备6名教师;其中有四名为独立指导教师,两名为辅导教师,为培养新的指导教师储备力量。

4.2指导书的使用及设计过程

设计学生和指导教师每人一份机电一体化课程设计指导书。教师按照要求写出机电一体化课程设计任务书,并经研究所长审查后发给学生。设计题目主要有CA6140普通车床数控化改造设计、C6132普通车床数控化改造设计。在同一个题目的学生中,要求设计进给轴部件时,一部分学生设计X轴进给部件,另一部分学生设计Z轴进给部件。整个过程根据设计任务书的题目、要求和机电一体化课程设计指导书给出的设计步骤、方法,先进行总体方案设计,再进行机械传动部件设计,最后进行CNC硬件电路设计。整个过程经过了机械、电子两方面的训练,实现了机电结合,达到预期效果。

4.3填写指导日志

教师在指导设计的过程中,及时填写指导日志,记录设计中的难点、问题,并进行小结。

电机设计论文篇(7)

毕业设计通常由封面、任务书、开题报告、摘要及关键词、目录、正文、参考文献、致谢等部分组成,而好些学生的毕业设计中,只有封面、目录和正文,其余的部分都忽略掉了,有些就算有目录,目录的页码与正文所标的页码也不吻合。

2提高高职毕业设计教学质量的对策

2.1充分做好毕业设计的选题工作

选题是毕业设计的基础,决定了毕业设计的方向。毕业设计的内容应涵盖专业的主干课程,符合所学专业的人才培养目标,这样才有利于学生巩固所学知识。目前,绝大部分职业院校毕业设计选题多采用指导教师给定题目,学生3-5人组成项目组的形式,这种选题模式限制了学生自主创新能力的发挥。高职学生的培养的是技术应用能力强,服务于生产和管理等一线岗位的高技能应用型人才,因此,结合学生自己的兴趣或以后的工作需要来选择题目比较切合实际,学生可以从自己熟悉和感兴趣的方面着手,缩短理论与实际工作的差距,一旦走上工作岗位以后,可以很快融入角色,增强自身的竞争能力,也为该专业的学生就业提供了良好的平台。

2.2完善毕业设计管理机制

毕业设计是重要的实践性教学环节,为确保毕业设计顺利进行,要成立专门的机构制定具体的措施和办法,制订完善毕业设计教学管理制度和管理文件,成立毕业设计领导小组,对毕业设计的整个过程实行全面质量跟踪和管理,举行毕业设计指导讲座,组织学生结合自己的兴趣或以后的工作需要选择题目,制订《毕业设计工作计划》对教师何时下达毕业设计任务书、学生何时进行有关技术资料、数据的收集、学生何时完成毕业设计初稿、教师何时对学生的初稿提出反馈意见、学生何时完成毕业设计修改稿、何时完成毕业答辩做出系统的安排。制订《毕业设计书写格式》,毕业设计说明书要有统一格式,内容一般应包括名称、摘要、正文和参考资料四部分。正文是说明书的核心,一般应包括:本课题的目的和意义、目标分析及总体方案的确定、设计的思想和依据、实体设计、软硬件调试和结果分析,必要的计算、图表、总结。说明书文字叙述力求简练通顺,字数不得小于6000字,设计说明书的撰写力求概念准确,条理清楚,材料丰富,数据可靠,论述深入浅出,做到科学性、先进性和实用性相结合。制定《毕业设计管理制度》,对设计的选题、设计的指导、设计的答辩以及毕业设计的成绩评定等各方面工作做出相应的管理制度。加强加强毕业设计检查监督工作,按照《毕业设计工作计划》的要求对通过毕业设计考核,确定学生所做的毕业设计是否达到教学要求,了解学生的设计的实际水平,对于抄袭和代做的毕业设计应严肃处理。

2.3改革毕业设计答辩模式

毕业设计答辩对毕业设计起着举足轻重作用,通过答辩可以检查学生毕业设计质量,考查指导教师的指导水平。要成立毕业设计答辩工作领导小组,精心组织答辩工作,对答辩场地、人员安排、答辩时间、答辩记录等工作都要进行周密的安排。学院可以邀请企业专家、专业技术人员与学院的指导教师共同组成答辩考评委员,此外,学校的指导教师同样可以到企业去,与企业的专业技术人员组成现场答辩委员,在企业现场进行答辩。在答辩前几天答辩考评委员的成员要阅读学生的毕业设计,精心准备答辩问题,除此之外,还要组织相关专业的年轻教师参加答辩,使年轻教师的专业知识水平得以提高。

电机设计论文篇(8)

1引言

在当今的各种实时自动控制和智能化仪器仪表中,人机交互是不可缺少的一部分。一般而言,人机交互是由系统配置的外部设备来完成,但其实现方式有两种:一种是由MCU力口驱动芯片实现,如键盘显示控制芯片SK5279A,串行数据传输数码显示驱动芯片MAX7219等等,这时显然MCU没有LCD的驱动功能。另一种就是MCU本身具有驱动功能,它通过数据总线与控制信号直接采用存储器访问形式或I/O设备访问形式控制键盘和LCD实现人机对话。这里的MCU主要有世界各大单片机生产厂商开发的各种单片机,其中TI公司的MSP430系列因其许多独特的特性引起许多研究人员的特别关注,在国内外的发展应用正逐步走向成熟。

2LCD简介

LCD(LiquidCrystalDisplay),即液晶显示器。液晶显示是通过环境光来显示信息的,它本身并不发光,因而功耗很低,只要求液晶周围有足够的光强。LCD是人与机器沟通的重要界面,早期以显像管(CRT/CathodeRayTube)显示器为主,但随着科技不断进步,各种显示技术如雨后春笋般诞生。LCD由于具有轻薄短小、低耗电量、无辐射危险、平面直角显示以

及影像稳定不闪烁等优势,逐渐占据显示的主流地位。

LCD的类型,根据其分类方式的不同而不同。如根据LCD显示内容的不同可以分为段式LCD和点阵LCD。根据LCD驱动方式的不同可以分为静态驱动和多路驱动。

3MSP430F44X简介

MSP430F44X系列是TI公司最新推出的具有超低功耗特性的Flash型16位RISC指令集单片机[2]。该系列单片机性价比相当高,在系统设计、开发调试及实际应用上都表现出较明显的优势。它主要应用在各种要求极低功率消耗的场合,特别适合用于智能测量仪器、各种医疗器械、智能化家用电器和电池供电便携设备产品之中。

3.1系统结构

MSP430F44X的系统结构,主要包括:CPU、程序存储器(ROM)、数据存储器(RAM)、FLL+时钟系统(片内DCO+晶体振荡器)、看门狗定时器/通用目的定时器(WatchDog)、ADCl2(12位A/D)、比较器A(精确的模拟比较器,常用于斜边(Slope)A/D转换)、复位电压控制/电源电压管理、基本定时器(BasicTimerl)、定时器(Timer-a和Timer-B)、LCD控制器/比较器(多达160段)、硬件乘法器、I/O口和串行口[4]。系列中各种具体的型号稍有差别。在本次设计中,具体选择MSP430F449作为人机接口电路的设计具有许多独到的优势。这一点,读者可以根据TI公司相关的数据手册进行比较。

3.2片内外模块特性

MSP430F44X具有丰富的片内模块,其明显的特点是:具有48条I/0口线的6个并行口P1-P6,其中P1、p2具有中断能力,同时具有2个可用于UART/SPI模式选择的串行口(USART0和USARTl);内含12位的A/D转换器ADCl2,快速执行8×8、8×16、16×16乘法操作并立即得到结果的硬件乘法器;多达160段的LCD控制器/比较器,可以实现多种方式的驱动显示;可以实现UART、PWM、斜坡ADC的16位Timer-A和16位Timer-B;非常灵活的时钟系统,既可用32768Hz的钟表晶振产生低频时钟,也可以用450kHz-8MHz的晶体产生高频时钟,同时还可以使用外部时钟源或者用不同控制频率的DCO;多达几十kB的Flash空间,这样数据既可以保存在片内的Flash信息存储器,也可保存在程序的Hash中的剩余空间。

4接口电路设计

4.1接口电路简图及说明

典型应用电路示意图。在该图中,LCD类型和键盘种类及数目的选择、下拉电阻的数值大小都必须认真考虑,硬件设计要满足一定的工作时序关系,复位时预留缓冲时间和悬空部分引脚,晶振的选择要在适当的数值,必须保证交流驱动的频率在30Hz-1000Hz范围内,其具体的情况请详细参考TI公司的相关资料[3]。

4.2段型液晶显示屏EDS820A简介

一般而言,LCD分为笔段型和点阵字符型及点阵图形型。笔段型主要是显示数字,常用于计数、计量和计时;点阵字符型用于显示数字和西文字符;点阵图形型用于显示图形及字符。本设计中用到的EDS820A就是由西安新敏电子科技有限公司生产的笔段型LCD。是该显示屏的各个引脚的逻辑功能表。

显而易见,该产品EDS820A是5位的液晶显示屏,它只有4个DP,用于显示小数点;COM端也只有一个,所以该LCD与MSP430F449的管脚连接应该引起足够重视.

5软件设计

硬件连接电路图为例,编写了键盘控制及显示程序,程序在IAREmbeddedWorkbench编译通过。全部主程序包括详细的发射和接收子程序,及初始化和等待键盘输入转换、显示等等,值得注意的是发射与接收的控制要适当。

该程序是用汇编编写的。程序实现的是等待按键输入,读取键值,最后进行键值处理和显示的功能。

检测是否有键按下是通过KEY是否有高电平信号。平时,KEY为低电平,当有键按下时为高电平,它发送一个脉冲给单片机MSP430F449,当单片机检测到该信号时,判断按键的功能,从而进行相应的处理。

6人机接口电路在体内电刺激器中的应用

医学上,在进行疾病控制时,通常可以通过电极以一定波形(如方波、正弦波等)、频率、幅度、占空比等电信号对神经或肌肉进行刺激,以使其支配相应的功能或肌肉产生收缩/舒张动作,从而有利于症状的减轻。由于不同部位的神经或肌肉对电刺激发生的敏感水平不同,不同强弱和不同性质的电信号所产生的刺激效果是不一样的。我们研制的体内电刺激器,可以产生手术时所需要的具有不同的频率、幅度、占空比的不同波形信号。该仪器幅度、占空比准确,频率稳定,各参数均可以精确的调节。而且,由于使用了LCD显示,它与单片机的连接简单。LCD具有质量轻、体积小、电压低、功耗小、显示内容丰富等优点,其人机界面相当友好。但人机接口电路设计的优劣直接影响到整台仪器的使用效果。

电机设计论文篇(9)

常规PID控制系统原理框图如图1所示。

PID控制器是一种线性控制器,它根据给定值r(t)与实际输出构成控制偏差:

将此偏差的比例(P)、积分(I)和微分(D)通过线性组合构成控制量,对被控对象进行控制。其控制规律为:

式中,Kp为比例系数,T1为积分时间常数,TD为微分时间常数。

在PID控制中,比例项用于纠正偏差,积分项用于消除系统的稳态误差,微分项用于减小系统的超调量,增加系统稳定性。PID控制器的性能就决定于Kp、T1和TD这3个系数。如何选用这3个系数是PID控制的核心。

1.2数字PID控制算法选择

设计和调整数字PID控制器的任务就是根据被控对象和系统要求,选择合适的PID模型,将其进行离散化处理,编出计算机程序由微处理器实现,最后确定KP、T1、TD、和T,T为采样周期。微处理器控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量,因此,必须对PID模型进行离散化处理。

用矩形方法数值积分代替式(3)中的积分项,对式(3)中的导数项用后向差分逼近,经推理可得到基本PID控制的位置式算法:

式中k——采样序号,k=0,1,2,……

U(k)——第k次采样时刻输出值

E(k)——第k次采样时输入的偏差值

E(k-1)——第(k-1)次采样时刻输入的偏差值

K1——积分系数,K1=KpT/T1

KD——微分数系,KD=KpTD/T1

在数字控制系统中,PID控制规律是用程序来实现的,因而具有更大的灵活性。由于基本PID控制中引入了积分环节,其目的主要是为了消除静差,提高精度。但在柴油机调速过程中,突加突减负载时,会引起转速的较大波动,导致短时间内转速出现较大偏差,通过PID积分运算积累,超调量过大,系统产生振荡,严重影响发电机组输出电能的品质。为避免PID控制中积分项引起的超调,提高其调节品质,拟采用积分分离法对基本PID控制进行改进,简称变速积分PID。变速积分PID的基本思路是设法改变积分项的累加速度,使其与偏差大小相对应,偏差越大,积分越慢;反之,则越快。

式中,A、B为积分区间。

变速积分PID算法为:

式中,U1(k)为第k次采样时刻PID运算的积分部分输出值。

采用变速积分PID控制,系统具有以下特点:用比例消除大偏差,用积分消除小偏差,可完全消除积分饱和现象;各参数容易整定,易实现系统稳定,而且对A、B两参数不要求十分精确;超调量大大减小,改善了调节品质,适应性较强。

2柴油发电机组数字调速系统中PID控制参数整定[3,4]

数字PID控制参数整定的任务主要是确定数字PID的参数KP、T1、TD和T。

对于简单控制系统,可采用理论计算方法确定这些参数。但由于柴油机调速系统的工况较为复杂,其数学模型并非十分精确,在此,采用工程整定常用的扩充临界比例带法,结合经验法再对参数进行调整,得到最终的PID参数。

(1)采样周期T的选择

在数字控制系统中,采样周期T是一个比较重要的因素,采样周期的选取,应与PID参数的整定综合考虑。

首先,采样周期T的选取应满足以下要求:远小于对象扰动周期;比对象时间常数小得多;尽量缩短采样周期,以改善调节品质。

该系统中,PID调节控制过程是在定时中断状态下完成的,因此,采样周期T的大小必须保证中断服务程序的正常运行。在不影响中断程序运行的情况下,可取采样周期T=0.1τ(τ为柴油机的纯滞后时间)。当中断程序运行时间Tz大于0.1τ时,则取T=Tz,

(2)临界振荡周期Ts的确定

初始确定数字PID参数时,在用上述方法确定采样周期T的条件下,从调速系统的PID调节回路中,去掉数字控制器的微分控制作用和积分控制作用,只采用比例调节环节来确定系统的振荡周期Ts和临界比例系数Ks。由单片机系统自动控制比例系数KP,并逐渐增大Kp,直到系统出现持续的等幅振荡,然后由单片机系统自动记录并显示调速系统发生等幅振荡时的临界比例度δ和相应的临界振荡周期Ts。

控制度就是以模拟调节器为基础,定量衡量数字控制系统与模拟调节器对同一对象的控制效果。控制效果就是采用某一积分准则,根据系统在规定的输入下的输出响应,使用该准则取最小值时的最

如前所述,采样周期T的长短会影响系统的控制品质,同样是最佳整定,数字控制系统的品质要低于模拟系统的控制品质。即控制度总是大于1的,且控制度越大,相应的数字控制系统品质越差。

为获得与模拟控制器相当的品质,控制度选为1.05。不同控制度时,扩充临界比例带法PID参数计算公式

(4)KP、K1、KD、T的求取

根据实验所得Ks和Ts及选定的控制度,按表1计算出数字PID参数Kp、T1、TD和T。

(5)控制效果的调节

按求得的参数值在调速控制系统中运行,并观察控制效果。如控制效果达不到控制要求,可基于以下原则,根据经验法对参数做适当调整。

①增大比例系数Kp,将加快系统的响应速度,但过大会使系统产生较大超调,甚至产生振荡。

②增大积分时间T1,有利于减小超调,减少振荡,使系统更加稳定,但会增加系统过渡过程时间。

③增大微分时间常数TD有利于加快系统的响应,使超调减小,稳定性增加,但系统对扰动的抑制能力减弱,对扰动有较敏感的响应。

基于上述原则,调整PID参数时,应先比例、后积分、再微分进行调整。

参考文献:

[1]陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].机械工业出版社,1998.

电机设计论文篇(10)

一、变频器运行时对变频电机工作的影响

在变频电机调速控制系统中,采用电力电子变压变频器作为供电电源,供电系统中电压除基波外不可避免含有高次谐波分量,对外表现为非正弦性,谐波对电机的影响主要体现在磁路中的谐波磁势和电路中的谐波电流上,不同振幅和频率的电流和磁通谐波将引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。这些损耗都会使电动机效率和功率因数降低。同时,这些损耗绝大部分转变成热能,引起电机附加发热,导致变频电机温升的增加。如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。同时这些谐波磁动势与转子谐波电流合成又产生恒定的谐波电磁转矩和振动的谐波电磁转矩,恒定谐波电磁转矩的影响可以忽略,振动谐波电磁转矩会使电动机发出的转矩产生脉动,从而造成电机转速(主要是低速时)的振荡,甚至引起系统的不稳定。谐波电流还增加了电机峰值电流,在一定的换流能力下,谐波电流降低了逆变器的负载能力。对于变频电机,如何在设计过程中采取合理措施避免或减小应用变频器所带来的影响,以求得系统最佳经济技术效果,是本文讨论的重点。

二、变频电机设计特点

对于变频电机,其设计必须与逆变器、机械传动装置相匹配共同满足传动系统的机械特性,如何从调速系统的总体性能指标出发,求得电机与逆变器的最佳配合,是变频电机设计的特点。设计理论依据交流电机设计理论,供电电源的非正弦以及全调速频域内达到满意的综合品质因数是变频电机设计中需要着重注意的两个问题,设计中参数的选取应做特别的考虑。与传统异步电机相比,一般变频电机设计有如下一些特点:

1.用于变频调速的异步电动机要求其工作频率在一定范围内可调,所以设计电机时不能仅仅考虑某单一频率下的运行特性,而要求电机在较宽的频率范围内工作时均有较好的运行性能。如目前大多调速异步电动机的工作频率在5Hz~100Hz内可调,设计时要全面考虑。

2.变频电机在低速时降低供电频率,可以把最大转矩调到起动点,获得很好的起动特性,因而在设计变频电机时不需要对起动性能作特别的考虑,转子槽不必设计为深槽,从而可以重点进行其它方面的优化设计。

3.变频电机通过调节电压和频率,在每一个运行点都可以有多种运行方式,对应多种不同的转差频率,因而总能找到最佳的转差频率,使电机的效率或功率因数在很宽的调速范围内都很高。因而,变频电机的功率因数和效率可以设计得更高,功率密度得以进一步提高。现有数据表明:在额定工作点,逆变器供电下的异步电机效率比普通电机高2%~3%,功率因数高10%~20%。

4.变频电机采用变频装置供电,输入电流中含有较多的高次谐波,产生电机局部放电和空间电荷,增大了介质损耗发热和电磁振动力,加速了绝缘材料的老化,所以应加强电机绝缘和提高整体机械强度,变频电机的绝缘强度一般要达到F级以上。

5.变频供电时产生的轴电压和轴电流会使电机轴承失效,缩短轴承使用寿命,必须在设计上要加以考虑。对较小的轴电流,可以适当增大电机气隙和选用专用脂;另外,增加轴承的电气绝缘或者将电机轴通过电刷接地,可以有效解决轴承损坏问题;对过高轴电压,应设法隔断轴电流的回路,如采用陶瓷滚子轴承或实现轴承室绝缘。同时,在逆变器输出端增加滤波环节,降低脉冲电压dU/dt也是一种有效的方法。

三、电磁设计

在普通异步电动机设计基础之上,为进一步提高变频调速电机的性能,对变频调速异步电动机的设计参数也要进行更加细致的考虑。满足高性能要求时的变频电机设计参数的变化与设计目标之间的关系。在设计参数和性能要求之间还必须折衷选择。电磁设计时不能仅限于计算某一个工作状态,电磁参数的选取应使每个频率点的转矩参数满足额定参数要求,最大发热因数满足温升限值,最高磁参数满足材料性能要求,最高频率点满足转矩倍数要求,额定点效率、功率因数满足额定要求。由于谐波磁势是由谐波电流产生的,为减小变频器输出谐波对异步电动机工作的影响,总之是限制谐波电流在一定范围内。

四、绝缘设计

电机运行于逆变电源供电环境,其绝缘系统比正弦电压和电流供电时承受更高的介电强度。与正弦电压相比,变频电机绕组线圈上的电应力有两个不同点:一是电压在线圈上分布不均匀,在电机定子绕组的首端几匝上承担了约80%过电压幅值,绕组首匝处承受的匝间电压超过平均匝间电压10倍以上。这是变频电机通常发生绕组局部绝缘击穿,特别是绕组首匝附近的匝间绝缘击穿的原因。二是电压(形状、极性、电压幅值)在匝间绝缘上的性质有很大的差异,因此产生了过早的老化或破坏。变频电机绝缘损坏是局部放电、介质损耗发热、空间电荷感应、电磁激振和机械振动等多种因素共同作用的结果。变频电机从绝缘方面看应具有以下几个特点:(1)良好的耐冲击电压性能;(2)良好的耐局部放电性能;(3)良好的耐热、

耐老化性能。

五、结构设计

在结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般应注意以下问题:

1.普通电机采用变频器供电时,会使由电磁、机械、通风等因素所引起的振动和噪声变得更加复杂。在设计时要充分考虑电动机构件及整体的刚度,尽力提高其固有频率,以避开与各次力波产生共振现象。

2.电机冷却方式:变频电机一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动,使其在低速时保持足够的散热风量。

3.对恒功率变频电机,当转速超过3000r/min时,应采用耐高温的特殊脂,以补偿轴承的温度升高。

4.变频电机承受较大的冲击和脉振,电机在组装后轴承要留有一定轴向窜动量和径向间隙,即选用较大游隙的轴承。

5.对于最大转速较高的变频电机,可在端环外侧增加非磁性护环,以增加强度和刚度。

6.为配合变频调速系统进行转速闭环控制和提高控制精度,在电机内部应考虑装设非接触式转速检测器,一般选用增量型光电编码器。

7.调速系统对传动装置加速度有较高要求时,电机的转动惯量应较小,应设计成长径比较大的结构。

六、结论

与普通异步电动机不同,变频调速异步电动机采用变频器供电,其运行性能与电机本体和调速系统的设计都密切相关。这一方面使变频调速电机的设计要同时兼顾电机本体和调速系统;另一方面也使得变频调速异步电动机的设计变得灵活,但同时也增加了高性能变频调速系统设计的复杂程度。只有结合变频器和一定的控制策略,从整体上进行电机的设计和优化,才能获得最理想的运行性能。

参考文献:

[1]ANDRZEJM.TRZYNADLOWSKI著,李鹤轩,李扬译.异步电动机的控制.北京:机械工业出版社,2003.

上一篇: 税收法律论文 下一篇: 测量工程师论文
相关精选
相关期刊