钢筋混凝土论文汇总十篇

时间:2023-03-16 15:27:17

钢筋混凝土论文

钢筋混凝土论文篇(1)

现浇钢筋混凝土柱的质量控制,重在过程。当出现质量问题后,应查找原因,及时分析处理。现浇钢筋混凝土柱是房屋结构中重要的承重构件之一。框架结构中较多采用的是钢筋混凝土现浇柱,其质量直接关系到结构安全和使用。加强对现浇钢筋混凝土柱的质量控制,分源头把关、工序管理、质量保证体系、问题补救、监督管理、质量检验几方面控制。

一、从源头把关、控制质量

从源头把关控制质量非常重要。钢筋模板工程首先要控制钢筋进场,检查产品合格证、出厂试验报告,并按现行国家标准《钢筋混凝土用热轧带肋钢筋》GB1499的规定取样作力学性能检验,其质量必须符合规定。钢筋表面不得有裂纹、油污等,平直无损伤。施工中柱受力筋采用机械连接,按《钢筋机械连接通用技术规程》JGJ107规定,全程跟踪取样、送试验室试验、见证试验结果,符合规定者才允许采用。

二、注重各道工序管理

控制质量要注重各个工序管理。从受力筋与箍筋的绑扎开始,要求:6肢箍,30根纵筋,对称配筋,箍筋间距100。采用梅花形绑扎,铅丝拧紧,保证钢筋的正确位置。加强质量问题原因分析,针对问题个别处理。如出现:混凝土浇筑过程中,执棒人员的操作技能不熟练,责任心不强,下料、执棒未严格按要求实施,局部出现漏振现象,以及混凝土浇筑时,一次下料厚度过厚,振动棒的插入间距过大等问题均需及时纠偏。

三、加大现场监督力度

为保障防止质量保证体系运转,要求现场管理人员管理到位,加大监督力度。

在浇筑混凝土之前,对钢筋隐蔽工程验收,内容包括:(1)纵向受力筋的品种、规格、数量和位置;(2)钢筋的连接;(3)箍筋品种、规格、间距;(4)预埋件的规格、数量和位置。重视保护层厚度25±5。拆模后,由业主、监理、施工单位人员对外观质量和尺寸偏差进行检查,做记录,并根据具体情况,及时对缺陷进行处理

四、发现问题及时补救处理

现浇柱外观质量缺陷有:露筋(柱内钢筋未被混凝土包裹而外露)、蜂窝(混凝土表面缺少水泥砂浆而形成石子外露)、孔洞(混凝土中孔穴深度和长度均超过保护层厚度)、夹渣(混凝土中夹有杂物且深度超过保护层厚度)、疏松(混凝土中局部不密实)、裂缝(缝隙从混凝土表面延伸至混凝土内部)、外形缺陷(缺棱掉角、棱角不直等)、外表缺陷(构件表面麻面、掉皮、起砂等)。尺寸允许偏差:轴线位置8;垂直度13,层高±13;截面尺寸+8,-5;表面平整度8;预埋件中心线位置10。发现轴柱混凝土浇筑后出现大面积孔洞、露筋现象,属严重缺陷出现了质量问题。针对此类问题应采取以下处理:先打掉出现问题,已浇筑的混凝土柱。同时编制具体施工处理方案措施,重新立模验收,合格后再进行混凝土浇筑。

五、加强监督管理、防患于未然

加强监督管理,主要作好以下工作:(1)做好混凝土浇筑安全技术交底工作,做好交底和混凝土浇筑过程中的施工记录。(2)重要特殊部位混凝土浇筑要编制针对性的施工方案,严格按方案施工。(3)加强混凝土浇筑过程控制:控制混凝土配合比,混凝土坍落度(混凝土坍落度以现场测试为准,根据现场需要可适当增大坍落度,但必须满足设计和规范要求);合理组织劳动力,严禁疲劳操作;混凝土浇筑高大柱子时,设门子洞。门子洞的留设要严格按要求做;配制混凝土时要注意石子合理级配。

当柱混凝土浇筑出现质量问题,采用如下处理原则:本着既不改变结构受力状态,又不改变结构外形尺寸,以达到设计要求,满足使用功能为度。

钢筋混凝土论文篇(2)

武汉体育中心体育场工程基础为桩基承台基础梁结构,环向总长800余米,基础梁断面尺寸为800×(800~1200)m,混凝土设计等级为C30;主体露天看台为预应力钢筋混凝土结构,最长段230m,板厚6mm,混凝土设计等级为C40、C45。

1技术难点

1.1本工程基础梁钢筋混凝土结构均属环向超长结构,与一般超长结构比其两端没有自由端,且基础梁下每间隔12m有桩承台,形成有约束结构。由于使用功能的要求,设计不留置伸缩缝。

体育场看台属于露天结构,温度变化较大,容易出现由于温差而引起的裂缝,另外看台厚度一般设计只有60~80㎜,而武汉体育中心体育场看台厚度仅为60㎜,宜造成混凝土散热过快导致开裂。施工中如何配置混凝土、控制混凝土浇筑,施工后如何保证结构不裂缝,保证看台不渗漏等,是本工程需要解决的难题。

1.2超长度连续曲线预应力露天结构的设计施工国内少见,对于应力的设计、施工提出了很多课题。超长预应力混凝土楼面如何分段布置预应力筋,分段张拉。分段过长,预应力损失较大;分段过短,张拉次数多、效率低,锚具费用大。

2方案的确定

本工程基础830m长环向结构和看台230m长超薄结构比较少见,经过分析研究采取无缝施工综合技术:钢筋混凝土采用微膨胀混凝土浇筑,看台采取预应力座台L型肋梁,面层钢纤维混凝土技术。

3微膨胀混凝土施工

3.1工艺原理

为了抵抗混凝土在伸缩时产生的应力,达到防止和减少伸缩裂缝的出现,在混凝土中掺加CSA膨胀剂,使混凝土产生适量的膨胀,在钢筋和临位限制下,在钢筋混凝土中预压应力,可大致抵消混凝土伸缩时产生的伸缩应力,防止混凝土开裂。

3.2混凝土技术要求

所有原材料均经过计量后投入搅拌机,计量偏差满足要求(按重量计),水泥、CSA膨胀剂、粉煤灰、减水剂、水±1%、石±2%;CSA膨胀剂和减水剂的计量严格按配合比投料。冬期拌制混凝土采用外加剂,降低水的结冰温度,外加剂确保-10℃时水不结冰。

3.3施工工艺

3.3.1微膨胀混凝土的试配

微膨胀级配合比设计时,除进行常规的设计、试验外,还增加对混凝土的限制膨胀率的设计、测试内容。

3.3.2混凝土搅拌

混凝土搅拌采用强制式搅拌机搅拌,严格控制搅拌时间,确保混凝土拌合物均匀。及时测定砂、石的含水量、以便及时调整混凝土级配,严禁随便增减用水量。

3.3.3混凝土的输送

混凝土搅拌完成后,采用固定泵泵送工艺直接输送到作业面,以确保混凝土在最短时间运至浇筑面上。

3.3.4混凝土的浇筑

1)混凝土浇灌前准备:钢筋模板按设计图纸安装、绑扎、安装要牢靠,模板表面涂刷脱模剂。模板缝用海绵垫补严密,模板内的所有杂物必须清理干净并浇水湿润。

2)混凝土浇筑采用循序推进的连续浇筑方法,为避免混凝土出现冷缝,每个浇筑带的宽度均控制在2m以内为宜。同时严格控制混凝土的浇筑速度,分层浇捣,逐步推进,

3)CSA混凝土振捣必须密实,不漏振、欠振、不过振。振点布置均匀,振动器要快插慢拔。在施工缝、预埋件处,加强振捣。梁的振捣点可采用“行列式”,每次移动的距离为400到600mm;板的振捣采用平板式振捣器振捣。严格控制振捣时间及插入深度,并重点控制混凝土流淌的最近点和最远点,尽可能采用两次振捣工艺,提高混凝土的密实度。

4)先后浇筑的混凝土接槎时间不宜超过150分钟(严格控制在初凝时间内)。

5)混凝土成型后,等表面收干后采用木抹子搓压混凝土表面,以防止混凝土表面出现裂缝(主要是沉降裂缝、塑性伸缩裂缝和表面干缩裂缝),抹压2~3遍,最后一遍要掌握好时间。混凝土表面搓压完毕后,应立即进行养护。

6)冬天施工,采取防冻措施,除掺加防冻剂外,尚需保证混凝土入模温度不得低于5℃。雨季施工,采取有效防雨措施,严格按事先编制好的冬雨季施工措施执行。

3.3.5混凝土养护

CSA混凝土的养护是保证质量的最重要的措施之一。混凝土浇筑后,立即在其表面覆盖一层塑料薄膜,然后长时间地浇水养护,一方面避免温度过快降低,另一方面避免混凝土表面水分的过快散发。

4钢纤维混凝土施工

4.1工艺原理

在体育场看台面层大量使用钢纤维混凝土,因为钢纤维混凝土掺有微膨胀剂,除了钢纤维本身抗拒作用外,在微膨胀剂发挥作用时,对钢纤维有预压作用,增强了这种抗拉能力混凝土结构因此抗拉性质显著提高,有效阻止了结构中微裂缝的开展和传播,并具有抗渗作用。

看台面层设计要求:立面为35mm厚1:2水泥砂浆,平面50mm厚CF30钢纤维混凝土,钢纤维掺量为0.8%,立面、平面均为原浆压光,不做其它装饰。

4.2施工工艺

4.2.1钢纤维混凝土配合比配置

由试验室在开工前进行试配准备,在混凝土试配过程中,发现钢纤维易成束结团附在粗骨料表面、且分布不均,显然这不利于钢纤维发挥其作用。因此,参照各类文献,按粗骨料粒径为钢纤维长度一半对粗骨料进行了严格的进料控制和筛选(控制在15~20mm左右)。另外发现纤维拌合中易互相架立。在混凝土中形成微小空洞,影响混凝土质量、微孔还使钢纤维与水泥沙浆无法形成有效握囊,发挥不了钢纤维的增强作用,对比,我们较同标号普通混凝土提高了砂率和水泥用量,有效地解决了上述问题。

4.2.2看台面层施工

1)踏步施工

按图纸设计踏步阶数,踏步留20mm装修面层支模浇C30素混凝土,待看台面层施工完毕后带通线嵌阳角条抹上人踏步面。

2)面层施工

凿毛刷胶刷素水泥浆找平钉钢板网抹灰嵌阳角条及分格条绑扎钢筋网片浇筑混凝土

4.2.3钢纤维混凝土拌制

1)钢纤维混凝土现场机械拌制,其搅拌程序和方法以搅拌过程中钢纤维不结团并可保证一定的生产效率为原则;采用将钢纤维、水泥、粗细骨料先干拌而后加水湿拌的方法,钢纤维用人工播撒。整个干拌时间大于2min,干拌完成后加水湿拌时间大于3min,视搅拌情况,可适当延时以保证搅拌均匀。

2)搅拌钢纤维混凝土专人负责,确保混凝土坍落度和计量准确。

3)混凝土搅拌过程中,注意控制出料时实测混凝土坍落度,作好相应记录,并根据现场混凝土浇筑情况作出相应调整。严禁雨天施工。

4.2.4钢纤维混凝土浇筑

1)混凝土的浇筑方法以保证钢纤维分布均匀、连续为原则。

2)浇筑施工连续不得随意中断,不得随意留施工缝。

3)混凝土用手提式平板式振动振捣。每一位置上连续振动一定时间,正常情况下为25~40S,但以混凝土面均出现浆为准,移动时间依次振捣前进,前后位置和排与排间相互搭接3~5cm,防止漏振。

4)混凝土初凝前分四次抹平、原浆压光,并及时清理阳角条和分格条上混凝土浆。混凝土分区完成后再抹立面第三遍灰,原浆压光,抹灰流向同混凝土浇筑流向。

4.2.5钢纤维混凝土养护

面层采用旧麻袋覆盖养护,避免草袋覆盖养护污染及水份蒸发过快等影响装饰效果和质量。

5后张拉无粘结预应力施工

5.1施工流程

支梁底模、梁筋绑扎放线确定预应力筋位置铺放无粘结预应力筋预应力钢筋托架固定、封侧模张拉端承压板、螺旋筋、穴模安放及固定隐检浇混凝土及养护预应力筋张拉、切割、封堵。

5.2施工工艺

5.2.1预应力筋张拉准备

当预应力钢筋绑扎完毕后,穿设预应力筋,预应力筋的搭接在梁支座处进行。为防止张拉过程中在同一截面产生裂缝,将相邻两根梁的预应力筋的张拉端错开500mm。承压板,螺旋筋等放置完毕后即进行自检、专检及隐蔽验收合格后浇混凝土。当混凝土强度达到1.2N/mm2时及时将张拉端的穴模清理干净。当混凝土的强度达到设计要求的张拉强度时,进行预应力筋的张拉(用同条件下养护的试块来判别)。

5.2.2无粘接预应力张拉

预应力筋的张拉根据设计要求采取变角张拉施工工艺,预应力筋下料长度包括变角块厚度,单根预应力筋张拉端承压板采用90×90×12mm的钢板,螺旋筋采用φ6.5的钢筋,螺距为25mm,4圈,直径为75mm;对于群锚体系承压板采用150×150×20mm,螺旋筋采用φ8的钢筋,螺距为25m,9圈,直径为150mm。依据设计控制张拉应力,对于超长钢绞线的张拉均需采用倒换行程的方法张拉,预应力筋的张拉力以控制应力为主,校核预应力钢绞线的伸长值。

5.2.3张拉的封堵

预应力筋张拉完毕经检查无误后,即可切割多余的钢绞线,切割后的钢绞线外露长度距锚环夹片的长度为30mm,按规范要求用防水涂料或防锈漆涂刷锚具,然后清理,用高一等级的内掺10%CSA的细石混凝土进行封堵。

钢筋混凝土论文篇(3)

混凝土是脆性材料,而钢筋却是韧性材料,它们两者在一起工作,弹性模量相差很大,而且两者的强度差别就更大,因此两种材料在一起共同发挥作用,要使钢筋参加工作,比较多的承受力,混凝土势必开裂。大量的工程和理论分析表明钢筋混凝土构件基本上都是带裂缝工作的。裂缝一般分成不可见裂缝和可见裂缝。可见裂缝又分为无害裂缝和有害裂缝。有害裂缝在使用荷载或外界物理及化学作用下不断产生和发展,引起混凝土碳化,保护层剥落及钢筋锈蚀,直至影响结构的安全性和使用寿命,必须加以控制。

一、混凝土桥梁设计原理

我国现行的公路桥涵规范规定:桥梁应根据所在公路的使用任务、性质和将来的发展需要,按照适用、经济、安全和美观的原则进行设计,这些要求基本上包含了人们关心的所有重要问题。混凝土桥梁具体的设计过程是按承载能力和正常使用两种极限状态来进行的。按承载能力极限状态是控制结构在丧失服务能力临界状态时的承载能力,其设计的基本原则是要求荷载效应不利组合的设计值要小于结构抗力的设计值。同时利用荷载安全系数、材料安全系数及工作条件系数来考虑不确定因素作用下的结构总体的安全储备,是一种极限状态设计法。按正常使用极限状态是控制结构在正常使用状态时应力,裂缝和变形小于一个限定值,即使用容许裂缝宽度来控制混凝土构件的结构设计。有关规范规定:在一般正常大气条件下,钢筋混凝土受弯构件在荷载组合Ⅰ的作用下,计算得到的最大裂缝宽度不应超过0.2mm;在荷载组合Ⅱ和Ⅲ作用下,不应超过0.25mm;处于严重暴露情况(有侵蚀性气体或海洋大气)下的钢筋混凝土构件,容许裂缝宽度不应超过0.1mm。

混凝土构件容许裂缝的存在,是由混凝土抗拉能力差,容易开裂的缺点决定的。通过对大量的工程实例的研究发现,几乎所有的混凝土构件都是带裂缝工作的,只是有些裂缝很细,一般对结构和使用无大的影响,可允许其存在;有些裂缝在使用荷载或外界物理、化学因素的作用下,不断产生和扩展,引起混凝土明显的病害,如保护层剥落、钢筋腐蚀,从而导致混凝土的强度和刚度受到削弱,耐久性降低,严重时甚至发生垮塌事故,危害结构的正常使用。

二、混凝土桥梁裂缝的成因分析及预防措施

随着桥梁使用年龄的增加,车辆的超载现象不断增加,会使细微裂缝不断的扩大,甚至会断裂,此时困扰桥梁工程师的最大问题是对裂缝的形成原因以及对钢筋的腐蚀作用的进一步深入认识,并且作出全面分析,以避免和克服因为裂缝引起的对桥梁使用性能的影响。经过对现在此方面的研究成果和工程实例的分析,混凝土桥梁的裂缝形成原因可大致梳理为以下几个方面:

(一)混凝土用料选用不当引起的裂缝

1、水泥品种、标号及用量。矿渣水泥、快硬水泥、低热水泥混凝土收缩性较高;普通水泥、火山灰水泥、矾土水泥混凝土收缩性较低。此外,水泥标号越低、单位体积用量越大、磨细度越大,则混凝土收缩越大,并且发生收缩时间越长。例如,为了提高混凝土的强度,施工时经常采用强行增加水泥用量的做法,结果收缩应力明显加大。

2、骨料品种。骨料中石英、石灰岩、白云岩、花岗岩、长石等吸水率较小、收缩性较低;而砂岩、板岩、角闪岩等吸水率较大、收缩性较高。此外,骨料粒径大收缩小,含水量大收缩越大。

3、水灰比。用水量越大,水灰比越高,混凝土收缩越大。

4、外掺剂。外掺剂保水性越好,则混凝土收缩越小。

(二)设计和施工不合理产生的裂缝

此类裂缝是我们在工程实例中发现最多的裂缝形式,许多桥梁设计人员往往只满足于规范对结构强度计算上的安全度需要,而忽视从结构体系、结构构造、结构材料、结构维护、结构耐久性以及从设计、施工到使用全过程中经常出现的人为错误等方面去加强和保证结构的安全性。有的结构整体性和延性不足,冗余性小;有的计算图式和受力路线不明确,造成局部受力过大;有的混凝土强度等级过低、保护层厚度过小、钢筋直径过细、构件截面过薄。这些都削弱了结构安全性,会严重影响结构的使用。不少桥梁,虽然满足了桥梁设计规范的强度要求,仅用了5~10年就因为出了问题影响结构安全。例如我们发现在混凝土桥梁竖向有截面突变的地方(箱梁、T梁的腹板与顶底板交接处)很容易产生裂缝,研究分析结果显示:混凝土在浇筑后发生水化反应、泌水和大量水分蒸发,混凝土因失水而收缩,而骨料因重力影响向下沉降,但此时混凝土的强度和硬度都不高,骨料下沉时受到钢筋的阻挡,便产生了沿钢筋方向的裂缝。为避免此类裂缝的产生,在设计阶段要尽量避免截面突变的存在,不能避免时要做特殊的处理,可将突变截面做成渐变截面,同时适量的增加钢筋数量;在施工时要注意振捣,最好是在变截面处分层浇筑。

(三)自然环境的影响产生的裂缝

自然环境的影响主要是温差引起了混凝土的温度梯度呈非线性分布,而混凝土构件的位移又受到约束,导致局部应力过大,从而出现了裂缝。一般失火、太阳曝晒、骤然降温以及冬季施工均可能导致此类裂缝的发生。预防措施是在设计时重视温度应力,一些大跨径的桥梁,温度应力往往是可以超过活载应力的,另外就是杜绝冬季施工,因为此时施工混凝土在初凝时受冻,成龄后混凝土强度损失可达30%~50%。

(四)荷载引起的裂缝

此类裂缝是混凝土桥梁在常规动、静荷载及次应力作用下产生的,桥梁结构所承受的车辆荷载和风荷载都是动荷载,会在结构内产生循环变化的应力,不但会引起结构的振动,还会引起结构的累积疲劳损伤。由于桥梁所采用的材料并非是均匀和连续的,实际上存在许多微小的缺陷,在循环荷载作用下,这些微缺陷会逐渐发展、合并形成损伤,并逐步在材料中形成宏观裂纹。如果宏观裂纹不得到有效控制,极有可能会引起材料、结构的脆性断裂。早期疲劳损伤往往不易被检测到,但其带来的后果往往是灾难性的。

工程实例中此类裂缝多出现在受拉区、受剪区或振动严重部位,且裂缝特征如下:

1、受拉。裂缝贯穿构件横截面,间距大体相等,且垂直于受力方向。采用螺纹钢筋时,裂缝之间出现位于钢筋附近的次裂缝。

2、受压。沿构件出现平行于受力方向的短而密的平行裂缝。

3、受弯。弯矩最大截面附近从受拉区边沿开始出现与受拉方向垂直的裂缝,并逐渐向中和轴方向发展。采用螺纹钢筋时,裂缝间可见较短的次裂缝。当结构配筋较少时,裂缝少而宽,结构可能发生脆性破坏。

4、受剪。当箍筋太密时发生斜压破坏,沿梁端腹部出现大于45°方向的斜裂缝;当箍筋适当时发生剪压破坏,沿梁端中下部出现约45°方向相互平行的斜裂缝。

5、受扭。构件一侧腹部先出现多条约45°方向斜裂缝,并向相邻面以螺旋方向展开。

从大量的工程实例分析来看,此类裂缝产生的直接原因是内力与配筋计算或构造设计不当,施工阶段不按照图纸施工,擅自更改结构施工顺序,导致结构受力状态的改变,从而导致结构的承载力超出使用极限。另外大量的超载车辆过桥也是主要原因之一。预防措施是加强设计的合理性和安全系数以及施工的合理性,并严格控制严重超载车辆。

三、结束语

混凝土桥梁产生裂缝的产生原因较为复杂,工程实例中也是允许微小裂缝产生的,保证不出现裂缝是较难实现的,但是我们是能够尽量减少因为设计疏漏、施工低劣、监理不力、运营管理不力等诸多人为因素所产生的裂缝扩展,从而保证桥梁不会因为裂缝扩展导致钢筋腐蚀、脆性断裂等病害发生。

参考文献:

钢筋混凝土论文篇(4)

2.项目研究背景:

所要编写的结构程序是混凝土的框架结构的设计,建筑指各种房屋及其附属的构筑物。建筑结构是在建筑中,由若干构件,即组成结构的单元如梁、板、柱等,连接而构成的能承受作用(或称荷载)的平面或空间体系。

编写算例使用建设部最新出台的《混凝土结构设计规范》gb50010-2002,该规范与原混凝土结构设计规范gbj10-89相比,新增内容约占15%,有重大修订的内容约占35%,保持和基本保持原规范内容的部分约占50%,规范全面总结了原规范实施以来的实践经验,借鉴了国外先进标准技术。

3.项目研究意义:

建筑中,结构是为建筑物提供安全可靠、经久耐用、节能节材、满足建筑功能的一个重要组成部分,它与建筑材料、制品、施工的工业化水平密切相关,对发展新技术。新材料,提高机械化、自动化水平有着重要的促进作用。

由于结构计算牵扯的数学公式较多,并且所涉及的规范和标准很零碎。并且计算量非常之大,近年来,随着经济进一步发展,城市人口集中、用地紧张以及商业竞争的激烈化,更加剧了房屋设计的复杂性,许多多高层建筑不断的被建造。这些建筑无论从时间上还是从劳动量上,都客观的需要计算机程序的辅助设计。这样,结构软件开发就显得尤为重要。

一栋建筑的结构设计是否合理,主要取决于结构体系、结构布置、构件的截面尺寸、材料强度等级以及主要机构构造是否合理。这些问题已经正确解决,结构计算、施工图的绘制、则是另令人辛苦的具体程序设计工作了,因此原来在学校使用的手算方法,将被运用到具体的程序代码中去,精力就不仅集中在怎样利用所学的结构知识来设计出做法,还要想到如何把这些做法用代码来实现,

4.文献研究概况

在不同类型的结构设计中有些内容是一样的,做框架结构设计时关键是要减少漏项、减少差错,计算机也是如此的。

建筑结构设计统一标准(gbj68-84)该标准是为了合理地统一各类材料的建筑结构设计的基本原则,是制定工业与民用建筑结构荷载规范、钢结构、薄壁型钢结构、混凝土结构、砌体结构、木结构等设计规范以及地基基础和建筑抗震等设计规范应遵守的准则,这些规范均应按本标准的要求制定相应的具体规定。制定其它土木工程结构设计规范时,可参照此标准规定的原则。本标准适用于建筑物(包括一般构筑物)的整个结构,以及组成结构的构件和基础;适用于结构的使用阶段,以及结构构件的制作、运输与安装等施工阶段。本标准引进了现代结构可靠性设计理论,采用以概率理论为基础的极限状态设计方法分析确定,即将各种影响结构可靠性的因素都视为随机变量,使设计的概念和方法都建立在统计数学的基础上,并以主要根据统计分析确定的失效概率来度量结构的可靠性,属于“概率设计法”,这是设计思想上的重要演进。这也是当代国际上工程结构设计方法发展的总趋势,而我国在设计规范(或标准)中采用概率极限状态设计法是迄今为止采用最广泛的国家。

结构的作用效应常见的作用效应有:

1.内力。

轴向力,即作用引起的结构或构件某一正截面上的法向拉力或压力;

剪力,即作用引起的结构或构件某一截面上的切向力;

弯矩,即作用引起的结构或构件某一截面上的内力矩;

扭矩,即作用引起的结构或构件某一截面上的剪力构成的力偶矩。

2.应力。如正应力、剪应力、主应力等。

3.位移。作用引起的结构或构件中某点位变(线位移)或某线段方向的改变(角位移)。

4.挠度。构件轴线或中面上某点在弯短作用平面内垂直于轴线或中面的线位移。

5.变形。作用引起的结构或构件中各点间的相对位移。变形分为弹性变形和塑性变形。

6.应变:如线应变、剪应变和主应变等。

极限状态整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求,此特定状态称为该功能的极限状态。极限状态可分为两类:

1.承载能力极限状态。结构或结构构件达到最大承载能力或达到不适于继续承载的变形的极限状态:

(1)整个结构或结构的一部分作为刚体失去平衡(如倾覆等);

(2)结构构件或连接因材料强度被超过而破坏(包括疲劳破坏),或因过度的塑性变形而不适于继续承载;(3)结构转变为机动体系;

(4)结构或结构构件丧失稳定(如压屈等)。

2.正常使用极限状态。结构或结构构件达到使用功能上允许的某一限值的极限状态。出现下列状态之一时,即认为超过了正常使用极限状态:

(1)影响正常使用或外观的变形;

(2)影响正常使用或耐久性能的局部损坏(包括裂缝);

(3)影响正常使用的振动;(4)影响正常使用的其它特定状态。

结构设计的基本任务,是在结构的可靠与经济之间选择一种合理的平衡,力求以最低的代价,使所建造的结构在规定的条件下和规定的使用期限内,能满足预定的安全性、适用性和耐久性等功能要求。为达到这个目的,人们采用过多种设计方法。以现代观点看,可划分为定值设计法和概率设计法两大类。

1.定值设计法。将影响结构可靠度的主要因素(如荷载、材料强度、几何参数、计算公式精度等)看作非随机变量,而且采用以经验为主确定的安全系数来度量结构可靠性的设计方法,即确定性方法。此方法要求任何情况下结构的荷载效应s(内力、变形、裂缝宽度等)不应大于结构抗力r(强度、刚度、抗裂度等),即s≤r。在20世纪70年代中期前,我国和国外主要都采用这种方法。

2.概率设计法:将影响结构可靠度的主要因素看作随机变量,而且采用以统计为主确定的失效概率或可靠指标来度量结构可靠性的设计方法,即非确定性方法。此方法要求按概率观念来设计结构,也就是出现结构荷载效应3大于结构抗力r(s>r)的概率应小于某个可以接受的规定值。这种方法是20世纪40年代提出来的,至70年代后期在国际上已进入实用阶段。我国自80年代中期,结构设计方法开始由定值法向概率法过渡。

面向对象编程

使创建windows程序较为容易的关键技术是面向对象编程,或oop。这种技术可以创建可重用组建,

它是程序的组成模块。

几个定义

控件提供程序可见界面的可重用对象。控件的示例有文本框、标签和命令按钮。

事件由用户或操作系统引发的动作。事件的示例有击键、单击鼠标、一段时间的限制,或从端口接收数据。

方法嵌入在对象定义中的程序代码,它定义对象怎样处理信息并响应某事件。例如,数据库对象有打开纪录集并从一个记录移动到另一个记录的方法。

对象程序的基本元素,它含有定义其特征的属性,定义其任务和识别它可以响应的事件的方法。控件和窗体是visualbasic中所有对象的示例。

过程为完成任务而编写的代码段。过程通常用于响应特定的事件。

属性对象的特征,如尺寸、位置、颜色或文本。属性决定对象的外观,有时也决定对象的行为。属性也用于为对象提供数据和从对象取回信息。

5.设计主要内容

本软件适用于现浇钢筋混凝土多层、多跨的框架的设计。毕业设计要完成的工作包括:

1.平面钢架分析程序的改造

对结构力学教研室版平面钢架分析程序进行修改和补充。要求:

(1)编写自动生成节点坐标和单元节点编号的程序,或以图形方式输入计算简图。

(2)修改程序,使之适合多工况内力计算;(3)根据输入、输出数据的特点,设计适当的人机界面。输出应可选的显示各构件端力和内力图。

2.编写钢筋混凝土多层多跨框架机构的构件设计程序

(1)根据有关的规范,应明确计算的各种荷载(恒载、楼屋面活载、风荷载和地震作用等)的计算方法,在次基础上编写自动生成各种荷载作用下的结点荷载和单元荷载的程序。

地震作用按底部剪力法确定。自振周期用经验公式确定。

(2)计算各种荷载单独作用时框架各杆件的内力。计算结构存放在各自的杆端力(随机)文件中。

对竖向荷载下的梁端弯距进行塑性调幅。

(3)在(2)中产生的杆端力文件基础上,分别计算各种可能的荷载组合下,梁、柱控制截面的内力。计算结果存放在适当的文件中。

(4)从(3)生成的文件中选出最不利组合,同时给出截面配筋。

梁、柱截面配筋的确定应考虑抗震设计的要求。

(5)部分编程较熟练的同学可根据计算结果和构造规定,用auto-cadvba绘制梁、柱配筋图。

5.成果形式

本毕业设计的成果应包括:

1.可运行的、并能给出正确计算结果的源程序

在存放源程序的软盘中,应至少有一个算例的数据文件,可在基本不需另外键入数据的前提下,显示正确地运行结果。

2.软件使用手册

这是为用户准备的关于软件使用方法、操作步骤和其他必要的文字材料。

3.软件说明书

这是软件作者的工作档案,是软件维护的基本资料。其中应包括:

(1)软件所依据的工作档案、力学和工程结构模型的较为详细的描述,主要的计算公式及其使用的符号的含义,重要算法的文字说明:

(2)程序的结构:模块的划分的情况、各模块相互之间的关系及各模块的功能;

(3)带有较为详细的注释的源程序文本。其中应注明各标识符的含义(尽可能的采用通用公式中的符号)。各程序段的功能、相应的数学公式和特殊算法的说明;(4)为使他人根据软件说明书读懂你的程序所必需的其他资料。

(5)部分编程较熟练的同学可递交梁、柱配筋图纸一张。

4.对自己所编程序的评价

(1)对算例计算结果的合理性进行必要的分析;

(2)总结软件设计过程中的经验和及教训,提出设计改进意见。

以上各项资料处源程序文本以软盘形式提交外,其余均用计算机打印。

6.进度计划

第一周毕业实习,参观工程,收集资料。

第二周需求分析:描述计算机模型,编些初步的软件说明书。

第三周软件设计:选择模块划分的方案

第四周模块设计:数据输入界面设计(梁柱截面数据)

或数据输入界面设计(可视化图形输入)

第五周数据输入界面设计(框架数据、附加荷载)

第六周模块设计:荷载计算(恒载、活载),相应的内力计算

第七周荷载计算(风荷载、地震作用),相应的内力计算

第八周模块设计:梁配筋计算

第九周梁荷载组合,确定梁配筋

第十周梁荷载组合,确定梁配筋

第十一周模块设计:柱配筋计算

第十二周柱荷载组合,确定柱配筋

第十三周柱荷载组合,确定柱配筋

第十四周软件测试或用autocadvba绘制梁、柱配筋图;

第十五周软件测试

钢筋混凝土论文篇(5)

2地基处理

根据参考地质报告,本场地属于非自重湿陷性场地,地基湿陷等级为Ⅱ类,采用强夯法,消除湿陷提高承载力。计算分析选用中国建筑科学研究院编制的《基础工程计算机辅助设计软件》JCCAD2010版。基础采用钢筋混凝土筏板基础或条形基础及独立柱基。

3上部结构设计

1)A,B,C区采用钢筋混凝土框架剪力墙结构,D,E,F区采用钢筋混凝土框架结构。2)结构设计。地震作用按8度0.2g进行计算,抗震措施按8度0.2g进行设计,A,B,C建筑框架的抗震等级为三级,剪力墙抗震等级为二级;D,E,F区框架等级为二级。抗震计算采用振型分解反应谱法,结构整体分析选用中国建筑科学研究院编制的《多层及高层建筑结构空间有限元分析软件》SATWE2010版。采用总刚分析方法,计算结果如下:A区:周期,地震力与振型分析见表1~表3。结构位移:地震力作用下的X方向最大值层间位移角:1/1033;地震力作用下的Y方向最大值层间位移角:1/1213。B区:结构位移:地震力作用下的X方向最大值层间位移角:1/1030;地震力作用下的Y方向最大值层间位移角:1/1212。C区:周期,地震力与振型分析见表7~表9。结构位移:地震力作用下的X方向最大值层间位移角:1/1044;地震力作用下的Y方向最大值层间位移角:1/1045。D区:振动周期见表10。结构位移:地震力作用下的X方向最大值层间位移角:1/710;地震力作用下的Y方向最大值层间位移角:1/605。E区:振动周期见表11。结构位移:地震力作用下的X方向最大值层间位移角:1/551;地震力作用下的Y方向最大值层间位移角:1/601。F区:振动周期见表12。结构位移:地震力作用下的X方向最大值层间位移角:1/628;地震力作用下的Y方向最大值层间位移角:1/623。各项指标均满足规范相应要求。3)最外层钢筋的混凝土保护层(mm):a.基础梁及地下室底板:下部钢筋:有垫层40;无垫层70,上部钢筋40;b.地下室外墙:外侧50,内侧20;c.柱:地下与土壤接触面:防水混凝土50,其余部位25;且不小于纵筋直径;d.梁:室外露天环境35,室内潮湿环境25,其余部位20;且不小于纵筋直径;e.在一类环境下各层楼板、楼梯板为15,梁为20;在二a类环境下各层楼板、楼梯板为20,梁为25;在二b类环境下各层楼板、楼梯板为25,梁为35;f.梁板中预埋管的混凝土保护层厚度应大于30。4)本工程各部分之间设置抗震缝,主体长度超过规范要求时相应部位设置后浇带,减少混凝土收缩影响。5)材料。混凝土:A,B,C区柱、墙:1层~2层顶为C40;3层~4层顶为C35;5层~6层顶为C30;D,E,F区柱:C30。梁、板:C30。基础:C30。楼梯、女儿墙、雨篷、挑檐、构架等露天构件:C30。圈梁、构造柱:C25。填充墙:±0.000以下采用MU10页岩烧结砖,M10水泥砂浆砌筑,±0.000及以上采用A3.5加气混凝土砌块(容重不大于6kN/m3),M5混合砂浆砌筑。钢筋:采用HPB300级,HRB335级和HRB400级钢筋。

钢筋混凝土论文篇(6)

一、裂缝产生的原因

混凝土水灰比、塌落度过大,或使用过量粉砂

混凝土强度值对水灰比的变化十分敏感,基本上是水和水泥计量变动对强度影响的叠加。因此,水、水泥、外掺混合材料、外加剂溶液的计量偏差,将直接影响混凝土的强度。而采用含泥量大的粉砂配制的混凝土收缩大,抗拉强度低,容易因塑性收缩而产生裂缝。泵送砼为了满足泵送条件:坍落度大,流动性好,易产生局部粗骨料少、砂浆多的现象,此时,砼脱水干缩时,就会产生表面裂缝。

混凝土施工中过分振捣,模板、垫层过于干燥

混凝土浇筑振捣后,粗骨料沉落挤出水分、空气,表面呈现泌水而形成竖向体积缩小沉落,造成表面砂浆层,它比下层混凝土有较大的干缩性能,待水分蒸发后,易形成凝缩裂缝。而模板、垫层在浇筑混凝土之间洒水不够,过于干燥,则模板吸水量大,引起混凝土的塑性收缩,产生裂缝。

混凝土浇捣后过分抹干压光和养护不当

过度的抹平压光会使混凝土的细骨料过多地浮到表面,形成含水量很大的水泥浆层,水泥浆中的氢氧化钙与空气中二氧化碳作用生成碳酸钙,引起表面体积碳水化收缩,导致混凝土板表面龟裂。而养护不当也是造成现浇混凝土板裂缝的主要原因。过早养护会影响混凝土的胶结能力。过迟养护,由于受风吹日晒,混凝土板表面游离水分蒸发过快,水泥缺乏必要的水化水,而产生急剧的体积收缩,此时混凝土早期强度低,不能抵抗这种应力而产生开裂。特别是夏、冬两季,因昼夜温度大,养护不当最易产生温差裂缝。

楼板的弹性变形及支座处的负弯矩

施工中在混凝土未达到规定强度,过早拆模,或者在混凝土未达到终凝时间就上荷载等。这些因素都可直接造成混凝土楼板的弹性变形,致使砼早期强度低或无强度时,承受弯、压、拉应力,导致楼板产生内伤或断裂。施工中不注意钢筋的保护,把板面负筋踩弯等,将会造成支座的负弯矩,导致板面出现裂缝。此外,大梁两侧的楼板不均匀沉降也会使支座产生负弯矩造成横向裂缝。

后浇带施工不慎而造成的板面裂缝

为了解决钢筋混凝土收缩变形和温度应力,规范要求采用施工后浇带法,有些施工后浇带不完全按设计要求施工,例如施工未留企口缝;板的后浇带不支模板,造成斜坡搓;疏松混凝土未彻底凿除等都可能造成板面的裂缝。

二、裂缝的预防措施

1、严格控制混凝土施工配合比。根据混凝土强度等级和质量检验以及混凝土和易性的要求确配合比。严格控制水灰和水泥用量。选择级配良好的石子,减小空隙率和砂率以减少收缩量,提高混凝土抗裂强度。

值得注意的是近十几年来,我国一些城市为实现文明施工,提高设备利用率,节约能源,都采用商品混凝土。因此加强对商品混凝土进行塌落度的检查是保证施工质量的重要因素。

2、在混凝土浇捣前,应先将基层和模板浇水湿透,避免过多吸收水分,浇捣过程中应尽量做到既振捣充分又避免过度。

3、混凝土楼板浇筑完毕后,表面刮抹应限制到最小程度,防止在混凝土表面撒干水泥刮抹。并加强混凝土早期养护。楼板浇筑后,对板面应及时用材料覆盖、保温,认真养护,防止强风和烈日曝晒。

4、严格施工操作程序,不盲目赶工。杜绝过早上砖、上荷载和过早拆模。在楼板浇捣过程中更要派专人护筋,避免踩弯面负筋的现象发生。通过在大梁两侧的面层内配置通长的钢筋网片,承受支座负弯矩,避免因不均匀沉降而产生的裂缝。

5、施工后浇带的施工应认真领会设计意图,制定施工方案,杜绝在后浇处出现混凝土不密实、不按图纸要求留企口缝,以及施工中钢筋被踩弯等现象。同时更要杜绝在未浇注混凝土前就将部分模板、支柱拆除而导致梁板形成悬臂,造成变形。

三、裂缝的处理方法。

1、对于一般混凝土楼板表面的龟裂,可先将裂缝清洗干净,待干燥后用环氧浆液灌缝或用表面涂刷封闭。施工中若在终凝前发现龟裂时,可用抹压一遍处理。

2、其它一般裂缝处理,其施工顺序为:清洗板缝后用1:2或1:1水泥砂浆抹缝,压平养护。

钢筋混凝土论文篇(7)

作为钢筋混凝土工程监理工作的重中之重,对工程质量的控制被放在监理工作的突出位置。监理单位首先要求施工方认真履行合同,严格按照施工图纸施工作业。同时,要加大对现场施工材料的监管力度,建立材料审批制度,坚决不允许使用不合格的产品。另外,对于施工中使用的设备,要采取事前检查、事中监测、事后维护等多种手段,要求施工方保持设备的正常运转。

1.1.1施工过程监理控制分析在整个监理过程中,对施工过程的监理控制是比较困难的。在施工过程中,监理工作涉及的范围广、种类多,同时,还具有极高的复杂性。尤其是在钢筋的使用规范上,要求施工人员在实际操作中要严格按照相关程序执行。

1.1.2混凝土浇筑监理分析在钢筋混凝土工程监理工作中,监理单位要求施工方的混凝土作业要一次浇筑到位,坚决杜绝混凝土堆积或倾斜的情况,同时,还要严格控制下料斗的出料。另外,要严格控制并避免建筑的整体浇筑和斜层浇筑,要严格控制浇筑的厚度。监理人员在现场监理时,应督导施工人员的浇筑程序,以确保混凝土浇筑作业能够顺利进行。

1.1.3钢筋混凝土质量监理分析钢筋混凝土工程出现质量问题的原因是多方面的,比如,对于钢筋结构的表面损伤,就包括未对模板的表面喷涂隔离剂,使其表面粘上了混凝土,使模板的表面不平;在振捣作业中,未将边角处捣实。另外,在拆模过程中,拆除手段不当等都是造成表面结构损伤的重要原因。因此,在监理过程中,监理人员应监督整个拆模过程,及时制止不符合程序的拆模行为。

1.1.4水压盲板堵头设计监理分析在施工过程中,水压试验是管道工程质量检测的重要环节,对堵头的设计和施工十分重要。在监理活动中,监理组与设计单位、施工单位密切合作,科学验算、严格控制水压试验盲板堵头的设计和施工。根据相关计算分析,主要计算过程如下。根据GB150—1998规范盲板厚度计算公式推出的盲板厚度计算,其可简化公式:t≥DP÷100.(1)式(1)中:t为盲板厚度;D为管道直径;P为试验压力。代入相关数值得:t=1200×12÷100=41.1mm。据此计算数据,经过反复确认,决定采用Q235B,46mm钢板作为盲板。由于现场采购不到46mm钢板,与设计沟通后,决定采用40mm钢板加加强筋的设计来满足对盲板强度的要求。

1.2施工进度监理控制分析

根据工程所处的自然地理环境,结合钢筋混凝土施工的特点,合理监理了施工进度,在保证了施工质量的同时加快了施工进度。

1.2.1钢筋混凝土工程质量检测在施工过程中,检测钢筋混凝土能够有效保障施工进度,避免因钢筋混凝土质量问题对施工进度造成的影响。因此,监理单位在监理的过程中,要监督整个质量检测,确保检测结果的公正性和科学性。钢筋混凝土的质量检测大体可以分为3部分:①外观检查。外观检查主要针对尺寸偏差、裂缝、冻害和表面损伤等多方面。同时,监理人员应该对整个外观检查进行正确督导。②预留试块检测。这种方法存在一定程度上的误差,预留试块的取样不符合相关标准。因此,在选择这种方法时,要加大现场监督的力度,充分发挥监理职能。③结构本体检查。结构本体检查是整个检测中尤为关键的部分,检测结果对钢筋混凝土的质量判断有重要的影响,因此,监理单位在建立过程中要严格监督相关内容。

1.2.2其他项目监理分析在整个施工过程中,除了面临钢筋混凝土等方面的问题外,其他因素也为监理工作带来了困难。

1.2.2.1地质、水文条件变化由于该工程时间跨度大、建设周期长,所以,在工程建设中会出现降雨和冻土现象。在监理过程中,如何最大限度地将自然环境方面的影响降到最低是十分重要的问题。监理工作开始后,监理单位就要敦促施工方做好应急预案,合理控制工程进度,以确保整个施工能够顺利进行。

1.2.2.2地下水的监理控制在施工作业中,沟槽开挖有时会碰到地下水。当水位不高、出水量小时,可以采取边开挖、边安装、边回填的方式,在保证安装质量的前提下,加快施工进度,快速通过;当出水量大时,应该采取提前降水措施。在开挖前,要按照设计管线走向每隔50m开挖挖1个比设计槽底标高深1m的深坑作为集水坑,并安装潜水泵降水。同时,在潜水泵上加1层滤网避免砂砾堵塞泵口。当安装到集水坑时,用级配良好的砾石分层换填,压实后再安装。

1.2.2.3钢材焊接在施工过程中,监理单位要求施工方使用符合设计的钢材,从很大程度上避免了因钢材不合格带来的施工质量问题。同时,在钢材焊接作业中,监理单位要充分发挥其职能。严格控制施工人员、施工程序和施工标准,进而保证钢筋混凝土工程关键部分的施工质量。在焊接作业中,盲板与筒体第一层焊接时使用分段对称焊接的方法。另外,当法兰与筒体焊接时,焊接由里至外,防止焊接发生变形。在焊接作业中,为了防止焊接后应力过于集中,所有工艺孔都不进行焊接作业。

2安全监理分析

在整个施工过程中,最重要的监理活动是针对施工安全进行的。施工安全一直是工程中最受关注的问题,从施工人员的安全培训到安全保护措施的日常维护,监理人员在其中发挥了重要的作用。鉴于此,要建立安全施工管理规范,全方位进行施工综合安全监理。

钢筋混凝土论文篇(8)

前言

随着城市住宅建设步伐的加快,不少住宅小区相继建成,许多住户陆续搬进新居,他们对住房的质量要求越来越高,尤其对一些现浇钢筋混凝土楼板出现的裂缝情况非常关注,担心这些裂缝最终会引发不安全事故。因此,分析现浇钢筋混凝土楼板裂缝的原因及探索裂缝的防治措施具有极强的现实意义。

一、住宅现浇钢筋混凝土楼板裂缝产生的原因

混凝土的收缩变形是混凝土的固有特性,主要表现形式为浇筑初期(终凝前)的凝缩变形、硬化过程中的干缩变形、在恒温绝湿条件下由凝胶材料的水化作用引起的自生收缩变形和温度下降引起的冷缩变形。影响混凝土收缩的因素主要有水泥品种、骨料品种和含泥量、混凝土配合比、外加剂种类及掺量、介质湿度和养护条件等。混凝土的相对收缩量主要取决于水泥品种、水泥用量和水灰比,绝对收缩量除与这些因素有关外,还与构件施工时最大连续边长成正比。当现浇钢筋混凝土楼板收缩受到其支承结构的约束,板内拉应力超过混凝土的极限抗拉强度时,就会产生裂缝。

(一)浇筑初期(终凝前)的凝缩变形

凝缩变形产生的裂缝发生在混凝土结硬前最初几小时内,通常浇后24h即可观察到。这种裂缝有两类:一类是由于塑性混凝土下沉产生的裂缝,在梁、板中都有可能产生;另一类是塑性收缩裂缝,常出现在板中,裂缝逞不规则的鸡爪状或地图状。凝缩变形产生的裂缝多与混凝土的泌水现象有关。

新浇筑的混凝土经压实后,由于重力作用,重的固体颗粒向下沉,迫使轻的水向上移,即所谓“泌水”。当固体颗粒彼此支撑不再下沉,或水泥结硬阻碍了它的下沉,泌水即停止。如混凝土中固体颗粒能不受阻碍地自由下沉,则仅使结硬后混凝土的体积减少,并不会产生裂缝。

塑性收缩裂缝并不受混凝土中钢筋的影响,影响塑性收缩裂缝的主要因素是混凝土表面的干燥速度,当水分蒸发速度超过了泌水速度时,就会产生这种裂缝。因此凡是能加速蒸发速度的因素(如气温高、相对湿度低、风速大以及混凝土中温度高于周围空气温度)都会促使塑性收缩裂缝的发生。塑性收缩裂缝的表面宽度有的可达1~2mm。这种裂缝在自由支承板的四角处则很少出现,因为角部的干缩不受约束;相反,如板的边缘受到约束(砖墙等),则将出现与板边呈45°的一系列平行裂缝。

(二)硬化过程中的干缩和水化作用引起的自身收缩

自身收缩与干缩一样,在浇筑后相当长的时间约1~2a才会出现,它是由于水的迁移而引起的。但它不是由于水向外蒸发散失,而是因为水泥水化时消耗水分造成凝胶孔的液面下降,形成弯月面,产生所谓自干燥作用,使混凝土体的相对湿度降低和体积减少;水灰比的变化对干燥收缩和自身收缩的影响正相反,即当混凝土的水灰比降低时干燥收缩减少,而自身收缩增大。如当水灰比大于0.5时,其自身干燥作用和自身收缩与干缩相比可以忽略不计;但是当水灰比减少到0.35时,混凝土内相对湿度会很快降低到80%以下,自身收缩与干缩则相接近。在硬化混凝土收缩受约束的条件下,收缩应变将导致弹性拉应力,拉应力可被近似看作弹性模量与应变的乘积;当拉应力超过混凝土的抗拉强度时,材料出现开裂。但是由于混凝土的粘弹性(徐变),部分应力释放,徐变产生的应力松驰后的残余应力才是决定混凝土是否开裂的关键。

(三)温度下降引起的冷缩变形

由于建筑物各部位在各季节所受温度变形不协调,从而导致裂缝。当结构周围温度变化时,梁、板、墙体均要产生变形,降温时梁的温度变化滞后于板,特别在急冷降温时更为明显,板的收缩大于梁,梁相对于板而言为外约束,由于板的收缩变形受到梁的约束,故在板上产生拉应力,这种应力是产生裂缝的主要原因,这种裂缝在板上常为贯通裂缝。

(四)现浇板上过早施工而加荷引起的裂缝

《混凝土结构施工质量验收规范》规定,混凝土强度达到1.2kg/mm2前,不得在其上踩踏或安装模板及支架。但开发商为了抢时间,赶进度,在刚浇好的现浇板上或混凝土尚处在初凝阶段,就任意踩踏,搬运材料,集中堆放砖块、砂浆、模板等。过早的加荷人为地造成了现浇板裂缝。

二、防治措施

(一)设计方面

在设计方面应该注意以下几点:

1.现浇板结构设计中除考虑强度要求外,还应进行挠度及裂缝验算,考虑施工不均匀性及混凝土本身的收缩因素,适当增加板厚,增强板的刚度。

2.宜采用较小直径密度分布的方式进行布筋,为防止温度及收缩引起的应力影响,应适当提高配筋率,这样可提高混凝土体的极限拉伸应变及混凝土抵抗干缩变形的能力,防止因混凝土自身收缩出现大量的应力集中点,使局部出现塑性变形产生裂缝。另外混凝土标号设计强度不宜太高。

3.应在楼板上每隔20m左右处设置一后浇带,并在楼板中间墙体支座处设一条伸缩缝,使其释放内应力。

4.楼板因四周嵌固于墙体内,应在四角部位按要求配置双向钢筋,伸出长度应小于1/3L(L为短向边长),且不小于1.2m为宜。

5.在抗震非设防地区,也应适当增设混凝土构造柱,提高房屋整体抗震强度。

(二)施工方面

1.应严格按配合比进行计量投料,控制搅拌时间及水灰比,并根据现场砂含水量变化及原砂中含粒径5cm以上的砾石筛选调整施工配合比,保持混凝土强度及坍落度一致,防止因水及水泥用量过多而增加混凝土中多余的水分及空气,从而产生较大的内应力,导致产生收缩裂缝。

2.混凝土中骨料的用量占体积的70%左右,必须注意粗骨料的质量,宜用粒径15~20mm的石子进行合理级配,含泥量<1%;砂子应用中、粗砂,含泥量<3%,砂率控制为40%左右,坍落度控制为14~20cm;水泥应选用非早强度型、水化热低和质量稳定的普通硅酸盐水泥,减少混凝土自身收缩。

3.严格控制板面负筋保护层厚度。现浇板负筋按设计要求都放在板上面,有梁通过或隔断时,一般放置在梁钢筋上面或与梁钢筋绑扎在一起。为了控制好负筋保护层厚度,必须采用Φ10~14的钢筋马凳,纵横间距为800mm左右来固定负筋的位置,并用电焊把马凳与负筋焊牢,使马凳在混凝土浇筑过程中不移位,保证负筋不下沉,从而有效控制负筋保护层的厚度,不使板负筋保护层过厚而产生裂缝。模板中线管铺设密集处的上部及下部铺放一层18号钢丝网,宽度每边应大于管区100mm为宜。

4.现浇板上不要过早上人、堆料和施加荷载,因混凝土浇筑后要有一个硬化过程,才会有强度;在这个过程中,应对混凝土加以保养,不能对混凝土施加任何外力。必须做到在混凝土强度达到1.2kg/mm2后,才允许在其上踩踏或安装模板及支架。

5.现浇混凝土楼板必须采用平板振捣器振捣,水平和垂直方向各一遍,每次振捣相互重叠1/3的振捣宽度,不留施工缝。

6.在初凝后和终凝前应用木抹子赶平压实及用铁抹子赶压三遍,减少收缩裂缝的出现。

7.混凝土浇筑完毕12h内,及时进行合理养护,保证规定的养护时间,一般情况下不少于7d,对掺有外加剂或抗渗混凝土养护不少于14d,提高混凝土自身拉伸应变能力,防止干缩变形出现裂缝。

8.发展纤维混凝土,在普通混凝土中掺入少量的抗裂合成纤维,其掺量为0.6~1.8kg/m3,可以控制混凝土的早期裂缝。

三、结语

现浇钢筋混凝土楼板裂缝是工程常见的质量通病,大量工程实践说明,只有在设计和施工过程中针对各影响因素考虑全面、细致,严格遵守设计和施工规范,弄清裂缝出现的原因,再加以正确的处理措施,裂缝是可以得到控制和预防的。

钢筋混凝土论文篇(9)

钢筋混凝土由混凝土和钢筋两种材料组成。混凝土是由水泥、粗细骨料和水经搅拌而成的混合物,以模板做为成型的工具,经过养护,混凝土达到规定的强度,拆除模板,成为钢筋混凝土结构构件。钢筋混凝土工程由模板工程、钢筋工程和混凝土工程三部分组成。在施工中三者之间应紧密配合,合理的组织施工。其施工工艺过程如下图所示。

钢筋混凝土工程是由模板、钢筋和混凝土三个工种工程组成,在施工中这三个工种工程要紧密配合,合理的组织施工。混凝土浇灌之前,要检查模板的位置、标高、断面尺寸和模板系统的强度和稳定性;要检查钢筋品种、规格、数量和位置的正确性。在混凝土浇筑过程中,还要对模板、钢筋进行检查。只有三个工种之间紧密配合,才能保证工程质量。现浇钢筋混凝土工程施工要根据工程特点,编制施工组织设计,制定施工方案,合理组织施工,以确保工程质量和进度。

钢筋混凝土的原材料品种、规格较多。在施工中正确选用原材料,正确地确定和掌握配合比,是保证配制出符合设计要求的混凝土的关键。此外,混凝土工程还有一个很重要的特点是混合搅拌好的混凝土,须经过一定时间的凝结硬化,才能达到要求的强度。而混凝土凝结硬化的速度,取决于水泥的水化作用速度,它与周围环境的湿度和温度有关。因此,要保证混凝土工程质量,必须进行养护,只有达到规定的拆模强度才能拆除模板。所以在组织施工过程中要充分考虑必需的技术间歇时间。以下就模板工程、钢筋工程和混凝土工程施工过程中的注意事项作简单说明。

1模板工程

(1)加工模板用木方要统一用压刨二次加工,保证方木尺寸一致。

(2)加工梁、板、柱模板竹胶板裁锯的边要用电刨刨光,保证接缝严密。

(3)在楼板上下地锚筋,以保证柱墙模板固定牢固。

(4)为确保浇筑砼时不漏浆,在梁、柱、墙、板模板接缝处加密封条;楼板模板接缝必须严密;在柱、墙根部与地面交接处,先用水泥砂浆找平,安模板时再贴密封条。

(5)梁、柱、板结合处的模板安装时作为检点,确保几何尺寸准确,支撑牢固,接缝严密不漏浆。

(6)脱模剂只准许使用水性脱模剂。

2钢筋工程

(1)箍筋加工弯钩的弯心半径控制在钢筋直径的2.5d以内,保证弯钩弧度平滑。

(2)剥肋滚压直螺纹连接的钢筋,必须用砂轮切割机截断。

(3)顶板钢筋绑扎前,先按照设计图纸要求的间距在模板上弹线,以保证钢筋位置准确无误。

(4)采用不小于Φ12的钢筋加工马凳,间距宜控制在500mm左右,且不少于两道,以保证底板上下层钢筋及顶板负筋高度准确。

(5)采用相应规格的砂浆垫块、高强塑料卡、梯子筋等,以保证梁、柱、墙、板钢筋保护层厚度符合规范要求。柱筋采用定位卡具,一般应控制在600mm左右,以保证钢筋间距准确无误。

(6)梁、柱、板交接处钢筋稠密,采用在钢筋间加定位框、定位卡的办法,确保钢筋间距。

(7)梁钢筋绑扎时,保证波纹管的位置准确、固定牢固。

(8)浇筑混凝土前应做好交接检验,并实行现场“挂牌”制度,否则不得进入下道工序施工。

3混凝土工程

(1)编写依据:施工图纸、相关规范、标准、施工组织设计、工程概况和各部位混凝土具体情况。

(2)施工部署:要充分考虑到浇筑的设备和有关器具的数量,结构竖向及水平向的先后施工顺序和工期安排,同时涉及施工台班、施工缝的设置问题。

(3)施工方法:主要涉及施工准备工作、主要施工措施、施工顺序及具体施工办法。

(4)质量通病及预防措施:施工方案中要详细制定混凝土工程质量通病原因、预防措施和处理方法。

(5)混凝土浇筑前,必须进行严格清理,模内不能有任何杂物。

钢筋混凝土论文篇(10)

中图分类号:TU37 文献标识码:A 文章编号:

1、本文利用ANSYS有限元分析程序模拟锈蚀钢筋混凝土箱梁:

锈蚀钢筋混凝土箱梁的受力特征与钢筋锈蚀程度有很大关系,为了研究纵向钢筋锈蚀后钢筋与混凝土之间的滑移,图1给出了8根受拉钢筋与混凝土之间滑移的变化曲线。从左到右依次为1号钢筋、2号钢筋、3号钢筋、4号钢筋、5号钢筋、6号钢筋、7号钢筋、8号钢筋,钢筋编号如图1所示:

图1受拉钢筋编号

图1-5所示:3905-3920为1号钢筋的每个单元的滑移量,3920-3935为2号钢筋的每个单元的滑移量,3935-3950为3号钢筋的每个单元的滑移量,3950-3965为4号钢筋的每个单元的滑移量,3965-3980为5号钢筋的每个单元的滑移量,3980-3995为6号钢筋的每个单元的滑移量,3995-4010为7号钢筋的每个单元的滑移量,4010-4025为8号钢筋的每个单元的滑移量。

图1 XL-0的钢筋单元在极限荷载作用下的滑移图2锈蚀率为1%时钢筋单元在极限荷载作用下的滑移

图3锈蚀率为5%时钢筋单元在极限荷载作用下的滑移图4锈蚀率为6%时钢筋单元在极限荷载作用下的滑移

图5锈蚀率为12%时钢筋单元在极限荷载作用下的滑移

由图1—5可知钢筋与混凝土之间的滑移规律:相同截面处,靠近薄壁箱梁腹板处钢筋与混凝土之间的滑移量大,离腹板越远,其滑移量越小,且越接近支座这种变化越明显,这是由于钢筋混凝土箱梁的剪力滞后所至。当钢筋锈蚀率不大于5%时,随着钢筋锈蚀率的增加,钢筋与混凝土之间的滑移反而减少,这是由于钢筋锈蚀产物增大了钢筋与混凝土之间的握裹力,使钢筋与混凝土之间的滑移减少,但当钢筋锈蚀率大于5%时,锈蚀产物降低了钢筋与混凝土之间的粘结,使混凝土胀裂,加剧了钢筋与混凝土之间的滑移增大,从而降低了钢筋混凝土箱梁的承载力。而且可以看出钢筋的滑移量最大的地方是支座附近,这是钢筋滑移沿着钢筋长度方向累计效应的表现,滑移量最小的地方是跨中。

2、本章小结

本章讨论了用ANSYS有限元分析钢筋混凝土箱梁破坏时钢筋滑移的分析,主要结论为:

锈蚀钢筋混凝土箱梁的受力特征与钢筋锈蚀程度有很大关系。锈蚀量较小时(未出现锈张胀裂缝),锈蚀钢筋混凝土箱梁的破坏与未锈蚀钢筋混凝土箱梁完全相同;锈胀裂缝处先后,由于钢筋与混凝土之间的粘结力退化,锈蚀梁的受力裂缝减少,间距增大,分布更不均匀;对钢筋严重锈蚀粘结力几乎丧失的情况,锈蚀梁具有梁拱受力特征,且随锈蚀程度的增大,拱作用越明显;当锈蚀量较大时(钢筋的锈蚀率大于12%),粘结性能退化较大,钢筋和混凝同工作能力下降,钢筋不能发挥其强度与塑性性能,梁的破坏将从延性向脆性转换 。因此,锈蚀引起的粘结性能退化改变了钢筋混凝土薄壁箱梁的破坏机理,使受拉钢筋强度不能充分发挥作用。

参考文献

[1] 徐增全。钢筋混凝土薄膜元理论。建筑结构学报,1995,16(5):10~19.

上一篇: 房地产工程管理论文 下一篇: 投资分析论文
相关精选
相关期刊