钢筋混凝土论文汇总十篇

时间:2023-03-16 15:27:17

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇钢筋混凝土论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

钢筋混凝土论文

篇(1)

现浇钢筋混凝土柱的质量控制,重在过程。当出现质量问题后,应查找原因,及时分析处理。现浇钢筋混凝土柱是房屋结构中重要的承重构件之一。框架结构中较多采用的是钢筋混凝土现浇柱,其质量直接关系到结构安全和使用。加强对现浇钢筋混凝土柱的质量控制,分源头把关、工序管理、质量保证体系、问题补救、监督管理、质量检验几方面控制。

一、从源头把关、控制质量

从源头把关控制质量非常重要。钢筋模板工程首先要控制钢筋进场,检查产品合格证、出厂试验报告,并按现行国家标准《钢筋混凝土用热轧带肋钢筋》GB1499的规定取样作力学性能检验,其质量必须符合规定。钢筋表面不得有裂纹、油污等,平直无损伤。施工中柱受力筋采用机械连接,按《钢筋机械连接通用技术规程》JGJ107规定,全程跟踪取样、送试验室试验、见证试验结果,符合规定者才允许采用。

二、注重各道工序管理

控制质量要注重各个工序管理。从受力筋与箍筋的绑扎开始,要求:6肢箍,30根纵筋,对称配筋,箍筋间距100。采用梅花形绑扎,铅丝拧紧,保证钢筋的正确位置。加强质量问题原因分析,针对问题个别处理。如出现:混凝土浇筑过程中,执棒人员的操作技能不熟练,责任心不强,下料、执棒未严格按要求实施,局部出现漏振现象,以及混凝土浇筑时,一次下料厚度过厚,振动棒的插入间距过大等问题均需及时纠偏。

三、加大现场监督力度

为保障防止质量保证体系运转,要求现场管理人员管理到位,加大监督力度。

在浇筑混凝土之前,对钢筋隐蔽工程验收,内容包括:(1)纵向受力筋的品种、规格、数量和位置;(2)钢筋的连接;(3)箍筋品种、规格、间距;(4)预埋件的规格、数量和位置。重视保护层厚度25±5。拆模后,由业主、监理、施工单位人员对外观质量和尺寸偏差进行检查,做记录,并根据具体情况,及时对缺陷进行处理。

四、发现问题及时补救处理

现浇柱外观质量缺陷有:露筋(柱内钢筋未被混凝土包裹而外露)、蜂窝(混凝土表面缺少水泥砂浆而形成石子外露)、孔洞(混凝土中孔穴深度和长度均超过保护层厚度)、夹渣(混凝土中夹有杂物且深度超过保护层厚度)、疏松(混凝土中局部不密实)、裂缝(缝隙从混凝土表面延伸至混凝土内部)、外形缺陷(缺棱掉角、棱角不直等)、外表缺陷(构件表面麻面、掉皮、起砂等)。尺寸允许偏差:轴线位置8;垂直度13,层高±13;截面尺寸+8,-5;表面平整度8;预埋件中心线位置10。发现轴柱混凝土浇筑后出现大面积孔洞、露筋现象,属严重缺陷出现了质量问题。针对此类问题应采取以下处理:先打掉出现问题,已浇筑的混凝土柱。同时编制具体施工处理方案措施,重新立模验收,合格后再进行混凝土浇筑。

五、加强监督管理、防患于未然

加强监督管理,主要作好以下工作:(1)做好混凝土浇筑安全技术交底工作,做好交底和混凝土浇筑过程中的施工记录。(2)重要特殊部位混凝土浇筑要编制针对性的施工方案,严格按方案施工。(3)加强混凝土浇筑过程控制:控制混凝土配合比,混凝土坍落度(混凝土坍落度以现场测试为准,根据现场需要可适当增大坍落度,但必须满足设计和规范要求);合理组织劳动力,严禁疲劳操作;混凝土浇筑高大柱子时,设门子洞。门子洞的留设要严格按要求做;配制混凝土时要注意石子合理级配。当柱混凝土浇筑出现质量问题,采用如下处理原则:本着既不改变结构受力状态,又不改变结构外形尺寸,以达到设计要求,满足使用功能为度。

篇(2)

梁柱节点施工的复杂性主要表现为:节点构造复杂,钢筋分布密集,操作人员高空作业,施工难度大,特别是中间柱子钢筋纵横交错,箍筋绑扎不便,采用整体沉梁时节点区下部箍筋无法绑扎,致使梁节点部位不放或少放柱箍筋,留下严重隐患。部分施工人员意识到钢筋骨架整体人模后柱节点内箍筋绑扎困难,便采用两个开口箍筋拼合,然而在整个节点区均采用开口箍筋显然不符合规范规定。规范对箍筋封闭和箍筋末端弯钩的构造要求,是保证箍筋对混凝土核心起有效约束作用的必要条件。采用分层套箍法操作难度仍相当大,且须将节点部分侧模板拆除方能保证节点箍筋间距及绑扎牢固。若采用原位绑扎钢筋(即先安装梁底模,再直接在梁底模上绑扎梁筋、安装侧模板),其缺陷是:(1)只安装梁底模,不安装侧模板,板的模板无法安装,造成整个模板支撑系统不稳定,易发生模板倒塌事故;(2)在框架结构施工中,所有的钢筋均须在施工楼层堆放和二次运输,在这种开放的模板体系上推放和搬运钢筋极其不安全;(3)支模和绑钢筋多次交叉作业,不利于施工组织管理,窝工现象较严重,工效较低。

2.2改进的对策

近几年的做法是将梁板模板(含侧模板)全部安装完毕后才安装梁板钢筋并整体沉梁。该施工程序的优点是钢筋堆放、运输及绑扎较安全,交叉作业少,支模和绑钢筋不冲突,工效较高。但若不采取特别措施,会出现节点箍筋少放或者箍筋间距无法保证的问题。对此,可采用如下措施解决:(1)下料时每个节点增加若干根纵向短筋(可用细钢筋);(2)柱节点区箍筋现场焊接在纵向短筋上形成整体骨架,再将整体骨架套入柱纵筋并搁置在楼板模板面上,穿梁钢筋并绑扎,为防止附加纵向短筋位置与柱纵筋冲突而造成套箍困难,附加纵向短筋应偏离箍筋角部约50mm,采用该法可保证柱节点箍筋的间距与数量,实施效果较好.需要说明的是,当结构较复杂时,采用该方法可能也会有困难,施工时要视具体情况而定。

3框架柱纵筋的搭接

按照规范和规程的规定允许搭接的矩形,异形柱纵筋应优先采用机械连接或对接焊,但有些施工单位为降低成本或贪图方便,更愿意采用搭接。这种做法往往会造成柱在纵筋搭接部位的截面过小,因该部位箍筋尺寸并未变化,使柱纵筋难以紧靠箍筋(相差柱主筋1d的距离,其直径通常在?覬18以上)。这一问题在柱截面较大时还不太突出。随柱截面的减小就显得较为突出。特别是异型柱通常柱宽仅2O0mm.如端部配2?覬25纵筋.减去钢筋保护层5Omm。则此时两根纵筋的净距仅100mm。若采用搭接,则搭接处两根纵筋的净距如按搭接1根考虑也仅75mm,若两根同时搭接则只剩下50mm。显然对柱有效截面削弱太大,使钢筋搭接末端延伸部位成为柱的薄弱点。

在按规范柱纵筋容许搭接时(三、四级框架d<22),施工人员应在下部柱筋搭接部位末端延伸15Omm,并向外弯折1d,使上部柱纵筋通过此弯折段与下部柱纵筋轴线对齐,并宜在弯折段增加构造焊,可较好地解决这一问题。同时增加的工作量又不算大。

4混凝土保护层厚度问题

保护层厚度的规定是为满足结构构件的耐久性要求和对受力钢筋有效锚固的要求。保护层厚度太小,无法满足上述要求,太大则构件表面易开裂,因此,《混凝土结构工程施工及验收规范》(GB50204-1992)第3.5.8条《建筑工程质量检验评定标准》(GBJ301-1988)第5.2.10条、《混凝土结构工程施工质量验收规范》(GB50204-2002)第5.5.2条均规定受力钢筋保护层厚度梁拄允许偏差为±5mm。

在框架结构施工中,由于楼面标高是一致的,双向框架梁同时穿越柱节点时,必然造成一侧框架梁面筋保护层厚度偏火(往往会超过40ram)。井字架梁节点也有同样问题,这些问题无法避免,但需注意:一是梁箍筋的下料问题,由于一向框架梁面筋需从另一向框架梁面筋底下穿过,若该向框架梁梁端箍筋按原尺寸下料,面筋无法直接绑扎到箍筋上,对粱骨架受力不利,因此梁端箍筋下料时高度可减小20~30mm(仪一向框架梁端需要),二是施工时以哪一向为主,因保护层厚度增大,截面有效高度变小,正截面受弯承载能力减小(约5%),设计时是否考虑了这种影响,另一方面构件表面容易开裂。《混凝土结构设计规范》(GB50010-2002)第9.2.4条规定:当梁、柱中纵向受力钢筋的保护层厚度大干40mm时,应对保护层采取有效的防裂构造措施。对此须在设汁时就明确以哪一向为主,并对保护层厚度偏大的一向梁端加铺一层钢丝网以防表面开裂。

5混凝土施工质量控制

5.1柱的“烂根”和“夹渣”

现浇框架容易出现“夹渣烂根”现象,使根部混凝土漏浆,严重时出现“露筋”和“孔洞”。其直接原因是柱模直接放在楼地板上,预先没有在楼板上做找平层或加标准框浇出底面,更没有留清扫口。当层段>5m中段未留浇筑口,进料从顶部直接下。自由落差>3m,在柱内钢筋阻拦下料使粗细料分离,另因底部板丽不平且未堵缝。导致水泥浆流失掉,也存在底面垃圾未清除净、振动棒长度不到位等因素,造成根部夹渣,烂根问题。保证质量的措施应在框架柱接头外进行,即上次烧筑后加相同规格的方框,并浇平框面,继续上浇前支横模从板面开始,浇筑时在顶洒一层l:0.4的水泥砂浆。并铺l:2水泥25~30mm厚,在其上浇混凝土,可保证框架柱自然密实,不会出现夹渣或烂根的质量问题。

5.2控制好混凝土质量

对配合比的控制不容忽视,再准确的配合比,现场不控制粗细骨料的含杂质量和称量,仍然会生产出不合格品。有的工地不做配合比设计,而套用别人的比例。对已浇成品不保护,养护不及时,尤其是夏天气温高的地区更需要保养,这是提高强度的重要环节。对混凝土框架柱的浇筑施工,必须遵守现行的施工规范,注意克服配料计量、拌和时间短,加水不控制,运距长摇晃离析现象,更要注意不允许二次加水重拌及振捣不密实、过振、漏浆、跑模、不清除残留木屑等现象。操作素质低下所产生的后果将削目支撑件的竖向荷载,影响结构连接及降低抗震能力。只要有健全的施工操作标准,步步检验认证,按规范施工,框架工程质量就会得到保证。

6结语

篇(3)

二、我国在二十世纪六十年代前的水利水电工程施工中主要采用木质模板,由于木材易于制作成各种形状,有些形状特殊的构筑物,如水电站的尾水管的混凝土浇筑,通常均采用木材制作模板,近代仍然有许多国家、许多水利水电工程中使用木模板或钢木混合结构。

七十年代以来,我国在混凝土坝施工中多采用大型钢木混合模板,混凝土(预制)模板等,随后广泛发展了滑动模板以及由此而带来的混凝土浇筑工艺的革新。1973年丹江口水库下游引水工程排子河度槽的空心墩,采用了滑动模板施工方案。1975年密云水库溢洪道工程的溢流堰和陡槽陡坡混凝土衬砌,采用了沿轨道行走的拖板式滑动模板,1997年在曲率变化复杂的清水闸双曲拱坝上采用了滑动模板施工,在这一时期还有竖井、隧洞、渠道、拦污栅工程等采用了滑动模板施工。

七十年代末,我国执行以钢代木的技术政策,组合钢模板大部分用于基础、柱、梁、板、墙等施工中,尤其用于水电工程中的大体积混凝土施工中,呈现了明显的优势。

1946年在狼溪坝(worfcreek)首次使用悬壁模板,随后在使用中不断改进,颇受欢迎。中国在二十世纪五十年代已采用半悬壁模板,七十年代中期,开始研制钢悬壁模板,由于混凝土施工中模板的吊装十分频繁,美国在七十年代初研制并在德活夏克重力坝中,使用自动锚固的自升悬臂模板,取得了很好的技术经济效益。

三、模板工程之所以受到重视,并努力提高和改进其工作和使用性能,与它在混凝土施工中的重要性是分不开的。

首先,水工混凝土施工中模板工程费用比重很大,约占混凝土总造价的15-30%。在无筋或少筋的大体积混凝土工程中约占5-15%。模板制作与安装劳动消耗量约为28%-45%(一方混凝土中的劳动量)并消耗大量优质钢材和木材,见下表:

大坝名称

龙羊峡

太平哨

葛州坝

清水闸

砼单价(元/m3)

63.0

86.5

54.1

47.0

67.1

75.0

65.4

每m3砼模板费用

三次周转

9.6

12.1

9.7

9.1

9.0

9.0

%

15.2

14.0

17.9

19.4

12.0

15.7

七次周转

7.4

9.3

6.6

6.7

7.0

7.4

%

11.7

10.7

12.2

14.3

11.0

12.0

备注

83年单价不计吊车工作占班费

模板的作用,还常常表现于控制施工进度上,在大体积混凝土施工中,根据一些工程的统计,模板的拆装时间,约占总施工周期的35%。模板工序在许多情况下是施工网络图中的关键线路,模板工艺的改进常常可以加快施工进度。

水利水电工程中模板的地位,还可以从国外混凝土坝施工经验中看到,下面是国外工程中模板工程占施工费用的比例。

1、苏联:模板的平均劳动消耗占混凝土单价的10-22%。

2、日本:模板费用占施工中的费用为:拱坝47%,重力坝30%。

3、美国:模板工程占总费用的20%。

(注:日、美是对单个有代表性的坝的施工总结而得。)

由上可知:模板工程在钢筋混凝土施工中占有相当重要的作用,做好模板的结构设计和工艺设计对提高工程效益和加快施工进度是有相当的意义。

一、四、模板的型式和结构有时能改变混凝土的浇筑工艺

传统的模板型式是采用拉条固定面板,这种结构方式妨碍入仓,混凝土拌合物的整平与捣固,妨碍面层的凿毛清理,妨碍浇筑仓面的施工准备工作,无法进行机械化作业。

悬臂模板则大大克服了传统的模板型式的缺点,在机械化施工和减少劳动消耗上呈现了很大的优势。

意大利修建阿尔卑—得热拉大坝时,采用了一种不拆除的模板(钢挡板),由于这种模板形成了承压面,所以大幅度降低对大坝混凝土砌体的要求,取消了浇筑块间接缝的防渗,采用分层铺筑混凝土,取消施工中的工作面,(在混凝土铺完之后用专门机械切出工作缝)。

苏联在萨扬诺—舒申斯克水电站施工中架用带“锚杆”的双层悬壁模板,这种模板的支承柱不是向下伸而是向上伸出,下层模板的支承柱支撑上层模板的面板,模板的自重和混凝土的侧压力均由下层模板承受,因此每个浇筑仓至少有两层模板,这种模板只需拆除下层模板的固定螺栓。从而,减少了各浇筑层间的时间间隔,提高了浇筑速度也减少了混凝土表面的清理工作与准备工作量。

滑动模板则对混凝土浇筑速度更显示出优势和潜在的生命力,这种型式的模板除表现在时间效益(工期缩短)之外,模板本身的价格也可以降低,而且能很大程度上提高混凝土浇筑效果。

总之,不同的模板型式决定了混凝土浇筑的不同施工工艺,也对混凝土的质量和工程效益有不同的影响,如何改进模板工艺是一个重要课题。

五、我局在参加的水电建设工程中对模板工程仍然以传统的模板型式为主,尽管在太平湾电站建设中引进了一些新的工艺技术(试用),但有些问题仍然值得探讨。

1、我局一直倡议施工单位在混凝土施工中尽量使用钢模板,但在实际施工中,有许多部位诸如挡水坝段,厂房立墙等都仅使用少量钢模,这不仅浪费了大量木材而且大大降低了工效。成功的工程总结出,钢模可比木模提高工效2-4倍(工效包括安装、拆模、电焊、凿毛、搭设平台等的综合用工),而且钢模的成本费(达到标准周转率)仅为木模的一半。因此,合理的以钢模代替木模是提高经济效益的好方法之一。

2、我局在模板管理上有许多不足。其主要表现在模板的使用周转率上,按规定,钢模板的周转率为50次,大型木模板为15次,一般木模板为7次,而我局实际周转率远远达不到这个要求,仅以一般木模为例,我局使用周转率为4次左右,这大大增加了施工费用,解决这一问题的办法除了提高工人思想素质,业务水平外,我们的管理水平有待提高。

3、在我局引进使用新的模板工艺上,滑升模板是突出的一例,有成功也有失误,在云峰大坝修补工程中,使用的滑模是比较成功的,而在太平湾清水闸闸墩上使用滑模则值得探讨,排除试验目的来谈,滑升模板一次性投资较大,因此它适用于高层混凝土浇筑中,高度较低的混凝土浇筑中使用则效益不显著或者没有效益,因此新技术的使用中应考虑其适用范围,并与经济效益挂钩才是适宜的。

4、模板工程在近几年已形成一个专门学科,但这方面的书并不多,我们在工程施工中应对每一项工作,各种形式的模板认真总结,使得在今后的工作中对每种建筑型式的模板有路可循,既方便工作,又能不断改进,不断进步。

六、鉴于模板工程在钢筋混凝土施工中的重要作用,世界各国都在研究并不断改进模板工程的施工技术和工艺,伴随着模板专业公司的建立,模板工程的发展将不断向快速、节省方向迈进。

模板工程的发展前景将是以如何加快混凝土施工为中心发展,1973年十一届世界大坝会议提出了混凝土坝设计与施工的任务和课题,讨论的结论是:“降低混凝土造价的根本出路是加快施工进度。”为此提出了新的混凝土坝施工方法就是:大体积混凝土连续垂直浇筑法,这相应给模板工程带来了新的课题。

我认为加快进度的途径之一就是:

1、认真研究滑动模板的使用问题。

2、增加浇筑层厚度,减少水平接缝,采用自升模板。

3、加大浇筑块尺寸,减少施工缝,以缩小立模面积。

随着改革的不断深入,适应工程招、投标的需要,就要做为前期工作涉及的内容有:

篇(4)

1工程概况

某幼儿园1995年8月开工,于1996年12月竣工交付使用,建筑面积1643m2,为一幢3层框架及部分砖混结构建筑。钢筋混凝土梁式桩基,三层局部楼面及屋面为井字梁结构。于1999年3月发现①~⑤轴、A~D轴间井字梁两侧屋面板底以下部位出现多道肉眼可见的垂直裂缝。在清除表面粉刷层后发现裂缝沿构件截面高度呈上宽下窄状,宽度约0.5~1mm,多为表面裂缝,基本未贯穿梁底,且大都分布在跨中区域,在LB梁上的分布多于LA1及LA2梁,同时井字梁的周边梁与其下砌体结构产生了明显的错位.

2裂缝原因分析

(1)该楼共设8个沉降观测点。根据基础沉降观测结果,由于为桩基础,沉降量均较小,最大沉降量10.4mm,最小沉降量9.3mm,最大差异沉降仅1.1mm,故可排除基础沉降量过大引起梁体裂缝的可能。

(2)对梁体进行回弹测得混凝土强度等级达到C20,符合原设计要求,故可排除梁身混凝土强度等级不足引起梁体开裂的可能。

(3)该井字梁结构系夏季施工,原定屋面做法为刚性防水层上用1∶10水泥珍珠岩找坡,再做架空层隔热,而后考虑铝白色SBS具有反光、防漏的双重作用,而改用铝白色塑膜面SBS防水卷材替代架空层。通过实地检查发现,该防水材料已老化变质,其上铝白色也已退尽。宁波地区冬季最低室外温度在-5℃左右,室内温度可达到10℃,夏季室外温度可达到38℃左右,在阳光直射处则可达到45℃以上,室内温度为30℃左右。该井字梁层面上虽做有珍珠岩找坡层,但厚度较薄,且其上SBS已失去原有的反光作用,故该层面保温性较差,梁体的室内外温差无论冬夏季至少在10℃以上。

3设计计算的复核

现以LB梁为例进行裂缝宽度复核。该构件的裂缝控制等级应为三级,最大裂缝允许宽度为0.3mm。复核工作分两部分进行。

(1)按受弯构件验算梁体裂缝宽度,其最不利情况应是荷载效应与温度效应产生的弯矩叠加。因该梁是夏季施工的,冬季则产生收缩变形,梁顶与梁底的温差使梁顶收缩大于梁底,因此,冬季温度效应产生的跨中弯矩与荷载效应产生的跨中弯矩是同号的,即冬季二者的影响是叠加的。

经计算得屋面综合荷载q=7.58kN/m2,区格的长a和宽b分别为3.4m和3m,则荷载效应产生的弯矩

Ml=0.34qa2b=0.34×7.58×3.42×3=4kN·m

而由构件上下表面温差产生的温度弯矩Mt:

Mt=EIαΔt/h=Ebh2αΔt/12=2.55×104×250×700×700×10^-5×10/12=26000000N·mm=26kN·m

其中E为C20混凝土弹性模量取2.55×104N/mm2;α为C20混凝土线膨胀系数,取1×10^-5,I为构件截面惯性矩,矩形时为bh^3/12,(b为构件宽250mm,h为构件高度700mm);Δt为构件上、下表面温差,取为10℃。

因而M=Ml+Mt=89.4+26=115.4kN·m

按《混凝土设计规范(GBJ10-89)》受弯构件公式算得最大裂缝宽度Wmax=0.215mm<0.3mm。

(2)按受拉构件验算梁体裂缝宽度。由于该梁为夏季施工,冬季则产生收缩变形,但受支座的约束,在混凝土内产生拉应力。如夏季施工时的温度为35℃,冬季按0℃计算,则冬夏温差将达35℃左右。如近似按轴心受拉构件验算,则可算得最大裂缝宽度Wmax=0.82mm>0.3mm。

由计算过程中得知,温度变形产生的伸缩应力很大(本例为781kN),虽然计算中已考虑了钢筋混凝土构件同砖混结构的协同变形因素,但由于两者的线膨胀系数不同,砖混部分还是对构件产生了较大的约束。

(3)很明显,本工程屋面井字梁侧面出现裂缝的主要原因是由于冬夏季温差引起的混凝土收缩变形以及冬季室内外温差所产生内力效应的影响叠加于荷载效应的综合作用结果。因该梁是在夏季施工的,而且保温隔热措施较差,在冬季的低温下,沿梁长方向产生收缩。当收缩变形受到支座的约束时,在梁体内产生了拉应力。由于混凝土的抗拉强度较低,当拉应力超过抗拉强度时,便产生裂缝。此外,设计中没有按构件由于温度收缩变形引起的拉应力进行抗拉强度验算,抗拉筋明显不足,也是导致井字梁构件裂缝的主要原因之一。由于LA1、LA2梁配筋大于LB梁,故裂缝在LB梁上分布较广。

4处理措施

该工程从竣工到发现裂缝已经过两年多时间,此后又经过近三个月的现场裂缝发展的观测,证实裂缝的开展已处于稳定状态。引起构件裂缝的主要因素——混凝土收缩变形由于各种井字梁及其支承系统的协调变形已趋稳定,同时按温度效应与荷载效应组合验算构件抗弯强度证明梁截面承载力能够满足使用要求,故工程上仅按温度裂缝的因素对构件作了如下处理。

(1)改善屋面保温性能。考虑到原有屋面防水材料SBS已老化变质,为防止屋面渗漏,揭去重做。同时重新在屋面上铺设了架空层,以降低梁体的冬夏季温差与室内外温差。

(2)鉴于构件裂缝宽度较小,故采用表面处理法施工。具体方法为:凿去裂缝两侧各宽5cm范围内的粉刷层,对裂缝处用水冲洗,然后刷掺有107胶的水泥浆,最后用1∶2水泥砂浆抹平凿出的凹槽。对井字梁边梁与支承墙体间的错位处,先贴上宽300mm的铅丝网,再用水泥砂浆进行重新粉刷。同时在构件修补后经过一年左右的跟踪观测,没有发现新裂缝产生,因此可以认定以上分析结果以及裂缝处理方法是正确的。

5结束语

对于象井字梁构件这类体量较大,相互之间约束又较多的混凝土构件,为防止产生温度裂缝可采取如下一些措施:

(1)选择适宜的季节浇注混凝土。因为混凝土的抗拉强度较低,为防止其收缩变形使梁体内产生拉应力,应尽量选择温度低的季节浇注。必须在热天浇筑时,可采用冰水或深井水拌制,或设置简易的遮阳装置,并对骨料进行喷水预冷却,以降低混凝土的搅拌和浇筑温度。

(2)选用水化热小和收缩小的水泥(如矿渣水泥、粉煤灰水泥),选用级配良好的骨料,并严格控制砂、石子的含热量,尽量降低水灰比,合理使用减水剂,加强振捣,以减少水化热,提高混凝土的密实性和抗拉强度。

篇(5)

凡经常或周期性地受环境水作用的水工建筑物所用的混凝土称水工混凝土,水工混凝土多数为大体积混凝土,水工混凝土对强度要求则往往不是很高。在一般水工建筑物中,如闸墩、闸底板、水电站厂房的挡水墙、尾水管、船坞闸室等,在外力作用下,一方面要满足抗滑、抗倾覆的稳定性要求,结构应有足够的自重;另一方面,还应满足强度、抗渗、抗冻等要求,不允许出现裂缝,因此结构的尺寸比较大。若按钢筋混凝土结构设计,常需配置较多的钢筋而造成浪费,若按素混凝土结构设计,则又因计算所需截面较大,需使用大量的混凝土。

对于这类结构,如在混凝土中配置少量钢筋,在满足稳定性的要求下,考虑此少量钢筋对结构强度安全方面所起的作用,就能减少混凝土用量,从而达到经济和安全的要求。因此,在大体积的水工建筑物中,采用少筋混凝土结构,有其特殊意义。

关于少筋混凝土结构的设计思想和原则,我国《水工混凝土结构设计规范》(SL/T191—96)作了明确的规定。

二、规范对少筋混凝土结构的设计规定

对少筋混凝土结构的设计规定体现在最小配筋率规定上,这里将《水工混凝土结构设计规范》(SL/T191—96)(下文简称规范)有关最小配筋率的规定,摘录并阐述如下:

1.一般构件的纵向钢筋最小配筋率

一般钢筋混凝土构件的纵向受力钢筋的配筋率不应小于规范表9.5.1规定的数值。温度、收缩等因素对结构产生的影响较大时,最小配筋率应适当增大。

2.大尺寸底板和墩墙的纵向钢筋最小配筋率

截面尺寸较大的底板和墩墙一类结构,其最小配筋率可由钢筋混凝土构件纵向受力钢筋基本最小配筋率所列的基本最小配筋率乘以截面极限内力值与截面极限承载力之比得出。即

1)对底板(受弯构件)或墩墙(大偏心受压构件)的受拉钢筋As的最小配筋率可取为:

ρmin=ρ0min()

也可按下列近似公式计算:

底板ρmin=(规范9.5.2-1)

墩墙ρmin=(规范9.5.2-2)

此时,底板与墩墙的受压钢筋可不受最小配筋率限制,但应配置适量的构造钢筋。

2)对墩墙(轴心受压或小偏心受压构件)的受压钢筋As’的最小配筋率可取为:

ρ'min=ρ′0min()

按上式计算最小配筋率时,由于截面实际配筋量未知,其截面实际的极限承载力Nu不能直接求出,需先假定一配筋量经2—3次试算得出。

上列诸式中M、N——截面弯矩设计值、轴力设计值;

e0——轴向力至截面重心的距离,eo=M/N;

Mu、Nu——截面实际能承受的极限受弯承载力、极限受压承载力;

b、ho——截面宽度及有效高度;

fy——钢筋受拉强度设计值;

γd——钢筋混凝土结构的结构系数,按规范表4.2.1取值。

采用本条计算方法,随尺寸增大时,用钢量仍保持在同一水平上。

3.特大截面的最小配筋用量

对于截面尺寸由抗倾、抗滑、抗浮或布置等条件确定的厚度大于5m的结构构件,规范规定:如经论证,其纵向受拉钢筋可不受最小配筋率的限制,钢筋截面面积按承载力计算确定,但每米宽度内的钢筋截面面积不得小于2500mm2。

规范对最小配筋率作了三个层次的规定,即对一般尺寸的梁、柱构件必须遵循规范表9.5.1的规定;对于截面厚度较大的板、墙类结构,则可按规范9.5.2计算最小配筋率;对于截面尺寸由抗倾、抗滑、抗浮或布置等条件确定的厚度大于5m的结构构件则可按规范9.5.3处理。设计时可根据具体情况分别对待。

为慎重计,目前仅建议对卧置于地基上的底板和墩墙可采用变化的最小配筋率,对于其他结构,则仍建议采用规范表9.5.1所列的基本最小配筋率计算,以避免因配筋过少,万一发生裂缝就无法抑制的情况。

经验算,按所建议的变化的最小配筋率配筋,其最大裂缝宽度基本上在容许范围内。对于处于恶劣环境的结构,为控制裂缝不过宽,宜将本规范表9.5.1所列受拉钢筋最小配筋率提高0.05%。大体积构件的受压钢筋按计算不需配筋时,则可仅配构造钢筋。

三、规范的应用举例

例1一水闸底板,板厚1.5m,采用C20级混凝土和Ⅱ级钢筋,每米板宽承受弯矩设计值M=220kN/m(已包含γ0、φ系数在内),试配置受拉钢筋As。

解:1)取1m板宽,按受弯构件承载力公式计算受拉钢筋截面面积As。

αs===0.012556

ξ=1-=1-=0.0126

As===591mm2

计算配筋率ρ===0.041%

2)如按一般梁、柱构件考虑,则必须满足ρ≥ρmin条件,查规范表9.5.1,得ρ0min=0.15%,

则As=ρ0bh0=0.15%×1000×1450=2175mm2

3)现因底板为大尺寸厚板,可按规范9.5.2计算ρmin

ρmin===0.0779%

As=ρminbh0=0.0779%×1000×1450=1130mm2

实际选配每米5Φ18(As=1272mm2)

讨论:1)对大截面尺寸构件,采用规范9.5.2计算的可变的ρmin比采用规范表9.5.1所列的固定的ρ0min可节省大量钢筋,本例为1:1130/2175=1:0.52。

2)若将此水闸底板的板厚h增大为2.5m,按规范9.5.2计算的ρmin变为:

ρmin===0.0461%

则As=ρminbh0=0.0461%×1000×2450=1130mm2

可见,采用规范9.5.2计算最小配筋率时,当承受的内力不变,则不论板厚再增大多少,配筋面积As将保持不变。

例2一轴心受压柱,承受轴向压力设计值N=9000kN;采用C20级混凝土和I级钢筋;柱计算高度l0=7m;试分别求柱截面尺寸为b×h=1.0m×1.0m及2.0m×2.0m时的受压钢筋面积。

解:1)b×h=1.0m×1.0m时,轴心受压柱承载力公式为:

N≤φ(fcA+fy′As′)

==7<8,属于短柱,稳定系数φ=1.0,

As′===3809mm2

ρ′===0.38%

由规范表9.5.1查得ρ0min′=0.4%,对一般构件,应按ρ0min′配筋

As′=ρ0min′A=0.4%×106=4000mm2

2)b×h=2.0m×2.0m时,若仍按一般构件配筋,则

As′=0.4%×2.0×2.0×106=16000mm2

现因构件尺寸已较大,可按规范9.5.3计算最小配筋率:

ρmin′=ρ0min′()

式中因实际配筋量As′尚不知,故需先假定As′计算Nu。

①假定As′=4000mm2。

Nu=fy′As′+fyAs

=210×4000+10×4.0×106=40.84×106N

ρmin′=ρ0min′()

=0.4%()=0.106%

As′=ρ0min′A=0.106%×4.0×106=4231mm2

②假定As′=4231mm2。

Nu=210×4231+10×4.0×106=40.89×106N

篇(6)

前言

随着城市住宅建设步伐的加快,不少住宅小区相继建成,许多住户陆续搬进新居,他们对住房的质量要求越来越高,尤其对一些现浇钢筋混凝土楼板出现的裂缝情况非常关注,担心这些裂缝最终会引发不安全事故。因此,分析现浇钢筋混凝土楼板裂缝的原因及探索裂缝的防治措施具有极强的现实意义。

一、住宅现浇钢筋混凝土楼板裂缝产生的原因

混凝土的收缩变形是混凝土的固有特性,主要表现形式为浇筑初期(终凝前)的凝缩变形、硬化过程中的干缩变形、在恒温绝湿条件下由凝胶材料的水化作用引起的自生收缩变形和温度下降引起的冷缩变形。影响混凝土收缩的因素主要有水泥品种、骨料品种和含泥量、混凝土配合比、外加剂种类及掺量、介质湿度和养护条件等。混凝土的相对收缩量主要取决于水泥品种、水泥用量和水灰比,绝对收缩量除与这些因素有关外,还与构件施工时最大连续边长成正比。当现浇钢筋混凝土楼板收缩受到其支承结构的约束,板内拉应力超过混凝土的极限抗拉强度时,就会产生裂缝。

(一)浇筑初期(终凝前)的凝缩变形

凝缩变形产生的裂缝发生在混凝土结硬前最初几小时内,通常浇后24h即可观察到。这种裂缝有两类:一类是由于塑性混凝土下沉产生的裂缝,在梁、板中都有可能产生;另一类是塑性收缩裂缝,常出现在板中,裂缝逞不规则的鸡爪状或地图状。凝缩变形产生的裂缝多与混凝土的泌水现象有关。

新浇筑的混凝土经压实后,由于重力作用,重的固体颗粒向下沉,迫使轻的水向上移,即所谓“泌水”。当固体颗粒彼此支撑不再下沉,或水泥结硬阻碍了它的下沉,泌水即停止。如混凝土中固体颗粒能不受阻碍地自由下沉,则仅使结硬后混凝土的体积减少,并不会产生裂缝。

塑性收缩裂缝并不受混凝土中钢筋的影响,影响塑性收缩裂缝的主要因素是混凝土表面的干燥速度,当水分蒸发速度超过了泌水速度时,就会产生这种裂缝。因此凡是能加速蒸发速度的因素(如气温高、相对湿度低、风速大以及混凝土中温度高于周围空气温度)都会促使塑性收缩裂缝的发生。塑性收缩裂缝的表面宽度有的可达1~2mm。这种裂缝在自由支承板的四角处则很少出现,因为角部的干缩不受约束;相反,如板的边缘受到约束(砖墙等),则将出现与板边呈45°的一系列平行裂缝。

(二)硬化过程中的干缩和水化作用引起的自身收缩

自身收缩与干缩一样,在浇筑后相当长的时间约1~2a才会出现,它是由于水的迁移而引起的。但它不是由于水向外蒸发散失,而是因为水泥水化时消耗水分造成凝胶孔的液面下降,形成弯月面,产生所谓自干燥作用,使混凝土体的相对湿度降低和体积减少;水灰比的变化对干燥收缩和自身收缩的影响正相反,即当混凝土的水灰比降低时干燥收缩减少,而自身收缩增大。如当水灰比大于0.5时,其自身干燥作用和自身收缩与干缩相比可以忽略不计;但是当水灰比减少到0.35时,混凝土内相对湿度会很快降低到80%以下,自身收缩与干缩则相接近。在硬化混凝土收缩受约束的条件下,收缩应变将导致弹性拉应力,拉应力可被近似看作弹性模量与应变的乘积;当拉应力超过混凝土的抗拉强度时,材料出现开裂。但是由于混凝土的粘弹性(徐变),部分应力释放,徐变产生的应力松驰后的残余应力才是决定混凝土是否开裂的关键。

(三)温度下降引起的冷缩变形

由于建筑物各部位在各季节所受温度变形不协调,从而导致裂缝。当结构周围温度变化时,梁、板、墙体均要产生变形,降温时梁的温度变化滞后于板,特别在急冷降温时更为明显,板的收缩大于梁,梁相对于板而言为外约束,由于板的收缩变形受到梁的约束,故在板上产生拉应力,这种应力是产生裂缝的主要原因,这种裂缝在板上常为贯通裂缝。

(四)现浇板上过早施工而加荷引起的裂缝

《混凝土结构施工质量验收规范》规定,混凝土强度达到1.2kg/mm2前,不得在其上踩踏或安装模板及支架。但开发商为了抢时间,赶进度,在刚浇好的现浇板上或混凝土尚处在初凝阶段,就任意踩踏,搬运材料,集中堆放砖块、砂浆、模板等。过早的加荷人为地造成了现浇板裂缝。

二、防治措施

(一)设计方面

在设计方面应该注意以下几点:

1.现浇板结构设计中除考虑强度要求外,还应进行挠度及裂缝验算,考虑施工不均匀性及混凝土本身的收缩因素,适当增加板厚,增强板的刚度。

2.宜采用较小直径密度分布的方式进行布筋,为防止温度及收缩引起的应力影响,应适当提高配筋率,这样可提高混凝土体的极限拉伸应变及混凝土抵抗干缩变形的能力,防止因混凝土自身收缩出现大量的应力集中点,使局部出现塑性变形产生裂缝。另外混凝土标号设计强度不宜太高。

3.应在楼板上每隔20m左右处设置一后浇带,并在楼板中间墙体支座处设一条伸缩缝,使其释放内应力。

4.楼板因四周嵌固于墙体内,应在四角部位按要求配置双向钢筋,伸出长度应小于1/3L(L为短向边长),且不小于1.2m为宜。

5.在抗震非设防地区,也应适当增设混凝土构造柱,提高房屋整体抗震强度。

(二)施工方面

1.应严格按配合比进行计量投料,控制搅拌时间及水灰比,并根据现场砂含水量变化及原砂中含粒径5cm以上的砾石筛选调整施工配合比,保持混凝土强度及坍落度一致,防止因水及水泥用量过多而增加混凝土中多余的水分及空气,从而产生较大的内应力,导致产生收缩裂缝。

2.混凝土中骨料的用量占体积的70%左右,必须注意粗骨料的质量,宜用粒径15~20mm的石子进行合理级配,含泥量<1%;砂子应用中、粗砂,含泥量<3%,砂率控制为40%左右,坍落度控制为14~20cm;水泥应选用非早强度型、水化热低和质量稳定的普通硅酸盐水泥,减少混凝土自身收缩。

3.严格控制板面负筋保护层厚度。现浇板负筋按设计要求都放在板上面,有梁通过或隔断时,一般放置在梁钢筋上面或与梁钢筋绑扎在一起。为了控制好负筋保护层厚度,必须采用Φ10~14的钢筋马凳,纵横间距为800mm左右来固定负筋的位置,并用电焊把马凳与负筋焊牢,使马凳在混凝土浇筑过程中不移位,保证负筋不下沉,从而有效控制负筋保护层的厚度,不使板负筋保护层过厚而产生裂缝。模板中线管铺设密集处的上部及下部铺放一层18号钢丝网,宽度每边应大于管区100mm为宜。

4.现浇板上不要过早上人、堆料和施加荷载,因混凝土浇筑后要有一个硬化过程,才会有强度;在这个过程中,应对混凝土加以保养,不能对混凝土施加任何外力。必须做到在混凝土强度达到1.2kg/mm2后,才允许在其上踩踏或安装模板及支架。

5.现浇混凝土楼板必须采用平板振捣器振捣,水平和垂直方向各一遍,每次振捣相互重叠1/3的振捣宽度,不留施工缝。

6.在初凝后和终凝前应用木抹子赶平压实及用铁抹子赶压三遍,减少收缩裂缝的出现。

7.混凝土浇筑完毕12h内,及时进行合理养护,保证规定的养护时间,一般情况下不少于7d,对掺有外加剂或抗渗混凝土养护不少于14d,提高混凝土自身拉伸应变能力,防止干缩变形出现裂缝。

8.发展纤维混凝土,在普通混凝土中掺入少量的抗裂合成纤维,其掺量为0.6~1.8kg/m3,可以控制混凝土的早期裂缝。

三、结语

现浇钢筋混凝土楼板裂缝是工程常见的质量通病,大量工程实践说明,只有在设计和施工过程中针对各影响因素考虑全面、细致,严格遵守设计和施工规范,弄清裂缝出现的原因,再加以正确的处理措施,裂缝是可以得到控制和预防的。

篇(7)

1.工程概况

1.1建筑概况

天津众美制衣综合楼原为津东农工商营业楼,建于1992年。为6层钢筋混凝土框架结构(见图一),北侧后门正中有运货电梯一座,东西两侧各有一道人行楼梯。建筑物东西长43.08m,南北长27.65m。除一楼层高为5.4米,6楼层高3.9米外,其余各层的层高均为4.5米,大楼总高27.9米,建筑总面积约5200平方米。根据规划需要,大楼整体向北平移35m,迁移总重量约为10346吨。(图二)

图一房屋原貌图二平移示意图

1.2基础概况

原大楼A轴为一层裙房,A轴柱下为条形基础,采用倒T形断面,梁高0.8m,板厚0.3m,梁宽0.5m,板宽1.5m。

B~F轴采用C30钢筋混凝土梁板式筏板基础,主梁断面高1.4m,宽0.8m,梁底相对标高-2.100m。次梁断面高1.3m,宽0.7m,梁底相对标高-2.100m,筏板厚0.4m,板底相对标高-1.700m,筏板在基础周边还伸出轴线外2.5m。基础梁板下均设0.1m厚的C10素混凝土垫层。(图三)

图三基础平面示意图基础断面示意图

1.3地质情况

根据地勘报告,地质情况如下:层底标高0.1~1.89m为人工填土层;0.47~1.33m由坑底淤泥组成;-1.40~-2.12m由粘土和亚粘土组成,可做建筑物的持力层;-11.01~-11.82m主要由灰色亚粘土、轻亚粘土组成。

本场区地基土的容许承载力[R]值,在标高-1.63m以上天然土(不包括坑底淤泥)[R]=120KPa;在标高-1.63~-7.13m,[R]=100KPa;在标高-7.13~-11.82m,[R]=120KPa;在标高-11.82~-13.72m,[R]=140Kpa。

2.分荷结构

要使房屋移动,必须将其由原基础托换到可移动的上轨道结构体系上。在上轨道结构体系设计中,将框架柱的集中荷载转换为上轨道梁对下轨道梁的分布荷载,这对于柱荷载较大、地基承载力较低、移动距离较远的下轨道结构体系及其基础的设计是经济的、合理的。若仅依靠上轨道梁自身进行此荷载的转换,不但需加大上轨道梁的截面,而且还因梁的变形使荷载分布不均,柱下荷载偏大,跨中荷载偏小,荷载转换的效果不甚理想。因此合理的选择是采用分荷结构,将柱荷载经分荷结构传至上轨道梁,然后近似转换为均布荷载,通过移动装置作用于下轨道梁上。

天津津东农工商营业楼平移工程中,由于柱荷载较大,个别荷载达到4500KN,φ73mm滚轴需按20cm的间距密布,而上轨道梁受室内地坪至主梁顶的高差限制,梁高只有500mm,

必须设置分荷系统,才能满足承载要求。经过多方案的比选,放弃了传统的钢结构分荷形式,开发应用了“钢筋混凝土分荷结构”。(见图四)

“钢筋混凝土分荷结构”是由框架柱前后侧对称设置的钢筋混凝土分荷斜柱和斜柱上部的钢筋混凝土抱柱箍组成,并与框架柱及上轨道梁连成完整的一体,提高了分荷结构的节点刚度和传力的可靠性。斜柱底部将上轨道梁三等分,缩短了上轨道梁的跨度,有效减少了上轨道梁的内力。斜柱顶部不像传统的分荷方法支于一层楼板框架梁的底部,而是通过抱柱箍作用于框架柱的中下部,减少斜柱长度,既提高斜柱受压稳定的性能,同时也增加了上轨道梁的侧向刚度和抗扭刚度。由于整个结构高度较低,方便了施工和平移过程中的监测。

3.方案设计

3.1新址基础设计

新址地质勘察报告所揭示的地层,与原大楼地基地质勘察报告所揭示的基本相似,新址报告中所示该场地地基土基本值与原报告中地基土的容许承载力基本一致,原大楼采用片筏基础,故在新址仍采用片筏基础应能满足建筑物的承载要求。

新址片筏基础主次梁的布置仍与原址基础一致。XB~XE轴的主梁断面尺寸和配筋与原址基础B~E轴的主梁完全一致。新址柱间次梁及筏板的断面尺寸和配筋与原址的柱间次梁及筏板相同,而新址柱下次梁按原址柱下次梁的承载能力并结合下轨道梁的构造和承载要求重新设计。

3.2下轨道梁的设计

下轨道梁采用钢筋混凝土结构,下轨道梁一方面作为整个房屋平移及托换体系的基础,同时顶推时为千斤顶提供反力。在①至⑧轴上共设8条下轨道梁,下轨道梁从新址基础延伸至反力后背处。原址片筏基础的轨道梁,贴在片筏基础次梁两侧。新址下轨道梁兼作新址片筏基础次梁,新址每条下轨道梁也由两片轨道梁组成。在新旧基础上采用同一类型的下轨道梁对平移的安全性是有好处的。

3.3上轨道结构体系设计

上轨道结构体系为钢筋混凝土结构,由上轨道梁、抱柱梁、夹墙梁、分荷结构及连系梁等组成。上轨道结构体系用于承受移动部分的全部荷载,因此它应具有足够的强度、刚度及稳定性。

3.3.1上轨道梁设计

上轨道梁采用双侧抱柱梁,采用槽钢与混凝土组合梁结构。与下轨道梁对应,共设8条上轨道梁。上轨道梁兼作一个方向的抱柱梁,按最不利荷载组合、多跨连续梁设计,同时考虑分荷斜梁的水平分力和平移推力引起的轴向力,每条上轨道梁为由双肢组成,梁底设[25槽钢部分代替梁底部钢筋兼作平移滑动面,箍筋与槽钢焊接。上轨道梁断面尺寸为250×500mm,顶面标高为-0.011m。

3.3.2抱柱梁设计

设计时考虑正截面的的受弯承载力,局部抗压强度及周边的抗剪切强度。直接或通过连系梁与上轨道梁浇筑成整体。经过大量实践及实验证明,采用钢筋砼抱柱梁是进行柱托换的一种较为可靠、安全的形式。

3.3.3夹墙梁设计

夹墙梁布置在墙两侧,相互之间通过小系梁连接,确保墙体切断之后承托墙体重量。

3.3.4分荷结构设计

在本工程中开发应用“钢筋混凝土分荷结构”来解决柱荷载集中的问题。这种结构相比钢结构更能确保支点的受力可靠性,而且有很好的经济性与施工的便捷性。分荷结构的上部抱柱箍与上轨道梁的抱柱梁同时受力,对柱进行托换,抱柱箍按抱柱梁设计考虑。斜柱按45°设置进行分荷(见图五),按受压杆件考虑,钢筋按构造配筋设计。两侧斜柱间在上轨道梁处通过系梁连结,以增强整体性。“钢筋混凝土分荷结构”的工程成本较钢结构大大减少,但分荷效果较好。

3.4滑动面设计

本工程采用滚动摩擦,滑动面为滚轴对钢板。滚轴采用φ73钢管,管内灌高标号细石膨胀性混凝土,两端钢板焊接封盖。采用钢管砼的优点是受压后有微小的变形,可部分消除因施工精度不足造成的上下轨道梁不平整,保证上滑梁受力较均匀,减少对房屋结构产生不利影响。

3.5顶推设计

要使房屋移动,目前有牵引法和顶推法两种。本工程采用顶推法,利用液压千斤顶作为顶推设备,采用目前我公司先进的PLC同步控制系统,使各千斤顶的同步顶推精度控制在2mm以内。因本工程平移距离较远,而千斤顶行程较小,仅为1.2m。所以顶推反力支座采用钢筋混凝土固定支座和钢结构活动反力支座两种形式。平移6.6米距离内采用更换顶铁的方法,每平移6.6米后倒用钢结构活动反力支座。

房屋移动启动时的滚动摩擦系数按0.1考虑,根据各轴线的荷载计算,本工程共采用100t千斤顶6台,320t千斤顶2台。

篇(8)

2主要施工技术

(1)孔径控制技术。该工程大约50m的钻探深度内可分为7层土层结构,为人工填土层、全新统中组海相沉积层、全新统下组沼泽相沉积层等。根据该工程的实际地理环境选择适合土质的钻机设备,通过对土质进行测试和分析,预防钻孔过程中发生沉陷或位移等现象。钻孔的过程中在一定的温度下首先将重量适当加大,随后经过不同的土层时依据土质的特性控制钻孔的速度,例如在硬土质层时适当加快钻孔速度,在软土质层时适当降低钻孔速度。(2)孔内沉渣控制技术。孔内的沉渣对桩基的承载力会产生极大的影响。在成孔的过程中一定要及时将孔内的成渣清理干净,可对渣样抽样调查来判断其清理程度,也可通过钻孔过程中的阻碍力度来进行判定。沉渣的检查需经过两次清孔,第一次为成孔之后,第二次为混凝土灌注时。(3)灌注桩断桩问题。该工程的混凝土灌注措施主要是通过孔口进行倒灌,这种施工技术容易出现蜂窝状孔洞。在实际灌注过程中由于灌注速度的控制不当,可能引发新灌注的混凝土将下部混凝土冲翻,使其停留在顶部。而当混凝土凝结后,部分桩基位置因内部密实度不够,而容易引起断桩的现象。(4)钻孔桩身偏差、桩位偏差问题。该工程所使用的钻孔灌注桩的施工技术在我国还未达到先进的技术水平,施工管理过程并未形成标准化规范。同时由于施工技术团队的专业水平有限,导致施工与管理存在脱节的问题,大多技术参数的误差均是由于人为因素造成。只有加强施工现场的安全管理控制,才能减少钻孔桩身偏差以及桩位偏差的问题。

3钢筋混凝土灌注桩施工过程存在的问题及处理措施

3.1施工中存在的问题

(1)桩底地基承载力不足。钢筋混凝土灌注桩主要的安全稳定性可能是由桩底地基的承载力不足造成。该工程土质结构较为复杂,可按力学性质分为18个亚层,每层所含的碎石、淤泥、灰渣、混凝土、粘土等物质均有所差异,部分土层分布均匀,部分土层分布不均匀,从而造成了地基结构的不稳定性。(2)缩径。钢筋混凝土灌注桩也可能因塑性土膨胀而发生缩径的现象。为了对其进行良好的控制,可在成孔的过程中,提高成孔速度,加大泵量,当成孔后孔壁因形成一层泥皮而提高其抗渗水性能,同时不会产生膨胀现象,也就避免的缩径的形成。也可通过反复扫孔的方法来避免孔径的缩小。

3.2质量控制处理措施

(1)严格进行材料控制。在施工过程中提高对材料检查与抽查的重视,可通过取芯抽样法进行检测,制定完善的监察制度。加强对安全检查人员的管理,通过三级安检的组织形式将标准化的规章制度贯彻落实,并建立考核奖惩制度,以此来激励员工负责任的完成各项工作。一旦发现误差问题,要进行严格的复查;同时对施工材料的规格和质量进行严格的控制,避免将不合格的材料用于建筑施工。(2)加强混凝土的科学配比。在进行混凝土浇筑时通常利用导管实现浇筑,但这种技术依然不能避免离析现象的出现,只有加强混凝土本身的科学配比,才能从根本上改变这一现状。在对混凝土进行配比时,首先要了解所使用的基础材料的规格、含水量等基本参数,该工程采用低收缩、低水化热水泥,因此要根据其参数调节适当的湿度以及温度,并完成取样测试,详细记录配比信息。(3)加强对混凝土搅拌时间以及坍落度的控制。混凝土的搅拌时间以及坍落度对灌注桩的堵管、断桩、夹泥等现象有一定的影响。混凝土的强度受其搅拌时间影响,合理控制搅拌时间能加强混凝土的强度。坍落度的控制主要可通过在施工中对混凝土面的标高以及导管的埋入深度进行控制,保持18cm~22cm的坍落度,并使导管保持在混凝土面2m~6m的置入深度最佳,避免将其提出混凝土面。当灌注至距标高8m~10m时,坍落度调整至15cm~18cm最佳。

篇(9)

水利水电工程中钢筋混凝土结构中的蜂窝问题主要是指混凝土结构件中形成的与蜂窝特性相类似的窟窿,并随之产生的骨料空隙现象。造成混凝土结构蜂窝现象的主要原因可能是由于材料配合比不正确或者是由于材料搅拌问题造成的砂浆和石子分离,另一方面也可能是混凝土捣实处理过程中操作方法不当,造成捣实密度不严、模板漏浆等。

1.2露筋

露筋现象主要是指混凝土结构中的钢筋暴露在外的情况,造成露筋问题的主要原因是在进行混凝土浇筑的过程中垫块发生了位移现象,钢筋在紧贴模板的情况下造成了混凝土保护层无法达到其应有的厚度。另外,混凝土模板湿润度不够或者是保护层混凝土捣实不严也可能会产生一定的露筋问题。

1.3麻面

麻面主要值指的是混凝土结构表现上凹凸不平的小点,但是其并没有产生露筋。造成麻面问题的主要原因是模板质量问题,由于其缺乏一定的平整度、密实度以及湿润度,造成了混凝土振捣过程中不能有效的将混凝土材料中的气泡及时排出,在振捣结束后没有进行相应的养护处理,由此产生了混凝土麻面问题。

1.4裂缝混凝土

裂缝病害问题可以分为混凝土结构表面裂缝和内部裂缝两种,造成混凝土结构裂缝问题的影响因素相对较多。在水利水电工程混凝土结构施工过程中,由于温度和湿度的变化、施工工期的连续性问题、混凝土早期振动问题、施工过程中的地基不均匀沉降问题以及混凝土主体结构长期外露等情况都可能会导致一定程度上的混凝土裂缝。

2主要混凝土病害的预防措施

以上多提到的水利水电工程钢筋混凝土病害问题,通过在施工前期或者施工过程中采取相应的控制手段,是能对病害问题进行有效控制和避免的,以下就对主要病害的预防措施进行分析。

2.1蜂窝预防

在对钢筋混凝土结构蜂窝问题进行预防处理时,首先应在对材料配合比进行有效控制的前提下,对材料质量以及计量进行准确检查。其次,在材料搅拌过程中应注意搅拌的均匀性。第三,在进行浇筑作业时,混凝土的自由倾落高度应保持在2m范围以内,如果自由倾落的高度过长,则应及时采取相应的溜槽以及串筒等措施辅助混凝土下料。在进行混凝土捣实处理的过程中,应注意采取封层捣实的方法进行。另外还需要在灌注时注意观察混凝土模板、支架以及堵缝等情况。

2.2露筋预防

为了对混凝土结构中存在的露筋现象进行预防处理,首先应注意在灌注前对保护层厚度以及钢筋位置准确性进行检查,使其保护层厚度能够得到有效保障,可以采用在间隔1m的钢筋上固定水泥砂浆垫块的方式确保保护层厚度的一致性。其次在选择石子材料时,应注意石子颗粒的最大尺寸都应在钢筋净距的3/4以下,如果钢筋截面较小且比较密集时,可以采用细石混凝土对其进行灌注。最后,严格控制拆模时间和拆模质量,并对存在的钢筋脱扣现象进行及时调整和修正。

2.3麻面预防进行混凝土麻面预防

首要注意问题是保持模板面的整洁性,表面不能附有杂物。其次在进行混凝土模板灌注前,应用清水将模板清晰干净并保证其湿润。随后将模板进行拼接处理,对于模板之间的存在的裂缝问题应采取相应的措施进行填补,防治漏浆现象的发生,最后在进行振捣处理时应保持振捣作业的连续性和均匀性,确保混凝土材料中的气泡能够均匀排出。

2.4裂缝预防钢筋混凝土裂缝问题

预防应从以下几个方面进行:首先在混凝土结构施工过程中应注意对混凝土内外部温度变化进行良好的控制,并选用合适的添加剂。其次在进行较大范围的混凝土浇筑施工时,应注意浇筑方案的合理性,减低其水热化程度从而避免施工缝现象。最后在对整体施工管理工作加强质量控制的同时,应制定相应的后期养护方案。

3水利水电工程钢筋混凝土病害的治理措施

通常情况下对于水利水电工程钢筋混凝土的蜂窝、麻面、露筋等表面危害进行处理的主要原因是确保钢筋混凝土的内部结构不受到相应的侵蚀作用,所以对于这部分病害的治理,可以采用在其表面涂抹一定比例的水泥砂浆方式进行处理,对于水泥砂浆的比例应控制在1∶2-2.5之间。在采取该项手段进行表面处理的过程中,需要注意的是砂浆涂抹前应对其表面进行清洗湿润,并加强砂浆初凝后的养护处理。当然,在露筋和蜂窝病害问题较为严重的情况下,仅仅采取在其表面涂抹水泥砂浆的方式不不能达到良好的治理效果的,应在去除凸出骨料颗粒和不密实混凝土的基础上,采用高强度等级的细石混凝土进行修补和捣实处理工作。其次对于混凝土裂缝的治理,主要应根据混凝土裂缝的宽度不同制定出相应的处理措施从而对其抗渗性和整体性进行修复。通常情况下,大于0.5mm的混凝土裂缝可以采取水泥灌浆的方法进行治理。除此之外在对夹层进行处理的过程中,需要首先将夹层中的杂物清除,并使其在充分湿润作用下采用高一等级强度的细混凝土材料进行捣实和养护处理。

篇(10)

2我国目前规范对钢筋混凝土排架设计的不足

在钢筋混凝土排架结构的抗震设计方面,GB50191—2012构筑抗震设计规范和GB50011—2010建筑抗震设计规范指导规范不同地域、不同排架结构的抗震设计。本文结合《构筑抗震设计规范》的具体条文,阐述了目前规范中钢筋混凝土排架结构中设计的不足和缺陷。有关排架结构上部屋架结构计算的规定有:

1)《构筑抗震设计规范》6.2.19条规定,针对Ⅲ,Ⅳ类场地和8度、9度时,应该考虑屋架下弦的拉压效应对结构的影响并核算屋架承载力;

2)《构筑抗震设计规范》6.2.22条规定,针对Ⅲ,Ⅳ类场地和8度、9度时,应验算变形产生的附加内力。上述两点叙述,规范使用“应”字,因此应考虑建立合适的屋架和支撑的杆系模型,否则无法得出上述内力值。在钢结构排架设计方面,钢排架结构施工进度快,造价低,但以后要经常维护保养。框架结构施工复杂,造价高,后期维护工作量低。在工程建设中,钢架也就是在排架柱方向通过设置联系梁或桁架的方式使排架柱方向形成可以抵抗纵向力下变形的钢框架(局部开间或连续开间),具体做法可采用实腹联系梁或格构桁架———根据可设置高度选用,采用门式柱间支撑,可以留出工艺空间,还能对柱平面外予以加强。但我国处于高度使用水泥的情况,环境污染日益严重,从节能减排方面讲,钢排架结构应作为首选,但规范未给具体说明。

免责声明以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。

上一篇: 房地产工程管理论文 下一篇: 投资分析论文
相关精选
期刊推荐 润色服务 范文咨询 杂志订阅