在传统上,我们有几种方法来加密数据流。所有这些方法都可以用软件很容易的实现,但是当我们只知道密文的时候,是不容易破译这些加密算法的(当同时有原文和密文时,破译加密算法虽然也不是很容易,但已经是可能的了)。最好的加密算法对系统性能几乎没有影响,并且还可以带来其他内在的优点。例如,大家都知道的pkzip,它既压缩数据又加密数据。又如,dbms的一些软件包总是包含一些加密方法以使复制文件这一功能对一些敏感数据是无效的,或者需要用户的密码。所有这些加密算法都要有高效的加密和解密能力。
幸运的是,在所有的加密算法中最简单的一种就是“置换表”算法,这种算法也能很好达到加密的需要。每一个数据段(总是一个字节)对应着“置换表”中的一个偏移量,偏移量所对应的值就输出成为加密后的文件。加密程序和解密程序都需要一个这样的“置换表”。事实上,80x86cpu系列就有一个指令‘xlat’在硬件级来完成这样的工作。这种加密算法比较简单,加密解密速度都很快,但是一旦这个“置换表”被对方获得,那这个加密方案就完全被识破了。更进一步讲,这种加密算法对于黑客破译来讲是相当直接的,只要找到一个“置换表”就可以了。这种方法在计算机出现之前就已经被广泛的使用。
对这种“置换表”方式的一个改进就是使用2个或者更多的“置换表”,这些表都是基于数据流中字节的位置的,或者基于数据流本身。这时,破译变的更加困难,因为黑客必须正确的做几次变换。通过使用更多的“置换表”,并且按伪随机的方式使用每个表,这种改进的加密方法已经变的很难破译。比如,我们可以对所有的偶数位置的数据使用a表,对所有的奇数位置使用b表,即使黑客获得了明文和密文,他想破译这个加密方案也是非常困难的,除非黑客确切的知道用了两张表。
与使用“置换表”相类似,“变换数据位置”也在计算机加密中使用。但是,这需要更多的执行时间。从输入中读入明文放到一个buffer中,再在buffer中对他们重排序,然后按这个顺序再输出。解密程序按相反的顺序还原数据。这种方法总是和一些别的加密算法混合使用,这就使得破译变的特别的困难,几乎有些不可能了。例如,有这样一个词,变换起字母的顺序,slient可以变为listen,但所有的字母都没有变化,没有增加也没有减少,但是字母之间的顺序已经变化了。
但是,还有一种更好的加密算法,只有计算机可以做,就是字/字节循环移位和xor操作。如果我们把一个字或字节在一个数据流内做循环移位,使用多个或变化的方向(左移或右移),就可以迅速的产生一个加密的数据流。这种方法是很好的,破译它就更加困难!而且,更进一步的是,如果再使用xor操作,按位做异或操作,就就使破译密码更加困难了。如果再使用伪随机的方法,这涉及到要产生一系列的数字,我们可以使用fibbonaci数列。对数列所产生的数做模运算(例如模3),得到一个结果,然后循环移位这个结果的次数,将使破译次密码变的几乎不可能!但是,使用fibbonaci数列这种伪随机的方式所产生的密码对我们的解密程序来讲是非常容易的。
在一些情况下,我们想能够知道数据是否已经被篡改了或被破坏了,这时就需要产生一些校验码,并且把这些校验码插入到数据流中。这样做对数据的防伪与程序本身都是有好处的。但是感染计算机程序的病毒才不会在意这些数据或程序是否加过密,是否有数字签名。所以,加密程序在每次load到内存要开始执行时,都要检查一下本身是否被病毒感染,对与需要加、解密的文件都要做这种检查!很自然,这样一种方法体制应该保密的,因为病毒程序的编写者将会利用这些来破坏别人的程序或数据。因此,在一些反病毒或杀病毒软件中一定要使用加密技术。
循环冗余校验是一种典型的校验数据的方法。对于每一个数据块,它使用位循环移位和xor操作来产生一个16位或32位的校验和,这使得丢失一位或两个位的错误一定会导致校验和出错。这种方式很久以来就应用于文件的传输,例如xmodem-crc。这是方法已经成为标准,而且有详细的文档。但是,基于标准crc算法的一种修改算法对于发现加密数据块中的错误和文件是否被病毒感染是很有效的。二.基于公钥的加密算法
一个好的加密算法的重要特点之一是具有这种能力:可以指定一个密码或密钥,并用它来加密明文,不同的密码或密钥产生不同的密文。这又分为两种方式:对称密钥算法和非对称密钥算法。所谓对称密钥算法就是加密解密都使用相同的密钥,非对称密钥算法就是加密解密使用不同的密钥。非常著名的pgp公钥加密以及rsa加密方法都是非对称加密算法。加密密钥,即公钥,与解密密钥,即私钥,是非常的不同的。从数学理论上讲,几乎没有真正不可逆的算法存在。例如,对于一个输入‘a’执行一个操作得到结果‘b’,那么我们可以基于‘b’,做一个相对应的操作,导出输入‘a’。在一些情况下,对于每一种操作,我们可以得到一个确定的值,或者该操作没有定义(比如,除数为0)。对于一个没有定义的操作来讲,基于加密算法,可以成功地防止把一个公钥变换成为私钥。因此,要想破译非对称加密算法,找到那个唯一的密钥,唯一的方法只能是反复的试验,而这需要大量的处理时间。
rsa加密算法使用了两个非常大的素数来产生公钥和私钥。即使从一个公钥中通过因数分解可以得到私钥,但这个运算所包含的计算量是非常巨大的,以至于在现实上是不可行的。加密算法本身也是很慢的,这使得使用rsa算法加密大量的数据变的有些不可行。这就使得一些现实中加密算法都基于rsa加密算法。pgp算法(以及大多数基于rsa算法的加密方法)使用公钥来加密一个对称加密算法的密钥,然后再利用一个快速的对称加密算法来加密数据。这个对称算法的密钥是随机产生的,是保密的,因此,得到这个密钥的唯一方法就是使用私钥来解密。
我们举一个例子:假定现在要加密一些数据使用密钥‘12345’。利用rsa公钥,使用rsa算法加密这个密钥‘12345’,并把它放在要加密的数据的前面(可能后面跟着一个分割符或文件长度,以区分数据和密钥),然后,使用对称加密算法加密正文,使用的密钥就是‘12345’。当对方收到时,解密程序找到加密过的密钥,并利用rsa私钥解密出来,然后再确定出数据的开始位置,利用密钥‘12345’来解密数据。这样就使得一个可靠的经过高效加密的数据安全地传输和解密。
一些简单的基于rsa算法的加密算法可在下面的站点找到:
ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa
三.一个崭新的多步加密算法
现在又出现了一种新的加密算法,据说是几乎不可能被破译的。这个算法在1998年6月1日才正式公布的。下面详细的介绍这个算法:
使用一系列的数字(比如说128位密钥),来产生一个可重复的但高度随机化的伪随机的数字的序列。一次使用256个表项,使用随机数序列来产生密码转表,如下所示:
把256个随机数放在一个距阵中,然后对他们进行排序,使用这样一种方式(我们要记住最初的位置)使用最初的位置来产生一个表,随意排序的表,表中的数字在0到255之间。如果不是很明白如何来做,就可以不管它。但是,下面也提供了一些原码(在下面)是我们明白是如何来做的。现在,产生了一个具体的256字节的表。让这个随机数产生器接着来产生这个表中的其余的数,以至于每个表是不同的。下一步,使用"shotguntechnique"技术来产生解码表。基本上说,如果a映射到b,那么b一定可以映射到a,所以b[a[n]]=n.(n是一个在0到255之间的数)。在一个循环中赋值,使用一个256字节的解码表它对应于我们刚才在上一步产生的256字节的加密表。
使用这个方法,已经可以产生这样的一个表,表的顺序是随机,所以产生这256个字节的随机数使用的是二次伪随机,使用了两个额外的16位的密码.现在,已经有了两张转换表,基本的加密解密是如下这样工作的。前一个字节密文是这个256字节的表的索引。或者,为了提高加密效果,可以使用多余8位的值,甚至使用校验和或者crc算法来产生索引字节。假定这个表是256*256的数组,将会是下面的样子:crypto1=a[crypto0][value]
变量''''crypto1''''是加密后的数据,''''crypto0''''是前一个加密数据(或着是前面几个加密数据的一个函数值)。很自然的,第一个数据需要一个“种子”,这个“种子”是我们必须记住的。如果使用256*256的表,这样做将会增加密文的长度。或者,可以使用你产生出随机数序列所用的密码,也可能是它的crc校验和。顺便提及的是曾作过这样一个测试:使用16个字节来产生表的索引,以128位的密钥作为这16个字节的初始的"种子"。然后,在产生出这些随机数的表之后,就可以用来加密数据,速度达到每秒钟100k个字节。一定要保证在加密与解密时都使用加密的值作为表的索引,而且这两次一定要匹配。
加密时所产生的伪随机序列是很随意的,可以设计成想要的任何序列。没有关于这个随机序列的详细的信息,解密密文是不现实的。例如:一些ascii码的序列,如“eeeeeeee"可能被转化成一些随机的没有任何意义的乱码,每一个字节都依赖于其前一个字节的密文,而不是实际的值。对于任一个单个的字符的这种变换来说,隐藏了加密数据的有效的真正的长度。
如果确实不理解如何来产生一个随机数序列,就考虑fibbonacci数列,使用2个双字(64位)的数作为产生随机数的种子,再加上第三个双字来做xor操作。这个算法产生了一系列的随机数。算法如下:
unsignedlongdw1,dw2,dw3,dwmask;
inti1;
unsignedlongarandom[256];
dw1={seed#1};
dw2={seed#2};
dwmask={seed#3};
//thisgivesyou332-bit"seeds",or96bitstotal
for(i1=0;i1<256;i1++)
{
dw3=(dw1+dw2)^dwmask;
arandom[i1]=dw3;
dw1=dw2;
dw2=dw3;
}
如果想产生一系列的随机数字,比如说,在0和列表中所有的随机数之间的一些数,就可以使用下面的方法:
int__cdeclmysortproc(void*p1,void*p2)
{
unsignedlong**pp1=(unsignedlong**)p1;
unsignedlong**pp2=(unsignedlong**)p2;
if(**pp1<**pp2)
return(-1);
elseif(**pp1>*pp2)
return(1);
return(0);
}
...
inti1;
unsignedlong*aprandom[256];
unsignedlongarandom[256];//samearrayasbefore,inthiscase
intaresult[256];//resultsgohere
for(i1=0;i1<256;i1++)
{
aprandom[i1]=arandom+i1;
}
//nowsortit
qsort(aprandom,256,sizeof(*aprandom),mysortproc);
//finalstep-offsetsforpointersareplacedintooutputarray
for(i1=0;i1<256;i1++)
{
aresult[i1]=(int)(aprandom[i1]-arandom);
}
...
变量''''aresult''''中的值应该是一个排过序的唯一的一系列的整数的数组,整数的值的范围均在0到255之间。这样一个数组是非常有用的,例如:对一个字节对字节的转换表,就可以很容易并且非常可靠的来产生一个短的密钥(经常作为一些随机数的种子)。这样一个表还有其他的用处,比如说:来产生一个随机的字符,计算机游戏中一个物体的随机的位置等等。上面的例子就其本身而言并没有构成一个加密算法,只是加密算法一个组成部分。
作为一个测试,开发了一个应用程序来测试上面所描述的加密算法。程序本身都经过了几次的优化和修改,来提高随机数的真正的随机性和防止会产生一些短的可重复的用于加密的随机数。用这个程序来加密一个文件,破解这个文件可能会需要非常巨大的时间以至于在现实上是不可能的。
四.结论:
由于在现实生活中,我们要确保一些敏感的数据只能被有相应权限的人看到,要确保信息在传输的过程中不会被篡改,截取,这就需要很多的安全系统大量的应用于政府、大公司以及个人系统。数据加密是肯定可以被破解的,但我们所想要的是一个特定时期的安全,也就是说,密文的破解应该是足够的困难,在现实上是不可能的,尤其是短时间内。
参考文献:
1.pgp!/
cyberknights(newlink)/cyberkt/
(oldlink:/~merlin/knights/)
2.cryptochamberjyu.fi/~paasivir/crypt/
3.sshcryptographa-z(includesinfoonsslandhttps)ssh.fi/tech/crypto/
4.funet''''cryptologyftp(yetanotherfinlandresource)ftp://ftp.funet.fi/pub/crypt/
agreatenigmaarticle,howthecodewasbrokenbypolishscientists
/nbrass/1enigma.htm
5.ftpsiteinukftp://sable.ox.ac.uk/pub/crypto/
6.australianftpsiteftp://ftp.psy.uq.oz.au/pub/
7.replayassociatesftparchiveftp://utopia.hacktic.nl/pub/replay/pub/crypto/
现代的电脑加密技术就是适应了网络安全的需要而应运产生的,它为我们进行一般的电子商务活动提供了安全保障,如在网络中进行文件传输、电子邮件往来和进行合同文本的签署等。其实加密技术也不是什么新生事物,只不过应用在当今电子商务、电脑网络中还是近几年的历史。下面我们就详细介绍一下加密技术的方方面面,希望能为那些对加密技术还一知半解的朋友提供一个详细了解的机会!
一、加密的由来
加密作为保障数据安全的一种方式,它不是现在才有的,它产生的历史相当久远,它是起源于要追溯于公元前2000年(几个世纪了),虽然它不是现在我们所讲的加密技术(甚至不叫加密),但作为一种加密的概念,确实早在几个世纪前就诞生了。当时埃及人是最先使用特别的象形文字作为信息编码的,随着时间推移,巴比伦、美索不达米亚和希腊文明都开始使用一些方法来保护他们的书面信息。
近期加密技术主要应用于军事领域,如美国独立战争、美国内战和两次世界大战。最广为人知的编码机器是GermanEnigma机,在第二次世界大战中德国人利用它创建了加密信息。此后,由于AlanTuring和Ultra计划以及其他人的努力,终于对德国人的密码进行了破解。当初,计算机的研究就是为了破解德国人的密码,人们并没有想到计算机给今天带来的信息革命。随着计算机的发展,运算能力的增强,过去的密码都变得十分简单了,于是人们又不断地研究出了新的数据加密方式,如利用ROSA算法产生的私钥和公钥就是在这个基础上产生的。
二、加密的概念
数据加密的基本过程就是对原来为明文的文件或数据按某种算法进行处理,使其成为不可读的一段代码,通常称为“密文”,使其只能在输入相应的密钥之后才能显示出本来内容,通过这样的途径来达到保护数据不被非法人窃取、阅读的目的。该过程的逆过程为解密,即将该编码信息转化为其原来数据的过程。
三、加密的理由
当今网络社会选择加密已是我们别无选择,其一是我们知道在互联网上进行文件传输、电子邮件商务往来存在许多不安全因素,特别是对于一些大公司和一些机密文件在网络上传输。而且这种不安全性是互联网存在基础——TCP/IP协议所固有的,包括一些基于TCP/IP的服务;另一方面,互联网给众多的商家带来了无限的商机,互联网把全世界连在了一起,走向互联网就意味着走向了世界,这对于无数商家无疑是梦寐以求的好事,特别是对于中小企业。为了解决这一对矛盾、为了能在安全的基础上大开这通向世界之门,我们只好选择了数据加密和基于加密技术的数字签名。
加密在网络上的作用就是防止有用或私有化信息在网络上被拦截和窃取。一个简单的例子就是密码的传输,计算机密码极为重要,许多安全防护体系是基于密码的,密码的泄露在某种意义上来讲意味着其安全体系的全面崩溃。
通过网络进行登录时,所键入的密码以明文的形式被传输到服务器,而网络上的窃听是一件极为容易的事情,所以很有可能黑客会窃取得用户的密码,如果用户是Root用户或Administrator用户,那后果将是极为严重的。
还有如果你公司在进行着某个招标项目的投标工作,工作人员通过电子邮件的方式把他们单位的标书发给招标单位,如果此时有另一位竞争对手从网络上窃取到你公司的标书,从中知道你公司投标的标的,那后果将是怎样,相信不用多说聪明的你也明白。
这样的例子实在是太多了,解决上述难题的方案就是加密,加密后的口令即使被黑客获得也是不可读的,加密后的标书没有收件人的私钥也就无法解开,标书成为一大堆无任何实际意义的乱码。总之无论是单位还是个人在某种意义上来说加密也成为当今网络社会进行文件或邮件安全传输的时代象征!
数字签名就是基于加密技术的,它的作用就是用来确定用户是否是真实的。应用最多的还是电子邮件,如当用户收到一封电子邮件时,邮件上面标有发信人的姓名和信箱地址,很多人可能会简单地认为发信人就是信上说明的那个人,但实际上伪造一封电子邮件对于一个通常人来说是极为容易的事。在这种情况下,就要用到加密技术基础上的数字签名,用它来确认发信人身份的真实性。
类似数字签名技术的还有一种身份认证技术,有些站点提供入站FTP和WWW服务,当然用户通常接触的这类服务是匿名服务,用户的权力要受到限制,但也有的这类服务不是匿名的,如某公司为了信息交流提供用户的合作伙伴非匿名的FTP服务,或开发小组把他们的Web网页上载到用户的WWW服务器上,现在的问题就是,用户如何确定正在访问用户的服务器的人就是用户认为的那个人,身份认证技术就是一个好的解决方案。
在这里需要强调一点的就是,文件加密其实不只用于电子邮件或网络上的文件传输,其实也可应用静态的文件保护,如PIP软件就可以对磁盘、硬盘中的文件或文件夹进行加密,以防他人窃取其中的信息。
四、两种加密方法
加密技术通常分为两大类:“对称式”和“非对称式”。
对称式加密就是加密和解密使用同一个密钥,通常称之为“SessionKey”这种加密技术目前被广泛采用,如美国政府所采用的DES加密标准就是一种典型的“对称式”加密法,它的SessionKey长度为56Bits。
非对称式加密就是加密和解密所使用的不是同一个密钥,通常有两个密钥,称为“公钥”和“私钥”,它们两个必需配对使用,否则不能打开加密文件。这里的“公钥”是指可以对外公布的,“私钥”则不能,只能由持有人一个人知道。它的优越性就在这里,因为对称式的加密方法如果是在网络上传输加密文件就很难把密钥告诉对方,不管用什么方法都有可能被别窃听到。而非对称式的加密方法有两个密钥,且其中的“公钥”是可以公开的,也就不怕别人知道,收件人解密时只要用自己的私钥即可以,这样就很好地避免了密钥的传输安全性问题。
五、加密技术中的摘要函数(MAD、MAD和MAD)
摘要是一种防止改动的方法,其中用到的函数叫摘要函数。这些函数的输入可以是任意大小的消息,而输出是一个固定长度的摘要。摘要有这样一个性质,如果改变了输入消息中的任何东西,甚至只有一位,输出的摘要将会发生不可预测的改变,也就是说输入消息的每一位对输出摘要都有影响。总之,摘要算法从给定的文本块中产生一个数字签名(fingerprint或messagedigest),数字签名可以用于防止有人从一个签名上获取文本信息或改变文本信息内容和进行身份认证。摘要算法的数字签名原理在很多加密算法中都被使用,如SO/KEY和PIP(prettygoodprivacy)。
现在流行的摘要函数有MAD和MAD,但要记住客户机和服务器必须使用相同的算法,无论是MAD还是MAD,MAD客户机不能和MAD服务器交互。
MAD摘要算法的设计是出于利用32位RISC结构来最大其吞吐量,而不需要大量的替换表(substitutiontable)来考虑的。
MAD算法是以消息给予的长度作为输入,产生一个128位的"指纹"或"消息化"。要产生两个具有相同消息化的文字块或者产生任何具有预先给定"指纹"的消息,都被认为在计算上是不可能的。
MAD摘要算法是个数据认证标准。MAD的设计思想是要找出速度更快,比MAD更安全的一种算法,MAD的设计者通过使MAD在计算上慢下来,以及对这些计算做了一些基础性的改动来解决安全性这一问题,是MAD算法的一个扩展。
六、密钥的管理
密钥既然要求保密,这就涉及到密钥的管理问题,管理不好,密钥同样可能被无意识地泄露,并不是有了密钥就高枕无忧,任何保密也只是相对的,是有时效的。要管理好密钥我们还要注意以下几个方面:
1、密钥的使用要注意时效和次数
如果用户可以一次又一次地使用同样密钥与别人交换信息,那么密钥也同其它任何密码一样存在着一定的安全性,虽然说用户的私钥是不对外公开的,但是也很难保证私钥长期的保密性,很难保证长期以来不被泄露。如果某人偶然地知道了用户的密钥,那么用户曾经和另一个人交换的每一条消息都不再是保密的了。另外使用一个特定密钥加密的信息越多,提供给窃听者的材料也就越多,从某种意义上来讲也就越不安全了。
因此,一般强调仅将一个对话密钥用于一条信息中或一次对话中,或者建立一种按时更换密钥的机制以减小密钥暴露的可能性。
2、多密钥的管理
假设在某机构中有100个人,如果他们任意两人之间可以进行秘密对话,那么总共需要多少密钥呢?每个人需要知道多少密钥呢?也许很容易得出答案,如果任何两个人之间要不同的密钥,则总共需要4950个密钥,而且每个人应记住99个密钥。如果机构的人数是1000、10000人或更多,这种办法就显然过于愚蠢了,管理密钥将是一件可怕的事情。
Kerberos提供了一种解决这个较好方案,它是由MIT发明的,使保密密钥的管理和分发变得十分容易,但这种方法本身还存在一定的缺点。为能在因特网上提供一个实用的解决方案,Kerberos建立了一个安全的、可信任的密钥分发中心(KeyDistributionCenter,KDC),每个用户只要知道一个和KDC进行会话的密钥就可以了,而不需要知道成百上千个不同的密钥。
假设用户甲想要和用户乙进行秘密通信,则用户甲先和KDC通信,用只有用户甲和KDC知道的密钥进行加密,用户甲告诉KDC他想和用户乙进行通信,KDC会为用户甲和用户乙之间的会话随机选择一个对话密钥,并生成一个标签,这个标签由KDC和用户乙之间的密钥进行加密,并在用户甲启动和用户乙对话时,用户甲会把这个标签交给用户乙。这个标签的作用是让用户甲确信和他交谈的是用户乙,而不是冒充者。因为这个标签是由只有用户乙和KDC知道的密钥进行加密的,所以即使冒充者得到用户甲发出的标签也不可能进行解密,只有用户乙收到后才能够进行解密,从而确定了与用户甲对话的人就是用户乙。
当KDC生成标签和随机会话密码,就会把它们用只有用户甲和KDC知道的密钥进行加密,然后把标签和会话钥传给用户甲,加密的结果可以确保只有用户甲能得到这个信息,只有用户甲能利用这个会话密钥和用户乙进行通话。同理,KDC会把会话密码用只有KDC和用户乙知道的密钥加密,并把会话密钥给用户乙。
用户甲会启动一个和用户乙的会话,并用得到的会话密钥加密自己和用户乙的会话,还要把KDC传给它的标签传给用户乙以确定用户乙的身份,然后用户甲和用户乙之间就可以用会话密钥进行安全的会话了,而且为了保证安全,这个会话密钥是一次性的,这样黑客就更难进行破解了。同时由于密钥是一次性由系统自动产生的,则用户不必记那么多密钥了,方便了人们的通信。
七、数据加密的标准
最早、最著名的保密密钥或对称密钥加密算法DES(DataEncryptionStandard)是由IBM公司在70年展起来的,并经政府的加密标准筛选后,于1976年11月被美国政府采用,DES随后被美国国家标准局和美国国家标准协会(AmericanNationalStandardInstitute,ANSI)承认。DES使用56位密钥对64位的数据块进行加密,并对64位的数据块进行16轮编码。与每轮编码时,一个48位的"每轮"密钥值由56位的完整密钥得出来。DES用软件进行解码需用很长时间,而用硬件解码速度非常快。幸运的是,当时大多数黑客并没有足够的设备制造出这种硬件设备。在1977年,人们估计要耗资两千万美元才能建成一个专门计算机用于DES的解密,而且需要12个小时的破解才能得到结果。当时DES被认为是一种十分强大的加密方法。
随着计算机硬件的速度越来越快,制造一台这样特殊的机器的花费已经降到了十万美元左右,而用它来保护十亿美元的银行,那显然是不够保险了。另一方面,如果只用它来保护一台普通服务器,那么DES确实是一种好的办法,因为黑客绝不会仅仅为入侵一个服务器而花那么多的钱破解DES密文。
另一种非常著名的加密算法就是RSA了,RSA(Rivest-Shamir-Adleman)算法是基于大数不可能被质因数分解假设的公钥体系。简单地说就是找两个很大的质数。一个对外公开的为“公钥”(Prblickey),另一个不告诉任何人,称为"私钥”(Privatekey)。这两个密钥是互补的,也就是说用公钥加密的密文可以用私钥解密,反过来也一样。
假设用户甲要寄信给用户乙,他们互相知道对方的公钥。甲就用乙的公钥加密邮件寄出,乙收到后就可以用自己的私钥解密出甲的原文。由于别人不知道乙的私钥,所以即使是甲本人也无法解密那封信,这就解决了信件保密的问题。另一方面,由于每个人都知道乙的公钥,他们都可以给乙发信,那么乙怎么确信是不是甲的来信呢?那就要用到基于加密技术的数字签名了。
甲用自己的私钥将签名内容加密,附加在邮件后,再用乙的公钥将整个邮件加密(注意这里的次序,如果先加密再签名的话,别人可以将签名去掉后签上自己的签名,从而篡改了签名)。这样这份密文被乙收到以后,乙用自己的私钥将邮件解密,得到甲的原文和数字签名,然后用甲的公钥解密签名,这样一来就可以确保两方面的安全了。
八、加密技术的应用
加密技术的应用是多方面的,但最为广泛的还是在电子商务和VPN上的应用,下面就分别简叙。
1、在电子商务方面的应用
电子商务(E-business)要求顾客可以在网上进行各种商务活动,不必担心自己的信用卡会被人盗用。在过去,用户为了防止信用卡的号码被窃取到,一般是通过电话订货,然后使用用户的信用卡进行付款。现在人们开始用RSA(一种公开/私有密钥)的加密技术,提高信用卡交易的安全性,从而使电子商务走向实用成为可能。
许多人都知道NETSCAPE公司是Internet商业中领先技术的提供者,该公司提供了一种基于RSA和保密密钥的应用于因特网的技术,被称为安全插座层(SecureSocketsLayer,SSL)。
也许很多人知道Socket,它是一个编程界面,并不提供任何安全措施,而SSL不但提供编程界面,而且向上提供一种安全的服务,SSL3.0现在已经应用到了服务器和浏览器上,SSL2.0则只能应用于服务器端。
SSL3.0用一种电子证书(electriccertificate)来实行身份进行验证后,双方就可以用保密密钥进行安全的会话了。它同时使用“对称”和“非对称”加密方法,在客户与电子商务的服务器进行沟通的过程中,客户会产生一个SessionKey,然后客户用服务器端的公钥将SessionKey进行加密,再传给服务器端,在双方都知道SessionKey后,传输的数据都是以SessionKey进行加密与解密的,但服务器端发给用户的公钥必需先向有关发证机关申请,以得到公证。
基于SSL3.0提供的安全保障,用户就可以自由订购商品并且给出信用卡号了,也可以在网上和合作伙伴交流商业信息并且让供应商把订单和收货单从网上发过来,这样可以节省大量的纸张,为公司节省大量的电话、传真费用。在过去,电子信息交换(ElectricDataInterchange,EDI)、信息交易(informationtransaction)和金融交易(financialtransaction)都是在专用网络上完成的,使用专用网的费用大大高于互联网。正是这样巨大的诱惑,才使人们开始发展因特网上的电子商务,但不要忘记数据加密。
2计算机网络安全技术的分析
2.1加密技术
加密技术是计算机网络安全技术的重要组成部分,一般分为对称加密技术、非对称加密技术和RSA算法三种。对称加密技术中信息的加密和解密使用的钥匙是相同的,一般称为“SessionKey”。只要在交换阶段不泄露自己的私有密匙,就可以保证计算机系统的机密性。但是,这种加密技术也存在着不足之处,交换双方共有使用一把私有密匙,所有的信息都是通过这把私有密匙传递的,不是很安全。在飞对称加密技术中,密匙分为公开密匙和私有密匙两个,公开密匙用来加密,私有密匙用来解密。公开密匙可以公布,私有密匙只有交换双方知道,安全性更有保证。RSA算法是Rivest、Shamir和Adleman提出出的第一个完整的公钥密码体制,至今为止,还没人找到一个有效的算法来分解两大素数之积,安全性有保障。
2.2防病毒技术
计算机病毒是网络系统中最大的攻击者,具有很强的传染性和破坏力。而且,一旦计算机病毒发动攻击,就会造成很大的影响。防病毒技术主要包括三种:预防技术、检测技术和消除技术。预防技术主要是指在利用一定的安全技术手段防御病毒破坏计算机系统,包括对未知病毒和已知病毒的预防,主要包括读写控制技术、系统监控技术、加密可执行程序等等。检测技术主要是指利用计算机安全技术检测计算机技术的一种技术,主要包括检测计算机病毒特征的检测技术和检测文件自身的技术两种计算机检测技术。消除技术主要是指通过分析计算机病毒,开发出消除计算机病毒并恢复原文件的一种技术。
2.3PKI技术
PKI技术是PublieKeyInfrastueture,即公钥基础设施的意思。PKI技术主要是指使用数字证书和公开密匙两种方式对网络系统安全进行双重保护,而且还会对数字证书持有者进行验证的一种技术。。PKI技术会提供认证、加密、完整、安全通信、特权管理、密钥管理等服务。PKI技术是计算机网络安全技术的核心,在电子商务中也得到广泛的应用。
2.4防火墙技术
防火墙主要是指设置在不懂网络安全区域之间的唯一出入口,防火墙本身具有很强的抗攻击能力,为计算机系统提供信息安全服务,抗御网络黑客们的入侵。防火墙的形式各种各样,但是,防火墙主要可以分为两大类:“包过滤型”和“应用型”。“包过滤型”是对数据包的包头源地址、目的地址、端口号和协议类型等进行过滤,通过的就转发到与之相对应的目的地,未通过的就丢弃“。应用型”是先对网络信息流进行阻断,然后利用专用的程序对网络信息流进行监视和控制。
2.5安全隔离技术
安全隔离技术主要是指将计算机网络中的有害攻击阻隔在可信的网络区域之外,在确信计算机网络可信区域内部的信息不泄露的情况下,进行计算机网络之间的信息交换的技术。安全隔离技术发展到现在,一共经历五个阶段:完全的隔离、硬件卡隔离、数据转播隔离、空气开关隔离、安全通道隔离。其中安全通道隔离是现代安全隔离技术发展的主要方向。
当前的计算机操作系统可以支持多进程和多用户运行,计算机主机在接收若干个进程时传输的数据包时,这若干个进程都可能是数据传输和交换的目标,这使得计算机操作系统自身的漏洞完成暴露在计算机网络环境中,网络黑客通过简单的方法就可以找到操作系统的薄弱环节对系统发起恶性攻击。
1.2计算机病毒
计算机病毒是威胁计算机数据安全的关键因素,计算机感染性强、传播速度快、蔓延范围广,同时具有较强的隐蔽性。一旦计算机病毒进入程序,带有计算机病毒的数据文件如果在计算机网络环境中共享或者传输,在浏览或者打开其他计算机时,这些计算机也会感染病毒,从而发生连锁式的病毒传播,如果计算机病毒过度,会严重损坏计算机操作系统,造成系统死机,丢失大量的重要数据信息。
1.3服务器信息泄露
由于计算机操作系统的程序存在一定自身缺陷,在计算机操作系统不能正确处理相关错误时,非法入侵者会利用这些系统漏洞进入系统内部,发起对操作系统的恶意攻击,严重影响数据的安全性和保密性。
1.4非法入侵
由于计算机网络环境具有开放性和互联性的特点,非法入侵者往往利用监视、窃取等非法手段,获取计算机网络用户的IP包、口令和用户名信息,利用这些信息进入计算机局域网,非法入侵者通过冒充系统客户或者合法主机用户,用合法用户的IP地质代替自己的IP地址,窃取和篡改计算机网络数据。
2数据加密技术分析
2.1确定加密目标
在计算机网络系统中应用数据加密技术,首先要明确系统中那些数据需要加密,明确数据加密目标:其一,笔记本、工作站、服务器等手持智能设备和可移动存储设备中有那些重要数据信息;其二,重要数据信息在这些存储设备的什么文件或者什么位置保存;其三,这些重要数据信息在计算机网络环境中进行传输是否具有保密性和安全性;其四,在网络通信过程中WEB浏览是否涉及重要数据信息,从而确定加密目标。
2.2数据机密技术类型
1)对称数据加密技术。对称数据加密技术采用相同密码体制的解密密钥和加密密钥。在计算机网络系统中使用对称数据加密技术,通信双方使用相同的一个密钥对数据进行解密和加密,通信双方在信息交换和传输过程中只要确保密钥不泄露,就可以保障数据信息的完整性和机密性。对称数据加密技术采用DES算法以及其变形算法,DES算法主要是将计算机系统的数据转换为二元数据,然后对这些数据进行加密,数据信息划分为64位,采用56位的密钥,其他8位作为奇偶校验码。数据信息的每一个分组采用不同的组合形式,对数据进行异或运算、替换以及变位组合,最后构成64位的加密数据。
2)非对称数据加密技术。非对称数据加密技术采用不用的密钥对计算机系统数据进行解密和加密,即包含私钥和公钥,公钥在计算机系统中是公开的,用户通过公钥可以对系统中公共信息进行解密,而接收者使用私钥来解密接收文件,这样可以有效提高数据信息在计算机系统中传输的安全性。
3)公开密钥加密技术。公开密钥加密技术有一个解密密钥,还有一个加密密钥,并且解密密钥和加密密钥是成对的,在加密数据信息使用加密密钥,在解密时使用解密密钥,虽然加密密钥和解密密钥两者之间是一种数学关系,但是加密密钥无法由解密密钥推算出来,解密密钥也无法由加密密钥推算出来。计算机网络系统用户使用加密密钥对数据信息加密之后,接收者只有首先获得解密密钥才能将接收的数据进行解密,这种公开密钥加密技术具有较强的安全性,在计算机网络系统中发挥着非常重要的作用。
3数据加密技术在计算机安全中的应用
数据加密技术是一种重要的计算机网络安全技术,有效地防止非法入侵者篡改、查看网络中的重要信息和文件。数据加密技术通过对网络系统中的信息数据进行加密,来确保计算机网络系统的安全性,能够主动的防御网络安全隐患。数据加密技术在不同领域、不同行业的应用形式和应用方式有很大的不同,例如,数据加密技术在无线网络系统中的应用,主要是基于网络协议将AES加密算法和计算机网络系统安全机制进行有效结合,同时在一些保障计算机数据传输安全技术中也加入了AES加密算法,从而保障计算机网络系统中的数据传输安全;数据加密技术在电子商务平台上的应用,充分发挥了AES算法安全性高的优势,保障了在SSL协议环境下用户的个人信息和密码等重要的数据信息;在硬件设备中应用数据加密技术,在现实生活中我们的身份证、门禁卡以及公交卡中都含有IC芯片,如果在IC芯片中融入AES加密算法,将会极大地提高用户个人信息的安全性。数据加密将具有识别性的明文密码转变为难以识别的密码形式,对不同的密钥使用加密算法进行加密,从而形成不同类型的密文,加强数据安全。通常情况下,数据加密主要有端到加密、链路加密和节点加密三种形式。当前流行的网上银行,主要采用的是链路加密形式,有效地保障了计算机和网络系统的安全。密钥是数据加密技术的重要创新,具有很高的安全性,公用和私人两种密钥被广泛的应用在多个领域。在计算机网络交易环境中,人们在使用信用卡进行网络购物时,商家会拥有公用密钥,可以解读用户信用卡的交易信息和个人信息,而利用密钥对信用卡信息数据进行加密,从而保障数据信息的安全,限制信用卡的权限。
一、概述
网络防火墙就是一个位于计算机和它所连接的网络之间的软件。该计算机流入流出的所有网络通信均要经过此防火墙。防火墙对流经它的网络通信进行扫描,这样能够过滤掉一些攻击,以免其在目标计算机上被执行。网络安全技术最早受到人们关注的就是网络防火墙技术。作为网络安全的一道屏障防火墙应该安装到那个部位呢?第一,网络防火墙应该安装在公司内部网络和外部网络的接口处,这是其网络安全的第一道屏障。第二,如果公司内部网络拓扑比较大,应该在各个局域网之间设置网络防火墙。网络防火墙的作用就是阻止恶意的攻击,因此不论是公司内部网络还是外部网络只要有攻击的可能都应该安装防火墙。
二、网络防火墙实现的技术
(一)加密技术
信息交换加密技术分为两类:即对称加密和非对称加密。
1.对称加密技术
对称加密使用的是对称密码编码技术,其主要的特点就是使用同一个密钥对文件进行加密和解密,也就是文件加密的密钥也可以用作文件解密的密钥,因为这种特性所以被称为对称加密技术。当文件在交换的过程中如果加密密钥没有被泄露,那么文件在网络传输中就保证了其机密性和完整性。但是这种对称的加密技术也并不是十分的完美,其仍存在令人不满意的一面,如果一个人和多个人进行文件交互时,那么其就会维护与所有相交互人员的密钥,还有就是大量的浮点运算致使计算量大,加密/解密速度慢,需占用较多资源。
(二)非对称加密/公开密钥加密
非对称密钥是相对对称密钥而言的,顾名思义其对文件的加密密钥和解密密钥不是同一个密钥,其密钥是成对出现的。在这一对密钥中其中任一个密钥都可以向人公开,而另一个密钥则有持有人妥善保管。被公开的密钥则用于信息交流时加密使用,个人持有的则是用于解密。解密密钥有自己掌握,另一个密钥可以广泛的公开,但它只应于生成密钥的交换方。
这种非对称的密钥加密技术可以使交换双方不必交换密钥就能够进行安全的交流,因此其被广泛应用于网络贸易,数字签名等信息交流方面。
(三)PKI技术
PKI是IPublie Key Infrastucture的简写,所谓PKI 就是一个用公钥概念和技术实施和提供安全服务的具有普适性的安全基础设施。信息技术安全的核心技术就是PKI技术,这也是电子商务领域的关键技术和基础技术。电子商务,电子政务等都是经过互联网络进行的活动,因此缺少物理等方面的接触,这就使得网络电子验证方式越显的那么重要。而PKI技术正适合这些经常进行网上交流而物理接触较少的行业,并且都够很好的处理好交流的机密性,真实性,完整性和可控制性等安全问题。一个实用的PKI体系应该是安全的易用的、灵活的和经济的。
三、安全技术的研究现状和方向
我国的信息网络已经经历了通信的保密,数据保护两个阶段,现在已经进入了网络信息安全的研究阶段,已经研发的网络安全软件或产品有,防火墙,安全型路由器,黑客的入侵检测,对系统的脆弱检测软件等。但是我们应该知道,网络信息安全是一个复杂的领域,其是有数学,物理,生活信息技术等学科的长期交叉和融合的一个新成果。要想提出系统的,完整的解决网络信息安全的方案,应该从以下五个方面入手,信息安全系统,信息的分析和检测,现代密码理论,安全协议,安全体系结构,这五个部分是相互协调的一个有机整体。
国际上信息安全研究起步较早,力度大,积累多,应用广,在70年代美国的网络安全技术基础理论研究成果”计算机保密模型”(Beu&Lapadula模型)的基础上,指定了”可信计算机系统安全评估准则”(TCSEC),其后又制定了关于网络系统数据库方面和系列安全解释,形成了安全信息系统体系结构的准则。
作为网络信息安全的重要内容的安全协议,其形式化的方法可以追溯到上个世纪的70年代末,现在有三种分析方法,这三种方法是基于状态机,模态逻辑和代数工具,但是这三种方法仍普遍存在漏洞,现正处于待提高的阶段。密码学作为网络信息安全技术的关键学科,近几年来活动非常的活跃,尤其是欧,美,亚洲等国频繁的举办网络信息安全和密码学的会议。上个世纪70年代,美国的一个学者首先提出了公开的密钥密码体制,这使网络信息系统的密钥管理摆脱了困境,同时也解决了网络数字签名,其依然是现在网络信息安全研究的一个热点。随着互联网络的普及推广,电子商务也得到了前所未有的发展机遇,因此电子商务的安全性也在受到人们的普遍关注,其现在也正处于研究和发展阶段,它带动了论证理论、密钥管理等研究,由于计算机运算速度的不断提高,各种密码算法面临着新的密码体制,如量子密码、DNA密码、混沌理论等密码新技术正处于探索之中。
无论在局域网或者广域网、还是单机系统中,都存在各种诸多因素的脆弱性和潜在的不稳定因素和威胁。计算机网络系统的安全措施应该能全面的解决这种不稳定性和脆弱性,从而确保网络信息的保密性。
一、加密技术概念
密码学(Cryptology)是一门古老而深奥的学科,有着悠久、灿烂的历史。密码在军事、政治、外交等领域是信息保密的一种不可缺少的技术手段,采用密码技术对信息加密是最常用、最有效的安全保护手段。密码技术与网络协议相结合可发展为认证、访问控制、电子证书技术等,因此,密码技术被认为是信息安全的核心技术。
密码技术是研究数据加密、解密及变换的科学,涉及数学、计算机科学、电子与通信等诸多学科。虽然其理论相当高深,但概念却十分简单。密码技术包含两方面密切相关的内容,即加密和解密。加密就是研究、编写密码系统,把数据和信息转换为不可识别的密文的过程,而解密就是研究密码系统的加密途径,恢复数据和信息本来面目的过程。加密和解密过程共同组成了加密系统。
在加密系统中,要加密的信息称为明文(Plaintext),明文经过变换加密后的形式称为密文(Ciphertext)。由明文变为密文的过程称为加密(Enciphering),通常由加密算法来实现。由密文还原成明文的过程称为解密(Deciphering),通常由解密算法来实现。
对于较为成熟的密码体系,其算法是公开的,而密钥是保密的。这样使用者简单地修改密钥,就可以达到改变加密过程和加密结果的目的。
通过对传输的数据进行加密来保障其安全性,已经成为了一项计算机系统安全的基本技术,它可以用很小的代价为数据信息提供相当大的安全保护,是一种主动的安全防御策略。
二、加密技术分类
一个密码系统采用的基本工作方式称为密码体制。密码体制从原理上分为两大类:对称密钥密码体制和非对称密钥密码体制,或称单钥密码体制和双钥密码体制。
(一)对称密钥密码体制
对称密钥密码体制又称为常规密钥密码体制,在这种密码体制中,对于大多数算法,解密算法是加密算法的逆运算,加密密钥和解密密钥相同,同属一类的加密体制。最有影响的对称密钥密码体制是DES算法。数据加密标准DES(Data Encryption Standard)是美国国家标准局于1977年公布的由IBM公司研制的加密算法。DES被授权用于所有非保密通信的场合,它是一种典型的按分组方式工作的单钥密码算法。其基本思想是将二进制序列的明文分组,然后用密钥对这些明文进行替代和置换,最后形成密文。DES算法是对称的,既可用于加密又可用于解密。它的巧妙之处在于除了密钥输入顺序之外,其加密和解密的步骤完全相同,从而在制作DES芯片时很容易达到标准化和通用化,很适合现代通信的需要。
DES算法将输入的明文分为64位的数据分组,使用64位的密钥进行变换,每个64位的明文分组数据经过初始置换、16次迭代和逆置换3个主要阶段,最后输出得到64位的密文。在迭代前,先要对64位的密钥进行变换,密钥经过去掉其第8、16、24、…、64位减至56位,去掉的8位被视为奇偶校验位,不含密钥信息,所以实际密钥长度为56位。
(二)非对称密钥密码体制
非对称密钥密码体制又称为公开密钥密码体制,是与对称密钥密码体制相对应的。对称密码体制适用于封闭系统,加密、解密使用的是同样的密钥,其中的用户是彼此相关并相互信任的。在该体制中,使用一个加密算法E和一个解密算法D,它们彼此完全不同,并且解密算法不能从加密算法中推导出来。此算法必须满足下列3点要求:1.D是E的逆,即D[E(P)]=P。2.从E推导出D极其困难。3.对一段明文的分析,不可能破译出E。公开密钥密码体制,是现代密码学最重要的发明和进展。对信息发送与接收人的真实身份的验证和所发出/接收信息在事后的不可抵赖以及保障数据的完整性等给出了出色的解答。
在所有的公开密钥加密算法中,RSA算法是理论上最为成熟、完善,使用最为广泛的一种。RSA算法是由美国人R.Rivest、A.Shamir和L.Adleman于1978年提出的,RSA就来自于3位教授姓氏的第一个字母。该算法的数学基础是初等数论中的Euler(欧拉)定理,其安全性建立在大整数因子分解的困难性之上。RSA算法是第一个能同时用于加密和数字签名的算法,并且易于理解和操作。RSA算法从提出到现在经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。
RSA公开密钥密码体制所依据的原理是:根据数论,寻求两个大素数比较简单,而将它们的乘积分解开则极为困难。RSA算主要缺点是计算速度慢,产生密钥烦琐。
随着网络技术应用的迅速发展,信息安全已经深入到生活学习和工作中的各个领域,人们开始关注信息和网络安全方面。是故,在各种危险对网络应用的威胁来临的时候,如何在日益增长并更为复杂的各种应用中有效地进行自我保护,如何将思路创新、技术创新的破冰之计与信息安全更好地融合在一起,是我们每个人都要认真思考的问题。
参考文献:
[1]黄建山,陈盈;董毅骅;张月锋;;基于H3C防火墙的企业内部信息交流平台的安全设计[J];福建电脑;2012年01期
[2]张爱华,论网络服务器的管理与维护[J];信息与电脑(理论版);2012年04期
0.引言
随着计算机网络的发展,网络的资源共享渗透到人们的日常生活中,在众多领域上实现了网上信息传输、无纸化办公。因此,信息在网络中传输的安全性、可靠性日趋受到网络设计者和网络用户的重视数字签名技术是实现交易安全的核心技术之一,在保障电子数据交换((EDI)的安全性上是一个突破性的进展,可以解决否认、伪造、篡改及冒充等问题
1.数字签名
1.1数字签名技术的功能
数字签名必须满足三个性质
(1)接受者能够核实并确认发送者对信息的签名,但不能伪造签名
(2)发送者事后不能否认和抵赖对信息的签名。
(3)当双方关于签名的真伪发生争执时,能找到一个公证方做出仲裁,但公证方不能伪造这一过程
常用的数字签名技术有RSA签名体制、Robin签名体制、E1Gamal签名体制及在其基础之上产生的数字签名规范DSS签名体制。
1.2数字签名技术的原理
为了提高安全性,可以对签名后的文件再进行加密。假如发送方A要给接收方B发送消息M,那么我们可以把发送和接收M的过程简单描述如下:
(1)发送方A先要将传送的消息M使用自己的私有密钥加密算法E(al)进行签名,得V=E(al(M))其中,A的私有加密密钥为al;
(2)发送方A用自己的私有密钥对消息加密以后,再用接收方B的公开密钥算法Ebl对签名后的消息V进行加密,得C=E(b l (V))。其中,B的公开加密密钥为6l.
(3)最后,发送方A将加密后的签名消息C传送给接收方B
(4)接收方B收到加密的消息C后,先用自己的私有密钥算法D(62)对C进行解密,得V=D(h2挥))其中,B的私有解密密钥为62(5)然后接收方再用发送方A的公开密钥算法D(a2)对解密后的消息V再进行解密,得M=D(a2(V))。其中,,A的公开解密密钥为a2=这就是数字签名技术的基本原理。如果第三方想冒充A向B发送消息,因为他不知道.a的密钥,就无法做出A对消息的签名如果A想否认曾经发送消息给B.因为只有A的公钥才能解开A对消息的签名,.a也无法否认其对消息的签名数字签名的过程图l如下:
2. RSA算法
2.1 RSA算法的原理
RSA算法是第一个成熟的、迄今为止理论上最成功的公开密钥密码体制,该算法由美国的Rivest,Shamir,Adle~三人于1978年提出。它的安全性基于数论中的Enle:定理和计算复杂性理论中的下述论断:求两个大素数的乘积是容易计算的,但要分解两个大素数的乘积,求出它们的素因子则是非常困难的.它属于NP一完全类
2.2 RSA算法
密钥的产生
①计算n用户秘密地选择两个大素数F和9,计算出n=p*q, n称为RSA算法的模数明文必须能够用小于n的数来表示实际上n是几百比特长的数
②计算 (n)用户再计算出n的欧拉函数(n)二(P-1)*(q-1),(n)定义为不超过n并与n互素的数的个数③选择。。用户从[(0, (n)一1〕中选择一个与}(n)互素的数B做为公开的加密指数
4计算d。用户计算出满足下式的d : ed = 1 mal (n)(a与h模n同余.记为a二h mnd n)做为解密指数。
⑤得出所需要的公开密钥和秘密密钥:公开密钥(加密密钥):PK={e,n} ;
秘密密钥(解密密钥);SK=(d,n}
加密和解密过程如下:
设消息为数M(M<n)
设C=(Md)mod n,就得到了加密后的消息C;
设M=(Ce)mod n,就得到了解密后的消息M。其中,上面的d和e可以互换
由于RSA算法具有以下特点:加密密钥(即公开密钥)PK是公开信息,而解密密钥(即秘密密钥))SK是需要保密的。加密算法E和解密算法D也都是公开的。虽然秘密密钥SK是由公开密钥PK决定的,但却不能根据PK计算出SK。它们满足条件:①加密密钥PK对明文M加密后,再用解密密钥SK解密,即可恢复出明文,或写为:Dsk(Esk(M))= M②加密密钥不能用来解密,即((D娜e,c}M)) } M③在计算机上可以容易地产生成对的PK和SK}④从已知的PK实际上不可能推导出SK⑤加密和解密的运算可以对调,即:E}(M)(Es}(M)(M))=M所以能够防止身份的伪造、冒充,以及对信息的篡改。
3. RSA用于数字签名系统的实现
中图分类号:G643 文献标志码:A 文章编号:1674-9324(2016)41-0221-02
案例教学是指将案例应用于教学,通过教师讲授基本知识、提出问题、组织学生讨论、撰写案例分析报告等过程来实现教学目的,改善教学效果,从而提高学生理论知识水平和解决实际问题能力的教学方法。现代制造技术课程是一门着眼科技、注重应用的课程。通过对本门课程的学习,使学生对精密超精密加工技术、柔性制造技术、现代制造系统等方面的知识有一定的了解,由于课程内容涉及面广,信息量大,内容更新较快,通过大量的案例介绍了解现代制造技术的基本理论、基本原理、相关技术和最新发展动态,同时培养学生查阅文献、了解学科前沿动向的能力。
一、案例教学法在专业学位研究生教学中的可行性研究
1.有助于学生了解学科发展最新动态。由于现代制造技术具有更新快、发展迅速的特点,将案例教学应用到现代制造技术教学中,通过最新成果和发展动态作为案例,介绍新的设计与制造技术、方法和先进的技术装备,始终保持教学内容的先进性,开阔学生的视野,培养学生以前卫眼光和逻辑思维分析问题的能力,养成获取学科前沿发展的最新动态。
2.有助于搭架学生与老师互动平台。案例教学是可以根据现代制造技术的发展,利用最新的研究成果作为案例,针对研究生的研究方向进行讲教学,通过最新的学科发展成果为整个教学内容注入新的血液,有利于使学生主动思考,积极参与到整个教学过程中,可以充分开拓学生科研的思路,对个人研究课题有针对性的讲解,了解本研究方向最新最前沿的发展态势,提高学生的创新能力。
3.有助于学生综合能力的提高。案例教学法在专业学位研究生科研学习中具有直接的促进作用。专业学位研究生的培养目标是应用型工程技术人才,这就要求学生根据所学的专业理论知识,化理论为实践,用理论揭示工程应用中问题的本质,掌握科研学习的方式方法。而且,将案例教学通过最新成果案例的展示,帮助学生开拓视野,使学生主动对案例进行思考与讨论,有效地拓宽学生的知识面,提高学生的科研创新能力。
二、现代制造技术课程案例的选择
现代制造技术案例的选择遵循三点原则:第一,以最近最新的典型案例为基础,理论联系实际;第二,根据专业学位研究生研究方向,有针对性地选取课程案例;第三,选择的案例要内容充实,具有一定的难点问题。本课程案例主要从下面三个方向进行选取。
1.特种加工技术。特种加工技术是直接利用电、热、声等特殊机械能量,以实现材料切除的加工方法。特种加工的特点为:依靠电、化学等能量去除材料,而不只是靠传统的机械能;以简单的机械运动可加工较为复杂的型面;加工过程中,瞬时能量较高,可方便有效地应用各种能量加工难加工材料,获得良好的表面质量。
特种加工技术可以分为:电火花加工、超声加工、快速成型加工以及复合加工等。对于这些加工技术的案例可以选择难加工材料、特殊复杂型面、高精密表面的具体案例作为经典案例。让学生根据典型案例查阅相关文献,通过与本课题组成员的讨论,给出预留问题的解决方案,达到举一反三、融会贯通的目的,加深学生对特种加工技术各类型的基本理论原理、相关技术的了解。
2.精密和超精密加工技术。精密和超精密加工主要包括三方面的内容[3]:(1)超精密切削。(2)精密和超精密磨削研磨。(3)精密特种加工。
针对精密和超精密加工特点提出超精密切削、磨削的基本理论和工艺;超精密加工设备的关键技术、精度、热稳定性;将这些研究范围内的成果作为案例,让同学们在了解基本知识的同时,放开视界,拓宽思维,根据最新发展动态对相关的研究问题进行分析归纳总结,培养专业学位研究生了解学科前沿动向的能力。
3.现代制造系统。现代制造科学主要包括:CIMS、敏捷制造、并行工程等,主要研究的科学问题如下:现代制造技术和系统的基础理论;制造过程的数学建模;网络环境下的体系结构等,这些问题具有前瞻性、交叉性、先导性、基础性、应用性五大特点。针对这些问题搜寻最新发展成果,将其作为经典案例,使学生站在信息时代和纳米时代的高度,把握现代制造系统的本质,融各学科的知识于一身,建立现代科学思维方法。
三、案例教学在现代制造技术教学中的实施举例
1.案例讨论前的准备。首先,教师要针对学生的研究方向设定案例,并拟定讨论题目。在教师完成基本课程教学后,可以将相关案例留给学生,给学生一定的时间准备相关的材料。学生在收到教师的案例后,通过阅读有关案例,查找各案例间的异同,查阅文献材料,搜集有用信息,经过思考分析,给出关于案例讨论问题的原因分析和解决方案。
【摘要】随着近几年网络信息技术的发展,社会生产和生活对网络数据的依赖程度越来越越高,人们对网络信息安全重视程度也随之提升。对于網络信息而言,信息数据安全非常重要,一旦发生数据泄露或丢失,不仅会影响人们正常生活和财产安全,甚至还会影响社会稳定和安全。在此基础上,本文将分析计算机网络信息安全管理现状,探索有效的数据加密技术,为网络环境安全和质量提供保障。
【关键词】计算机;网络信息安全;数据加密技术
引言:信息技术的普及为人们生活带来了许多便利和帮助,但是由于信息安全风险问题,人们的隐私数据安全也受到了威胁。但是,目前计算机网络环境下,数据泄露、信息被窃取问题非常常见,所以计算机网络信息安全保护必须重视这些问题,利用数据加密技术解决此难题,才能维护网络用户的信息安全。因此,如何优化数据加密技术,如何提升网络信息保护质量,成为计算机网络发展的关键。
1.计算机网络安全的基本概述
所谓计算机网络安全就是网络信息储存和传递的安全性。技术问题和管理问题是影响计算机网络安全的主要因素,所以想要提升网络信息安全性能,必须优化信息加密技术和加强信息管理控制,才能为计算机网络安全提供保障。将数据加密技术应用于计算机网络安全管理中,不仅可以提升数据保护权限,限制数据信息的可读性,确保数据储存和运输过程不会被恶意篡改和盗取,还会提高网络数据的保密性,营造良好的网络运行环境。因此,在计算机网络快速发展的环境下,重视网络信息安全管理工作,不断优化数据加密技术,对维护用户信息安全、保护社会稳定非常有利。
2.计算机网络信息安全现状问题
2.1网络信息安全问题的缘由
根据网络信息发展现状,信息安全面临的风险多种多样,大体可分为人文因素和客观因素。首先:网络信息安全的客观因素。在计算机网络运行中,病毒危害更新换代很快,其攻击能力也在不断提升,如果计算机防御系统没有及时更新优化,很容易遭受新病毒的攻击。例如,部分计算机由于系统长时间没有升级,无法识别新木马病毒,这样便已遗留下一些安全漏洞,增加了信息安全风险。同时,部分计算机防火墙技术局限,必须安装外部防护软件,才能提升计算机网络防护能力。其次:网络信息安全的人文因素。所谓人为因素,就是工作人员在操作计算机时,缺乏安全防护意识,计算机操作行为不当,如:随意更改权限、私自读取外部设备、随意下载上传文件等等,严重影响了计算机网络数据的安全性,涉密数据安全也得不到保障。例如,在连接外部设备时,忽视设备安全检查工作,随意插入电脑外部接口,容易导致计算机感染设备病毒,导致计算机网络信息安全受到威胁。
2.2计算机网络信息安全技术有待提升
信息安全是计算机网络通信的重要内容,也是计算机网络通信发展必须攻击的难题。随着信息技术的发展,我国计算机信息安全防御技术也在不断创新升级,能够有效应对病毒冲击危害,但是相比先进国家而言,我国计算机信息技术起步较晚,网络信息安全技术也有待提升。例如,根据我国计算机网络信息安全现状,对新病毒的辨识能力和清除能力较弱,无法有效控制病毒侵害,这对信息安全保护和系统运行都非常不利。因此,技术人员可以借鉴他国安全技术经验,构建出针对性的信息安全防护技术,优化计算机系统安全性能,才能为网络信息安全传输提供保障,避免造成严重的安全事故。
3.数据加密技术分析
3.1对称加密技术
所谓对称机密技术,就是指网络信息传输中所采用的密钥功能,利用加密和解密的方式,提升传输数据的安全性,常常被应用于电子邮件传输中。同时,对称加密技术具有加密和解密密钥相同的特征,所以密钥内容可以通过其中一方进行推算,具备较强的可应用性。例如,在利用电子邮件传输信息时,传输者可以采用加密算法将邮件内容转化为不可直接阅读的密文,待邮件接收者收到数据信息文件后,再采用解密算法将密文还原可读文字,既可以实现数据传输加密的目的,又能确保交流沟通的安全性。从应用角度来讲,对称加密技术操作简捷方便,并且具备较高的安全度,可以广泛应用于信息传输中。但是,对称加密技术欠缺邮件传输者和接收者的身份验证,邮件传输双方密钥有效的获取途径,所以也存在一定的安全风险。
3.2公私钥加密技术
相对于对称加密技术而言,公私钥加密技术在进行信息加密时,加密密钥和解密密钥不具备一致性,密钥安全性更佳。在公私钥加密技术中,信息数据被设置了双层密码,即私有密码和公开密码,其中公开密码实现了信息数据加密工作,并采用某种非公开途径告知他人密钥信息,而私有密码是由专业人员保管,信息保密程度高。因此,在采用公私钥加密技术时,需要先对文件进行公开密钥加密,然后才能发送给接收者,而文件接收者需要采用私有密钥进行解密,才能获取文件信息。在这样的加密模式下,网络数据信息安全度提升,密码破解难度也进一步加大,但是这种加密方式程序较为复杂,加密速度慢,无法实现高效率传播,加密效率相对较低,不适用于日常信息交流传输。
3.3传输加密和储存加密技术
在计算机网络信息安全保护中,数据传输加密、储存加密是重点保护内容,也是信息数据保护的重要手段,其主要目的是避免在数据传输过程中被窃取和篡改风险问题。线路加密和端对端加密是两种主要的传输加密方式,实现了传输端和传输过程的信息安全保护工作。例如,传输加密是对网络信息传输过程中的安全保护,通过加密传输数据线路,实现信息传输过程保护,如果想要停止加密保护,必须输入正确的密钥,才能更改数据加密保护的状态。端对端加密技术是在信息发送阶段,对数据信息实施自动加密操作,让数据信息在传递过程中呈现出不可读的状态,直到数据信息到达接收端,加密密码会自动解除,将数据信息转变为可读性的明文。此外,存取控制和密文储存是储存加密的两种形式。在存取控制模式中,信息数据读取需要审核用户的身份和权限,这样既可以避免非法用户访问数据的问题,又能限制合法用户的访问权限,实现了数据信息安全等级分层保护。
4.计算机网络信息安全中数据加密技术的合理应用
4.1数据隐藏技术
在网络信息数据加密保护中,将数据信息属性转变为隐藏性,可以提升数据信息的可读权限,提升信息安全度。因此,将信息隐藏技术应用于网络信息加密工程中,利用隐蔽算法结构,将数据信息传输隐蔽载体中,可以将明文数据转变为密文数据,在确保信息安全到达传输目的地时,再采用密钥和隐蔽技术对数据信息进行还原,将密文数据还原成明文数据。例如,在企业内部区域网络信息传输时,便可以采用数据隐蔽技术控制读取权限,提升网络信息传递的安全性。因为在企业运行模式下,一些企业信息只限于部分员工可读取,尤其是一些涉及企业内部机密、财务经济等数据,所以需要采用隐蔽载体技术,通过密钥将隐藏的提取数据信息。在这样的加密模式下,企業数据信息安全性得到保障,不仅可以实现信息数据高效率传播,还降低了二次加密造成的安全隐患,控制了员工读取权限,对企业稳定发展非常有利。
4.2数字签名技术
相比公私钥加密技术而言,数字签名技术更加快捷便利,是公私钥加密技术的发展和衍生。将数字签名技术应用于网络信息安全中,在数据传输之前,传输者需要先将数据文件进行私有密钥加密,加密方式则是数字签名信息,而数据文件接收者在收到文件信息后,要使用公共密钥解密文件。由此可见,数字签名技术在公私钥加密技术的基础上,增加了权限身份的审核程序,即利用数字签名的方式,检查数据文件传输者的权限和身份,进一步提升了网络信息传输的安全性。同时,在计算机网络信息安全管理中,根据信息数据管理要求,灵活运用对称加密技术、公私钥加密技术和数字签名技术,充分发挥各项加密技术的优势作用,落实数据传输和存储加密工作。例如,针对保密程度较低的数据信息而言,可采用灵活便利的对称加密技术,而对于保密级别较高的数据而言,即可采用数字签名技术进行加密。通过这样的方式,不仅可以保障网络信息传输效率,优化信息传输的安全性能,还可以提升数据加密技术水平,为网络信息安全提供保障。
4.3量子加密技术
随着计算机信息技术的发展,数据加密技术也在不断创新和优化,信息安全保护质量也随之提升。相比以往的数据加密技术而言,量子加密技术的安全性更好,对数据安全控制效果更佳。将量子力学与加密技术进行有效融合,既可以实现数据传输时的加密操作,又能同时传递解密信息,节省了单独的密钥传输操作,加密方式也更加智能化。例如,在网络信息传输中,一旦发现数据传输存在被窃取和被篡改的风险,量子加密技术会及时作出反应,转变数据传输状态,而数据传输者和接收者也能及时了解数据传输状况。这种数据加密方式一旦发生状态转变是不可复原的,虽然有效避免的数据泄漏风险,但可能会造成数据自毁和破坏问题。同时,由于量子加密技术专业性强,并且仍处于开发试用状态,应用范围和领域比较局限,无法实现大范围应用。
5.结束语
总而言之,为了提升计算机网络信息的安全性,落实各项数据加密技术应用工作非常必要。根据网络信息安全现状问题,分析了对称加密、公私钥加密、数据隐蔽等技术的应用优势和弊端,指出其合理的应用领域。通过合理运用这些数据加密技术,不仅强化了数据传输、存储的安全性,营造了良好的网络信息环境,还有利于提升用户的数据加密意识,促进数据加密技术优化发展。
信息安全毕业论文范文模板(二):大数据时代计算机网络信息安全与防护研究论文
摘要:大数据技术的快速发展和广泛应用为计算机网络提供了重要的技术支持,有效提高了社会经济建设的发展水平。计算机网络的开放性和虚拟性特征决定了技术的应用必须考虑信息安全与防护的相关问题。本文介绍了大数据时代计算机网络安全的特征和问题,研究了如何保证网络信息安全,提出了3点防护策略。
关键词:大数据时代;计算机网络;信息安全与防护
进入信息时代,计算机网络技术已经逐步成为人们的日常工作、学习和生活必备的工具,如电子商务、网络办公、社交媒体等。计算机网络相关技术的发展也在不断改变人类社会的生产模式和工作效率,实现全球各地区人们的无障碍沟通。但在网络世界中,信息的传播和交流是开放和虚拟的,并没有防止信息泄露和被非法利用的有效途径,这就需要从技术层面上考虑如何提高计算机网络信息安全。特别是近年来大数据技术的高速发展,海量数据在网络中传播,如何保证这些数据的可靠性和安全性,是目前网络信息安全研究的一个重要方向。
1大数据时代计算机网络信息安全的特征
大数据是指信息时代产生的海量数据,对这些数据的描述和定义并加以利用和创新是目前大数据技术发展的主要方向。大数据的产生是伴随着全球信息化网络的发展而出现的,在这个背景下诞生了大量的商业企业和技术组织,也为各行各业提高生产力水平和改变生产模式提供了有效帮助。大数据时代的网络特征首先是非结构化的海量数据,传统意义上的海量数据是相关业务信息,而大数据时代由于社交网络、移动互联和传感器等新技术与工具快速发展产生了大量非结构化的数据,这些数据本身是没有关联性的,必须通过大数据的挖掘和分析才能产生社会价值;其次,大数据时代的网络信息种类和格式繁多,包括文字、图片、视频、声音、日志等等,数据格式的复杂性使得数据处理的难度加大;再次,有用信息的比例较低,由于是非结构化的海量数据,数据价值的提炼要经过挖掘、分析、统计和提炼才能产生,这个周期还不宜过长否则会失去时效性,数据的技术和密度都会加大数据挖掘的难度;最后,大数据时代的信息安全问题更加突出,被非法利用、泄露和盗取的数据信息往往会给国家和人民群众造成较大的经济社会损失。传统计算机网络的信息安全防护主要是利用网络管理制度和监控技术手段来提高信息存储、传输、解析和加密的保密性来实现的。在大数据时代背景下,网络信息的规模、密度、传播渠道都是非常多样化的和海量的,网络信息安全防护的措施也需要不断补充和发展。目前网络信息安全的主要问题可以概括为:一是网络的自由特征会对全球网络信息安全提出较大的挑战;二是海量数据的防护需要更高的软硬件设备和更有效的网络管理制度才能实现;三是网络中的各类软件工具自身的缺陷和病毒感染都会影响信息的可靠性;第四是各国各地区的法律、社会制度、宗教信仰不同,部分法律和管理漏洞会被非法之徒利用来获取非法利益。
2大数据时代背景下計算机网络安全防护措施
2.1防范非法用户获取网络信息
利用黑客技术和相关软件入侵他人计算机或网络账户谋取不法利益的行为称为黑客攻击,黑客攻击是目前网络信息安全防护体系中比较常见的一类防护对象。目前针对这部分网络信息安全隐患问题一般是从如下几个方面进行设计的:首先是完善当地的法律法规,从法律层面对非法用户进行约束,让他们明白必须在各国法律的范畴内进行网络活动,否则会受到法律的制裁;其次是构建功能完善的网络信息安全防护管理系统,从技术层面提高数据的可靠性;再次是利用物理隔离和防火墙,将关键数据进行隔离使用,如银行、证券机构、政府部门都要与外部网络隔离;最后是对数据进行不可逆的加密处理,使得非法用户即使获取了信息也无法解析进而谋利。
2.2提高信息安全防护技术研究的效率
大数据技术的发展是非常迅速的,这对信息安全防护技术的研究和发展提出了更高的要求。要针对网络中的病毒、木马和其他非法软件进行有效识别和防护,这都需要国家和相关企业投入更多的人力物力成本才能实现。目前信息安全防护技术可以概括为物理安全和逻辑安全两个方面,其中物理安全是保证网路系统中的通信、计算、存储、防护和传输设备不受到外部干扰;逻辑安全则是要保障数据完整性、保密性和可靠性。目前主要的研究方向是信息的逻辑安全技术,包括安全监测、数据评估、拨号控制、身份识别等。这些技术研究的效率直接影响着网络信息安全,必须组织科研人员深入研究,各级监管部门也要积极参与到网络管理制度的建立和完善工作中来,从技术和制度两个方面来提高信息防护技术的研究效率。
2.3提高社会大众的信息安全防护意识
【中图分类号】G20
1.引言----计算机信息系统安全技术教学的重要性
随着互联网时代的到来,计算机也以其独特的增长模式进入千千万万老百姓家里,并迅速成为了其日常生活中必不可少的一部分。据数据显示,截至2012年底,中国内地家庭宽带普及率已超过30%。同时越来越多的企事业单位通过计算机建立起了属于自己的一套业务信息管理系统,因此计算机信息系统安全问题已逐渐映入人们的视野。根据调查统计:仅2012年一年内,国内一级域名的网站被篡改就有28405个,其中教育类网站被篡改数为314个。而这还仅仅只是被人们发现的数据,仍有许多黑客是处于隐蔽性级高的状态,让人们根本无从发觉。据某大型企业管理人员反映,其公司内部网络在管理员未曾察觉的情况下,曾被黑客入侵并控制时间长达几个月之久。同样在国际上也曾有过类似事件:全球计算机信息发展最为突出的美国也曾有10多家著名的互联网站因受黑网站攻击,导致直接经济损失高达12亿美元;而亚洲地区经济最为发达的日本,其最高法院也曾在3天内遭受到3000多次黑黑客攻击。因此如何提高计算机信息系统安全技术成为了全球性战略高度的问题。
2.计算机信息系统安全的主要技术
计算机信息安全技术和计算机信息技术两者的发展与应用是互相呼应的,随着全球政治经济的飞速发展,计算机信息技术的地位也日益提高,了解和掌握计算机信息安全相关知识及技术成为了当代青年学者的基础技能之一。就计算机信息系统安全技术而言,其可简单分为五大类:
2.1 数字签名以及认证技术:所谓数字签名及认证技术指的是创作者将数字编码信息用接收者的公钥进行加密后,与原文一同发送给接收者。而接收者则只可用自己的私钥方能解开被加密的数字编码信息,然后需用函数HASH对接收到的信息生成一个数字编码信息,与解密的数字编码信息对比。如结果相同,则说明此次传输过程安全没有被篡改,信息为完整的,反之则表明此次信息传输被修改过,故数字签名能验证数字编码信息的完整性。因此数字签名为加密过程,而数字签名认证则为解密过程
2.2 防火墙技术:防火墙是指一种将公众网络与计算机内部网络分离开来的一道屏障,以此来实现用日常网络安全,将潜在的攻击性入侵尽最大可能隔绝开来,实际上它就是隔离技术的一种。
2.3 信息加密技术:信息加密技术主要包含数据的传输加密与存储加密两大方面。其中数据传输加密时主要加密对象为正在传输途中的数据流,而常用的方式有三种:节点加密、端到端加密和链路加密。而加密系统则分为:未加密报文(明文);加密后报文(密文);加密及解密设备;加密及解密密钥四部分组成。
2.4 入侵检测技术:入侵检测主要依靠IDS入侵检测系统来完成,其作用是对防火墙不足的一个合理补充,主要帮助系统应对来自网络黑客的攻击,增强系统安全管理能力,提高信息安全整体结构的完整性。而入侵检测大致可分为两种实时入侵检测与事后入侵检测。
2.5 访问控制:计算机信息系统安全之中最为关键的技术――访问控制。按类型分可分为两大类自主访问控制以及强制访问控制。它所指的是按用户身份或其所属的某项定义来限制用户访问或使用某些信息项的权限,主要适用于系统管理员控制用户对其服务器、目录和文件等资源在网络上访问权限。
3.目前计算机信息系统安全课程的教学现状
计算机信息系统安全课程涉及到的学科纷繁复杂,主要是为了培养学生了解目前主流网络系统中的安全设置、安全漏洞和安全协议,掌握计算机信息系统可能会存在的一般安全问题及防御策略,全面提高学生计算机信息系统安全防护意识和安全防护能力。就目前各大高校学习情况来看,学生对课程知识的掌情况并不理想,尚未达到开设课程时预期效果,现综合近几年的教学情况分析得出以下存在的几个问题:
3.1 课程涉及知识面较广且知识体系更新快
计算机信息系统安全课程涉及到的学科纷繁复杂,其主要包括信息安全技术、密码技术、网络技术、计算机科学、通信技术、数论、应用数学和信息论等多种学科。它是一门经合性学科,涵盖内容非常广泛,不仅需掌握基本的原理知识,同时也要具备一定的应用技术及方案设计技能。总而言之,其课程教学内容包括以下几个方面:信息系统安全、信息安全概述、密钥分配及管理技术、密码学基础、网络安全、访问控制、安全管理、安全审计等,属于大学时期综合性极强的一门课程。因此对于学习此课程的学生有着极高的基础知识要求,但由于2005年教育部了《教育部关于进一步加强信息安全学科、专业建设和人才培养工作的意见》①以及2007年成立了“高等学校信息安全类专业教学指导委员会”②,致使各大高校内与计算机相关的专业纷纷开设信息安全类课程以及组建信息安全专业,而学校并未针对不同类型以及不同层次的学生为其定位,导致有的学校原本应该出现在大三下期或大四的课程提前向学生展开,使得学生学习难度及学习压力大大提升,且学习兴趣也随之下降。
社会经济的迅速发展,计算机技术以及互联网技术也随之日新月异,同样黑客的攻击方式与防范手段也在不断提升。现在社会上不断出现了很多新的网络技术,如的如像无线传感器网络技术、P2P网络技术等,同样许多新的网络计算环境也在不断诞生。在学生刚了解掌握课本知识的同时,社会上又已开始出现新的计算机信息安全知识。因此,在计算机信息系统安全教学中必需紧跟时代信息技术的发展趋势,且仍需随时准备对信息安全技术提出新挑战。
3.2单一化的教学模式以及理论教学与实践能力培养间的矛盾
就计算机信息系统安全课程的内容本身而言,其中有绝大部分原理的描述非常抽象,使得此课程对于学生而言极其来枯燥及难以理解。而目前大多数学校课堂教学主要仍是以传统教学模式为主:课前预习教师讲述学生提问。但在这三个环节中,课前预习是处于一个无法有效检查到的项目,并且学生提问环节也一般少有学生进行提问,因此传统教学模式的弊端显而易见。
据调查发现,计算机信息系统安全课程的教学内容同实际应用的知识有着一定程度上的差距,使得该课程在实际教学过程中遇到了很大的困惑。因为信息系统安全技术是一门新型学科,同时也与实际生活工作学习有着密不可分的关系,有许多学生在课程开始前的生活中已经对其有了初步而又浅显的接触,促使学生在刚触及到这门课程时对其抱有非常大的期望,然而随着教学进度的逐步向前,学生们很快发现他们根本无法将课堂上所学的理论知识同实际生活应用中有效的开展开来,从而学生的学习兴趣也渐渐地下降。而就实践课程开设环节而言,目前仍有许多高校内开设的实践环节项目不能包含所教学的理论内容,原因为其总体数量过少。并且据某高校教师介绍,诸多已开设此类课程的学校仍旧无完善的信息安全实验室以及相关实验设备,很多实验项目均无法进行。因此,如何培养及提高学生实验动手能力教学对于计算机信息系统安全课程的教学成为了迫在眉睫急需解决的问题。
4.新形势下计算机信息系统安全课程的教学对策
4.1 区分专业贴合实际精选内容教学
随着计算机技术飞速的发展,各大高校也逐渐将计算机科学技术人才的培养视为目前的首要任务之一。按现阶段的招生规模来看,计算机信息系统安全课程在各大本科院校内皆已开设,并且其将成为一个大专业。就学生就业需求而论,各大院校在学生进入大三学习阶段后,便将其按不同专业方向分配给予教学。但其计算机信息系统安全课程仍是同步进行,曾有学者提出过是否也可将计算机信息系统安全课程区分不同专业方向进行特色教学。目前而论计算机信息系统安全课程教材大致可分为:理论教材和实践教材两大类,因其理论教材中以密码学知识为主,而实践教材中则以实际操作技能为主,故大多数学生对原理的描述非常抽象的理论教材极为反感,而对实践教材中的实际操作兴趣颇大,教师可根据学生要要多开设实验课程,并就实验课程反推出理论知识的重要性,促进学生理论与实践双项技能的共同发展。
4.2 教学方式的改进――传统教学和现代教学的相互结合与渗透
因“材”施教,同样在面对不同教材时,教师也可根据不同的教学内容来制定教学方法,在利用传统教学方法优势的同时也要适时的引用新型教学方法,有效的将传统教学与现代教学结合起来,求得更为突出的教学效果。以理论课程为例,由于计算机信息系统安全课程中有部分理论知识较为抽象且复杂难以理解,教师则需一改单一的传统教学模式,可多采用现代教学方式中的趣味教学法带动学生学习兴趣活跃课堂气氛,提高学生的主动学习能力,从而方可使教学效果事半功倍。而在实践课程教学时,则需多采用传统教学模式教学,让学生在提前了解学习内容后再进行实验方能使学习效果愈加明显。
注释
①2005年中国教育部于教高〔2005〕7号文件
②2007年中国教育部于教高函〔2007〕1号文件向社会公布成立
参考文献
[1]范迎,范永海:浅析计算机信息安全技术现状与发展前景,大连海事大学出版社[J],2009(05)
[2]任立锋:计算机信息安全技术研究,高新技术发展[J],2011(01)