材料加工技术汇总十篇

时间:2023-03-07 14:55:13

材料加工技术

材料加工技术篇(1)

近年来,机械产品多功能、高功能化的发展势头十分强劲,要求零件必须实现小型化、微细化。为了满足这些要求,所用材料必须具有高硬度、高韧性和高耐磨性的特点,而具有这些特性的材料,其加工难度也特别大,因此又出现了新的难加工材料。难加工材料就是这样随着时代的发展及专业领域的不同而出现,其特有的加工技术也随着时代及各专业领域的研究开发而不断向前发展。另一方面,随着信息化社会的到来,难加工材料切削技术信息也可通过因特网互相交流,因此,今后有关难加工材料切削加工的数据等信息将会更加全面,加工效率也必然会进一步提高。难加工材料的界定及具体品种,随时代及专业领域而各有不同。

一、切削领域中的难加工材料

在切削加工中,通常出现的刀具磨损,有如下两种形态:(1)由于机械作用而出现的磨损,如崩刃或磨粒磨损等;(2)由于热及化学作用而出现的磨损,如粘结、扩散、腐蚀等磨损,以及由切削刃软化、溶融而产生的破断、热疲劳、热龟裂等。切削难加工材料时,在很短时间内即出现上述刀具磨损,这是由于被加工材料中存在较多促使刀具磨损的因素。例如,多数难加工材料均具有热传导率较低的特点,切削时产生的热量很难扩散,致使刀具刃尖温度很高,切削刃受热影响极为明显。这种影响的结果会使刀具材料中的粘结剂在高温下粘结强度下降,WC(碳化钨)等粒子易于分离出去,从而加速刀具磨损。另外,难加工材料中的成分和刀具材料中的某些成分在切削高温条件下产生反应,出现成分析出、脱落,或生成其他化合物,这将加速形成崩刃等刀具磨损现象。在切削高硬度、高韧性加工材料时,切削刃的温度很高,也会出现与切削难加工材料时类似的刀具磨损。如切削高硬度钢时,与切削一般钢材相比,切削力更大,刀具刚性不足将会引起崩刃等现象,使刀具寿命不稳定,而且会缩短刀具寿命,尤其是加工生成短切屑的工件材料时,会在切削刃附近产生月牙洼磨损,往往在短时间内即出现刀具破损。在切削超耐热合金时,由于材料的高温硬度很高,切削时的应力大量集中在刃尖处,这将导致切削刃产生塑性变形;同时,由于加工硬化而引起的边界磨损也比较严重。由于这些特点,所以要求用户在切削难加工材料时,必须慎重选择刀具品种和切削条件,以达到理想的加工效果。

二、难加工材料在切削加工中应注意的问题

切削加工大致分为车削、铣削及以中心齿为主的切削(钻头、立铣刀的端面切削等),这些切削加工的切削热对刃尖的影响也各不相同。车削是一种连续切削,刃尖承受的切削力无明显变化,切削热连续作用于切削刃上;铣削则是一种间断切削,切削力是断续作用于刃尖,切削时将发生振动,刃尖所受的热影响,是切削时的加热和非切削时的冷却交替进行,总的受热量比车削时少。铣削时的切削热是一种断续加热现象,刀齿在非切削时即被冷却,这将有利于刀具寿命的延长。日本理化研究所对车削和铣削的刀具寿命作了对比试验,铣削所用刀具为球头立铣刀,车削为一般车刀,两者在相同的被加工材料和切削条件(由于切削方式不同,切削深度、进给量、切削速度等只能做到大体一致)及同一环境条件下进行切削对比试验,结果表明,铣削加工对延长刀具寿命更为有利。利用带有中心刃(即切削速度=0m/min的部位)的钻头、球头立铣刀等刀具进行切削时,经常出现靠近中心刃处工具寿命低下的情况,但仍比车削加工时强。在切削难加工材料时,切削刃受热影响较大,常常会降低刀具寿命,切削方式如为铣削,则刀具寿命会相对长一些。但难加工材料不能自始至终全部采用铣削加工,中间总会有需要进行车削或钻削加工的时候,因此,应针对不同切削方式,采取相应的技术措施,提高加工效率。

三、切削难加工材料用的刀具材料

立方氮化硼CBN(Cubic Boron Nitride)的高温硬度是现有刀具材料中最高的,最适合用于难加工材料的切削加工。新型涂层硬质合金是以超细晶粒合金作基体,选用高温硬度良好的涂层材料加以涂层处理,这种材料具有优异的耐磨性,也是可用于难加工材料切削的优良刀具材料之一。难加工材料中的钛、钛合金由于化学活性高,热传导率低,可选用金刚石刀具进行切削加工。CBN烧结体刀具适用于高硬度钢及铸铁等材料的切削加工,CBN成分含量越高,刀具寿命也越长,切削用量也可相应提高。据报道,目前已开发出不使用粘结剂的CBN烧结体。金刚石烧结体刀具适用于铝合金、纯铜等材料的切削加工。金刚石刀具刃口锋利,热传导率高,刃尖滞留的热量较少,可将积屑瘤等粘附物的发生控制在最低限度之内。在切削纯钛和钛合金时,选用单晶金刚石刀具切削比较稳定,可延长刀具寿命。涂层硬质合金刀具几乎适用于各种难加工材料的切削加工,但涂层的性能(单一涂层和复合涂层)差异很大,因此,应根据不同的加工对象,选用适宜的涂层刀具材料。据报道,最近已开发出金刚石涂层硬质合金和DLC(Diamond Like Carbon)涂层硬质合金,使涂层刀具的应用范围进一步扩大,并已适用于高速切削加工领域。

四、切削难加工材料的刀具形状

在切削难加工材料时,刀具形状的最佳化可充分发挥刀具材料的性能。选择与难加工材料特点相适应的前角、后角、切入角等刀具几何形状和对刃尖进行适当处理,对提高切削精度和延长刀具寿命有很大的影响,因此,在刀具形状方面决不能掉以轻心。但是,随着高速铣削技术的推广应用,近来已逐渐采用小切深以减轻刀齿负荷,采用逆铣并提高进给速度,因此,对切削刃形状的设计思路也有所改变。对难加工材料进行钻削加工时,增大钻尖角,进行十字形修磨,是降低扭矩和切削热的有效途径,它可将切削与切削面的接触面积控制在最小范围之内,这对延长刀具寿命和提高切削条件十分有利。钻头在钻孔加工时,切削热极易滞留在切削刃附近,而且排屑也很困难,在切削难加工材料时,这些问题更为突出,必须给予足够的关注。

为了便于排屑,通常在钻头切削刃后侧设有冷却液喷出口,可供给充足的水溶性冷却液或雾状冷却剂等,使排屑变得更为顺畅,这种方式对切削刃的冷却效果也很理想。近年来,已开发出一些性能良好的涂层物质,这些物质涂镀在钻头表面后,用其加工3―5D的浅孔时,可采用干式钻削方式。孔的精加工历来采用镗削方式,不过近来已逐渐由传统的连续切削方式改变为采用等高线切削这类间断切削方式,这种方式对提高排屑性能和延长工具寿命均更为有利。因此,这种间断切削用的镗削刀具设计出来后,立即被应用于汽车零件的CNC切削加工。在螺纹孔加工方面,目前也采用螺旋切削插补方式,切螺纹用的立铣刀已大量投放市场。如上所述,这种由原来连续切削向间断切削的转换,是随着对CNC切削理解的加深而进行的,这是一个渐进的过程。采用此种切削方式切削难加工材料时,可保持切削的平稳性,且有利于延长工具寿命。

如上所述,难加工材料的最佳切削方法是不断改进的,新的难加工材料不断出现,对新材料的加工总是不断困扰着工程技术人员。当前,新型加工中心、切削工具、夹具及CNC切削等技术的发展非常迅速,而且在切削加工之外,CNC磨削、CNC电加工等技术也得到了空前的发展,难加工材料的加工技术选择范围已大为扩展。当然,有关难加工材料加工信息的收集与对该技术的深入理解,还不尽如人意,正因为如此,面对难加工材料的不断涌现,人们总是感到对加工技术有些力不从心。例如,前述车削加工由连续切削向间断切削转换,便有利于延长工具寿命,新型涂层硬质合金刀具的使用,使难加工材料切削技术水平得到进一步提高。在难加工材料的切削加工中应特别重视工具寿命的稳定,不仅工件材料要和刀具性能妥善配备,而且对加工尺寸、加工表面粗糙度、形状精度等的要求也极严格,因此,不仅应特别注意刀具的选用,对工件的夹持方式等相关技术也不能掉以轻心。

今后,难加工材料零件的加工将采取CAD/CAM、CNC切削加工等计算机控制的生产方式,因此,数据库的建构、工具设计与制作等工具管理系统的完善,都极为重要。难加工材料切削加工中,适用的刀具、夹具、工序安排、工具轨迹的确定等有关切削条件的数据,均应作为基础数据加以积累,使零件生产方式沿着以IT化为基础的方向发展,这样,难加工材料的切削加工技术才能较快地步入一个新的阶段。

材料加工技术篇(2)

近年来,在社会快速发展带动下,激光技术的应用、推广范围也在逐步拓展,并逐渐向工业、科研等诸多领域进行渗透,并在很多行业都拥有着较高的应用发展优势,尤其是金属材料加工中的应用,逐渐成为了该行业不可或缺的发展因素。但就目前来看,该技术虽然在很多领域都得到了广泛推广,但由于种种因素的制约,该技术在材料加工领域的应用价值还未得到充分发挥,还有待进一步挖掘。

1金属材料加工工艺中激光技术的应用探究

1.1激光切割

切割不仅是一项十分关键的激光加工工艺,同时也是材料加工行业生产、发展中至关重要的一项应用技术。就目前来看,激光切割通常都应用于薄板材料加工,如,电梯控制板、木模板等,但在金属材料加工方面的应用还有待进一步优化,也是该技术未来的主要发展方向[1]。现阶段,丰田、福特等世界知名的汽车公司就将激光切割技术推广到了汽车组装生产线上。相比于其他切割技术来讲,该技术能够在最小基本面板内,对不同规格、精度的零件进行加工,且不受金属摸的限制,还能够获得理想的加工效果。此外,激光切割技术在各类不锈钢工件的切割加工中也得到了广泛应用,而且不论是在加工质量,还是数量上都能够呈现出良好的发展趋势。

1.2激光打孔

激光打孔是一项比较传统,且较为实用的激光材料加工技术,相比于其他技术,这种加工技术不仅具有较高的精度和效益等特点,也在应用发展中逐渐成为了该行业的至关重要的技术元素。在20世纪末,激光打孔技术得到了飞速发展,并逐渐呈现出了较为显著的多元化发展趋势,而随着相关技术、工艺的不断更新完善,随着孔径的逐渐缩小,性能也随之不断提升。在我国,该技术的发展历史也相对较长,最早用于20世纪60年代的钟表制造行业,并取得了一定的应用发展成就,但相比于诸多国外发达国家来讲,我国对此项技术的应用、研发还存在着较大差距。当前,很多发达国家将激光打孔技术科学、广泛地应用到了医药、飞机制造以及食品加工等领域,并为其带来了相对较大的精神、物质财富[2]。

1.3激光打标

激光打标技术作为一项应用性较强的相关材料加工技术,主要是通过较高的能量与密度的激光,来对局部的工部件进行照射,并对汽化、液化等化学反应进行科学利用,以此来将相关标识永久性地留在工部件的表面。就目前来看,该技术在金属制造行业领域的应用最广泛,如,刃具、轴承等金属制品的打印标记对激光达标技术的依赖性都很强。同时,该技术也能够在不影响晶体性能的基础上,实现看似无法完成标记打印。另外,在社会科技快速发展背景下,一些大理石、陶瓷等非金属制品的达标也可以采用激光打标技术来进行,而随着近几年,激光系统的不断优化,也在某种程度上拓展了标记深度,也进一步提升了标记质量。并且,作为一种较为新颖、先进的产品防伪手段,激光打标技术的应用发展也得到了社会各界的广泛重视。

1.4激光焊接与表面热处理

首先,对于激光焊接技术的应用发展来讲,结合服务对象、使用器件的不同,激光焊接主要可分为深熔焊、传导焊两种类型机制,前者主要应用于机械制造领域,而后者则在电子电气行业应用比较广泛。就目前的发展现状来看,该技术已经在汽车行业得到了深层次的渗透,也为行业发展提供了重要的技术支持。具体来讲,这种应用主要在两方面有显著的体现:一方面是在传动焊接上[3]。当前,此项技术能够适应汽车传动系统大部分零件焊接需求,而相比于其他传统的焊接技术来讲,激光焊接既可以对零件的使用寿命进行有效延长,也能够大幅度降低零件的应用成本,进而将其独特的应用价值充分体现出来。另一方面,是在焊接组合件上。具体来讲,主要就是将原本分散的平板工件焊接、冲压成一个整体,这样不仅能够有效减少工件数量,也能够促进其部件性能的不断增强,并在降低车体重量的同时,使汽车的整体性能得到不断优化。其次,对激光表面热处理来讲。一方面,受到激光表面硬化影响,马氏体的量会随之不断增加,而在不断提升零部件疲劳强度的基础上,也能够进一步提升其耐磨性能。现阶段,激光表面硬化已经在汽车曲轴、凸轮轴等物件制造中得到了广泛应用,而就实际应用效果来讲,其不仅可以有效延长零部件使用寿命,也能够大幅度降低物件制造成本;另一方面是激光合金化与熔覆,其能够大幅度提升加工材料的抗腐蚀、耐磨性能。

2激光技术在金属加工工艺中的应用前景

针对激光技术的应用现状来看,可以从以下几方面来加强该技术在金属材料加工工艺中的应用。首先,应对激光工作参数进行不断完善,优化加工作业数据库。在实际应用中,相关工作人员都知道,激光照射具有相对较高的可控性,不论是在激光照射时间,还是范围、强度方面,都能够实行科学、高效的人为干预,也正是由于其具备这种特性,激光加工充分体现出了鲜明的多元化特征。因此,为了将激光加工优势充分发挥出来,相关工作人员可以针对灵活多样的加工方式、对象,建立一套与之相适应的、科学完善的工作参数,从而为激光加工提供更可靠的标准。同时,还应建立完善的加工作业数据库,并以此来促进激光加工质量、效率的不断提升[4]。其次,积极推广激光多工位分时综合加工。从理论层面来讲,即使是同一束光源也能够进行综合性的加工处理,其主要是因为该激光源可以对激光照射时间、能量密度进行自主控制。而在此基础上,不同工位上分时可以通过对不同方式进行可续整合来进行加工,这样激光切割、焊接和表面处理等工序便能够由一台设备来进行,从而获得良好的综合加工效果。由此可见,其综合加工模式的大力推广,已经逐渐成为了加工技术未来发展的必然趋势[5]。再者,积极实现自动化、无人化的激光加工。在实际应用过程中,为了最大限度地节省人力消耗,促进其加工效率的不断提升,应积极推动激光加工技术向自动化、无人化方向发展。而就目前来看,激光技术要想在此方面获得突破性发展,就必须要拥有强大的网络、自动控制技术,以及计算机生产辅助管理技术来为其突破性发展提供有力保障。为此,应对相关技术配套设施建设进行不断完善,从真正实现激光加工自动化、无人化,也进一步提升激光技术在金属材料加工工艺中的应用水平。

3结语

总之,在新时期背景下,激光技术在金属材料加工工艺中的科学运用是一项极其系统的工程。为了不断增强其工程的时效性,必须要加强该技术的应用研究。不仅要对激光技术在该领域的应用现状进行全面分析,还要积极探究该技术的应用路径,只有这样才能够将该技术的功效充分发挥出来,并进一步拓宽其应用前景,才有助于推动金属材料加工事业的快速、健康发展。

参考文献

[1]黄翔,徐君,张永良,等.金属材料加工工艺中激光技术应用分析[J].城市建设理论研究:电子版,2014(23):2130-2131.

[2]樊熊.金属材料加工工艺中激光技术应用分析[J].企业技术开发(下半月),2013,32(10):23-24.

[3]田延龙.激光技术在金属材料加工工艺中的应用探析[J].科技创新与应用,2013(10):25.

材料加工技术篇(3)

随着现代高新技术的发展,现代材料得到了快速的发展,很多新材料新技术应运而生。同时新材料的进步和发展水平也成为衡量国家科技水平的一个标准之一,并在一定程度上促进了各个学科、技术的交叉融合。材料是现代文明三大支柱的基础,能源和信息的发展都离不开材料,也因此材料的发展也越来越引起人们的关注。一种新功能材料的研发,不仅能够带来巨大的经济效益,同时也能够带动相关产业的迅速发展,其对推动工业的发展,促进国防建设的各个领域的发展都至关重要。

1 现代材料加工技术的发展特点

1.1 现代材料加工技术有更为详细的划分

现代材料技术的发展不是单纯的对传统材料加工工艺的改进改性,也不是单纯的提高了生产效率降低生产成本,而是进行了新功能材料的研发,并逐步实现了产业化。当前的材料加工技术包括制备技术、材料的成形与加工技术、对材料的改质与改质技术、对金属材料的防护技术、评价表征技术、对金属材料的模拟仿真技术及检测与监控技术等。

1.2 实现各种加工技术的交叉融合

传统的金属材料的加工过程是在完成了金属锭坯后再进行塑形加工,而后生产出各类金属制品和零件。但是现代的金属材料加工已经实现了材料制备和成形加工技术的一体化、成形加工与改质改性技术的一体化,这都充分说明了当前的材料加工技术已经实现了各类技术的交叉与融合。

1.3 实现了材料的设计与加工的一体化

工业的飞速发展对材料的功能性提出了更高的要求,能够按照实际生产中需要的功能要求来进行材料的设计,从而实现材料的功能设计与加工的一体化,使之进入材料加工的新发展时期。

1.4 实现对材料加工全过程的精准控制

随着电子信息技术的飞速发展,计算机模拟与仿真技术都得到了较大程度的发展,同时也丰富完备了材料的数据库,使其各方面的数据都得到了完善,并以此为基础实现了材料设计、制备、加工等全过程的精准控制,特别是对加工材料的性能、形状和尺寸等。

2 现代材料加工技术的现状

随着合成材料相关技术的发展,特别是材料的合成与复合技术的发展,及电子信息技术和航空航天等尖端材料加工技术的发展,都在很大程度上推进了现代工业的飞速发展。一些功能性新材料的出现,例如精细陶瓷材料、耐高温材料、纳米材料等的研发与产业化推广,都解决了过去很多传统材料不能替代的功能,从而实现了材料性能的飞跃发展。

3 现代材料加工技术的发展趋势

3.1 材料加工技术的发展

(1)材料加工过程的一体化。在对现代材料进行制造需要经历设计、制造、成形及后续加工等过程,在传统的金属材料的加工过程中需要冶炼得到纯金属后将其进行熔炼合金化,再进行铸锭和塑性加工及深度塑性加工最后制造出金属制品。例如,对金属的铸造都实现了连续铸轧工艺从而实现了产品的各种加工性能。

(2)材料加工技术的一体化。当前的材料加工已不再是单纯一个学科的发展,而是各种技术相结合发展的综合性学科,随着计算机模拟与过程仿真技术、信息技术在材料的制备、成形及加工过程中的应用,很好的实现了材料加工过程中的各个环节的精准控制。例如,当前市场对各种材料产品的性能、形状、尺寸有了较高的要求,计算机对铸轧程序及材料的变形进行模拟分析,对材料的规格和尺寸等进行全面的精准控制,达到材料的精密成型和特种塑性加工。

3.2 材料加工的新技术新方法的发展

随着高新技术的飞速发展,对高新材料的功能有了更高的要求,传统的材料加工方法不能满足对新型功能材料的需求,在材料加工研究领域中实现材料加工与制备的一体化是未来发展的一个趋势。

(1)对常规材料加工流程的改进。要想实现对常规材料的节能高效优质加工,实现对材料的精准控制,就必须对传统的材料加工模式进行改革,对生产的流程进行简化和连续化生产,从而提高生产效率。

(2)实现对材料的组织与性能的精准控制。工业技术的发展对材料的性能有了更高的要求,传统的材料不能满足新兴工业发展对材料的需求,要想发展先进的材料成形加工技术,就必须以实现材料组织与性能的精准控制,实现高附加值的材料。

(3)对材料设计、制备、成形及加工的一体化。当前在材料加工技术中最为突出的就是对复合材料的加工,较为有代表性的是喷射成型技术和金属基层状复合材料的加工技术。并随着高新技术材料的不断研发,新的材料加工方法会不断的出现,例如,自蔓延高温合成加工陶瓷复合管材及金属管法制作氧化物超导线材等。

(4)实现材料产业的可持续发展。随着社会经济的迅速发展,人与环境的发展矛盾日益激烈,有限的资源环境很难满足人类日益增长的物质文化需求,因此必须探寻研发新的材料,以满足发展对各种工业发展的需求。一些低耗、节能、可再生、利用率高及可循环使用的材料是未来现代材料的发展趋势,对这些材料的加工方法和技术的研究是新的发展领域,也是发展的必然趋势。

4 结语

现代材料加工技术的发展并不是单纯的对传统加工工艺的改进,而是需要进行新材料的研发,在现代材料中融入科技的元素、现代化的加工工艺及信息化的元素,从而实现现代材料的快速发展。本文分析了现代材料发展的特点和发展现状,并有针对性地对现代材料加工技术的发展趋势进行了展望。

参考文献:

[1]谢建新.材料加工技术的发展现状与展望[J].机械工程学报,2003(10).

[2]丁国平,梁楚华.超硬材料加工技术及其发展趋势[J].机械制造,2007(06).

[3]孙爱芳.材料加工技术的回顾与展望[J].河南机电高等专科学校学报,2006(05).

[4]蒋嵘,吴晨曦.超硬材料加工技术发展现状及趋势[J].佛山陶瓷,2003(12).

材料加工技术篇(4)

1 概述

金属材料具有优良的使用性能和工艺性能,我国的人均金属材料占有量依然很低,金属材料在一段相当长的时期将占据材料工业的主导地位[1]。随着可持续发展思想、理念及其实践的逐步形成与不断发展,在金属材料零部件的成型、加工、使用、拆卸、回收再利用等环节,符合人与自然和谐发展的基本要求,加强污染防止与治理、减少废物、替代有害物质、注重清洁生产技术正在成为支持可持续发展的有力战略措施[2]。传统的金属材料内成型与控制技术包括液态成型技术、固态成型技术以及液―固成型技术。金属材料环境友好成型加工技术既包括按环境友好金属材料的基本思想和设计原则开发的新一代金属材料,也包括对传统金属材料的环境友好化改造,也就是说,在传统金属材料基础上,通过对金属材材料制造工艺的不断调整,成型加工技术的不断改造,逐渐实现传统材料的环境友好成型加工技术[3]。金属材料环境友好成型加工技术要求在金属材料产品生产过程中具有对能源消耗少、对环境污染小、对生产成本要求低的特点,也具有循环再生利用高的工艺基础和技术优势。只有这样,才能将金属材料环境友好成型加工技术与现代工业大规模生产形结合,在金属材料及金属产品的设计阶段,就要纵观金属材料产品整个生命周期过程,充分考虑到每个成型加工环节对节省资源、能源、保护环境、废弃后容易再生循环的要求,同时具有良好的功能特性和舒适性,达到环境友好材料的目的[4],从而提高金属材料在生产和使用中的资源及能源的利用效率,降低成本,提高质量,增大可靠性,延长设备使用寿命[5]。所以,金属材料环境友好成型加工技术是面向环境的金属材料成型加工及应用研究,是金属材料产业中人与自然和协调发展的理性选择,是金属材料产业可持续发展的必由之路。

2 金属材料成型加工过程的环境负荷

随着我国社会经济的高速发展,金属材料成型加工的总量也在不断增大,对资源和能源的消耗也不断增加,由此造成的资源和能源短缺现象也日益严重。金属材料矿产资源是不可更新的自然资源,传统的成型加工过程对金属材料大量消耗,必然会使人类面临金属材料资源逐渐减少以至枯竭的威胁。我国钢铁工业能源消耗巨大,金属材料生命周期的各个阶段均会造成环境负载。由于金属材料在采矿冶炼、成型加工、产品制备、设备使用及废弃过程中产生大量的废水、废气、固体废弃物等,对生态环境造成了很大的破坏,致使全球环境污染问题变得更加严峻,加重了地球的环境负担。因此,对金属材料的成型加工、生产和使用而言,对自然资源的消耗是源头,对生态环境的污染是末尾。就钢铁材料冶金生产而言,钢铁的生产和使用与资源消耗和环境负荷有着密不可分的关系。由于钢铁材料以型材供应为主,钢铁材料的能耗居材料产业能耗之首;就废物排放而言,排放的废水、废气量大。我国有色金属材料工业,由于矿产资源品位很低,有色金属材料进行提取和加工耗能较大。每年生产的有色金属产品造成大量的尾矿和废渣等工业固体废弃物。在有色金属材料生产过程中,向大气中排放的二氧化硫、氟化氢等废气,是工业有毒废气的主要源头之一。所以要减轻金属材料成型加工过程的环境负荷,在金属材料成型加工设计阶段,就把金属材料的使用性能与和环境保护结合起来,使金属材料在具有优异性能同时,也充分满足资源的有限性和自然环境容量的有限性。

3 金属材料环境友好成型加工技术

一是降低钢铁生产中的吨钢能耗比,采用先进的金属材料成型加工工艺及设备,逐步淘汰落后的轧钢工艺装备。提高废钢铁在现代炼钢中的比重,推广高效节能、环境友好的的电能炼钢技术。在电炉中采用辅助能源装置和余热回收循环利用技术,提高连续铸造、连续退火、直接轧钢等连续化生产的比重。应健全金属材料成型加工工艺废旧钢回收管理机制,将废钢铁回收、加工、分离技术和有害元素的去除技术与金属材料环境友好成型加工技术结合起来。进一步提高金属材料成型加工过程的成材率,应用近终形连铸技术,使连铸坯的尺寸接近设计的最终钢材断面尺寸,省去了开坯工艺、初轧工艺,甚至可以免去整个热轧工序过程。先进的连铸技术可控制冷却速率,金属凝固速度提高,形核率增大,可得到细小晶粒组织,减少或消除中心偏析等缺陷,获得良好的钢材性能。目前,近终形连铸的钢铁短流程的工艺特点是无焦碳、不轧制,全部实现热态连续生产过程。二是开发金属材料环境友好成型加工产品,在工业生产中,将低资源消耗、低能源消耗、低污染的金属材料产品,根据其生命周期的长短分为流动性产品和贮存性产品。易拉罐等流动性产品的生命周期短,要求在产品整个生命周期投入尽可能少的资源消耗和能源用量。不但要选择在这个阶段的资源消耗少、能源消耗低的材料,还要易于循环再生。桥梁结构材料等贮存性产品生命周期长,在降低制造阶段的资源消耗和低能源消耗时,更重要的是采用金属材料环境友好成型加工技术,通过桥梁结构材料的高功能化、长寿命化、提高桥梁结构材料的可靠性和可维修性,满足低污染、低的资源消耗、低的能源消耗要求。三是金属基复合材料的二次成型加工技术,金属基复合材料具有可设计性好的优异性能,普遍应用于航海、航空、航天、军事等各个领域[5]。在金属基复合材料的成型加工生产中,为了降低复合材料生产成本,提高复合材料性能,往往是先将金属基复合材料制成初级坯料后,再采用二次成型加工技术进行成形,制成可应用的复合材料零件、或者型材等[6]。随着金属基复合材料精密成型加工技术的发展,精密洁净、表面光洁、尺寸精度高的金属基复合材料产品需求量逐年增大,精确化和强韧化的金属基复合材料产品市场越来越大。

参考文献

[1]王瑾.基于材料的绿色产品设计与管理研究[J].科技创新导报,2009(32):7.

[2]刘业翔.有色金属冶金基础研究的现状及对今后的建议[J].中国有色金属学报,2004,14(S1):21-24.

[3]解念锁,王艳,武立志.高锌基合金的应用现状及前景[J].热加工工艺,2010,39(14):50-53.

材料加工技术篇(5)

一、前言

近些年来,国防尖端工业和航空工业等特殊领域的发展要求更高性能的聚合物材料,开发研制满足特定要求的高聚合物迫在眉睫[1]。在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的方法,对促进我国高新技术及产业的发展具有重要的意义。

二、高分子材料成型成型加工技术的相关定义

1.高分子材料

高分子材料是指由相对分子质量较高的化合物为基础构成的材料,其一般基本成分是聚合物或以含有聚合物的性质为主要性能特征的材料;主要是橡胶、塑料、纤维、涂料、胶黏剂和高分子基复合材料。高分子材料独特的结构和易改性与易加工特点,使它具有其他材料不可取代与不可比拟的优异性能,从而广泛运用到科学技术、国防建设和国民经济等领域,并已成为现代社会生活中衣食住行用等各方面不可缺少的材料。

2.高分子材料成型加工技术

在高分子工业的生产中分为高分子材料的制备与加工成型两个过程。高分子材料的成型加工技术就是运用各种加工方法对高分子材料赋予形状,使其成为具有使用价值的各种制品。高分子材料加工主要目的是高性能、高生产率、快捷交货和低成本;向小尺寸、轻质与薄壁方向发展是高分子材料成型技术制品方面的目标;成型加工方向是全回收、零排放、低能耗,从大规模向较短研发周期的多品种转变。判断高分子材料的成型加工技术的质量因素是加工后制品的外观性、尺寸精度、技能性中的耐化学性、耐热性等等。

三、高分子材料成型加工技术的方法

高分子材料的的成型方法有挤出成型、吹塑成型、注塑成型、压延成型、激光成型等。以下介绍的是现今高分子材料成型加工的主要技术方法。

1.挤出成型技术

挤出成型技术是指物料通过挤出机料筒和螺杆间的作用,边受热塑化,边被螺杆向前推送,连续通过机头而制成各种截面制品或半制品的一种加工方法。它的具体原理是高分子原材料自料斗进入料筒,在螺杆旋转作用下,通过料筒内壁和螺杆表面摩擦剪切作用向前输送到加料段,在此松散固体向前输送同时被压实;在压缩段,螺槽深度变浅,进一步压实,同时在料筒外加热和螺杆与料筒内壁摩擦剪切作用,料温升高开始熔融,压缩段结束;均化段使物料均匀,定温、定量、定压挤出熔体,到机头后成型,经定型得到制品。挤出成型又有共挤出技术、挤出注射组合技术、成型技术、反应挤出工艺与固态挤出工艺等。

2.注塑成型技术

注射成型技术是目前塑料加工中最普遍的采用的方法之一,可用来生产空间几何形状非常复杂的塑料制件[2]。注射成型技术根据组合材料的特征,又有以组合惰性气体为特征的气体辅助注射成型,以组合组成化学反应过程为特征的反应注射成型,以组合混合混配为特征的直接注射成型,以组合不同材料为特征的夹心成型等多种方法。

3.吹塑成型技术

吹塑技术一种发展迅速的塑料加工方法。热塑性树脂经挤出或注射成型得到的管状塑料型坯,趁热或加热到软化状态,置于对开模中,闭模后立即在型坯内通入压缩空气,使塑料型坯吹胀而紧贴在模具内壁上,经冷却脱模,即得到各种中空制品。根据型坯制作方法,吹塑可分为挤出吹塑和注射吹塑,新发展起来的有拉伸吹塑和多层吹塑。

四、高分子材料成型加工技术的发展新趋势

目前,高分子加工成型技术正在快速地进步,它的发展总方向是高度集成化、高度产量、高度精密化,不断实现对加工制品材料的聚集态、组织形态与相形态等的控制,最大程度地达到制品高性能的目的。具体的创新技术之处主要体现在以下几项新技术上。

1.聚合物动态反应加工技术

聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的[3]。这项技术解决振动力场下聚合反应加工过程中质量、动量和能量传递与平衡的难点,从技术上解决了设备结构集化的问题。

2.热塑性弹性体动态全硫化制备技术

这项技术引入振动立场到混炼挤出的全过程,实现混炼过程中橡胶相动态全硫化,控制硫化反直的进程,防止共混加工过程共混物相态发生发转。此技术非常有意义,研制发明出新的热塑性弹性体动态硫化技术与设备,能有效地提高我国TPV技术的水平。

3.信息存储光盘盘基直接合成反应成型技术

此技术是将盘级PC树脂生产、中间储运与光盘盘基成型三个过程融合为一体,联系动态连续反应成型技术,研制开发精密光盘注射成型装备,达到有效提高产品质量、节约能源,降低消耗的目的。该技术避免了传统方式中间环节多、能耗大、周期时间长、成型前处理复杂、储运过程易受污染等缺陷。

五、结语

综上所述,我国在新时期要把握高分子成型加工技术的前沿,注重培育自主的知识产权,努力打破国外技术的垄断,实现科学技术研究与产业界的良好结合的目的。这能有效地将科学研究成果转化为实际的生产力,有效地加快我国高分子材料成型加工技术及其相关产业的快速发展。

参考文献

材料加工技术篇(6)

林业加工业现代化改革进程中,木材加工是林业产品生产最关键的环节,对产品质量有着最直接的影响。在利用森林资源进行加工的过程中需要严格遵守相关规范和原则,不能竭泽而渔,需要通过科学合理的使用方法,提高木材加工效果,减少废料。但是我国在较长的历史时期内都追求粗放式的经济发展模式,木材加工业也深受影响,经济发展是以牺牲森林面积和过渡砍伐的基础上发展起来的,森林资源短缺的问题一直没有得到妥善解决,对既有木材资源的利用效率也不理想,产品加工过程中无法有效保障林业产品生产质量和效率。我国充分认识到这种情况,颁布了相关法律强制约束木材加工业的生产加工方式,提高森林资源的综合利用水平,对加工精细度等问题作出了明确的规定,通过法律手段控制产品质量。木材加工过程中,需要不断完善加工市场的运营模式,通过对市场运行模式的改善优化,形成良性竞争,进一步提升木材加工质量,同时还能够提高市场活跃度,实现木材加工市场的健康发展,满足林业发展建设实际要求。可通过对国外市场经济体制下的木材加工产业发展经验的借鉴,根据林区自身特色选择适用的市场形势,实现木材加工相关内容的综合管理,提高木材的利用效率和木材加工业的综合效益。同时在木材加工的市场化进程中,可以对传统的木材加工工艺进行更好的传承和发展改进,建设有中国特色的木材加工行业。

1.2选用木材利用率更高的加工技术

1.2.1高速切削。高速切削是当前的木材加工业中应用十分广泛的技术,通过更高转速的刀具、砂轮来进一步改善其木材加工效果,提高了木材的加工效率,在更短的时间内就能够完成木材的加工。这是同一种比较优秀木材加工技术,但是该项技术对刀具的要求更加严苛,一旦刀具存在质量问题,或者刀具安装经济不符合要求,会产生比较严重的木材加工质量问题。所以在采取高速切削技术进行木材加工时需要严格要求刀片和导体之间的灵活性和刀具对木材的适应性,刀体的经济性也需要认真考虑。而且在高速切削技术应用过程中需要重视刀具自身的动力平衡,避免出现安全问题。在高速切削加工实际中,选择合理的加工处理方案是保证其加工质量和安全性的必要措施,不能掉以轻心。

1.2.2纳米改性加工技术。纳米改性加工技术充分利用了纳米加工技术来优化木材原料的基本性能,通过微波处理和压力浸渍等技术提高木材的渗透性,之后使用前驱溶液进入原木结构中,通过原位反应生成纳米材料,这种木材和纳米复合材料能够明显改良木材的各项性能,而且不同材料纳米体给木材性能带来的改变也是不同的。氧化钛纳米体能够明显提高材料硬度;氧化硅纳米体则能够提高木材保温性能;银和铜等金属氧化物纳米体则有着很强的光谱杀菌能力。

1.2.3超声波切割/在线检测。超声波切割技术使用工具端面超声振动,在磨料机械膨胀作用以及磨抛和产生空化作用下加工木材的一种技术,超声切割技术对木材硬度有要求,但是对加工位置形状的适应性较强,有着很高的操作精度额加工效率。在线检测技术使用的带锯上有自控和声控系统,配备激光标准系统数据库检测技术,能够完成木材的信息化、自动化加工。

1.3提高认识,自觉遵守行业规范原则

木材加工的目的是利用,利用木材需要遵循合理的原则,加工过程需要遵循量木进锯、综合经营、量质利用的原则,特别在木材加工资金和加工原料成本高,来源不稳时更需要大力推广木材的综合利用。加工企业和政府部门都需要提高认识,认识到林区治危兴林战略是实现林业可持续发展的必然需求,让加工企业能够在政府允许的范围内自觉调整木材加工和木材综合利用产业结构。企业能够根据自身资源情况,发展精致的小型木制品,摆脱历史性的加工方式,活跃林区木制产品原料加工市场。应该把新型木材的综合利用作为主要发展目标,按照市场需要,有计划、规范化的生产农业、工业、文化设施需用的木制产品原料,满足社会需求的同时作为林区的经济来源之一。

材料加工技术篇(7)

复合材料不仅具备了高性能、耐高温等优点,而且由于其结构具有可设计性、长寿命与减重等特征,因而在航空航天领域之中的应用变得愈来愈广泛。复合材料是如今复材零件使用中周期偏长、成本偏高,而且风险也相当大的一道工序。在我国创建复合材料的产业链过程中尚具有比较大的问题。有关配套加工技术还不够成熟,因而在复合材料加工上的技术研究上投入的人、财、物力也具有不足之处,与西方国家先进的材料加工技术研究比较起来尚有比较大的距离。正是由于复合材料加工技术尤其是金属基复合材料加工技术在诸多方面得到了非常多的运用,所以加大材料加工技术的探究,显得极为重要。

一、复合材料加工技术概述

复合材料是一种多相材料。这里所说的多相,主要是指具有两种或以上的化学性能的相关材料。复合材料则是把多相材料通过诸多加工方法进行加工而合成。复合材料具有的两相分别为增强相与基体相。复合材料主要存在两种加工技术,也就是常规加工方法与特种加工方法。常规加工法和金属加工法是一样的,加工手段相对较为简单,而工艺也比较成熟。但是,一旦加工复杂工件之时就会对刀具造成极大的磨损,其加工的质量不够好,且在加工中形成的粉末极易对人体造成极大的影响。后者相对来说比较容易加以监控,而在加工的过程中,切削刀具和被加工的工件接触量非常小以至于为零,这就十分有利于自动化加工。然而,由于复合材料所具有的复杂性,导致特种加工之运用也会遭受限制,因此,一般来说,常规性加工的运用比较多。

二、金属基复合材料加工技术分析

所谓金属基复合材料,主要是指以金属及合金为基础,使用陶瓷颗粒和纤维等为强化材料复合起来的一种高质量的材料。因为这类材料具备了强度比较高、耐热与耐磨、稳定性高等良好的性能,从而让这类材料已经成为诸多实践领域之中最具有吸引力的一类材料。该材料大量运用在航空和军事等诸多领域。在金属基复合材料的生产过程之中,为切实降低材料的生产成本与提升性能,通常是先把该材料制作为铸锭与初级板材之后,再通过二次加工成形以制做出能够直接运用的零件等。由于精密加工技术的不断发展,对精密化、洁净化、精度较高的材料需求量不断增加,精准化与高韧度的金属基复合材料市场份额变得愈来愈大。所以,对这种复合材料的加工技术进行深入研究,对于推动机械加工技术的推广运用具备了十分突出的实际意义。

三、金属基复合材料加工的具体技术手段

一是切削加工技术手段。金属基复合材料加工技术是一种常用的技术手段。通过认识与把握材料切削加工的常见规律,准确选择刀具与切削的用量,这样一来才能确保加工质量以及相当高的成效。使用硬质合金以及高速钢等为主要的切削刀具,探究了碳化硅颗粒提高铝基复合材料之中的碳化硅含量和尺寸等参数对于切削加工性能所造成的影响。有研究证明碳化硅的颗粒尺寸一旦愈大、含量愈多,刀具所产生的磨损度也更加快。碳化硅的颗粒一旦比较粗大,其加工工件的外表也就会相当粗糙,而且随着颗粒含量持续增加而不断增加,复合材料对于刀具造成的磨损也会越大。使用聚晶金刚石刀具,可以对颗粒增强对复合材料的制备性能进行深入研究。在达到某种切削速度之时,材料对于刀具所造成的损耗是最小的,而且工件外表的粗糙度比较好。在运用常见加工设备之时,侧重于刀具结构的改进与创新,这是提升工作效率的更具有可行性的方式。

二是线切割加工技术手段。传统意义上的刀具只适合于加工体粒径比较小而且含量比较少的那些复合材料。当体粒径不断增加而且含量不断增多之后,高速钢与硬质合金等普通刀具的磨损相当快,即便于选择了高硬度刀具加以切削,其使用寿命也难以让使用者满意。因为这一情况,把特种加工法运用到此类材料之中就非常有必要。当前运用电火花线来切割加工颗粒以强化复合材料的研究已经有了大量的报道,而切割的速度以及切割之后的外表粗糙度则是十分重要的加工参数。通过探究电参数对于电火花线进行切割加工,可以对复合材料切割快慢以及外表粗糙度造成一定的影响。使用扫描电镜来分析复合材料线所切割的加工外表的样貌。脉冲的间隔对于外表粗糙度的影响并不是很大,在其达到了某种程度之时,表面上的粗糙度往往不会受到影响。通过选择比较大的峰值电流以及比较短的脉冲宽度,可以对复合材料实施比较理想的电火花线进行切割和加工。这类材料的线切割加工必须要科学地选择电加工的参数,电极间的电压一定要高出间隙以击穿电压,合理地确定电极与工件彼此间所具有的距离,合理地选择电介液绝缘力而且对间隙污染实施合理评估与清除。

三是磨削加工手段。对金属基复合材料实施磨削加工,主要是指运用磨具所具有的切削力,除了工件外表的那些多余层,可以让工件的外表质量能够达到预定要求的一些加工手段。如今,经常见到的金属基复合材料磨削加工手段主要包括了外圆磨削、内圆磨削以及成形面磨削等。这类材料所具有的磨削特点受到了增强相以及其所用的砂轮类型造成的影响,提高材料所具有的磨削方式,而软性金属堵塞砂轮则是砂轮丧失效力的一个重要因素,而磨削加工过程中所出F的主要问题就是砂轮的堵塞、磨削区出现冷却。所以说,在进行实验的条件之下,磨削颗粒增强型的复合材料之中,碳化硅砂轮的表现相当突出,其在磨削力、粗糙度等各个方面均超出了CBN以及金刚石磨料砂轮等材料。利用陶瓷基SiC砂轮以及树脂结合剂金刚石砂轮等对增强型复合材料所实施的磨削证明了SiC砂轮可用于粗磨之中。在粗磨过程中,工件磨削表面上会产生基体金属涂敷等问题,从而切实地降低表面具有的粗糙度。金刚石砂轮十分适合于进行精磨。在精磨过程中,基体材料并无显著的涂敷状况。利用细粒度金刚石砂轮,可以对1um深的磨削区实施材料的延性化磨削,其表面和亚表面并无裂纹或者缺陷出现,能够促进增强相之延性。所以说,磨削是金属基复合材料加工当中极有发展前景的加工方式之一,能实现无损化加工。

四是钻削和振动切削加工手段。碳化硅铝基复合材料的性能有别于普通钢铁材料,一般是使用整体或者涂层金刚石钻头实施孔加工。钻削加工当中出现的刀具磨损以及加工表面质量则是判断其可加工性能的重要指标。对铝合金复合材料刀具所产生的磨损以及表面质量开展试验性研究。在钻削铝合金复合材料的过程之中,钻头磨损如果发生于后刀面,产生磨损的原因则是磨料的磨损。运用扫描电镜可发现钻头后和切削速度方向保持一致的磨损沟,而钻头的横刃与外缘处也存在着磨损。刀具耐用度首推YG8钻头,TiN涂层以及深冷钻头质量较次,而HSS钻头则是最差的。当前,国内外对于金属基复合材料振动切削与加工的研究相对较少。超声振动切削作为特种加工技术手段之一,具备了减小切削力与降低表面粗糙程度、提升加工精度并且延长刀具寿命等特点。通过对铝基复合材料所进行的振动切削开展研究,把振动切削复合材料的所具有的切屑形态、变形系数以及剪切角切削形貌与粗糙度、残余应力等开展对比与研究,可以发现振动切削铝基复合材料具备了降低切屑变形、降低表面损伤程度与粗糙度、加大表面压应力等功能,这样一来就为金属基复合材料实施精密化切削探索出了一条崭新的发展途径。

四、结束语

综上所述,复合材料加工技术均有各自不同的特色,其中金属基复合材料属于具备组分材料难以拥有的全新优质性能的一种先进材料。因为复合材料的制造成本相对来说比较高,所以在其加工的过程之中应当尽可能地提升材料的利用率,切实降低能源所产生的消耗,推动我国清洁材料的生产。目前阶段,应当致力于发展各类二次成形之后的零件不再需要进行加工或少加工即可得到成品的技术,从而不断推动金属基复合材料的精密化、清洁化与高效化生产。

参考文献:

[1]沃丁柱. 复合材料大全[M]. 北京:化学工业出版社,2000.

材料加工技术篇(8)

当前,新型的金属复合材料已经得到了广泛的应用,复合型材料虽然成本与技术要求都较高,但其所具有的材料特性相较于普通的金属材料具有更高的性能优势,成为工程建设的重要材料。除此之外,更多的零部件制作采用新型金属材料,也催生了很多先进的成型加工技术。那么在新时代背景下,究竟如何才能进一步存进新型金属材料成型加工技术的发展与完善,是当前的材料工程师应该重点关注的问题。

1 关于新型金属材料的综述

1.1 新型金属材料的固有特性

新型金属材料的种类繁多,都涵盖在合金的范畴之内,金属材料的固有特性包括以下几点:新型金属材料具有更好的延展性;新型金属的化学性较为活泼;新型金属具有特有的光泽与色彩等。当前应用广泛的新型金属材料包括形状记忆合金、高温合金、贮氢合金以及非晶态合金等。

1.2 新型金属材料的加工特性

1.2.1 焊接性

焊接性是金属成型加工的基础特性之一,所指是金属材料通过焊接来完成二次成型并满足设计要求。新型金属材料的焊接性良好,在焊接时可以保证没有气孔、没有裂缝等。新型金属材料具有好的焊接性通常收缩小、导热性能好。

1.2.2 锻压性

锻压性对于金属的成型加工的关键因素,金属具有的锻压性能够使金属在锻压的过程中承受塑性变形,并有效缓解冲压。除此之外,金属的锻压性还会受到加工条件的影响。

1.2.3 铸造性

金属所具有的铸造性包括收缩性、流动性、偏析以及裂纹敏感性等具有相关性,由于新型金属材料均为合金,因此其中含有的高熔点元素会金属的流动性降低,给材料成型加工增加了一定的难度。

2 新型金属材料成型加工的原则分析

应用于工程施工以及企业产品中的新型金属材料通常具备耐磨性良好、硬度高的特性,具备这些特性的新型金属材料能够满足工程及产品的成型与质量要求,却也为成型加工带来了一定的难度。通常情况下,为了保障金属材料成型加工的质量,针对不同的金属会采用不同的加工技术。例如有些特殊的金属复合金属材料只有通过金属基复合材料的纤维性增强,才能实现成型加工。而其他特殊的新型金属材料在进行成型加工时需要更加复杂的技术,因此,在进行二次加工时要做到因材料的不同而采取有针对性的技术,做到具体问题具体分析,从而切实推进新型金属材料成型加工的实践进程。

当前,新型金属材料的成型加工通常会涉及到焊接、挤压、铸造、超塑成型以及切削加工等加工技术,笔者通在实际的工作中发现,加工过程中的任何一个小的失误或者纰漏,都会对材料的成型造成一定的影响,因此,在加工之前,一定要对金属材料的物理及化学属性进行深入的、透彻的了解,从而能够基于其可塑性实现成型加工,这也是当前选择复合材料的重要原则与指标之一。

3 新型金属材料成型加工的技术

3.1 粉末冶金成型加工技术

粉末冶金法是应用于新型金属材料成型加工中的最早的技术之一,主要用于制造复合材料零件、颗粒制造以及金属基复合材料中的晶须增强等,且以上成型加工可以通过这一方法直接完成。粉末冶金加工技术的适用范围主要是针对尺寸较小、形状不复杂以及较为精密的零件,因为粉末冶金技术的优势在于成型制作过程中能够根据实际中的需求来进行增强相含量的调节,即颗粒含量在半数以上;制作中的增强相较为精密,且组织更加细密,除此之外,粉末冶金法还具有界面反应少的优势,有效提升了工作效率。例如,美国的DWA公司在设备支撑架以及自行车架等的制作方面就充分应用了这一方法。

3.2 铸造成型技术法

铸造成型技术法已经经过了实践的检验,成为当前最为成熟的铸造技术。铸造成型法能够满足笔者在上文中所提及的加工原则,还被广泛应用于复合材料零件的生产与制作之中。当前,随着实际加工情况复杂性的增加,使得铸造成型法滞后性明显,具体的参数设置以及工艺方法选择等都必须进行改进,在成型加工的过程中,流动性的增加以及熔体的粘度等都会受到材料中颗粒增加的影响,除此之外,高温也会使材料的化学属性发生变化。针对以上出现的问题,具体有效的解决方法在于针对不同的材料成型加工采取熔模铸造、压铸、金属型铸造以及砂型铸造等方法。

3.3 机械加工铸造法

机械加工铸造法通常利用铣、车、以及钻等方法进行金属基复合材料的加工,与其他金属的加工相同的是在精加工铝基复合材料中采用金刚石道具来进行成型加工。具体的方法有以下几种:首先是铣削的方法,具体的材料包括l5%~20%的粘结剂、聚金刚石刀具以及端面铣刀,在进行铣削时需要先利用切削液来实现冷却,并增加铣削颗粒;其次是车削的方法,利用乳化液进行冷却,刀具为硬质合金刀具;最后则是钻削的方法,利用外切削液进行冷却,通常采用PCD镶片麻花钻头。

3.4 电切割技术法

电切割法是指在成型加工过程中根据零件形状的负极来决定采取怎样的几何切割形状,在材料切割时利用正极溶解的基本方式来实现材料的切割。对于零件成型加工中存在的残屑以及未溶解的纤维等,可以利用零件与负极之间的间隙来实现清洗。与传统的放电加工法相比,显著优势在于在介电流液中浸入移动的电极线,从而能够通过液体压力冲刷以及局部高温实现对零件的成型加工。利用电切割法进行成型加工时,非导体复合材料通常会由于放电效果差而产生一定的影响。如在铝基复合材料加工时,由于切割速度慢以及切口粗糙等问题,就不能沿用传统的切割参数。

3.5 焊接技术法

焊接技术法作为成型加工的重要方法之一,通常被应用于金属及复合材料成型构建中,例如航天飞机、汽车传动轴以及自行车等。焊接熔池的流动性以及粘度等易发生变化,并受到增加物的影响。成型加工中,金属的化学反应通常发生在基体金属与增强物之间,对焊接速度造成了一定的限制,面对这一问题,通常的解决办法有以下几种:首先是基于惯性摩擦,将其中一个部件进行轴对称旋转;其次是熔化焊的基本处理方法;除此之外,还可以利用扩散焊的方法进行焊接。

3.6 模锻塑性成型法

模锻塑性成型法在镁基复合材料与铝基础复合材料中有广泛的应用,成型法涉及到超速成型、模锻以及挤压等方法。利用此方法生产出来的零器件性能好、组织更加细密。但是在应用的过程中需要注意以下几方面:第一方面是通过挤压温度的适度提高,可以对应提高金属材料的塑性;第二方面是在模具表面进行涂层或者使用剂等实现摩擦条件的改善,降低材料成型的难度;第三方面则是挤压速度受到增加物的影响,为了防止零件产生横向裂纹,一定要控制好挤压速度。

4 结语

新型金属材料作为一种现代化的先进材料,拥有更为广泛的实际应用价值,而其所具有的高模量、高韧性以及高强度的特性使其更具生命力。成型加工作为二次加工,涵盖了金属学、物理学、传热学等多个学科,这就使得在在成型加工时需要进行更加深入的、广泛的探究。笔者相信,在现代科学技术迅速发展的今天,通过对新型金属材料成型加工技术的探究,能够为金属材料的广泛应用提供可能,同时为金属产业结构的调整与优化奠定基础。

材料加工技术篇(9)

2、木材加工原料的价值发挥

森林资源是木材加工的重要来源,也是林业企业发展的关键性因素,与人们的生产生活息息相关。木材需求量的增多使得森林资源的使用量增多,天然森林资源已无法满足人们的需求,人工林便投入到市场中。人工林是作为天然林的重要补充的森林资源,对其进行细加工更能充分发挥其价值。总之,林业企业必须坚持资源节约的原则,充分发挥森林资源的功能以提高经济价值。木材加工是指遵循合理利用的原则对森林资源进行加工,充分发挥木材的功能和经济价值。在对木材加工过程中,必须要遵循以下几点原则:量采取料、量质利用及综合经营原则,以充分发挥木材的经济价值。通过对木材加工产业结构的调整,根据实际情况来建立木材加工的框架,生产出适应市场需要的产品,进而促进林业企业和木材加工产业的健康持续发展。

3、木材加工原料的利用与技术管理

3.1木材加工原料的利用

人们的生产生活离不开木制品,木制品的加工离不开森林资源,可以加工的森林资源主要有杨树、松树、桦树等次生林,而且这些加工的原料多是不超过60年树龄的林木。依据《森林法》相关规定,在对森林资源进行深加工和细加工的同时,要间伐利用、扶育和改造。间伐和扶育可以缓解林区原料的压力,在不断开发和利用的同时节约森林资源,避免出现不节约的行为。总体来说,林区的发展要依靠森林资源的利用与开发,木材的综合利用和对新型木材的开发,如增加在新型节能型木材研发的投入,这样既能节约资源、保护环境,又能推动木材加工产业的持续发展。木材加工原料的利用要遵循合理的原则,避免出现森林资源危机的情况。木材的综合利用作为缓解资源危机的重要手段,能够在资源匮乏、资金短缺的情况下解决危机。林业企业要在国家法律和政策允许的情况下,调整木材加工产业结构,把木材加工与利用的框架摆稳,根据木材加工原料的具体情况生产木制品,转变传统的加工模式和市场模式,由粗放型增长向集约型转变。据目前的木材加工状况来看,特色木材加工和新型木材的利用将成为林业建设的主要目标,将原有的木材原料进行统一规划,在传统加工的同时有目的地生产其他行业和领域的产品,以充分发挥加工原料的作用,满足社会发展的需要。此外,为建设环境友好型和资源节约型社会,木材加工行业要积极开发节能型木材,引进先进的加工设备,对原料进行合理、精确的深加工,提高木材原料的综合利用率。木材加工产业属于粗放型产业,在我国市场中占有重要地位,为了促进经济的健康持续发展,我们应充分利用木材资源,提高木材的综合利用率。在生产木材加工产品时,要对市场需求做全面调查,有计划地、规范地生产木制品,在满足经济发展的同时提高林区的经济效益。

3.2木材加工的技术管理

木材加工的技术管理是指对木材生产工艺的管理,加工技术包括木材专业基础等理论知识的运用。林业企业根据预先制定的生产目标,在科学技术管理概念的指导下,实现木材加工的经济技术指标,对木材加工原料进行深加工。木材加工技术管理能够有效实现理论知识与实际生产的结合,林业企业可以引进专业管理人才和技术人才,不断优化管理队伍的结构,以提高技术管理队伍的整体水平。在木材加工的技术管理过程中,核心指标就是出材率,即原料自身的使用价值和经济效益。木材加工技术管理是木材加工产业的重要组成部分,要想充分发挥其在木材加工中的灵魂作用,应注意以下几点:第一,完善加工设备的相关及配套设施,如截锯、中小型电锯等设施;第二,完善木材加工市场信息体系和技术咨询体系,严格筛选加工进锯的对象,防止出现木材产品滞销的现象;第三,提高木材加工工人的专业技能和水平,优化其队伍结构,并定期对技工、劳力进行培训,不断提高其专业素养和道德修养,为木材加工作出应有的贡献;此外,企业在招聘技术人员时,可以适当提高招聘标准和要求,要求其具备木材专业基础知识和实际操作能力,进而提高技工人员的总体水平;第四,制定责任管理制度,以此严格规范加工技术人员的行为,对选材、量尺等技术进行跟踪,掌握木材加工的实际情况和进度,避免造成不必要的经济损失。

3.3产品和经济核算

产品和经济核算要相互依托,采取同步管理的理念实施核算。经济核算的范围包括木材原料采购、运输、加工以及产品销售几个阶段,根据木材加工规模进行合理预算与决算。经济核算的目的主要是体现企业的经济效益,因此,在木材原料加工的过程中,要做好以下工作:保障木材原料的质量;把握木材原料的运输距离;把握木制品的产品价格。在稳定产品价格方面,企业可以向股份制经营方向转变,活跃木材加工市场和加工产业的机体,扩大生产以提高经济效益。信息网络的建立能够有效缓解木制品的滞销状况,保障林业企业的健康持续发展。在保证质量的前提下满足企业的经济效益和社会发展需要,具体措施如下:转变经营方向扩大生产,活络加工产业的机体;扩大木制品的销售渠道,生产具有特色的木制品,并建立系统的信息网络;制定合理的目标,通过目标管理来合理控制能耗及生产成本,不断提高企业的经济效益;加强对木材加工过程的监督,完善质量监督体系等等。

材料加工技术篇(10)

近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。

一、高分子材料成型加工技术发展概况

近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。

据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。

二、现今高分子材料成型加工技术的创新研究

(一)聚合物动态反应加工技术及设备

聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。

目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。 转贴于

(二)以动态反应加工设备为基础的新材料制备新技术

1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。

2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。

3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。

三、高分子材料成型加工技术的发展趋势

近年来,各个新型成型装备国家工程研究中心在出色完成了部级火炬计划预备项目和国家“八五”、“九五”重点科技计划(攻关)等项目同时,非常注重科技成果转化与产业化,完成产业化工程配套项目20多项,创办了广州华新科机械有限公司和北京华新科塑料机械有限公司,使其有自主知识产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过1.5亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。

综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。

参考文献:

[1]Chris Rauwendaal,Polymer Extrusion,Carl Hanser Verlag,Munich/FkG,l999.

上一篇: 农业标准化论文 下一篇: 档案资料论文
相关精选
相关期刊