加固设计论文汇总十篇

时间:2022-11-03 03:14:04

加固设计论文

加固设计论文篇(1)

2、水库项目除险加固设计问题探析

2.1水库存在质量隐患

水库如果已经存在施工质量及安全隐患问题,将会导致水库在使用过程中出现大坝损坏情况,同时这种损坏情况将会随着时间的延长而增加,直接影响到水库的蓄水功能以及使用年限。水库质量隐患的出现主要是由于相关施工企业在施工过程中,用劣质材料替换优良材料,或者是为了降低施工成本而偷工减料,或者是只顾施工进度而忽略施工质量,这些问题均会导致水库出现各种隐患,严重时还会直接威胁到人民的生命财产安全。再加上水库在前期运行阶段,其施工质量问题以及安全隐患问题几乎不会凸显、出现,但是随着水库的使用年限不断增长,水库主体受到水的侵蚀以及冲刷,水库的各种问题才会逐渐凸显出来。水库的施工质量问题以及安全隐患问题主要有:上下游坝体的抗滑稳定系数不达标、土坝的干密度不达标以及坝体稳定性能不达标等等。

2.2水库防洪设备性能不达标

溢洪道作为水库主要的防洪、泄洪设备,其防洪以及泄洪能力必须要通过精确计算,并确定满足工程需求之后才能够投入使用,这样除险加固设计的作用才能够体现出来,水库加固质量才能有保障。如果溢洪道的防洪以及泄洪数据不精准,会导致后期施工变更问题出现的几率大增,所以保障溢洪道的防洪以及泄洪数据的正确是非常重要的。但是现在仍旧有一些计算人员不能准确计算防洪以及泄洪能力,在计算过程中得过且过、马马虎虎,甚至部分计算人员在没有调查、确定水库的真正防洪以及泄洪情况时,就确定防洪以及泄洪数据,从而直接的影响到水库的施工质量以及使用年限。

2.3水坝设计要求与相关规定、需求不符

通过调查可以发现,现在有很多的水库均在使用土坝,这就导致了水库的施工受到各种不良因素的影响,致使坝体不能够根据相关设计规范以及图纸要求选择施工材料,同时坝体的填筑结果也与相关规范要求有所出处,这也是水库在施工完成之后均会发生渗漏问题的主要原因。另外在清理水库的过程中,由于部分施工人员没有严格按照相关规定、规范进行清理工作,同时相关管理人员也没有对清理质量进行严格检查、控制,这就导致了在大坝清基工作完成后,大坝基地仍旧存在很多杂物以及裂缝,这就给了坝基裂隙生长的空间,这也是水库的坝底或者是坝体发生渗漏问题的主要原因之一。该问题的出现除了会导致水库蓄水功能下降之外,严重时还会导致水库出现严重的病险。所以一定要提升重视水库隐患、问题的力度,采用多种手段解决水库隐患问题,并对水库施工以定时或者是不定时的加固施工以及除险处理。

3、提升水库项目除险加固设计有效性的办法

3.1完善、优化施工准备工作

为了提升水库项目的除险加固质量,需做好施工开始之前的准备工作,具体内容为:第一,水库加固施工准备阶段需对水库的各项施工以及安全隐患进行全面排查,然后根据排查结果制定相应的加固方法,对症下药。具体为在设计开始之前,相关人员需要对水库的地质情况以及地质条件进行实地勘察,并查阅相关的文献资料,以确定并找出水库的危险点,然后以水库的实际情况为基础制定相应的地质勘察以及测量方案,以得到各项数据,再根据结构确定隐患治理方案;第二,做好设计工作。水库项目的除险加固设计主要是利用已经收集到的数据、资料,针对水库的问题、隐患,制定具有可实施性的、经济、科学的施工方案。水库项目的一切加固除险施工工作均需要围绕设计工作开展,所以设计工作以及设计图纸是极为重要的。

3.2严格控制水库项目除险加固质量

只有提升了水库项目除险加固质量以及安全程度,水库的各个病险问题才会得到真正解决,水库才会更加可靠、安全,才能够真正起到防洪抗灾的作用。就此为了增强水库施工质量,首先施工企业应完善质量保证制度,并制定相应的质量控制办法,通过规定约束施工各相关人员的行为,另外施工企业还应当明确各方责任,若水库出现施工质量问题或者是水库在使用过程中出现任何问题,都能够找到相应的事故承担者,进而给予施工相关人员威慑,使施工相关人员自觉遵守相关规定,这样就能够在人员方面保障水库项目的除险加固质量。

3.3确定泄洪道的防洪以及泄洪能力

为了提升除险加固设计的实用性,需根据工程实际情况以及相关规范标准开展除险加固设计,并确定施工设计方案,特别是泄洪道的防洪以及泄洪数据。由于泄洪道的防洪以及泄洪能力的理论值与实际计算值存在或多或少的差别,所以为了使泄洪道的功能充分体现出来,以增强水库加固质量,需综合各方因素,尤其是泄洪道可能会出现的变形情况确定泄洪量。

3.4水库上游坝坡除害加固施工设计办法

由于部分水库建设时间较早,上游坝坡只能够利用由砂砾等物质构成的粉质坝壳,这种材料的透水性非常差,已经不能满足现代水库的需求。就此需要使用堆石体等具有较强透水性的物质、材料替换当前的上游坝坡材料。堆石体能够提升坝坡的抗滑坡性,降低上游坝坡的坡度大小,增强坝坡的安全性以及稳定性,已经成为坝坡的主要替换材料。

加固设计论文篇(2)

近年来,随着广大人民群众对改进房屋居住条件的要求不断提升,促使工民建建设项目不断扩大,力求全方位满足人们的实际需求,特别是处在当今建筑市场竞争激烈的大环境背景下,企业想要在行业内屹立不倒,获得生存发展的机会,就一定要在质量和安全性能方面做到最好,用实际建造出来的工程项目为本企业代言,因此,需要相关建设单位在满足视觉效果的基础上,做好结构的加固设计,从根本上保证建筑质量的安全稳定性。

1.建筑结构加固概述

1.1建筑结构加固原则

顾名思义,对工民建结构进行加固的主要目的在于提升建筑整体稳定性。在进行结构加固的阶段会涉及到方方面面的内容和一些不稳定因素,所以,具体操作的过程中我们应该遵循下面的原则:第一,首先要勘察了解建筑结构属于何种类型,做好相应的鉴定工作,要需要加固的范围内做好相关设计,判断是加固整体或者局部;第二,加固前要结构施工现场的操作条件,综合考虑,选择性价比高而且操作尽量简单的施工操作方法。因为现在大多数的建筑结构都会选择钢筋混凝土结构,因此,我们需要不断提升混凝土的强度和韧性,才可以起到加固的作用,并且可以很好的协调旧建筑与新建筑混凝土结构的协调性;第三,建筑结构很容易被外界环境因素所影响,像是温度过高、腐蚀、地震等情况的发生都会产生破坏作用,所以在进行加固方案设计的过程中,要把相关的不利因素充分考虑进去,制定出行之有效的加固对策,保证被加固后的建筑结构可以正常投入使用;第四,进行结构加固的时候还要尽可能的控制施工成本,最好在不停产的条件下进行加固施工,尽可能的降低对旧构件造成毁损;第五,在进行加固操作的时候一旦发现结构损坏严重,就要采取停工措施,对存在的安全隐患进行逐个排查工作,保证施工人员的人身安全。

1.2建筑结构加固方案的选择

在选择加固方案的过程中,需要考虑的因素有很多,其中最重要的就是保证安全、高效和经济性施工要点。假如在工程中没有考虑人员的作业安全和使用技术的合理性,不断会使工程进展的不顺利,还会增加不必要的资金开支,不利于节省成本;与此同时,选择加固方案还要特别注意,在保证基本加固要求的前提下,尽可能多的采用新工艺和新材料的使用方案。伴随着科技的进步,社会的发展,在建筑结构中用到的新型材料更加多元化,如此,可以极大的提升建筑的使用寿命。

2.工民建的加固设计

2.1直接加固法

想要做到顺利对混凝土建筑结构完成加固操作,我们一般会在表面进行浇筑,如此在提升混凝土截面高度的同时,也会增大截面面积,增大抗剪力。与此同时,考虑到混凝土结构在建筑中运用在存在一些特殊部位,通常会用“环氧树脂化灌浆”法进行操作,此技术的原理为,把型钢和被加固的构件有效粘合在一起,提升内部稳定性。像这种直接加固的方法不胜枚举,它们的操作方法也较为相似,在设计的时候只要根据不同的结构类型做好相应的调整工作就可以了。

2.2间接加固法

我们所说的间接加固方法通常指的就是预应力加固法,其中包含的两种最主要的加固方法为水平拉杆加固法和下撑拉杆加固法。前者加固产生的效果是能够及时有效的抵御外界荷载作用下出现的弯矩,能够有效缓解因为外力产生的荷载效应,实现结构加固;而后者加固的原理是对外力产生的荷载进行抵消,在消除荷载的同时起到加固效果。

2.3砌体结构加固

首先,直接加固。一是,钢筋混凝土外墙加固方法,该方法适用范围极广,可以恰当的应用到不同的砌体类型加固上,并且能够获得显著的加固方法,属于应用最多的加固方法;二是,采用钢筋水泥砂浆外层加固方法,此法应为适用范围广,在砌体墙加固中受到广泛欢迎,但是却无法提升相应结构的承载力,因此,此方法在使用过程中往往会受到诸多局限;三是,增设扶壁柱加固。操作原理与上述相似,除了适应能力强,我们也应看到其本身的劣势,虽然能够进行结构加固,但是面对高等级地震却没有抵御能力,因此,不适用于地震灾害的多发地带。其次,间接加固。上文已经分析过最常见的预应力加固法,下面不在赘述。另外,还有一种比较常见的加固方法就是无粘结外包型加固。这种加固技术也具有明显的操作优势,就是工艺简单、运作灵活、能够适应各种类型的加固要求,一般情况下,运用范围最广的就是在普通砌体柱加固中。之所以其他类型用到的概率不是很高,主要是由于它的造价成本比较高,最消耗一定的资金,不利于节约工程成本。所以,在各种方案进行具体选择的过程中,还要结构建筑结构的实际情况决定。不仅如此,还能够针对具体的施工部位,对构造柱的裂缝和破损位置做好相应的修补与加固措施。此种方法在工民建结构加固操作中经常被用到,占有重要地位。

2.4钢结构加固

首先,对钢结构进行加固的前提是要精确计算架构图形。运用这种加固方法的主要原因,主要是通过观察分布情况,做好细致的调整工作,使边界位置和节点按照正确的轨道走向变化。我们可以通过调整截面内力、提升结构刚度、增加中间支座的方法达到良好的加固效果;第二,对构件截面做好加固措施。当然,并不是所有的截面都要用到这种方法,而且要求平整度与规定内容相符合,最重要的是与截面的具体情况要保持一致;最后,对梁柱节点做好加固措施。目前为止,一般来说可用于进行钢结构连接的方法主要包括焊接、铆钉连接等。在具体应用的过程中,我们要以现场的具体施工情况,制定出具体的加固方案,保证加固效果。

3.结束语

综上所述,工民建工程的结构加固设计的好坏,对建筑的整体质量和安全性具有深远的影响,这就要求相关的工作人员深入分析、了解工民建结构加固设计的重要性,要明白工民建工程对国家和人民生命财产安全方面起到的作用,所以,在设计过程中,必须综合考虑方案的准确性和合理性,结合建设工程的具体特点,施工现场的情况,选择最为科学合理的加固方法和技术,从根本上保证工民建项目的施工质量。

作者:邹建林 单位:吉林省第二建筑有限责任公司

参考文献

[1]王永泉.关于常见工民建结构加固设计的技术[J].城市建设理论研究(电子版),2014(4):123-124.

加固设计论文篇(3)

冯官屯大桥位于104国道河北省沧州市境内,桥梁全长183.9米,桥宽为净7+2×0.5米人行道。桥梁上部构造为13孔跨径14.1米的钢筋混凝土工字梁微弯板组合梁桥每孔5片主梁,中距1.60米,无横隔梁,梁端设沥青油毛毡支座,钢筋混凝土摆柱式支座和弧形钢板支座,桥梁下部为钻孔灌注桩基础,单排双柱式桥墩,T形盖梁墩台。

该桥于1966年建成,设计荷载为汽—13,挂—60,通车运营30年来为当地的国民经济和社会发展作出巨大贡献。但随着交通量的日益增大,重型车过桥增多,桥梁适应度明显不足,技术状况有所降低,至检测加固前已限载限速通行。

为了彻底了解桥梁现有的病害及缺损状况,确定桥梁现有承载能力,为桥梁的适应度改善和维修加固提供确切的技术依据,沧州市交通局委托有关部门对冯官屯大桥进行了全面的质量检测和承载力试验鉴定。现将过程简述如下:

一、质量检测

(一)、现状调查:

检测人员通过目力借助物理量测工具对全桥上、下部构造进行了全面的表观调查,结论如下:

1.桥面系及栏杆部分:桥面铺装损坏较严重,出现大量网裂、坑槽,纵缝,伸缩缝大都堵塞、凹陷或缺损,栏杆开裂,混凝土剥落,露筋部位严重锈蚀,泄水管堵塞,桥面排水不畅。

2.工字梁微弯板:主梁跨中大部出现大量竖向裂缝,混凝土保护层剥落,受拉区主筋部分锈蚀。主梁端部出现斜裂缝,已发展到梁顶区域,部分少筋微弯板出现纵向裂缝,甚至断裂。

3.支座、盖梁桥墩:多数盖梁有不同程度混凝土胀裂,钢筋锈蚀,混凝土脱落现象,桥墩大都有胀裂现象,部分桩柱倾斜,油毛毡支座老化,已失去作用。

4.桥面纵向线形和横坡:全桥跨中均有不同程度的下挠,增加了行车的冲击系数,测得桥面横坡为0.3%,小于设计值1.5%。

(二)、详细检查:

为了对桥梁作出切合实际的科学评价,在对桥梁作了一般表观检查后,又选取有代表性的12#孔进行详细检查,检查项目包括:

1.裂缝详细检查:

2.混凝土碳化深度检查:平均碳化深度为L=1.06cm。

3.混凝土强度检查:利用超声波测得平均声速为3744.76m/s,说明质量较好。

4.混凝土保护层厚度及钢筋分布:测得保护层平均厚度为2.675cm,不满足《公路桥涵设计规范》中不小于3cm的要求。

5.氯离子含量测定。

6.钢筋锈蚀检测:根据主梁钢筋暴露检查与实测的电池电位确定为锈蚀。

7.结构细部尺寸测量。

(三)、病害分析:

1.竖向裂缝是因正截面强度不足引起,原设计荷载较低,实际运营荷载已超出此标准,承载能力不足。

2.斜裂缝产生是因斜截面强度不足造成,特别是支点至1/8L处截面尺寸偏小。

3.原设计有2道中横梁,施工时并未实施,使得整体横向刚度太小,主梁扭转变形约束不足,横向弯矩全部由少筋微弯板承担。

4.油毛毡和钢支座基本失效,主梁纵向位移受到约束,一方面加剧了支座处主梁局部承压区的混凝土安全性,为斜裂缝的开展提供了可能,另一方面上构附加力传递到墩台上,使桩柱受力加大且不合理,桩柱产生较大变形。

二、荷载试验

通过全面质量检测发现,主梁普遍保护层偏小,梁内主筋处于锈蚀状态,主筋表面存在大量结构受力裂缝,不少裂缝基本贯穿全腹梁高度,为查明这些裂缝对主梁承载力所造成的影响,鉴定桥梁正常使用的承载能力,为病害处理和加固方案提供基础数据和技术资料,检测人员进行了静、动载试验,以确定桥梁在汽—15,挂—80和汽—20,挂—100荷载作用下的承载性能和抗力效应,清楚桥梁的自振特性及其动力响应。试验中选取具有普遍病害代表性的11#—12#墩间结构作为对象。

(一)、静力荷载试验:

试验内容:

1.检测主梁跨中正截面抗力效应及主梁竖向刚度。

2.评定主梁梁端斜截面抗剪强度。

3.检测桥墩抵抗最大垂直荷载能力。

试验荷载:

车型

重量(KN)

车号

A2

A4

A6

A9

三轴太脱拉

前轴

49.7

53.0

57.8

57.8

中轴

117.8

113.45

114.15

108.85

后轴

117.8

113.45

114.15

108.85

总重

117.8

279.9

286.1

276.5

加载工况:

1.跨中最大正弯矩偏载最不利位置。

2.跨中最大正弯矩对称布载最不利位置。

3.支点斜截面剪力偏载最不利位置。

4.支点斜截面剪力对称布载最不利位置。

5.桥墩最大垂直力偏载最不利位置。

6.桥墩最大垂直力对称布载最不利位置。

观测项目:

1.主梁跨中截面下缘钢筋应力。

2.主梁跨中和支点变形以及桥墩沉降与盖梁变形。

3.支点斜截面剪应力。

4.控制截面裂缝受载扩展情况。

试验结果及分析:

1.主梁跨中挠度:

工况

挠度值(mm)

1#

2#

3#

4#

5#

1

7.702

10.035

9.755

8.056

3.953

2

7.289

9.875

10.961

9.875

7.289

2.试验荷载下主梁横向分布系数与理论计算值

工况

1#

2#

3#

4#

5#

1

实测

0.195

0.254

0.247

0.204

0.1000

理论值

0.4379

0.4765

0.5139

0.3880

0.1830

2

实测

0.165

0.224

0.249

0.216

0.149

理论值

0.3105

0.4332

0.5133

0.4332

0.3105

3.跨中各级荷载作用下主梁下缘混凝土应变实测值(μξ)

工况

1#梁

2#

3#

4#

5#

1

305.92

388.48

387.50

340.84

156.88

2

280.32

380.56

413.03

386.97

253.14

4.由实测混凝土应变推求的主梁钢筋应力(MPa)

工况

1#梁

2#

3#

4#

5#

1

64.24

81.58

81.38

71.58

32.95

2

58.87

79.92

86.74

81.26

53.16

5.支点试验实测主梁梁端主拉应力(kg/m2)

工况

2#

3#

3

计算

10.87

10.57

实测

9.82

6.58

4

计算

9.58

10.65

实测

8.52

9.72

6.桥墩及盖梁变形表(mm)

工况

上游侧墩

盖梁

下游侧墩

5

0.258

0.415

0.173

预加载

0.134

0.33

0.178

结论:

1.实测的跨中荷载分布系数与理论值不相符,试验时边梁横向分布系数略大于理论值,但较为接近,由于中、边梁采用等强度设计,这种不符无影响。

2.主梁的裂缝均属于活动性结构裂缝,在试验荷载作用下,主梁的应变基本服从平截面假定,实测中性轴高度略低于理论计算值,说明参与主梁受拉混凝土的高度已较小,在保证主梁设计总体安全度的情况下,主梁无超载潜力可挖。

3.试验荷载下,实测主梁应力结构校验系数和挠度校验系数在0.756~0.885和0.753~0.842之间,高于一般桥梁的0.55~0.60,此外主梁的开裂虽满足规范要求但跨中截面扩展宽度较大,并伴随有新的裂缝产生,残余挠度介于10.21~17.86%,虽小于20%,但值较高。

4.在试验荷载作用下,主梁斜截面及桥墩沉降均可得到保证。

(二)、动力荷载试验:

动载试验实测一阶竖向自振频率为3.099HZ,满足钢筋混凝土简支梁桥不小于3.099HZ的要求,实测阻尼比较大为0.865%,高于混凝土结构无裂缝界限0.5%,实测桥跨结构冲击系数为1+μ=1.235,接近理论计算值1.23475,由此表明:桥跨结构动力性能一般。

三、承载力验算

冯官屯大桥位于104国道上,是进出京津的主要通道,交通量大,重车多,原桥设计标准低,适应度明显不足,因此有必要对大桥主要承重结构通行汽—20,挂—100的可行性进行评估验算。

验算内容包括:主梁正截面强度,支点斜截面抗剪强度,主梁刚度及裂缝宽度,盖梁正截面强度,桩基垂直承载力分析以及支座验算:

通过承载验算,结论如下:

1.冯官屯大桥工字梁微弯板组合梁主要承重构件控制截面的强度、刚度、裂缝宽度以及桩基承载力都能满足汽—15,挂—80的荷载要求,但其支点截面尺寸不能满足抗剪要求,跨中截面不能满足汽—15挂—80荷载要求,应增加配筋。

2.主梁支点截面的抗剪强度,盖梁的正截面强度和主梁的刚度,裂缝宽度均能满足汽—20,挂—100的荷载要求。

3.钢筋混凝土摆柱式支座,除摆柱正截面强度不能满足挂—80荷载要求外,其它各项验算指标均能满足汽—15,挂—80荷载要求。

4.弧形钢板支座各项验算指标均能满足汽—15,挂—80荷载要求。

四、加固设计

根据上述试验结论及病害分析,又考虑到旧桥东侧为一新建梁桥,两桥之间的结合问题,具体加固措施为:

1.拆除旧桥梁端部悬臂板,新旧桥间增设一道宽主梁至新桥边缘,下部增加一根桩,新旧桥之间仅留施工缝;加大端主梁尺寸,并增设一道中横梁,以增大整体横向刚度,改善荷载横向分布,使边主梁承担较大荷载,从而对内主梁起卸载作用,以满足汽—20级正截面强度需要。

2.增大梁端截面尺寸,以满足斜截面强度对截面尺寸的要求,提高斜截面抗剪强度。

3.内主梁受力钢筋除锈,加补新保护层。

4.更换破损的少筋微弯板。

5.全部更换油毛毡支座为板式橡胶支座,并对钢支座进行改造,以消除温度等因素引起的附加内力,同时使主梁纵向变形不受约束,减轻下部结构的负担,改善主梁局部受力性能。

6.桩柱变形过大处增设横向联系承台,既可限制桩柱水平位移,又可限制竖向位移,使病害桩共同受力。

7.由于加固后上部恒载增加,盖梁端部负弯矩增加,可采取局部加强措施。

8.桥面系及其它部位改造。

加固设计论文篇(4)

2扩建方案

根据老桥现状调查、桥梁检测报告及静、动力荷载试验结果,经过综合分析,认为老桥经加固后可以继续正常运营。桥梁扩建方案为:保留老桥并采取一定的加固措施,新建结构类型相同或相近的新桥,通过翼缘板湿接缝连接新老桥梁,最后形成双向8车道的桥梁结构。

2.1结构体系分析

鉴于老桥采用墩梁固结矮墩连续刚构体系,在同跨径桥梁中比较少见,为考察箱梁病害是否结构体系的问题,是否需要利用体系转换来改善当前结构受力状态,拼宽新桥采用何种结构形式比较有利,对如下2种不同结构体系进行分析比较:体系1:维持原有结构体系不变,进行加固、拼宽;体系2:解除2个边墩的墩梁固结,维持中墩固结,进行加固、拼宽。采用midasCivil程序,以老桥为例,建立结构体系对比计算模型,主要考察箱梁边跨跨中截面、中跨跨中截面、边墩墩顶截面、中墩墩顶截面的面内弯矩以及边墩墩底推力的差异。体系1与体系2计算结果的比值为1.012~1.112,结构体系的影响对桥梁上部箱梁结构受力影响并不显著。因此,老桥加固以及新桥设计仍然采用原有的矮墩连续刚构体系,以避免老桥因体系变化导致次生病害产生,并保证活载作用下新老桥横向变形比较一致。

2.2新桥结构

新桥采用与老桥相同的跨径及上下部结构,以保证外观一致且变形协调。桥跨组合为20.5m+2×21.5m+20.5m,全长88.30m。上部结构采用单箱双室混凝土箱梁,梁高1m,顶宽8.0m,底宽5.5m,腹板厚0.40m,顶底板厚0.25m。薄壁墙式墩,墩身宽度3.0m,厚度0.6m,单排2根Φ1.2m钻孔灌注桩基础,墩梁固结;肋式台、双排4根Φ1.2m钻孔灌注桩基础。

2.3老桥加固

为确保桥梁能够安全、正常的运营,在拼宽之前,必须对老桥进行加固,以提高既有结构的承载能力、耐久性。按照“老桥老规范、新桥新规范”的原则进行维修加固,即对原桥的结构验算仍然采用85年颁布的相关规范(简称旧规范),但加固工程中涉及的材料、工艺等部分,执行最新颁布的规范(简称新规范)。除一般病害(如非结构性裂缝,混凝土表层破损、脱落,支座老化、破坏等)采用常规处治措施外,对主要病害箱梁腹板、底板裂缝,需进一步研究合理的维修加固措施。

2.3.1老桥主要病害

主要病害为箱梁腹板、底板裂缝、玻纤布老化,第4跨梁底玻纤布局部脱落,梁体出现超限宽的横向受力裂缝,梁底共13条横向裂缝,缝宽0.18~0.28mm,共计缝长22.1m。核查以往养护、桥检资料,该桥在粘贴玻纤布加固之前的主要病害为:梁侧腹板存在较多裂缝,均为竖向裂缝,右幅第1~3跨梁侧腹板裂缝部分延伸至梁底,左幅第1跨梁侧裂缝部分延伸至梁底,最大缝宽0.20mm;左幅第2跨1/4L~3/4L、第3跨1/4L~3/4L存在梁底横向裂缝,最大缝宽0.10mm。

2.3.2病害成因分析

经过综合分析,产生上述病害的主要原因如下:(1)施工措施不当,施工中混凝土震捣不密实、钢筋位置偏差、保护层过薄、养护欠妥当等,造成混凝土质量不均匀,在受到较大荷载时,沿腹板产生的表面裂缝易与受拉区裂缝相连接[。(2)腹板侧面裂缝部分从梁底向上开裂,梁底面出现横向裂缝,均与主筋垂直,属于梁受拉区出现的弯曲裂缝,说明结构抗力不足。(3)刚构桥属于超静定结构,混凝土收缩、徐变、温度变化等都会对结构产生附加应力,导致混凝土开裂。

2.3.3加固方案

综合考虑加固效果、施工便利性及加固施工过程中的通车要求等因素,在清理混凝土表面,对裂缝灌浆、封闭后,采用高强不锈钢铰线网-渗透性聚合物砂浆技术进行加固,施加预应力高强钢铰线网提高结构的承载能力,抗剪与抗弯加固的不锈钢铰线分别采用Φ3.2mm和Φ4.8mm规格,种类均为6×7+IWS,同时通过在外表面涂刷3cm厚度的配套高强渗透性砂浆增加结构的耐久性。加固前须拆除梁体表面粘贴的所有玻纤布。箱梁外侧面沿腹板全高加固,主要受力钢铰线须垂直于桥梁轴线方向,并兜向底板45cm。箱梁底板上的钢铰线网需须顺桥向布置,每跨内的钢铰线网在纵向不宜拼接,必须搭接时,在钢铰线受力方向的搭接长度应不小于80cm。施工工艺流程为:定位放线混凝土基层处理裁切钢铰线网片钢铰线网片的固定与张紧钢铰线网片节点的固定涂刷界面剂聚合物砂浆压抹湿润养护。其中钢铰线网的固定和张紧是其能够立即和原结构共同受力的关键。根据设计确定的锚具位置,通过植入螺栓和粘贴钢板在构件端部固定锚具。钢铰线下料后,用专门的挤压锚具挤压套筒使其与钢丝绳成为一体,在一侧钢丝绳的一端直接穿入锚具,另一端由专门的张拉器预张紧后进行锚固,参考以往工程经验,预张拉应力取0.25~0.3倍的抗拉强度设计值。用配套专用固定销钉对钢铰线网片的各节点进行逐段钻孔锚固,使其固定在箱梁上。该项加固技术在国内许多建筑工程、桥梁工程上得到应用,实践表明加固效果良好,其主要特点如下:(1)由于高强渗透性砂浆基本为无机材料、不锈钢绞线网耐腐蚀性能好,较好地解决了混凝土结构加固后的耐久性、抗火、耐高温性能等问题,加固性能可靠;(2)钢铰线网为高强不锈钢铰线编织成网,运输及施工方便;(3)高强钢铰线强度高,其标准强度约为普通钢材的5倍,加固后结构自重增加很小,对原结构的自重影响也很小;(4)对混凝土结构进行抗弯及抗剪加固均可取得良好的加固效果,并且可以显著地提高构件刚度;(5)混凝土构件加固后的疲劳性能以及钢网、砂浆的锚固、粘结性能良好;(6)易于大面积施工,在结构加固的过程中不影响建筑物的使用,对被加固的母体表面没有平整要求,节点处理方便,更适合桥梁和楼板等混凝土结构的加固。

2.4新老桥拼接

经过多阶段比选确定箱梁拼宽设计的基本原则为“上连下不连”,其要点如下:(1)新老桥上部结构通过拼接形成整体共同受力,下部结构分离独立受力。(2)老桥箱梁翼缘板下缘钢筋无法承受翼缘板刚接后产生的正弯矩,设计采用现浇铰缝进行拼接。老桥翼缘板切除0.5m,新老箱梁之间预留0.5m的UEA钢纤维混凝土翼缘板后浇段,新老桥之间通过植筋和锯缝形成铰缝,拼接铰缝构造见图5,顶板锯缝填沥青玛蹄脂,底板填塞木条。(3)为减小拼宽部分收缩、徐变对老桥的影响,拼宽部分建成后3~6个月,再实施拼接。(4)为减小拼接后新桥基础沉降对老桥的影响,应严格控制该基础沉降,对新桥进行桩底压浆。同时,为了降低新桥的后期沉降量,尽量使沉降量发生在拼接前,新桥上部结构施工完毕后,对梁体进行加载预压,加载量不小于桥面2期恒载的重量,预压时间控制在2~3个月。

3结构受力分析

3.1分析模型及计算荷载

采用MIDASCivil对老桥加固前后、老桥和拼宽新桥在拼宽前后、拼宽纵桥向相互影响及结构抗震性能进行分析计算,有限元模型见图6。采用ANSYS进行新老桥翼缘板拼宽前后局部分析。考虑的荷载有施工临时荷载、恒载、汽车荷载、整体温差、梯度温度、基础变位、收缩、徐变、地震动等。老桥计算考虑了一定的定量退化处理。

3.2主要分析结果

(1)桥梁拼宽前,老桥在承载能力极限状态下满足规范要求,正常使用极限状态下裂缝超限,需要进行加固。现行公路桥梁加固设计规范未对上述加固方法进行规定,考虑到该方法与粘贴钢板加固法同属于复合截面加固法,钢铰线网与钢板的受力方式均设计成仅承受轴向应力作用[4-5],其加固原理、材料性能、计算假定等均类似。参照文献中2种加固方法的3种计算规定,对老桥加固进行验算,裂缝通过应变值推算,不考虑主梁侧面围套内钢铰线网片对承载力的提高作用,计算结果满足规范要求。此外,还可采用组合有限元法建立精细模型进行分析计算。(2)桥梁拼宽后,新老桥在承载能力极限状态和正常使用极限状态下的结构承载力、裂缝宽度、跨中挠度满足规范要求。拼宽后老桥的弯矩、剪力值有所增大,新桥的弯矩、剪力峰值下降。(3)新老桥翼缘板拼宽前后局部分析结果表明:拼宽后,新桥的基础变位导致新、老桥翼缘板出现横向附加弯矩,弯矩峰值在墩顶处,向跨中及桥台处逐渐减小。老桥翼缘板(每延米长度)的墩顶横向弯矩在翼缘根部大于新桥翼缘板根部的横向弯矩。基础沉降工况对拼接的影响最大,老桥抗剪略有不足,考虑到老桥翼缘板加固困难,设计除适当增加新桥桩基长度外还对桩基底部进行压浆处理,以减少基础沉降的影响。同时,为了降低新桥的后期沉降量,尽量使沉降量发生在拼接前,新桥上部结构施工完毕后,对梁体进行加载预压。(4)采用反应谱法进行抗震性能分析,桥梁采用连续刚构体系,桥墩为薄壁墩、单排桩基础,刚度适中,各墩台刚度协调,结构体系抗震性能较好,地震工况不控制设计。

加固设计论文篇(5)

2主要病害原因分析

2.1通行车辆

该桥修建于20世纪80年代,已经运营27年。原桥梁设计为一级公路桥梁,按照交通部《公路工程技术标准》(JTJ001-97)的规定,一般能适应将各种汽车折合成小客车的年平均日交通量为15000~30000辆。免费通行前交通量已经超过了原设计交通量的60.2%,免费通行后,交通量较免费通行前又增加19.8%。按照交通部《公路工程技术标准》(JTGB01-2003),免费通行后平均日交通量是四车道一级公路能适应将各种汽车折合成小客车的年平均日交通量上限30000辆的1.92倍,平均日交通量已经达到六车道高速公路能适应的年平均日交通量标准(45000~80000辆)。由上可见,限载前,该公路大桥车流量远超过当初设计标准,再加上超载车的数量和超载重量都越来越多,对桥面铺装、T梁、支座、盖梁、桥墩等各个承重部位均造成不利影响。

2.2T梁病害

(1)混凝土施工质量较差,施工完成后,混凝土表面出现蜂窝、麻面;保护层较薄,箍筋外露;底板混凝土剥落、钢筋外露锈蚀,翼缘板间渗水。此类病害短期内不会引起桥梁承载能力的降低,但对结构耐久性影响较大。如表层混凝土剥落导致内部钢筋锈蚀,继而引起混凝土更大面积的锈蚀开裂,长期作用会降低截面刚度、减小钢筋的有效直径,对于预应力混凝土桥梁,如果钢绞线锈蚀后果将很严重。

(2)在主梁跨中1/4L~3/4L之间,腹板产生大量由下而上的竖向、斜向裂缝和对称贯通裂缝。该裂缝的主要成因是:主梁1/4L~3/4L跨附近承受较大弯剪导致梁体腹板混凝土主拉应力超过允许值,进而产生裂缝。而在主梁支点附近,梁体腹板上产生斜向裂缝。该类裂缝的主要成因是:主梁支点附近位置承受较大剪力,当主拉应力过大或腹板抗剪能力不足时会导致斜向剪切裂缝的产生。主梁斜截面强度不足会导致结构产生剪切性破坏,该类破坏属于脆性破坏,在桥梁结构中不允许发生。

2.3盖梁病害

由于桥梁运营时间较长,伸缩缝橡胶条破损漏水,盖梁上建筑垃圾堆积,排水不畅,加上盖梁混凝土施工缺陷,环境中的水及侵蚀性介质就可能渗入混凝土内部,导致了混凝土碳化和钢筋锈胀,影响结构的受力性能和耐久性,部分盖梁的整体承载力降低。

2.4支座病害

桥梁支座已经使用27年,橡胶开始老化,钢板严重锈蚀,支座已经接近使用寿命。

3加固设计

针对此现状,考虑到原设计T梁抗裂安全储备较小,T梁间横向联系偏弱,考虑进行全面加固。除对出现病害的部位进行维修加固外,另从两个方面加强桥梁的横向联系和承载力:①对尚未出现但未来最可能出现病害的T梁进行整体性加固,提高T梁的承载能力;②对全桥T梁横隔板进行整体性加固,提高桥梁横向刚度;③将原有桥面铺装凿除,采用双层钢筋网片或并筋桥面铺装,加强桥梁的整体性。主要加固方案如下:

(1)对全桥已出现裂缝的所有T梁全部进行加固,考虑到桥梁西半幅未来通行重车的可能,有必要对西半幅未出现裂缝的部分T梁进行整体性加固,如西半幅单跨有2片及2片以上T梁出现裂缝需要加固的,则西半幅4片T梁全部加固。加固基本方案为裂缝封闭、破损修复后进行梁底粘贴钢板。腹板粘贴钢板。对梁体竖向裂缝严重的T梁增加体外预应力。本次加固中,考虑到20mT梁梁体未出现斜向裂缝,不采用腹板粘贴钢板加固;40mT梁腹板有竖向裂缝或斜向裂缝,采用腹板粘贴钢板加固,加固范围为2~6号横隔板之间的腹板,其中,跨中6.5m范围腹板粘贴水平钢板,其余粘贴斜向钢板,另1~2和6~7号横隔板间腹板出现裂缝,则对1~2和6~7号横隔板间腹板粘贴斜向钢板加固;50mT梁腹板有竖向裂缝或斜向裂缝,采用腹板粘贴钢板加固,加固范围为2~7号横隔板之间的腹板,其中,4~5号横隔板间腹板粘贴水平钢板,其余粘贴斜向钢板,另1~2和7~8号横隔板间腹板出现裂缝,则对1~2和7~8号横隔板间腹板粘贴斜向钢板加固。T梁自东向西依次为1#、2#、3#-7#T梁。腹板粘钢除116-1#、123-1#、124-1#、133-1#134-1#、135-1#梁采用方法1加固外,其余均采用方法2。而对于20mT梁、40mT梁和50mT梁梁体出现4条或4条以上竖向裂缝,或梁体出现2条或2条以上竖向贯通裂缝,则对T梁采用体外预应力加固,其余计划加固的T梁采用梁底粘贴钢板加固。

(2)对全桥未加固的所有横隔板进行加固,增大横隔板截面,加强横向联系,避免单梁受力。具体方案为对全桥尚未加固的20m、40m、50m跨T梁横隔板采取粘贴钢板加固或整体性加固,钢板材质采用Q345B,钢板厚度6mm,钢板外露表面进行防腐涂装。并对40m、50m跨T梁横隔板镂空的部分植入钢筋,浇筑快速修补料增大横隔板跨中截面。

(3)对出现裂缝和大面积锈胀的盖梁进行加固,对盖梁出现严重锈胀的部位进行处理,首先将锈胀部位混凝土凿掉,其次对发生锈胀钢筋进行除锈处理,后浇筑环氧混凝土(在破损区域过大处使用)进行修补,对病害严重或出现受力性裂缝的盖梁进行粘贴钢板加固。

4加固前后结果对比分析

经体外索加固后,虽然边梁的抗力值未变,但由于体外预应力索改善了结构的受力性能,边梁跨中弯矩值降低了4.9%。40mT梁经过粘贴钢板加固后,中梁的跨中承载能力较设计时提高了8.39%;50mT梁经过粘贴钢板加固后,中梁的跨中承载能力较设计时提高了53.2%。且加固后所有梁截面抗力R≥计算弯矩Mj,中梁、边梁的持久状况和正常使用状况的各项指标均满足《公路桥涵设计通用规范》(JTJ021-89)及《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ023-85)的要求。

加固设计论文篇(6)

水库土坝结构的修筑质量差是当前水库施工工程中常见的问题之一,这主要是因为施工人员在对水库土坝结构进行施工的过程中,没有对周围的地质情况进行全面的了解,而且所采用的施工技术和施工材料也存在着一定的质量缺陷,这就导致水库的土坝结构在使用过程中出现严重的质量问题,使大坝出现渗流的现象。

1.2水库的使用过程

水库在使用过程中,大坝坝体出现局部坍塌的情况,这就对土坝结构的稳定性,带来了严重的影响,使其水库大坝的抗滑功能和稳定性能无法满足水库工程设计的要求,从而出现了许多安全隐患,对水库的正常运行和人们的日常生活造成了严重的影响。

2土坝加固设计方案

从我国当前水库工程发展情况来看,水库土坝结构的除险加固问题,不仅对水库的正常使用造成了严重的影响,还存在着一定安全隐患,时刻威胁着人们的生命财产安全。为此,对水库土坝加固方案进行设计。目前,人们在水库土坝加固设计中所包含的内容主要有:土坝坝体加厚、坝体防渗和坝体的截渗设计等。

2.1大坝坝体培厚、坝坡放缓设计

在对大坝坝体结构进行抗滑稳定加固施工工程中,坝体边坡的抗滑稳定性不足的问题直接影响了水库的使用功能,因此,为了保障水库的正常使用,技术人员就要采用大坝坝体培厚以及边坡放缓设计,来提高大坝坝体的稳定性。不过由于在不同的水库工程施工中,其大坝结构也存在着一定的差异,而且在对其进行施工的过程中还要考虑到水库周围的地质环境等综合因素,因此采用经济、安全的设计方案对其进行施工处理是十分必要的。

2.1.1上游培厚、坝坡放缓,下游坝坡不变将原上游坝坡1:2.5、1:2.75、1:3.3三级变坡通过坝体底部培厚为1:2.75、1:3.0、1:3.50,变坡处高程分别为89.00m和77.00m,坝顶宽度保持6.0m。大坝下游坝坡原设计为1:2.5、1:2.8、1:3.2、1:1.50,保持不变。

2.1.2上游坝坡削坡放缓,下游坝坡相应培厚将原上游坝坡从高程89.00m起向上通过削坡改成1:2.75,变坡处高程为77.00m,上游坝坡为1:2.75、1:3.3二级变坡。坝顶总宽不变,大坝轴线向下游平移2.75m。下游坝坡在原坝坡基础上相应培厚,保持原坡比不变。变坡处高程分别为92.00m、83.00m、74.50m,变坡处设宽2.0m马道,马道内侧设排水沟。

2.1.3上游坝坡底部培厚、上部消坡放缓,下游坝坡相应培厚将原上游坝坡三级变坡通过底部培厚、上部消坡放缓改成1:2.75、1:3.0、1:3.5,变坡处高程分别为89.00m和77.00m,坝顶总宽保持6.0m不变,大坝轴线向下游移2.00m。下游坝坡在原坝坡基础上相应培厚,保持原坡比不变。变坡处高程分别为92.00m、83.00m、74.50m,变坡处设宽2.0m马道,马道内侧设排水沟。

2.2大坝坝体防渗设计

2.2.1冲抓套井回填粘土防渗墙作为水库大坝加固设计中最常见的一种加固方式,防渗墙的使用范围较广,施工设计方法也有很多,其中回填粘土防渗墙和沥青混凝土防渗墙是较为常见的两种施工设计方案。利用冲抓式打井机具,在土坝渗漏范围造井,用粘性土料分层回填夯实,形成一连续的套接粘土防渗墙,截断渗流通道,以起到防渗目的。此外,在回填粘土夯击时,夯锤对井壁的土层挤压,使其周围土体密实,提高堤坝质量,从而达到坝体防渗、加固的目的。采用排套井平行坝轴线布置,套井直径为1.1m,排距为0.8m,套井深入坝基强风化层内1m。

2.2.2机械造槽法修建沥青混凝土防渗墙与粘土相比,沥青混凝土的塑性更佳,防渗能力和变形能力也更强,当防渗墙出现裂缝时,沥青混凝土还可以通过自行愈合的能力来治理裂缝,因而防渗效果更佳。一般坝体在采取沥青混凝土防渗墙时,多采用机械造槽法进行施工,必要时还会与帷幕灌浆技术相结合,以确保坝体防渗体系的可靠性,提高土坝加固设计效果。

2.3劈裂灌浆

劈裂灌浆防渗机理,是沿土坝轴线的小主应力面,用一定的泥浆压力人为地劈开坝体,灌注泥浆,利用浆坝互压、泥浆析水固结和坝体湿陷密实等作用,使所有与浆脉连通的裂缝、洞穴等隐患得到充填、挤压密实,形成竖直边浆体防渗墙。同时,由于灌浆压力在坝体内部所产生的应力再分配,也能改善坝体的应力状态,促进变形稳定。劈裂灌浆按双排孔布置,孔距为4.0m,孔径为1.0mm,排距为0.5m,孔深入基岩强风化层1.0m。钻孔灌浆采用分序钻灌,这样可以使灌入的浆液平衡均匀分布于坝体,有利于泥浆排水固结,避免坝体产生不均匀沉陷和位移。施工时,先钻灌一序孔,后在序孔中间等分插灌二序孔。

2.4大坝坝基和坝肩防渗加固设计

对于水库大坝来讲,坝基的加固和坝肩的加固也十分重要。如果坝基所处位置的地质层为强风化砂岩,并且还附有一定透水能力强的残积土层,那么该大坝的坝基就非常容易出现渗漏现象,必须要对其采取有效的加固防渗措施。一般在实际的工程实践中,对于这种坝基和坝肩的防渗加固设计多采用帷幕灌浆的方法或者高压喷射灌浆的方法。灌浆的质量和相关技术参数需要结合工程的实际情况,通过一定的灌浆试验来最终确定,以保证加固设计方案的可行性与可靠性。

加固设计论文篇(7)

真空预压主要是在外荷不变时,对需要加固处理的软土使用薄膜进行密封,使其与大气完全隔绝,然后在薄膜上层铺设砂垫层,并在其中安置管道以及竖向砂井。使用射流泵对密封土体进行真空处理,并通过管道及砂井及时排出内部的水、气,使之产生较大的负压。加固土体随着内部水气的排出,会缩小砂土间的空隙,使土体的应力增强。同时由于强烈的压差,会使周围及深度土体也会产生较强的负压,从而使整体的路基达到较好的加固效果。

1.2堆载预压机理

堆载预压主要是采用多种荷载材料对场地进行加固处理,这种方法在工程中应用较为普遍,取材也较为广泛,例如砂料、土石料或者建筑物等。其加固原理为:加固土体随着堆载的过程使超静孔隙水压力逐渐消散,从而使土体的有效应力逐渐增强,达到加固效果。若土体的软土层较厚,可在软土层中打设砂井,增加塑料排水板的安置数量,从而使渗透系数加大,有效降低固结进程,从而在更短的时间内达到加固的效果。一般而言,堆载的荷载值直接影响着加固土体的超静水压力消散程度以及预压的加固效果。同时加载的工期长短也对最终的加固效果有一定的影响。因此,要合理控制荷载大小以及加载速度,才能达到更好的加固效果。

1.3真空-堆载联合预压

真空预压与堆载预压均属于排水固结法,因此两者的加固机理属于相同的物理原理,加固结果均为孔隙水压力消散,并转变为有效应力,达到加固作用。但真空预压会在真空的作用下不断形成负的超静孔隙水压力,而堆载预压法是在加载的过程中不断形成正的超静孔隙水压力。因此在真空-堆载联合预压的情况下会使孔隙水压力的正负压差增大,提高孔隙水压力消散的速度,从而增强加固效果。这种新型的联合预压加固方法主要体现以下几个特点:①固结应力明显增大,固结速度明显加快。在双重预压效果之下孔隙水的抽出效率增强,地下水位逐渐下降,从而增加了土骨架的固结压力,在真空作用的负压力、堆载作用的正压力以及地下水位下降引起的固结压力三重作用下,达到较大的土体强度;②抵消部分向内收缩变形或侧向挤出变形。真空预压时导致土体内部各向固结应力等效,土体会产生收缩变形的效应,而堆载预压时土体内竖直方向的固结应力大于水平方向,土体会产生侧向变形的效应。真空-堆载联合预压时部分应力会产生叠加或抵消效果,从而有助于地基的稳定。

2真空-堆载联合预压加固软土路基的设计

2.1设计方案

首先根据加固所要达到的效果计算排水通道的间距(深度)、堆载填土重量、堆载高度等参数。该工程共需填土18kN/m3,堆载高度约1.3m,预计90d后路基的平均固结度可达到85%以上,沉降量约0.8m。1)密封系统的设计。对需要加固的土体使用3层聚氯乙烯薄膜进行密封,密封膜进入不透气图层需≧0.5m,然后在薄膜上层铺设黏土并压实。加固区之间使用水泥浆搅拌连续墙施工,以此降低沉降度不均等的状况。2)排水系统的设计。在薄膜上层铺设0.4m的砂垫层,并再其中以正方形的结构布置B型塑料排水板,保持1.0m的排水通道间距和12m的打设深度。3)加压系统的设计。真空-堆载联合预压方案设计80kPa的真空荷载、26kPa的堆载荷载以及7kPa的砂垫层荷载。4)检测系统的设计。在现场试验段埋设多个监测仪器,分别监测预压加载过程中的地表沉降、水平位移、孔隙水压力、地下水位等参数。

2.2施工控制

施工前要对场地进行清洁打扫,将加固区内的杂物、杂草以及积水等清理干净,再铺设土工布及砂垫层,保证砂垫层低于3%的含泥量。通过经纬仪等测量工具对排水板的打设位置进行确定,再用竹签进行标记,然后进行打设施工,保证排水板穿透淤泥层,并保证其在砂垫层表面漏出25cm左右。在砂垫层中埋设真空管路,之后进行真空泵的安装,真空泵布设原则为850m2/台,每台机器的7.5kW的功率。铺设真空膜并进行预压,当真空度达到标准值后,进行堆载预压。

3真空-堆载联合预压加固软土路基的应用效果

水平位移的观测可判断路基侧向变形的情况,分别取K1+350、K1+450、K1+550监测断面的路肩位置进行检测。在真空预压的初期先会产生挤出变形,但变形作用较小,主要是受砂垫层和密封沟的影响。待真空度达到标准后,会产生收缩变形,侧向位移不断向加固区中心收缩,最大水平位移可达235mm,最低85mm。收缩变形主要发生区域为地下15m左右,离地面越近,其位移值越小。孔隙水压力的观测主要是为了了解地基的固结状态,本次选取的3个观测断面分别达到22m、23m、24m的深度。在真空度逐渐升至标准值的过程中孔隙水压力逐渐下降,离地面越近的距离受真空压力的影响越大,因此其孔压变化也较大,在距离砂垫层2~4m的测点,孔压可维持在-40kPa左右。随着时间的延长,真空压力会逐渐向下扩散,因此可使深部孔压也逐渐降低。

加固设计论文篇(8)

2沙蒋水库组成部分

沙蒋水库于1975年10月动工修建,1977年12月完成。水库枢纽由大坝、溢洪道、输水洞等建筑物组成。

2.1大坝

沙蒋水库大坝为均质土坝,由东向西再向北,平面呈“L”型,坝顶全长370m,顶宽4m左右,坝项高程为212.53~213.46m,最大坝高16.30m,上游边坡为1:2.50~1:3.30,下游边坡为1:2。大坝上游坝坡无护砌,下游坝坡无排水沟,坝脚无排水棱体。坝顶道路现状为土路,路面坑洼不平。大坝无任何观测设施。

2.2溢洪道

溢洪道位于大坝左端,为开敞式溢洪道,全长105.50m,进口高程为210.78m,最大泄量为15m3/s。控制段、泄槽段均为矩形断面,底坡呈阶梯型,底宽4m,采用浆砌石砌筑,两侧浆砌石挡墙高2m,顶宽0.60m。溢洪道末端无消能设施。现状进口段导墙损坏严重,由于纵坡坡度大,底部冲刷严重,局部挡墙浆砌脱落,出现裂缝。

2.3输水洞

输水洞位于大坝中部,L型的转折处,进口底高程为202.33m。上游段为DN400无缝钢管,管道末端设挡水隔墙;下游段工作洞为砌石涵洞结构,总长14m,洞内设砌石明渠与上游无缝钢管连接,出口4m处现状设有一扇铁门。砌石涵洞断面尺寸为1.50m×2.10m,城门洞形。明渠净宽0.80m,深1m,上有混凝土盖板。钢管末端设手动控制阀门,输水洞最大泄量0.27m3/s。输水洞现状存在问题:下游坝坡培厚后,工作洞长度不够;涵洞砌筑质量差,年代较长,局部变形,浆砌脱落,出现裂缝;控制闸门及启闭设施现已锈蚀损坏,无法正常使用。

3沙蒋水库大坝存在问题

根据安全评价报告及鉴定核查意见,大坝存在的主要问题:大坝防洪标准低;坝体压实度达不到规范要求,筑坝材料不合格、填筑质量差;上游坝坡无护坡;下游边坡不稳定,下游坝坡浸润线出溢点高,下游无排水设计。依据《碾压式土石坝设计规范》(SL274-2001)第4.2.3条,粘性土的填筑密度以压实干密度为设计指标,并按压实度确定,对3级中、低坝及3级以下的中坝压实度应为96%~98%,压实度取为96%,以控制干容重为16.80kN/m3,对坝体填料进行质量评价。根据本次勘探揭露的坝体地层情况,坝顶以下2.00m厚度坝体填土压实度为83%,干密度为14.70kN/m2,渗透系数为4×10-3cm/s,填筑质量较差。现状上游边坡为1:2.50~1:3,坝坡无护砌。现状下游边坡为1:2,根据稳定复核计算,下游坝坡不稳定,下游坝坡高水位时浸润线出溢点高,在正常蓄水位时不满足渗流要求。

4沙蒋水库大坝加固工程设计

4.1水库大坝加固必要性

水库是解决当地严重缺水、脱贫致富的命脉工程,对大坝进行加固是确保水库安全运行的需要,也是地区经济和社会发展的要求。目前,水库为农田提供灌溉水源,水库大坝加固对灌区扩建有重大意义。水库大坝建库以来到目前存在安全隐患,水库带病运行威胁下游居民生命财产安全,所以,为保证水库大坝安全运行,促使工程综合利用效益充分发挥,为该地区经济持续、快速、健康发展提供安全保障,水库大坝加固非常必要,也十分紧迫。

4.2大坝加固工程设计

4.2.1大坝防渗工程

为解决坝顶以下2.00m厚度坝体为中等透水、高水位时易形成渗漏以及下游坝坡高水位时浸润线出溢点高的问题,本工程设计将(桩号0+000~0+200)现状坝顶以下2.00m厚度坝体进行翻修,开挖至高程210.65m,然后重新填筑分层碾压至高程212.65m;下游坝脚设排水棱体。

4.2.2上游坝坡工程

根据大坝现状上游坝坡情况及坝坡稳定计算,本工程设计上游边坡高程208.60m以上为l:2.50,高程208.60以下为1:3。C20混凝土护坡(桩号0+000~0+300)。混凝土护坡厚度为120mm,分块尺寸1.80m×2.80m(宽×高)分缝处填0.20m宽C20无砂混凝土,混凝土抗冻等级F100,抗渗等级为W4。从坝顶高程212.65m至上游坝脚,先铺设150mm厚碎石垫层,然后浇筑C20混凝土护坡。护坡在坝脚及两侧与岸坡结合处设置C20混凝土齿墙,高0.45m,宽0.30m。现状上游坝坡无踏步,本工程设计在桩号0+187处设一道踏步由坝顶至坝脚。踏步及两侧路沿石均采用C20混凝土现浇,踏步净宽2m,每阶高0.15m、宽0.37m,路沿石宽0.20m,高0.25m。

4.2.3下游坝坡工程

下游坝坡(桩号0+000~0+300)培厚后,进行修坡、平整,植草护坡。现状下游坝坡无排水沟,为防止雨水冲蚀下游坝坡,设计新建5道横向排水沟和1道纵向排水沟。排水沟采用矩形断面,口宽0.30m,深0.35m,两侧边墙及沟底厚度均为0.10m,采用C20混凝土结构。现状下游坝坡无踏步,本工程设计在桩号0+187处设一道踏步由坝顶至坝脚。踏步及两侧路沿石均采用C20混凝土现浇,踏步净宽2m,每阶高0.15m,宽0.37m,路沿石宽0.20m,高0.25m。现状下游坝坡坡脚处无排水棱体,根据大坝浸润线复核计算,下游坝坡高水位时浸润线出溢点高,在正常蓄水位时不满足渗流要求。下游官庄西水库正常蓄水位为193.70m,校核洪水位195.46m,为防止校核洪水淘刷沙蒋水库坡脚,排水棱体高程按照设计洪水位加波浪超高确定。排水棱体采用块石堆筑,长约80m,顶高程为196.70m,顶宽1m,高3m,内坡1:1,外坡1:1.5,与坝体粘土部分接触部分设反滤层,反滤层包括200mm厚碎石垫层和200mm厚砂垫层。

4.2.4坝顶工程

坝顶道路现状为土路,宽度4m左右,路面坑洼不平。坝顶路面设计为泥结碎石路面(桩号0+000~0+370),全长370m,路面净宽3.50m,厚150mm,路面中心高程为212.65m,坝顶路面向下游按1.50%放坡。路面下游测设矩形C20混凝土路缘石,高700mm,宽200mm,每段长1m,采用现场预制并砌筑。坝顶(桩号0+000~0+370)设M7.5浆砌石防浪墙,C20混凝土压顶,全长370m,防浪墙每10m设一道缝。防浪墙墙顶高程213.45m,砌石墙厚0.30m,高0.89m,前后齿宽0.25m、厚0.50m。

加固设计论文篇(9)

水闸在水利工程中应用很广,底板部位易出现问题,长期以来困扰着工程界。一直未能很好解决。该问题的出现,给水闸工程带来了多方面不同程度的危害,所以在进行水闸设计时,一定要根据闸址附近的地形、地质条件和水文、施工、管理等因素,认真研究,合理布置。

一、底板混凝土配料的控制

混凝土生产系统在使用前要进行保养、校核,确保计量准确性,材料配合比允许偏差必须控制在水泥、水、混合料为±2%;砂、石为±3%;外加剂为±l%。除粉煤灰、水、砂、石用自动计量系统控制外,对减水剂要先用天平称量每盘料的用量,然后装袋备用。根据现场工地试验室提供的混凝土施工配料单严格配料,机械搅拌时料斗投料顺序为:先加碎石,后加水泥、减水剂、粉煤灰,最后加砂和水,混凝土搅拌时间从投料完毕组成材料,在搅拌机内延续搅拌时间不得少于2分钟,掺入抗裂防渗纤维混凝土搅拌时间不得少于2.5分钟。

混凝土出料时随时测定坍落度和拌和物温度、观察混凝土拌和质量,严禁生料输送,确保混凝土浇筑质量。由于底板混凝土仓面较大,混凝土用量多,可采用混凝土输送泵泵送混凝土。泵管安装时不得直接支撑在钢筋、模板及预埋件上,每隔一段距离要用钢管支架固定,管道卡箍处不得漏气漏浆,泵管尽量少用弯管和软管,预防堵管,确保混凝土顺利出料。混凝土泵送前要用清水湿润管壁,然后拌制1:2水泥砂浆混凝土泵和输送管内壁,用的水泥砂浆要分散布料。

混凝土浇筑过程中,前场和后场均须布置管理人员随时指挥协调。现场可用对讲机联系来控制混凝土浇筑速度及拆布管时间,以确保混凝土整个浇筑过程紧张、连续、有序地进行。同时要安排专人测定混凝土入仓温度、坍落度,并留置规定制取的试压块组数。混凝土浇筑前,要保证仓内无杂物,模板、钢筋、预埋件符合规范要求,一切准备工作就序,并做好质量自检记录。经现场监理验收后方可进行浇筑。底板浇筑前要在仓面平均划分施工区域,混凝土浇筑自西向东、由远而近。混凝土按一定厚度、顺序、方向分层进行,上下层之间的混凝土浇筑间歇时间不得超过混凝土初凝时间。开始布料,两管同时进行,采取“斜面分层”法施工。

振捣混凝土应从浇筑层的下端开始,逐渐上移,以保证混凝土施工质量,在底层混凝土初凝前安排一台泵进行面层防渗抗裂混凝土施工。混凝土灌筑后用插入式振动器振捣,振捣时与混凝土表面垂直,操作时做到快插慢拔,上下略为抽动,插点均匀排列,逐点移动,顺序进行,不得遗漏,使混凝土达到均匀振实。插入式振动器在每一插点上的振捣时间以混凝土表面呈水平而且水泥浆不再出现气泡为准。

二、水闸底板混凝土的分析

目前在对待混凝土底板结构问题上,一般是允许出现裂缝,而对其宽度进行一定的限制,不同国家和地区对不使用环境和要求下的混凝土建筑物的裂缝宽度有不同的控制标准。我国《混凝土结构设计规范》允许裂缝宽为0.2-0.3毫米,在对待裂缝问题上提出限制与允许的两种方法。变形变化引起的约束应力首先要求结构所处的环境能给结构以变形的机会,即变形得到满足,则不会产生约束应力。

在全自由状态下,结构可以有任意长度、任意温差不产生约束应力,因此给结构创造自由变形的条件就是允许原则。在实际工程中,全自由的理想状态不易做到,但是可减少约束,释放大部分变形,使之出现较低的约束应力;当结构处于全约束状态,要让任意长度不设伸缩缝亦不开裂,则只须所选用的结构材料具有足够的抗拉强度和极限拉伸即可。该设计原则称为限制原则。一般说来,对于限制原则,必须有足够的强度储备;采取允许原则,必须有充分的变形余地。现在一般认为,混凝土建筑物不出现裂缝是不可能的,或是很困难的。防止裂缝出现,在材料、设计、施工、运行和维护等方面均有一定的研究,但还不够完善或效果不是十分明显。在水工结构工程中,以限制原则为主,力求工程各部位都不裂缝。

三、水闸底板外部环境的控制

水泥水化产生大量的水化热,在1~3d内可放出热量的50%,甚至更多,当混凝土达到最高温度后随着热量的散发又开始降温,直到与环境温度相同。底板为大体积混凝土,热量传递的同时更易在内部积存,导致了内部温度高于外部温度,内部出现峰值温度。升温阶段结束后,是散热阶段。内外混凝土散热条件不同,外部混凝土和外界环境接触,散热条件好,热量容易散发,内部混凝土散热条件差,于是在降温阶段又造成了外部混凝土温度低于内部混凝土温度。这样在升温和降温阶段都使底板内外混凝土形成了同一方向的温度梯度。导致了其变形的不一致。内部膨胀受到外部的限制,或相应地外部收缩受到内部约束,于是在外部混凝土中产生了拉应力。当外部混凝土拉应力达到其极限拉应力,裂缝就会产生。裂缝初期很细,随着时问发展继续扩大、变深,甚至贯穿。除了混凝土水化引起的温度作用外,运行期环境温度变化也会产生作用。特别是遇到寒潮袭击、表面温降特别大时,裂缝发展更为严重。从以上分析可以看出,影响内外温差的主要因素有混凝土水泥用量、水泥品种、浇筑入模温度及环境温度等。

混凝土内的水分,少部分提供了水泥水化的需要,少部分泌出流失,大部分水分是在浇捣完毕后慢慢蒸发掉的。随着水泥的凝结、硬化,混凝土中的水分在未饱和空气中慢慢散失,引起混凝土体积缩小、变形,这种变形称为干缩。由于混凝土的水分蒸发及含湿量的不均匀分布,形成湿度变化梯度。其水分蒸发总是从外向内,由表及里。表层混凝土的水分蒸发程度和速度总是大于内部,表层混凝土收缩的程度亦大,其变形会受到内部混凝土的限制,在表层混凝土中也产生拉应力,使得表层混凝土总的拉应力加大,产生干缩裂缝,但干缩一般只发生在表层。混凝土的配合比和组成是影响干缩的主要因素,一般水泥用量多,水灰比大,则干缩也大。骨料密度大,级配好,弹性模量高,骨料粒径大,可以减小混凝土的干缩。其次,混凝土的养护和环境对干缩也有很大的影响。

加固设计论文篇(10)

中图分类号: U213.1 文献标识码: A

一、引言

城市道路路基及底基层一般采用石灰土处理形式,通过石灰固化剂的掺加,提高路基的强度和稳定性,使其更好地承受由路面传递的动载及路基自身填土压力。石灰作为加固土的外加剂,因其高效、方便、价格低廉而应用广泛,但实际施工中,石灰掺加量往往是根据现场工程经验粗略确定,无明确的理论依据。本文旨在通过力学计算,从理论上探寻在一定的路基强度和稳定性要求下的石灰掺加量,为工程设计与施工提供参考。

二、加固层设计理论依据

根据公路沥青路面设计规范,道路结构层的设计采用双圆均布荷载作用下的双层弹性体系理论,其简便模型如下图1所示。在路基加固中,石灰土处治的目的是为了使路基顶部达到预定的设计回弹模量,本文认为,处治后顶面当量回弹模量与处治前路基土的回弹模量、处治层的厚度、以及处治层自身模量这三者有关,可用公式表示如下:

(1)

(2)

(3)

式中:

——处治后路基土顶面当量回弹模量,也即需要达到的设计回弹模量;

——路基未经处治时的回弹模量;

——石灰土处治层抗压回弹模量;

——石灰土处治层厚度。

对于某一确定的路段,处治前路基土的模量值是可以通过弯沉测定、承载板法或者查相应的规范来确定的,因此,在剩下的三个参数,,中,知道了其中两个便可求得另外一个。对于新建城市道路,路基顶面需要达到的模量即为设计回弹模量,如不满足设计值的要求,就需对填土进行处治以增加其强度和刚度。

图1 双圆垂直均布荷载作用下的双层弹性体系

在路基处治过程中,主要涉及两个因素:石灰掺加量和加固层厚度。前面已经提及,石灰加固土的强度是随着石灰剂量的变化而变化的。较低剂量时,石灰主要起稳定作用,随着石灰剂量的增加,石灰土的强度与稳定性均提高,当石灰剂量超过某一定量后,继续增加石灰剂量又会导致石灰土强度的降低[1]。可以认为,石灰土的强度是石灰剂量的函数,即:

E1 = f (x)(4)

x = f -1(E1) (5)

另外,石灰加固土层厚度也是影响加固后路基质量的一个关键因素,厚度越大,则必定加固效果越好。对于确定路段的路基土,是一定的,而路基顶面的设计回弹模量值是在设计中确定的,因此,只要知道加固层模量(最终将与石灰掺量建立关系)或厚度中的一个,从理论上另一个便唯一确定了。

三、灰土路基中石灰剂量确定程序

以下主要建立当处治层厚度一定时,加固土中石灰剂量的确定方法和步骤:

(1) 根据设计文件的要求,确定路基顶面所需达到的设计回弹模量。

(2) 确定路基实际回弹模量

路基实际回弹模量可根据双圆垂直均布荷载作用下的弹性半无限体理论[2],按下式确定:

(6)

式中:

——处治前土层的回弹模量(MPa);

——土的泊松比,取0.35;

——均匀体弯沉系数,取0.712;

由上述公式可知,若已知弯沉,即可求得回弹模量。如果<,则需进行处治,若两者较一致,则可不进行处治。

图2 石灰掺量设计框图

(3) 取定处治层厚度,利用双层体系理论计算处治土所需达到的抗压回弹模量。

将石灰土处治层和其下的路基看作双圆垂直均布荷载作用下的弹性双层体系(图1),根据确定的处治层厚度、路基土模量及所要求达到的顶面当量回弹模量,利用公式(2)计算处治层需要达到的模量值。

上一篇: 文化局党建工作计划 下一篇: 电测实训总结
相关精选
相关期刊