地震勘探的特点汇总十篇

时间:2024-03-11 11:50:40

地震勘探的特点

地震勘探的特点篇(1)

中图分类号:P631 文献标识码:A 文章编号:1671-7597(2014)04-0102-01

从油田地质勘探工作实际出发,地震勘探方法的选择对油田地质勘探工作具有重要意义。基于油田地质勘探工作的现实需要,地震勘探技术将成为保证油田地质勘探效果的重要手段。为此,我们要对地震勘探技术方法的内容、分类及应用效果进行分析,保证地震勘探技术能够更好的为地质勘探工作服务,使地质勘探工作能够取得积极效果,为油田地质勘探提供有力的技术支持,满足油田地质勘探的实际需要,达到促进油田地质勘探效果,提高油田地质勘探实效性的目的,促进油田地质勘探取得积极效果。

1 广角地震解决模糊成像区成像技术

在油田地质勘探工作中,如何解决模糊成像区成像效果,是保证地质勘探工作取得积极效果的重要内容。结合油田地质勘探工作实际,模糊成像区成像主要可以依靠广角地震技术来解决,具体应采用以下方式。

1)利用折射波,以取得高速屏蔽层顶面和基底的构造形态及基底的速度。

通过采取这一手段,模糊成像区的光波折射基底得到了改变,光波的传输速度发生了变化,使得模糊成像区的成像效果较原来有所改善,满足了模糊成像需要,提高了成像质量。

2)利用广角反射波,以避开近偏移距上的各种难以避免的干扰波,提高成像质量,使得常规方法成像模糊区变得更清晰。

对广角反射波的利用,是模糊成像区提高成像质量的重要手段,对促进模糊成像效果的提高具有重要作用。从这一点来看,广角反射波法将会得到重要应用,对模糊成像区成像具有重要的促进作用。

3)利用高速层中的转换波,以对高速屏蔽层之下的低速储层成像。

在模糊成像区成像过程中,应善于利用高速层中的转换波,保证模糊成像的整体效果满足实际需求。同时,要利用高速层中的转换波与低速储层的差异,做好成像工作,满足成像需要。

由此可见,广角地震法成为了解决模糊成像区成像问题的重要技术。为此,我们应认真总结广角地震模糊成像法,在模糊成像过程中积极运用广角地震法,满足模糊成像的实际需要。

2 山前带地震勘探技术

在石油地质勘探过程中,对于地形特殊的地区普通地震勘探技术难以奏效。通过了解发现,山前带地震勘探技术在山区地震勘探中得到了重要应用,并取得了积极效果。

“针对目标基于模型的分段、分线、分区设计”是复杂山地山前带地震采集方法设计的正确路线。

1)“面向目标基于地表与地下特征”的“分段、分线、分区设计”是优化观测系统设计与实施的准则。

在山前带地震勘探过程中,分段、分线和分区设计是保证山前带地震勘探取得积极效果的关键。为此,我们要理解山前带地震勘探的总体过程和技术特点。

2)“分区、分段设计激发方式与激发参数” 是做好激发工作提高原始资料品质的基础。

在山前带地震勘探中,分区、分段的设计往往能够在激发方式和激发参数上取得较好的融合。为此,我们应在山前带地震勘探中,将激发方式与激发参数进行有效融合。

3)“多信息分区建模、统一建库”,采用“中间参考面”计算静校正量的方法是提高山地山前带静校正精度的关键。

对于山前带地震勘探而言,勘探精度是关注的焦点,为了保证勘探精度满足实际需要,应在勘探中有效计算静校正量,提高勘探的整体精度。

目前来看,山前带地震勘探技术对山地地质勘探具有重要作用,不但提高了山前带地震勘探的整体效果,也解决了山前带地震勘探的实际需要。为此,我们应重视山前带地震勘探的作用,将其作为重要的地震勘探方法来看待。

3 大排列相位校正技术

对于油田地震勘探而言,除了上述地震勘探方法之外,大排列相位校正技术也得到了重要应用,并取得了积极效果。目前来看,大排列相位校正技术特点和应用效果主要表现在以下两个方面。

1)采用大排列方式的观测系统采集数据存在着相位差,在进行数据处理时,应该进行相位校正,才能得到连续可以追踪的反射同相轴。地震相位的变化和地震波入射角及岩性都密切相关。对地震相位校正的前期工作,主要是基于模型的地震分析技术。在此基础上开展方法技术研究,完成相位校正。

2)目前大排列相位校正技术在油田地震勘探中得到了重要应用。从其应用范围来看,大排列相位校正技术改善了原有的数据处理方式,提高了数据处理效果,并进行了必要的相位校正,保证了相位校正的整体效果满足实际需要。为此,大排列相位校正技术对于油田地震勘探具有重要的应用价值,是提高油田地震勘探效果,提升油田地震勘探质量的重要手段,对油田地震勘探具有重要的促进作用和现实意义。基于这一优点,大排列相位校正技术在油田地震勘探应用中取得了积极的应用效果,满足了油田地震勘探的整体效果。

4 结论

通过本文的分析可知,在油田地震勘探过程中,地震勘探方法的选择是保证勘探效果的关键。从目前油田地震勘探技术的发展来看,可供选择的地震勘探方法较多。为此,我们应根据油田地震勘探现场实际,合理选择地震勘探方法,并对地震勘探技术的分类及应用效果进行认真分析,满足地震勘探工作需要,达到提高地震勘探效果的目的,促进油田地震勘探工作发展。

参考文献

[1]郭韬.基于QT的地震属性分析软件平台的设计与实现[D].成都理工大学,2011.

[2]李新幸.多维度关联分析及在地震解释中的应用[D].东北石油大学,2012.

[3]汪晴川.川东长兴组生物礁分布地震识别技术研究[D].成都理工大学,2008.

地震勘探的特点篇(2)

关键词:

煤田;地震勘探;应用;效果分析

在煤田勘探中采用单点数字检波器来开展高密度地震勘探,不仅能够完成高保真度与分辨率的地震资料,同时也能够更好的进行煤田小断层、陷落柱和微幅构造的成像,进而把煤田开采中所潜在风险降低或消除,有效保障煤田的安全生产安。

1、煤田地震勘探的应用

1.1三维地震勘探技术特点三维地震勘探技术是地球物理勘探的重要手段与方法,具有如下几个方面的特点:第一,具有科学、准确、婉转的勘探数据;第二,能够勘探构造较为复杂的地质,且能够查明地震波的分辨率;第三,三维地震勘探可勘探出地震波的信息,有利于研究正反演技术,为研究岩性做铺垫;第四,三维地震降低了外界因素对勘探效果的影响,加快了人机合作的发展速度;第五,三维地震勘探利用了现代先进仪器的优越性,尽管投入了较大的单位面积,却能得到很高的收益。

1.2地震勘探应用的广泛性1-2ms采样、96道接收是我国初期三维项目的主要勘探手段,覆盖次数手到仪器因素的直接影响,同时也限制了采样率与动态范围,尽管勘探效果得到了一致好评,却因其具有较高的成本而发展缓慢。我国第一次在地震项目中应用煤田三维勘探技术是姚桥煤矿中央采区。随后,应用三维地震勘探技术的地区越来越多。2001年12月,“煤矿采区三维地震经验交流会”召开于上海,我国设定了利用煤田三维勘探手段的煤炭生产企业日渐增多。自此,在我国煤田勘探单位中三维地震占据十分重要的地位。

1.3数字检波器应用过去传统勘探中应用的模拟检波器,模拟检波器在工作的时候会处于10Hz的自然频段,但是在这个过程中有着-6dB的衰减,因此稳定性不好,畸变大。数字检波器弥补了模拟检波器的不足,通过单点的高密度接收,能够消除过去模拟检波器出现的组合效应,实现高保真度的对地震波场数据获取,完成信号的无衰竭。在单点接收的情况下,原始单炮资料的信噪比会较模拟得到的数据低,没有视速度干扰波的影响。应用室内数字组合技术进行单点记录,首先要校正,把组合基距引起的正常时差问题进行处理,之后把结果传递到独立的每个检波点,进而垂直叠加滤波作用降到最低。

2、煤田地震勘探技术应用效果

2.1适应不同环境条件煤田勘探第一,构造复杂区。我国地理条件广阔,地形复杂,煤田通常在断层之间或断裂的交汇部位。在区域性断裂的影响下,发育有较为密集的断层。此外,还受旋转构造体的影响而发育的正断层的倾角变化通常较大,同时会出现一级褶曲。第二,地表复杂区。为确保原始资料的收集质量,在勘探过程中通常结合特殊观测系统与炮检距较小的观测系统,同时方位角较宽、覆盖次数较高。勘探技术人员科学有效的处理收集到的资料,大大降低了地表对子波形的影响程度,避免了因岩浆岩因素而出现多次波,使其横向变化地层运动速度而回到原来的位置,进而取得了理想的勘探结果。第三,地震地质条件较好的地区。地震地质条件较好的地区有很多,如:姚桥煤矿中央采区,在该煤矿采区中运用三维地震手段得到了更好的效果,采用小断层模式识别、水平切片、层位分析等方法,科学有效的解释了小断层的形成,提高了煤田地震勘探技术的精度,如:利用巷道方法可知该断层落差为2.8m,而采用解释方法可知其落差为3m。该勘探手段既开展了构造解释,又将煤层的厚度利用谱距法进行了科学合理的预测,科学的处理了地震资料,密度、孔隙度、速度、吸收度、渗透率等参数都能够有效的提取出来,还能准确的预测灰岩的赋水性。

2.2勘探成本及投入产出比由于我国最初的三维项目受到仪器因素的影响,导致其覆盖次数较低或接收道数较少,却需要付高额的单位面积费用。随着我国科学技术的不断发展,仪器也逐渐更新换代,提高了仪器的覆盖次数,也增加了野外的接收道数,同时降低了单位面积的费用。在煤田地震勘探中有效利用工作站,能够使处理周期缩短,最大程度减少资料处理成本进而大大降低了生产的成本;再加上我国市场竞争越来越激烈,也降低了煤田地震勘探的费用。

另外,投入成本比也是众多企业需要考虑的重点内容。在我国地震勘探中运用地震勘探技术,除了能够查清复杂的地质构造,还能够推动我国的经济发展。对于三维地震勘探来说,具有很高的价值,相同的施工项目,利用二维勘探手段最多能够获得1/3的经济效益,还不能达到三维地震勘探的精准度。为加快三维地震勘探的发展,在未来的工作中,我们应当做到如下几点:第一,高分辨率不能只单单用于接收与激发,要将其当作一个系统工程来看待,探索与研究如何提高三维地震勘探的分辨率,如使用属性分析、正反演技术等,使其能够查明更小的地质构造。第二,寻找途径使探索地质问题的范围得以扩大,不断发现新的问题、解决新的问题,结合动力学信息分析解决三维地震的问题,逐渐定量预测煤层的厚度、地层的岩性等。第三,加大力度研究三维多波勘探,如:三维三分量等问题,大力推广研究结果,使其能够真正拥有煤田勘探之中。第四,切实掌握煤田的特色,研究符合根据其特色的软件,并将该软件融入煤田勘探工作之中,使得三维勘探的处理水平得以提高。第五,有效结合计算机技术,将煤田三维地震资料输入到计算机之中,利用计算机进行统计,有效利用三维地震资料的优越性,进而确保煤田能够有效的进行生产。

综上,煤田勘探工作中需要结合地形地势条件,合理应用地震勘探技术。在数字高密度地震勘探过程中,应当在观测系统设计开始的阶段就充分考虑到并明确分析单点接收的特点,其次开展高密度观测系统设计,并且在处理阶段能够针对性地应用叠前压噪处理方法,这样才能保持数字检波器的优点,将煤田中断距更小的断层准确地发现,进而保障煤田开采的安全进行。

参考文献:

地震勘探的特点篇(3)

DOI:10.16640/ki.37-1222/t.2015.24.051

随着科学技术的不断发展和进步,三维地震勘探技术也取得了较大的发展,并逐渐在煤炭行业中普及。我国近年来加大了对地震勘探技术的研究,分析论证了勘探过程中的地质资料,处理了勘探过程中的采集问题。把三维地震勘探技术应用在煤田勘探中,有利于提高勘探的精度和准度。本文讲述了三维勘探技术的概念、应用的环节以及作业方法,旨在推动我国煤田勘探的发展。

1 三维地震勘探技术的概念

三维勘探技术涉及到学科种类众多,如物理学、计算机学等,三维勘探技术是在二维勘探技术的基础上发展起来的,主要利用三维技术分析研究地震波信息,从而确定地质条件。三维勘探技术比二维勘探技术的优点更多,它所获得的空间数据比较大,信息点的密度比较高。二维勘探技术所采集的数据密度不够高,在实际工作中,无法准确对数据地点进行定位和甄别,影响了数据采集的质量。

2 煤田三维地震勘探技术应用的环节

2.1 野外地震数据的采集

所谓野外地震数据采集就是指利用先进的地震勘探数据采集设备,对煤田以及周边进行地震数据收集。数据采集人员在进行地震勘探数据收集时要能保证数据的准确性,因为只有保证采集到的数据的准确性,才能为以后的数据分析和处理提供可靠的数据信息,从而确保数据分析和准确的准确性,这是环环相扣的。在野外地震数据的采集过程中,要对勘探区域的钻孔地点进行弹药的预处理。处理过程如下,首先把弹药放在特定的位置,随后准确记录爆炸的位置和进行收集接收的位置。其次,还要记录在爆炸中产生的地震波折射数据。最后,要分析研究地震波折射数据,并据此得出煤田地质结构的相关信息,完成煤田勘探工作。

2.2 数据勘探作业的处理

煤田的三维地震勘探工程的复杂性和综合性比较强,涉及到多个学科。地震勘探的各个环节都是紧密联系在一起的,但同时每个环节都有其独立性,是在相对独立的方式下进行的。传统的地震勘探技术有着局限性,已经无法满足现代勘探发展的需求。三维地震卡特技术相比于传统二维地震勘探技术而言,具有无可替代的优势,三维地震勘探技术能收集到数据空间和数据密度都比传统地震勘探技术获取的空间和密度都要大。数据勘探作业的处理在三维地震勘探技术中起到了重要的作用,能对收集到的地震波折射数据进行科学合理的分析和处理。第一,就是要对收集的数据进行准确度检验,以此来确保数据的可靠性和准确性;第二,就是要在完成各个环节的工作后,根据波点的变动绘制出波点分布图。

2.3 地震资料的解释

解释就是利用地震运动学和动力学知识解释地震数据信息,这种技术是对地震、测井以及地质信息的综合运用。三维地震勘探技术收集到的数据包含了大量的地质信息,但主要是运动学信息和动力学信息。三维地震勘探技术收集的地震资料主要包括两个方面,分别是地质结构和矿物资源。一方面,要分析和处理采集到的地震数据信息,并对比其他图表,找出数据信息的特点,再依照分析研究后的数据情况得出地质结构特点,提高勘探结构的效率。另一方面,利用采集到的资料,对煤田中的各类矿物资源进行分析和判断,并根据记载资料进行科学的分类,同时做好相关的记录报告工作。

2.4 勘探资料的处理

在煤田勘探的应用过程中,需要利用三维地震勘探技术处理大量的图片和资源。现在的处理方式主要有两种,一种是利用室内影像对资料底图的设计方式进行深加工,另一种是展现高程资料图片。在三维地震勘探的过程中,对地质图及叠加,常常采用资料底图的设计方式。该方式存在一定的优点,也存在一定的缺点。优点是这种方式能全面表现出煤田所在区域地形的高度差,缺点就是这种方式会存在底图形不好、准确度不高的问题。正是如此,所以要用室内影像对底图形进行进一步的加工处理。在地质结构比较复杂的煤炭底层和断层进行勘探作业时往往使用高程资料图片,这种处理方式可以将煤田较为复杂的地表图像转化为较为清晰的数字表达形式。这种表达方式可以更加准确的表现出煤田地质结构特征,提高资料处理的效率和便捷。

3 煤田三维地震勘探技术作业方法的应用

3.1 合理控制煤田层小断面及起伏形态

在三维地震勘探时,根据三维地震勘探区域的地质特点,要将起伏形态中目的层的深度误差需要控制在1%以内,幅度范围尽量控制在5m 以外的小曲面内。这样才能确保煤田起伏状态勘探的精确度达到相关要求的标准,在85%以上,有效控制控制煤田层小断面及起伏形态。我国近年来在煤田勘探技术方面取得了巨大的进步,通过勘探人员不断的实践和创新,现如今已经良好掌握了反射点的实际归位,但就现阶段的勘探精度而言,煤田勘探的精确度水平仍有待提高。根据相关调查显示,在3m到5m的小范围煤田层断面进行勘探,精准度的平均值在50%左右,如果在地质情况更为复杂的地区进行勘探,那么煤田层的断面勘探精确度更低,在20%以下。

3.2 地震勘探相关煤层的厚度变化的研究

低速薄层是煤田油层的标准,在一定的范围内,地震波振幅谱和煤田反射振幅谱的一阶比值与煤层的厚度成正比。利用地震勘探技术获取煤层的厚度,只要保证钻孔的数量以及典型的比例系数,这样的方法更加简单和便捷。在进行煤层厚度勘探时,一般使用的方法有三种,分别为分析统计法、普矩法和反演直接法。其中,最常使用的是普矩法,这种方法的主要作用就是用在继发性的削弱非均匀盖层上,并在特定条件下会对煤田层的横向变化产生影响。

3.3 对采集陷落柱的范围

采集陷落柱属于煤田的表面构造,附属于非变动构造堆积的破碎岩块。采集陷落柱出现的原因是,高速层在向低速层进行转变的过程中发生了时间延迟。对于采集陷落柱坍陷深度以及几何变形,可以利用三维勘探技术的地震构件图的时间剖面进行适当的推算,以此来实现提高勘探数据精度的目标,使其性能提高80%以上。在地质雷达、煤田勘探等方面,我国煤田三维地震勘探技术采用透坑方式。三维地震勘探技术已经在我国煤田勘探中取得了广泛的应用,正在发挥出越来越重要的作用。

4 煤田三维地震勘探数据的处理措施

使用三维地震勘探技术进行煤田勘探后的数据处理会受到较多因素的影响,如信噪比,一旦勘探时的背景噪音较大,就会影响三维地震勘探激发的层位的稳定性,从而影响单炮声波与面波,致使被测层面数据不够准确。特别是在干扰因素较为强烈的时候,勘探数据会存在很大的偏差,这种情况一般要重新进行数据采集。在进行三维地震勘探数据处理时,需要注意下述几个方面。第一,要进行静校正。这主要因为在勘探地势起伏变化较大的地区时,低速带速度变化会变得剧烈,需要校正的量就会增多。而静校正是其中较为关键的环节,结合传统的自动统计剩余静校正技术,运用修正软件将地表高差和低速带的影响降到最小;第二,是去除干扰波。干扰波有两种类型,分别为面波和声波。去除干扰波一般都是先压制低频,同时采用高频随机干扰。压制低频干扰一般都会选用内切滤波法,这样做可以有效地压制低频面波,提高资料的信噪比,减少对信号的损害;第三,进行地表一致性处理。

5 总结

三维地震勘探技术是目前来说最为先进的地震勘探技术,在地震勘探的各个环节都有应用。在使用三维地震勘探技术进行煤田勘探时,需要严格控制勘探过程,保证数据分析的准确性。我国煤田勘探的发展和进步,有利于推动我们经济的进步和发展。

参考文献:

地震勘探的特点篇(4)

    1)社会发展对能源的巨大需求是地震勘探仪升级换代的直接推动力。从18世纪英国工业革命开始,人类对能源的依赖越来越大。特别是从20世纪50年代开始,西方发达国家相继进入高度工业化阶段,世界能源消耗量猛增。在1950—1980年期间,世界能源消耗量从25亿t增长至100亿t标准煤;随着发展中国家的兴起,世界能源消费量出现了再一次迅猛增长,到2000年能源消耗量超过了200亿t标准煤;近10年来,许多发展中国家正处于城市化和工业化的进程中,世界能源消费量还在持续增长[16]。据英国BP公司2011年的能源统计:2010年非经合组织国家一次能源消费比2000年高出了63%,未来20年世界能源消费量还会增长40%。地球作为人类赖以生存和发展的物质源泉,满足了社会发展进步对能源的需求,从1926年在美国奥克拉荷马洲的沉积盆地上根据反射地震记录解释布置的钻孔第1次打出工业油流之日起,地震勘探技术就以其独有的技术优势在地下煤炭、石油与天然气资源的探测中发挥着不可替代的作用,且随着探测深度的增加、勘探难度的加大,推动了地震勘探技术从仪器装备、处理软件和解释方法上不断发展,以满足提高勘探精度和作业效率的要求。2)地震勘探方法技术的进步对地震仪更新提出了更高要求。20世纪50年代,地震勘探方法中多次覆盖技术的萌芽和出现,促进了光点记录地震仪被模拟磁带记录地震仪所取代;60年代,反褶积技术和速度滤波技术的提出,数字地震仪迅速替代了模拟磁带记录地震仪,而在70年代提出的三维地震勘探技术,对地震仪的带道能力有更高的要求,多道遥测数字地震仪应运而生;至90年代高精度三维地震勘探技术要求仪器必须解决高频信号的瓶颈问题,全数字遥测地震仪开始出现;高密度全数字三维地震勘探概念的提出,成为万道地震仪面世的第一推手[17]。随着多分量地震勘探技术、时移地震技术的不断推广应用,以解决复杂地区的勘探问题及提高油藏采收率[18],今后地震勘探技术对地震仪器高精度、轻便性、灵活性等方面将提出了新的要求。3)电子技术的进步给地震仪升级带来了发展机遇。生产需求是地震勘探仪升级改造的内在动力,而数学、物理、计算机、电子、信息、新材料和新工艺等相关学科的发展和进步,则是地震勘探仪发展的内在动力。伴随着电子技术从电子管、晶体管、集成电路、大规模集成电路到超大规模集成电路以及MEMS、FPGA(Field-ProgrammableGateArray)等技术发展,地震仪器一直朝着体积小、质量小、功耗低、功能强、高可靠性、便携性等方向发展。近年来,纳米电子技术发展迅速,电子器件面临新的变革,纳电子器件的体积功耗比硅电子器件小几个数量级。2011年4月,美国匹兹堡大学制造出核心组件直径只有1.5nm的超小型单电子管,预示着高密度超大规模纳米集成电路和纳米计算机的诞生已经成为可能[19-20],预计未来的地震仪也将随着纳米技术的发展进入一个全数字纳米地震仪时代。

    我国地震仪器的发展方向

地震勘探的特点篇(5)

中图分类号:P631 文献标识码:A 文章编号:1672-3791(2013)05(b)-0237-02

物探技术是一门应用性为主的学科,不言而喻,它的应用领域十分广泛。在地质找矿、军事工程、工程物探、工程质量检测等方面发挥着重大作用,对于保障国对民经济稳定发展有着重大意义。在工程方面,物探技术更是和工程如影随形,在工程选址、工程质量检测方面,都应用十分广泛。

在矿产资源勘查过程中,我们首先需要对各种物探方法和仪器有着充分地了解,再根据具体的工作目的选择合适的物探方法和仪器,这样才能更好更准确地完成勘探任务,因此各种物探方法的特点及适用范围以及所采用的物探仪器,我们都要进行认真地比较研究。地震勘探作为一种主要的物探方法我们更要加以重视和研究。在实际工作中,经验的积累对于工作的展开也是有很重要的指导意义,所以,要在掌握理论方法和仪器设备使用的基础上,注重实践经验的积累。

1 地震勘探技术的发展历程

地震勘探技术随着现代相关技术的发展而不断发展,取得的成就也进一步丰富。事物是运动发展的,运动是绝对的。就像我们的宇宙,时时刻刻都处于之中。随着中国的崛起强大,国家对于科学技术的需求越来越高,其中也包括地震勘探技术。

回顾地震勘探技术的发展历程,地震勘探技术始终处于不断创新、飞速提高的过程之中。至今它已经形成了一个复杂、庞大而完整的科学体系。数学、物理、计算机以及地质学的各个分支都渗透到这个领域之中,因此,地震勘探变成了一门综合性的科学,它的发展可以按如下时间进行划分。

30年代,地震勘探技术第一次飞跃,由折射地震法改进为反射法;50年代,地震勘探技术第二次飞跃,出现多次覆盖技术;60 年代,地震勘探技术第三次飞跃,出现了数字地震仪及数字处理技术;70年代初期,地震勘探技术第四次飞跃,出现了偏移归位成像技术;70年代后期,地震勘探技术第五次飞跃,出现了三维地震勘探技术;90年代,地震勘探技术第六次飞跃,出现了高分辨率与三维地震结合。

2 地震勘探仪器的发展

地震勘探仪器主要是记录地震波,按地震波的记录方式,地震勘探仪器的发展已经历了6代。

第一代是电子管地震仪,一般称模拟光点记录地震勘探仪。这代地震仪大多数由电子管制成。由于光点感光方式的限制,其动态范围小,仅有20 dB,频带宽约10 Hz,采用自动增益控制,记录结果不能作数字处理。第二代是晶体管地震仪,一般称模拟磁带记录地震勘探仪。大多数采用晶体管电路,利用磁带记录,可多次回放,并可作多次叠加和数据处理。动态范围达50 dB,频带宽为15~120 Hz,采用公共增益控制或程序增益控制。第三代是集成电路地震仪, 一般称数字磁带记录地震勘探仪器。这代地震仪采用二进制增益控制方式和瞬时浮点增益控制。它把检波器输出的信号转化为数字化信息,记录在磁带上。其动态范围为120~170 dB,频带宽为3~250 Hz以上,记录的振幅精度高达0.1%~0.01%。第四代是大规模集成电路地震仪,一般称早期遥测地震仪。遥测地震仪由许多分离的野外地震数据采集站和中央控制记录系统组成。第五代是超大规模集成电路地震仪,通常称为新一代遥测地震仪,为多种数据传输模式的地震仪。第六代是全数字遥测地震仪,采用是全数字化地震数据传输与记录系统。从21世纪初(2002年)开始,主要标志是采用微机械电子技术成功制造数字地震传感器,从而从技术上解决了传统模拟地震检测器制约地震勘探发展的瓶颈问题。包含地震勘探技术的物探技术与经济发展始终处在互动的良性循环之中,工业化的生产需求推动着物探技术不断创新,物探技术的进步极大地促进了工业的发展。目前,地质勘查的难度越来越大,重大实际问题正在促进地球物理极限的延伸,向物探技术提出了新的挑战。

3 地震勘探技术的现状

3.1 地震勘探仪器设备现状

诸多的勘探新技术对勘探仪器和设备提出了越来越高的要求。宽方位角采集在成像分辨率、相干噪声衰减以及辨识定向断裂等方面的优点已经越来越引起大家的重视。数字检波器振幅校正、温度变化、时效性、可靠性和稳定性远远优于常规的机械式检波器,而且它为全数字输出,有较好的电磁兼容性能,动态范围大、信号畸变小,具有优异的矢量保真度。对于目前的地震勘探的应用已经非常成熟,软硬件的开发水平随着科技水平的提高也越来越高。其中地震勘探的仪器和设备也逐渐趋向于智能化、高速化、轻便化和特色化。

3.2 地震勘探技术现状

近几年来,随着物探装备的发展,地球物理勘探技术特别是地震勘探自从在石油工业中应用以来,始终处于不断的发展和改进中。以高分辨率地震、高精度3D地震、叠前偏移成像、山地地震、高精度重磁等为代表的勘探地球物理技术,以约束反演、属性分析、4D地震、井中地震、多波多分量地震等为代表的油藏地球物理技术正跃上新的台阶。特别是随着近些年来,电子技术、计算机技术、信息技术等相关学科的飞速发展,地震勘探已经从最初的一维勘探到现在的三维甚至是四维勘探。从单分量到现在的多分量,从简单的构造勘探到寻找隐蔽岩性油气藏。

地震相干解释技术、地震相分析技术、波阻抗反演技术、三维可视化技术等为代表的一系列新技术的出现,以及神经网络在数字处理中的应用,在实际工作中得到了全面推广应用和发展。用于地震数据处理和解释的软件,在后期的数据处理解释的过程中是必不可少的。常见的数据处理软件有Geocluster、Seimic等,常用的解释软件比如:Landmark、Jason等一些著名的解释系统,并且在实际应用中,很多功能都在不断的扩展,以适应地震数据处理。总之,随着相关学科的发展,科学技术的进一步提升,地球物理所应用的软硬件也在进一步提高。

4 地震勘探技术的未来发展趋势

4.1 地下探测趋势

科学技术的发展,使得地震资料的处理和解释的水平有了更进一步的发展。新技术和新方法层出不穷,并将投入到实际的生产和应用中。随着油田勘探开发的深入,地球物理正从一种勘探工具向油藏描述和检测工具过渡。大量的地震数据和地下的VSP测井和钻井紧密结合,使我们能够从地面数据中挖掘越来越多的地下信息。地球物理将伴随着人们对地下资源的不断需求而不断发展。

4.2 高分辨、高可靠性、实时成像趋势

在工程物探巨大市场需求的带动和计算机技术的推动下,未来几年工程物探技术与新仪器的开发将呈现良好的势头,开发水平将大大提高,新仪器将以高分辨、高可靠性、实时成像仪器为主流。

4.3 静态向动态过渡趋势

精确的油藏表征是油藏管理及生产最大效率的关键步骤。油藏的静态表征数据是地震数据孔隙度等,用作标定的数据主要是VSP测井、钻井等获取的地质数据,油藏的开发是一个动态过程,因此静态表征须向动态表征过渡。在整个油田的开采过程中,静态油藏特性如孔隙度、渗透率等和动态数据都将会得到更新。油藏模型已从最初的简单模型不断优化,指导整个油田的合理开采。

4.4 新技术勘探趋势

5 主要物探技术比较

5.1 磁法勘探

以岩、矿石间的磁性差异为基础,通过观测与研究天然及人工磁场的变化规律来解决地质问题的方法。用途:寻找磁铁矿(直接找矿);寻找含磁性矿物的各种矿产;地质填图;地质构造等。特点:理论成熟,轻便、快速、成本低,但应用范围不够广。

5.2 电法勘探

以岩、矿石间的电性差异为基础,通过观测与研究天然及人工磁场的时空变化规律来解决地质问题的方法。用途:地质构造;寻找油气田、煤田;寻找金属与非金属矿产;水、工、环地质问题等。特点:三多:参数多,场源多,方法多;二广:应用空间广,应用领域广,但受地形及外部电磁场干扰大。

5.3 地震勘探

以岩、矿石间的弹性差异为基础,通过观测与研究地震波的时空变化规律来解决地质问题的方法。用途:地层分层;地质构造;寻找油气田、煤田;工程地质问题等。特点:探测深度大,精度高,但要放炮,工作难度大,破坏环境。

5.4 放射性勘探

5.5 物探新方法

6 结语

随着中国的崛起强大,国家对于科学技术的需求也越来越高,其中也包括地震勘探技术。总之,地震勘探技术是一门以应用为主的学科,它是以不同岩、矿间物理性质的差异作为基本的和必要的前提条件,以各种设备仪器为重要手段,应用领域十分广泛,对国民经济和国防有重大影响的一门技术科学。技术的进步将推动地震勘探技术的革新,现今存在的诸多问题也将会被解决,而且对于地震勘探技术的投入也在不断地扩大,新的技术也将会不断的被应用,我们相信新技术的发展和应用将会带来更多的经济效益。

地震勘探的特点篇(6)

中图分类号:P631.4 文献标识码:A 文章编号:1009-914X(2017)15-0038-01

在油气勘探中,地震勘探技术可获取全面的地质信息,为区块油藏勘探提准确的地质资料。三维地震勘探技术作为地震勘探的一种,可将地层情况进行直观、清晰的展现。在浅海滩涂等海陆过渡带油藏开发中,地震勘探存在一些技术难点,有必要对优化勘探技术应用的对策措施进行探究。

1 三维地震勘探技术在滩海油藏勘探中的应用难点

1.1 三维地震勘探技术工作原理

三维地震勘探技术集物理学、数学、信息技术于一体,是综合性地震勘探技术,可获取更加清晰的目的储层地质构造图,更加精准的进行目标储层位置预测,并具备多方向分辨率高、勘探成本低、探测快捷等优点,已成为构造勘探必不可少的手段。该技术基本理论与工作流程和二维地震勘探技术基本一致,但可获取三维数据体,数据更加精确,通过数据绘制地震剖面图,可直观反映地层构造形态、断层等。 其工作原理是通过在地下岩层以人工激发的方式激发地震波,通过地震波反射形成反射波,并对反射波进行回收和分析,确定岩层界面埋藏深度和形状,主要工作流程包括地震数据采集、数据处理、资料解释等。因为勘探分析流程比较复杂,所以要借助现代化软硬件系统和分析技术进行应用。

1.2 滩海油藏勘探难点

一是地质条件较差。滩海油藏处在海陆过渡带,包含陆地、水域和海滩等不同地表形态,水深随涨潮落潮存在较大变化,不同水深表层勘探介质存在差异,加大了勘探难度。滩海区域地质构造多褶皱和断层,二者相伴而生,单构造规模小,地层埋深也比较小,勘探目标层系较多,深层反射性能较弱,复杂地质构造不利于地震波激发和反射,地质成像比较困难。

二是勘探精度要求高。滩海地区不仅存在潮汐、风浪等自然环境下的信号干扰源,人工捕鱼等活动也增加了高频振荡和低频干扰,海沟等又会产生次生干扰,较强的噪音干扰造成信噪比较低。最浅反射层多在50m内,发射信息受干扰后成像和接受信息不连续,获取较好的T0连续成像需要较多有效覆盖次数,而水中检波器一般都在水上,发射后道距较小,不利于浅地层有效覆盖次数增加。

三是水域检波点定位比较困难。在平静水面可通过透置检波器定位,排列好后进行二次定位,但依然存在10m左右的误差,在潮流活动时,检波器定位更加困难,不利于信息准确采集。

2 三维地震勘探技术在滩海油藏勘探中的应用优化

2.1 应用优化技术措施

一是观测系统优化。要加强检测参数论证,根据具体区域水深、海况条件等,结合滩海特点,确保观测系统布置合理。加大高精度地震勘探仪器应用,增加有效覆盖次数,采取较长排列长度进行反射波激发,提高弱反射信号接收和记录,确保各层系地层反射信息都可接收。借助远道信噪比小的优点,增加远道应用次数,确保所有收集信号都具备一定信噪比。二是缩小信息收集单元。要根据滩海油藏地质构造复杂、构造单元较小的特点,对面元进行细分,提升收集资料的分辨率,确保准确反映地质构造断点和各类细节。同时,通过相邻尺寸各异面元资料对比,加深对区块地质信息的了解。

二是深水区域采用OBC海底电缆勘探技术。借助二次定位系统,获取更加准确的检波点位置。借助双分量接收信息特点,每个接收点都设置水中压电检波器和陆上速度检波器,通过信息叠加分析消除干扰,以及海水鸣震和多波混响造成的虚反射,提升信噪比。借助海底电缆较大自重,在潮汐活动中固定,防止因接收系统位置变化造成信息不准。借助电缆长期使用特点,在勘探中只需气枪放炮就可获取勘探信息,提高了勘探效率。

三是优化激发方式。在气枪激发中,要注重利用较大药量和气量激发,确保地震波在复杂多层系中具备较强穿透力,信噪比符合要求。一般要随着气枪沉放深度加大而加大激发能量,确保能提高地震资料信噪比和原始信息分辨率。要在勘探技术实施前对区域地表情况进行分析,有针对性的放置适用采集设备、优化采集参数。

2.2 应用系统设计

为确保适用不同滩海条件,可设计束状观测系统和PATCH观测系统,分别用于陆地和水下观测,前者具有有效覆盖次数多、炮间距均匀、方位角平滑、面元布局较好、适宜速度分析的优点,后者需要确保方位角和炮间距均匀,在此条件下可获取更大的炮间距和更多地覆盖次数,避免外在干扰,确保资料品质。束状观测系统,采用6L48S192P砌墙式细分面元,单个面元为25*25m,细分面元为12.5*12.5m,覆盖次数可达6纵12横的72次,细分后为18次,接收道数为6线*102道德1152道,道间距和炮点距均为50m,炮线距为175m,接收线距为400m,炮检距为5263m,其中纵向最大为4800m、最小为25m,束线滚动距离为1200m,横纵比为0.46。PATCH观测系统,采用PATCH细分面元,单个面元为25*25m,细分面元为12.5*12.5m,道距为50m,有4条接收线,每线有96道,接收线距为400m,有48条炮线,炮线距为175或225m,每条跑线有64个炮点。炮点距为50m,其中最大和最小分别为7426m和12.5m。

2.3 应用关键环节

一是把握激发因素。陆上和泥潭采用炸药震源,单井药量控制在1-6kg,深度为10m;水下采用气枪震源,通过多个气枪同时激发确保激发能量,并利用HYDRO软件进行实时定位,确保激发点准确,但要做好震源交替部位子波校正。

二是把握接收因素。陆上和泥潭利用沼泽检波器进行组合,横纵向要确保一定的组合基距,获取信号可抗干扰,组合参数设置中要尽量保护有效波、保留高频波。水下特别是水深2m以下部位,要利用压电检波器进行单点接收,注意做好二次定位工作,确保检波器偏移在3m以内,抑制DGPS坐标与浮球实际坐标差、检波器与测量标志间的误差以及潮水活动造成的检波器位移。在个别偏移误差较大区域,要对存在误差的资料通过分析软件纠正。

三是测量环节。要以GPS网作为基准,利用国家大地水准面数据建立野外测量控制点,通^RTK进行单个炮点位置的实测,确保各测量点位准确。

3 结论

综上所述,滩海油藏在三维地震勘探技术应用中存在技术难点,为发挥该技术优势,可通过采取优化措施、设计合理勘探系统、把握关键环节,确保勘探数据真实可靠。

地震勘探的特点篇(7)

中图分类号:P631.4 文献标识码:A 文章编号:1009-914X(2015)18-0067-01

我们国家是一个煤炭发达国家,煤炭资产相当富裕。多数的煤田地质质量良好、煤层厚实、倾角变动轻,都是对开采十分有利的条件。可是,多数的矿井在建设阶段都面对着一个共同的问题,那就是对井田精查地质勘探资料不能深入的了解,未能根据这些资料合理布置采区,不能准确把握煤层厚度变化情况及顶、底板地质条件,对工作面的预测和探测工作不够全面,这些都造成我国矿井总体效率较低。因此,我国煤田地震勘探技术的应用还有很大的发展空间。

1 煤田地震勘探技术基本概念

从物理的角度上将,岩石的弹性差异是地震勘探技术的基础。由地面实行的人工地震波在地下进行传播时,会有不同性质的岩层分界面出现,此时就会产生折射与反射的物理现象,与此同时地面上的检测系统就会接收到不同性质的地震波经过地下岩层发出的地震波信号,跟据对这些地震波的分析判断,可以推测出各岩层的形态与性质。由此可见,地震勘探技术的勘探程度相对于其他地球物理勘探技术有着明显优势。煤田地震勘探技术是一种应用较为广泛的煤田地质勘探方法,这种技术已经逐步应用到煤田地质勘探的各个阶段,对于煤田地质勘探工作具有重要意义。

2 煤田地震勘探技术发展现状

现如今,煤田地震勘探技术发展十分迅速,主要以数字化为主要标志。煤田地质勘探工作中充分利用二维和三维地震勘探技术,可以有效解决例如煤层埋藏深度、煤层起伏变化情况、断层分布情况以及可能危及矿井正常生产的地质灾害等煤田地质勘探工作。近些年来,由于物探技术水平的大幅提高,煤田地震勘探技术也在不断改进和发展。特别是随着计算机技术以及电子技术取得飞速发展,煤田地震勘探技术已经发展到如今的三维甚至四维、多分量程度,为我国煤田地质勘探工作做出了卓越贡献。随着科学技术的发展,煤田地震勘探相关技术也有了质的飞跃,其中主要体现在地震相解释以及分析技术、波阻抗反演技术、三维可视化技术、神经网络数字化处理技术等,这些理论和技术都在一定程度上为煤田地震勘探技术的发展奠定了坚实基础。

3 煤田地震勘探技术的应用

3.1 查明煤层的形态

应用煤田地震勘探技术可以有效探明目的层的具体形态,依据实施地震勘探工作区域地形及地质条件复杂程度,勘探精度可以达到85%~95%,能够清楚查明幅度高于5m的小型褶曲,勘探深度误差可以达到2%之内。

3.2 勘探煤层中小断层结构

煤田地震勘探技术的主要工作还是查明煤系地层复杂地质构造,三维地震勘探技术主要应用面积观测方法,利用这种技术可以真实反映剖面各个断层的变化及走向,并且在确定断层走向与断层落差精度方面取得了突破性进展。

3.3 划定陷落柱与采空区范围

地震勘探陷落柱的主要原理是:当地震反射波经过陷落柱时,反射波由高速层面进入低速层面,使得反射时间发生延迟,从而较为准确判断陷落柱位置与塌陷深度。由于地震勘探技术发展程度还不够完善,所以煤田地震勘探技术划定陷落柱范围主要集中在落差25m以上的陷落柱,精确度可以达到80%以上。采空区范围的确定对于煤田地质勘探工作具有重要意义,只有准确划定采空区范围才能保证煤矿开采的安全顺利进行。采空区物理环境十分复杂,因此形成的波阻抗相差不大,还可以形成煤层反射波阻,因而在时间剖面上很难被工程技术人员识别。准确划定采空区位置仍将是煤田地震勘探技术需要继续探索研究的内容。

3.4 判断煤层厚度变化及煤层所含煤矸石特性

在判断煤层厚度变化时,需要根据特定数量钻孔的已知煤厚准确标定比例系数,由此便可以依据煤田地震勘探资料定量判断煤层厚度。在判断煤层厚度变化的众多煤田地震勘探技术中,谱矩法计算方法可以得到较为准确的结果,误差较小。煤层中矸石带相对于煤层而言是一个高速层,能够与煤层形成差异较为明显的波阻抗,更容易被识别,但是却不能被分辨出来。

4 煤田地震勘探技术发展趋势

4.1 煤田地震勘探设备逐步走向数字化

地震勘探技术发展了将近半个世纪,地震勘探设备由最初的光点仪发展到之后的模拟仪,最终发展到现在的数字地震仪。随着计算机技术以及电子元件的不断发展,煤田地震勘探设备数字化程度将会不断加强。今后,我国煤田地震勘探设备及相关数据处理软件将会向着高数字化方向继续前行。

4.2 对于煤田地震勘探技术的资金投入将会大幅增加

只有进行切实可行的高精度、多分量地震勘探工作,才能在煤田地震勘探方面取得突破性进展,而进行这项工作的前提就是具有先进的仪器设备。拥有了先进的仪器,我们还需要加强对于煤田地震勘探技术相关人才的培养工作,这些都将需要我们加强经济投入,而这对于矿井甚至我国物探工作来说所带来的利益却是不可估量的,可以说这是一项一本万利的工程。

4.3 强化煤田地震勘探工作中岩性分析解释的工作

目前的煤田地震勘探工作大多还是停留在定性基础上,而这远不能满足我国煤矿开采的要求,在今后的煤田地震勘探工作中,我们要努力提高勘探精度,从定性逐步向定量发展,精确判断煤层特点与性质各种地质情况等。只有这样才能为我国矿井建设提出准确可靠的指导性意见。

5 结语

随着信息化与计算机技术的飞速发展,我们正在逐步走向“数字地球”。这也就是说今后地球上的各种资料都可以以数字形式进行记录,人们将会更加直观准确地认识地球。这对于煤田地震勘探技术的最主要影响就是数字化数字仪,通过数字处理各种地震勘探问题,使得煤田地震勘探工作更加便捷更加可靠,从而为矿井的安全顺利施工提供可靠的地质保障。相信不久的将来,我们的煤田地震勘探技术将会更加成熟,更加准确。

地震勘探的特点篇(8)

关键词:

地震勘探;地质成果;煤矿巷道掘进;地震资料解释

煤矿采区地震勘探技术历经几十年的不断发展,现已成为煤矿安全开采前构造勘探的首选技术。在地震勘探的应用过程中,黄土塬煤矿采区复杂的地震地质条件给地震勘探效果带来了诸多不确定因素,降低了地震勘探成果的精度和可靠程度。黄陵矿区的地震勘探工作从2007年的二维地震勘探开始至今先后进行过多次二维、三维地震勘探,地震勘探技术在不断优化,取得了丰富的地质成果,对煤矿生产的指导作用显著,随着巷道的掘进,部分地震勘探成果已经被验证。

1黄陵矿区地震勘探概括及成果验证

1.1黄陵矿区地震地质条件黄陵矿区地处陕北黄土高原南部,地震勘查区属于原始森林覆盖区,区内沟壑纵横、悬崖陡峭,森林植被广泛分布,最大地表高差超过300m。矿区浅层坡度横向变化较大,沟谷中部分地段基岩出露,山梁、山坡地带以第四系黄土覆盖层为主,中夹多层钙质结核层;部分地段黄土层下面发育有一层卵砾石层,这些岩层对地震波的吸收、衰减作用强烈,对开展地震勘探工作极为不利。故黄陵矿区浅表层地震地质条件复杂。矿区的主要目的煤层二号煤层全井田分布,层位较稳定,可作为资料分析、解释的标志层对煤层起伏形态及构造发育情况进行分析、研究。

1.2矿区地震勘探工作黄陵矿区一号煤矿先后进行了五次二维、三维地震勘探工作,共完成勘探面积约36.44km2,其中三维地震勘探面积21.23km2。黄陵二号煤矿从2007年至2013年先后进行了三次地震勘探工作,完成勘探面积约44.276km2,其中三维地震勘探面积约9.5km2。

1.3一号煤矿地震成果及验证情况黄陵一号煤矿共解释断层24条,均为正断层,幅值大于10m的褶曲18个,透镜体一个,异常区2个。在巷道的掘进过程中,其中7条断层、2个褶曲、1个透镜体已得到验证。其余构造特征由于巷道未掘进至该区域目前没有得到验证。地震勘探所获的地质成果经过巷道验证精度较高,其中巷道经过断层15条,验证9条,验证率为60%,煤层底板经巷道验证全矿区准确率为98%;煤层厚度、采空区、透镜体等与巷道揭示基本吻合;黄陵矿区地震勘探成果总体准确率达85%。煤层底板验证情况:在巷道掘进的区域内抽取了29个点,将巷道揭示的煤层底板值与地震解释煤层底板值进行了对比。其中地震解释最大绝对误差为11.2m,位于六盘区二维地震勘探范围内的617回风顺槽,最小绝对误差0.3m,位于二维勘探范围区内的617回风顺槽,平均误差4m。其中三维区煤层底板验证点的相对误差有一个点大于地震规范中要求的1.5%,位于四号风井十三联巷,其余验证点的相对误差均小于1.5%,二维区煤层底板验证点的误差均小于地震规范中要求的7%。一号煤矿地震勘探煤层底板准确率为97%。构造验证情况:黄陵一号煤矿共解释褶曲18个,8个向斜,10个背斜。其中2个褶曲已经巷道验证,与巷道揭示的相一致。7条断层已得到巷道的验证,在验证的7条断层中,落差大于5m的断层4条,这4条断层与巷道揭示的基本吻合,验证率为100%,落差小于5m的断层三条,其中1条断层与巷道揭示断层倾向相反、2条断层在巷道的实际生产中未发现。

1.4二号煤矿地震成果及验证情况黄陵二号煤矿地震解释成果共解释断层17条,三维区褶曲6个,在巷道的掘进过程中,其中8条断层、2个褶曲已被验证。其余构造特征由于巷道未掘进至该区域目前没有得到验证。煤层底板验证情况:在巷道掘进的区域内抽取了31个点,将巷道揭示的煤层底板值与地震解释煤层底板值进行了对比。其中地震解释最大绝对误差为14.90m,位于410辅助巷5联巷,最小绝对误差0.2m,201辅助巷6联巷。平均误差4.8m。其中三维区煤层底板验证点的最大相对误差为1.21%,均小于地震规范中要求的1.5%,二维区煤层底板验证点的最大相对误差为2.38%,均小于地震规范中要求的7%。二号煤矿地震勘探煤层底板准确率为100%。构造验证情况:地震勘探在三维区共解释了6个褶曲,2个褶曲已经巷道验证,分别为二盘区的B1背斜和X1向斜。一盘区的二维地震解释的褶曲特征与巷道揭示相符。黄陵二号煤矿地震解释成果共解释断层17条,在巷道的掘进过程中,其中8条断层已得到验证,最大落差大于5m的断层6条,其中四条断层与巷道揭示一致,2条地震解释断层经巷道验证不存在,落差大于5m的断层验证率为79%。

2勘探成果在黄陵煤矿建设的作用及发展

地震勘探成果,特别是对断层、采空区、煤层变薄区等的解释为矿井的接续工作和安全生产提供了有力的依据和重要的参考价值,在解放储量、规避风险、确保安全、提高效益方面起到了至关重要的作用。

2.1地震解释断层对煤矿建设的指导作用通过对黄陵矿区的多次地震勘探,了解到黄陵矿区构造简单,主要发育一些落差小于15m的断层,且以正断层为主。其中黄陵一号煤矿地震勘探共解释断层24条,其中7条断层已得到巷道的验证,其余构造特征由于巷道未掘进至该区域目前没有得到验证。2010年在黄陵一号煤矿602工作面进行了三维地震勘探工作,通过地震勘探解释了发育在测区西北角的2010DF1断层和发育在测区西南部的2010DF3断层,且2010DF1断层落差小于3m,向东延伸穿过北二回风大巷,2010DF3断层最大落差达8m。矿方针对地震勘探解释成果利用超前探的方法对2010DF3断层位置进行了验证,经验证该断层位置处煤层缺失,存在异常,矿方对设计巷道及时进行调整修改,规避了安全隐患。在巷道掘进至2010DF1断层位置时加强安全防范,在掘进时发现了落差2.5m的断层,验证了该断层的存在(图1)。2012年通过在黄陵一号煤矿八盘区进行的三维地震勘探,发现了在八盘区回风巷向北处小断层发育,并解释了走向一致的三条断层,2012DF3、2012DF4、2012DF5断层,其中2012DF3、2012DF4断层落差小于5m,2012DF5断层最大落差达10m。矿方根据地震解释成果在巷道的掘进过程中针对地震解释断层采取了有效的安全措施,成功的避免了风险,并验证了这些断层的存在。

2.2地震解释对煤矿建设的指导作用地震解释煤层发育对煤矿建设的指导作用:2011年对六、十盘区进行二维、三维地震勘探,其中三维地震勘探面积4.00km2,地震资料反应出该勘探区南部煤层反射波发育异常,表现为二号煤层反射波同相轴逐渐变弱且分叉,如图2所示为该异常区在时间剖面上的反映。从图中看反射波呈透镜体状,初步认为是由于煤层分叉合并造成的透镜体构造。该异常体的面积约0.077km2,位于1001进风顺槽北部300m处。在1001工作面实际生产中发现了该异常区域的存在,随后矿方对该区域进行了槽波勘探,勘探结果与地震解释基本一致。地震解释采空区对煤矿建设的指导作用:2013年对黄陵一号煤矿四号风井进行高密度三维地震勘探,三维地震勘探面积2.10km2。通过该次地震勘探,在勘探区东部边界附近发现一处采空区(见图3),地震解释采空区面积约为0.15km2,矿方根据地震解释成果利用超前探手段验证了该处采空区的存在,并确定该采空区是由于东部边界外小窑开采造成的采空区域,根据地震解释采空区位置,矿方及时调整了巷道掘进方向和施工方案,成功的规避了煤矿采空区灾害的发生,并在调整后的施工过程中进一步证实了地震解释采空区的准确性和可靠性。

2.3地震勘探在黄陵矿区的发展回顾黄陵矿区的地震勘探历程,经历了二维弯线、二维直线以及三维地震勘探,在这个历程中,地震仪器在不断更新换代,资料采集、处理、解释方法在不断总结和优化,处理、解释软件在不断更新,一些新技术和新方法也在不断试验与应用。地震仪器的发展:2007年在二号煤矿进行地震勘探使用的仪器是德国产的24位summit高分辨率数字地震仪,到2009年在一号井进行三维地震勘探使用的是408XL高分辨数字地震仪,到2010年至今在黄陵矿区地震勘探使用的是目前世界最先进的地震仪428XL高分辨数字地震仪。资料采集及解释的状况:资料采集、处理、解释方法的优化料采集从二维弯线到二维直线最后发展为三维地震勘探,该观测系统从10线8炮制48道接收,CDP网格为10m×10m逐渐优化到10线10炮制80道接收,CDP网格为5m×5m。资料处理方法从常规的资料处理到高分辨率精细处理,针对黄陵复杂山区采取特殊的处理措施,使用噪音衰减技术、高频恢复技术、多道反褶积技术等。资料解释方法从常规方法到常规与新技术新方法结合的解释方法,构造解释从以时间剖面解释为主发展到时间剖面与相干体、方差体、振幅频率地震属性切片等多种地震属性相结合的方法,煤厚解释从以钻孔为主发展到波阻抗反演、属性技术与钻孔相结合的方法。处理解释软件:处理软件从单一的CGGPlus6300地震资料处理系统发展到现在多种处理软件结合的方式,有landmark公司的Promax处理系统(美国)、Grisys处理软件系统(中国)、Omega处理软件系统、GreenMountain绿山折射静校正处理软件系统等。解释软件从单一的GeoFram软件到多种软件结合,有JASON软件、VVA软件等。

3地震勘探在煤矿建设中的新认识

3.1小断层解释基于黄土塬煤矿采区的地震地质情况,通过系统试验发现边缘检测、倾角、方位角、曲率、倾角/方位分析等地震属性对断层异常反映比较敏感,不同程度上较直观的显示出目标层的断层分布,有利于小断层识别;相干体分析技术能更清晰的识别断层和其他地层特征,有助于断层和地层特征的精细解释。近年人们注意到断层对相位的稳定影响比较大,在断层附近相位谱变得不稳定,而无断层块段相位谱表现比较稳定或呈渐变特征,故应用相位调谐体频率切片比传统的相位属性能更加准确地识别和解释断层。

3.2煤厚解释地震相技术定性预测煤厚:地震相是地下沉积构造和特征的指示参数。地震相分类是一种属性分析和解释方法,其使用神经网络技术提取地震相。此方法生成的地震相图可将地震属性与地下地层构造相关联。可将地震相细分为小组或小类,各组或各类与一个或多个属性具有一定的相关程度。地震相分类图有助于描绘地震数据中的细微变化、增强地震同相轴的分析效果。波阻抗反演技术定量预测煤厚:由于黄陵二号矿工区内煤层厚度相对于地震分辨率来说太薄,从地震剖面上无法直接解释出煤层厚度,所以利用钻孔数据垂向分辨率高和地震数据横向分辨率好的特点,用钻孔数据结合地震数据进行了波阻抗反演,根据反演结果可知煤层的波阻抗明显低于围岩的波阻抗值,在波阻抗反演剖面上解释出煤层的顶底板,从而解释出煤层的厚度。

3.3瓦斯气预测对于煤层气/瓦斯富集区勘探来说,煤层气/瓦斯富集区通常和构造煤的发育有关。根据现有研究表明,构造煤和正常煤的最主要区别体现在它们的AVO属性参数上,各属性参数包括:截距、梯度、截距+梯度、截距-梯度、泊松比等等。正常煤层的泊松比较小,而构造煤层的泊松比较大。图4为黄陵二号矿二维D1线AVO梯度剖面图,从图中可以看出梯度异常连续性差,并且强度变化大;这表明虽然煤层是连续,但是,煤层气(瓦斯)是局部富集的,煤层的渗透率是变化;梯度异常强度大的位置是煤层气(瓦斯)富集高渗区。

参考文献:

[1]蒋加钰,乔春生,刘永昌.黄土塬地震勘探方法攻关初见成效[A].复杂地表地区地震勘探实例[C].北京.石油工业出版社,1994.

[2]刘伟,曹思远.地震属性分析技术研究和应用[A].中国地球物理学会第二十三届年会论文集[C].2007.

地震勘探的特点篇(9)

[中图分类号]P631.4 [文献码] B [文章编号] 1000-405X(2013)-9-129-2

世界各国对金属矿的探测技术多年来仅限于非地震勘测技术,比如说重力法、电磁法等等,但是这些方法比较适用于金属矿的浅质层,但是随着勘探的纵向区域的加深,传统的勘测方法在能力和精确度方面的可靠性逐渐下降,所以,金属矿的勘测方法倾向于地震勘探技术,其不仅可以代替非地震勘探技术在深层金属矿中作业,更重要的是其在精度、分辨率以及勘探结果上显示出不可取代的地位。

1金属矿地震勘测现状

目前地震勘测技术仍处在前期发展的状态,其在金属矿勘测中的应用主要体现在两个方面,一是对金属矿上的岩石进行物理特性的分析,通过矿石与岩石的物理特性,分析是否具有金属矿勘探的意义;二是分析散射波场的特性,散射波长的特性与金属矿体是有相关关系的,对其进行分析得出金属矿是否具有有效的勘探性,因此地震勘探技术还存在很大的研究和提升的空间。

2金属矿地震勘测的技术分析

基于对金属矿地震勘探国内外现行使用技术的分析可得,常用地震勘测方法有五种,分别是散射波法、折射波法、反射波法、井中地震方法以及地面地震层析成像法。

散射波法。散射波发在地震勘测中属于是比较高等的技术种类,主要是用于勘测非均匀分布的地下介质的地质条件,例如对块状硫化物矿床的探测,一般情况,被探测的金属矿床在与周围岩石之间存在的速度差和密度差会形成散射波场,在差异较大时,地震勘探技术中的散射波对金属矿的散射波场进行探测,可及时有效的发现与矿体关系密切的非均匀体。比如位于我国东部地区的铜陵冬瓜山-铜矿以及我国西部地区的云南锡矿,都是通过散射波法对矿区进行高质量成像,基于数据的模拟发现金属矿区。

折射波法。折射波法在地震勘测中是应用比较早期的技术种类,其主要对矿区中的含金属矿的基岩、基底以及控矿构造进行研究,一眼就结果作为标准进行填图,并且确定金属矿的风化壳,例如位于乌兹别克西部地区的金属矿区,即是利用折射波法对低速区域的异常条带进行划分,主要是对金属矿部分的形态背景进行分析,原因是乌兹别克矿区局部异常的界面低速区域与该矿区的矿床有直接的关系,所以首先需要利用折射波法对低速异常的条带进行划分。在地震勘探技术中,折射波法虽然投入使用比较早,但是其在应用上是受到一定限制的,比如低速层覆盖在高速层下方或者是被勘测的地形结构复杂。

反射波法。反射波法在地震勘探中属于比较常用的技术种类,其主要对和金属矿有关联的地质构造进行探测,对金属矿中的断层进行标注,大致反馈金属矿中含矿地质的构造,包括形态、基底和基岩起伏状态、相似沉积金属矿以及沉积金属矿等,便于有效金属矿的探寻和发现。例如反射波发对矿区的二维或三维层面两千米以内60°-70°倾角处以及裂缝处进行地质构造上的成像。此方法运用的成效体现在位于澳大利亚的北部地区的Mount Isa金属矿区,清楚可圈定出金属矿取的涉及范围以及构造形态。

井中地震方法。井中地震方法是地震勘测技术中比较精细的技术种类,其在金属矿勘探中所涉及到的井中地震方法包括垂直地震剖面、跨孔地震层析成像和“井-地”地震层析成像,当金属矿发育地区的陡倾角大于65°时,属于高难度勘测种类,由于受限于野外采集与处理方法,导致部分地震探测方法的使用效果不是特别明显,因此利用井中地震方法的垂直剖面技术可在井中接受来自陡倾角的各种数据信息以及参数,有效的代替其他地震勘探技术,但是在金属矿区中大部分的井并不是呈现垂直状态的,所以发展为井下地震方法,有利于获取地下速度的详细信息,优化各个地层与界面之间的关系。例如位于加拿大大安大略地区的Kidd Greek金属矿和加拿大魁北克北部地区的Bbitibi金属矿区中的勘探井,前者是利用井中地震方法,发现陡倾角褶曲处火山岩层中包含硫化物矿体,并对此控矿构造进行成像;后者是利用井中地震方法,对一支矿体进行二次勘探,通过对其陡倾角的火山岩进行成像,勘探到具有高波阻抗特性的辉绿岩矿脉分布。

地面地震层析成像法。地面地震层析成像法是地震勘探技术中比较复杂的技术种类,其是以地震勘探的记录为基础,通过对首波的动态进行分析,对地下的速度进行反演,此方法以80%以上的准确性探测金属矿区底层速度的分布,虽然地面地震成像法的探测准确性比较高,但是其在纵行方位上的分辨率不高,远远低于横行方位上的分辨率,所以,地面地震层析成像法只能用于介质速度有差异的金属矿区,比如隐伏矿体、断层处以及矿体与周围岩石的接触地带等,通过对介质波速进行勘探,分析其对应岩石的特性,同时为地震的数据处理提供精确的校正资料,例如位于加拿大地区的Sudbury金属矿区,利用地面地震层析成像法对大型块状主要为硫化物的矿体进行地震反射的勘探,对于金属矿区地下的岩性界面的构造和形态进行探测,以便对地下深处的金属矿体进行圈定。

3地震勘测技术有待改善的问题

金属矿地震勘探技术在应用中暴露出诸多关键性的问题,并且此类问题有待提出具有针对性的解决方案,实现关键性问题的突破和改进。首先是基于金属矿床地质背景的限制,此限制可分为三个层面,第一是金属矿体的不规则分布,而且金属矿体在几何形态上的分布尺度是非常小的,不利于勘探;第二是金属矿床的地质构造复杂多样而且具有不稳定性,其地层处的倾角陡峭,岩石层以岩浆岩和变质岩为主,加大了勘探上的难度;第三是金属矿的表面层次的构成条件非常负责,不仅其地形的起伏变化比较大,而且表层的潜水面和风化层很深,促使地表处的岩石以的状态存在,影响勘探的准确性。

其次是金属矿资源对比其他的资源勘探,其涉及的地质和地震条件以及地质中需要解决的问题是多种多样的,条件和问题的多样表现为:第一在金属矿地震勘探中,目的层缺少比较深的深度,而且其背景的速度相对较高,再加上信号方面有效频宽的限制,与之进行对比,例如勘探技术在油气勘探中的环境条件为目的层最深深度可至数千米,信号有效的频宽在1-120赫兹,金属矿的频宽则为30-200赫兹;第二是金属矿地震勘探中目的层在界面上的波阻抗差非常小,致使有效的地震信号几乎检测不到,在进行有效波的分离和识别上极其困难,而且金属矿大部分为结晶岩,其不均匀性的分布特点造成变化多样的波场图形;第三是形态各异且规模较小的金属矿床,其底层界面在横向上是呈现不连续性的,很难采取合适的地震勘探技术对其进行勘探,缺乏地震勘探方法所需要依据的基本条件,而且当地震波的波长与金属矿体的尺度相当时,地震波会产生散射现象而无法精确的对金属矿床进行探测;第四是金属矿底层纵行方向上的密度差较小,波阻抗差的获得主要是依据金属矿地质的密度差,但是其地址中的各层速度非常接近而且速度非常高,导致垂直方向的速递比较小,只有在不同烈性的岩石之间才会显现出密度的变化,所以严重影响到勘探的顺利进行。

最后金属矿地震勘探技术无论是在理论基础上还是在技术实践上,都存在需要改善提高的地方,对于地震勘探技术尤为需要谨慎的考虑,综合金属矿区的地形特点,进行正确的选取。

4地震勘探技术的发展前景

目前金属矿地震勘探技术已提出多个新型的研究课题,其中最具代表性的是地震波散射技术,近几年更是加强了对此技术的研究力度,其以地震勘探技术的磁法、电法勘探技术为基本,以地震波散射为研究理论,确立了新领域技术的研究方向,未来金属矿地震勘探技术的发展前景是非常广泛的。

5结束语

地震勘探技术在金属矿勘探中的应用是具有不可估量的潜力的,而且地震勘测技术在国内外都备受关注,最重要的原因是地震勘探技术均可运用在金属矿勘探的各个阶段,而且其对浅层与深层的质地构造的反应精确度非常高,有利于获取金属矿的空间分布状态,基于对地震勘探技术的不断研究,其在未来金属矿勘探中的重要性会越来越大。

参考文献

[1]徐明才,高景华.用于金属矿勘查的地震方法技术[J].物探化探计算技术,2010(S1).

[2]尹军杰,刘学伟,李文慧.地震波散射理论及应用研究综述[J].地球物理学进展,2010(01).

地震勘探的特点篇(10)

引言

运用三维地震勘探技术,能够有效的解决煤田勘探中:褶曲、断层、陷落柱、煤层变化等地质现象[2]。三维地震勘探概念是在1970年由地球物理学家沃尔顿提出,经过四十多年的发展,三维地震勘探技术已经形成包括野外资料采集、室内资料处理和成果解释的一整套技术体系。

1 三维地震勘探的原理

地震勘探一般是通过炸药或者可控震源来形成地震波,在地震波向下传播的过程中,因为不同地层岩性差异,导致波阻抗不同,从而在界面处产生不同的反射和折射,在地面上用专门的采集装置接收,从而记录下了地下反射波的信息。上述讲述的是地震勘探的基本原理,我们通常对二维地震勘探反射波法比较熟悉,其实三维地震勘探和二维地震勘探在基本原理和实用技术方面有很多相似之处[3]。

2 地震地质条件

勘探区位于新疆西部的准噶尔盆地东部北缘地带,表层地震地质条件较差,地貌为呈北西-南东向多垅沙漠,沙垅相对高差5~15m,对野外施工造成了一定的困难。勘探区浅层被第四纪、新近纪地层大面积覆盖,且新近纪地层与下伏地层呈角度不整合接触,有良好的波阻抗界面,能够产生能量较强的反射波。中、深层地震地质条件较好[4],煤层赋存条件较好,构造简单,地层倾角较平缓,煤层顶底板岩性、岩相组合特征清楚,物性特征突出,以致形成较强反射波。

3 三维地震勘探的技术要求

3.1 观测系统

设计的三维观测系统是否合理会直接影响勘探效果和精度,根据勘探区的地震地质条件和实验资料分析,选择如下观测系统(图1)。

排列方式:束状8线10炮制,中点发炮;接收道数:8×48=384道;接收线距:40m;接收道距:20m;接收炮距:80m;纵向偏移距:20m+20m;最小非纵距:10m;最大非纵距:310m;排列长度:480m+480m;最大炮检距:571.4m;CDP网格:10m(横向)×10m(纵向);覆盖次数:6次(纵向)×4次(横向)。

3.2 施工方法

激发条件:单井6m井深,1.0kgTNT高速成型炸药填土闷孔激发;成孔设备:戈壁钻机;接收方式:采用4个100Hz检波器2串2并组合接收,检波器挖坑用土埋置且引线掩埋60cm以上;仪器型号:408UL多道遥测数字地震仪;记录长度:1.5s;记录格式:SEG-Y;采样间隔:0.5ms;接收道数:384道;仪器频带:全频带接收。

4 资料处理与解释

4.1 资料处理

主要处理的参数:带通最小相位、零相位滤波:(20/30~140/150Hz);地表一致性预测反褶积:预测步长8ms;时窗0~1000ms,因子长度100ms;叠后滤波:(20/30~120/130Hz);初至折射静校正参数:水平基准面+650m;低速带速度600m/s;替代速度2100m/s。

采取的主要措施包括:建立空间属性、道编辑、叠前单炮净化、静校正、反褶积、精细的NMO、DMO速度谱分析、剩余静校正、三维偏移等一系列处理。

4.2 资料解释

资料解释依据的是处理后得到的三维偏移数据体,具体解释方法以垂直时间剖面为主。

4.2.1 褶曲解释

经过三维空间偏移校正后的三维地震资料,速度变化平稳的情况下,其经过时深转换后,地震数据由时间域可变为空间域,此技术使得偏移剖面更加接近真实构造形态。本勘探区地层基本为一轴向北西-南东的宽缓背斜形态,局部发育着次一级褶曲。褶曲形态可通过时间剖面得到直观的解释(图2)。

4.2.2 断层解释

在地震资料解释中断层解释占据着十分重要的地位。三维地震勘探对于断层解释有其独特的优点,它以三维地震数据体为基础,利用的最主要的技术手段是地震相干技术[5],利用其对断层非常敏感的特性,可利用Landmark 解释系统在相干体上直接解释断层。

4.2.3 煤层厚度解释

煤层厚度可根据煤层顶、底板反射波时差以及反射波振幅等动力学参数解释煤层厚度,每层厚度的变化,直接影响着反射波的能量强弱以及信噪比的高低。

本勘探区B3煤层较厚,根据煤层顶、底板反射波时差(图3)与钻孔揭露煤层厚度制作δh/δs转换曲线(图4)解释厚煤层区煤层厚度。

5 结束语

本次三维地震勘探是在本矿区的首次应用,通过实例证明,三维地震勘探技术能够很好的实现煤田勘探的任务且获得的时间剖面信噪比、分辨率较高,丰富的三维资料信息为解释工作奠定了可靠基础。

参考文献

[1]印兴耀,等.地震技术新进展[M].中国石油大学出版社,2006:76-79.

[2]杨德义.煤矿三维地震勘探技术发展趋势[J].中国煤炭地质,2011:42-55.

[3]刘明.三维地震勘探技术的应用分析[J]中国新技术新产品,2010:1-2.

[4]张秀红.深层三维地震勘探数据采集技术[J].石油地球物理勘探,2003:358-365.

上一篇: 简述人体工程学的研究方法 下一篇: 谈谈你对药学专业的认识
相关精选
相关期刊