重金属污染现状汇总十篇

时间:2024-02-28 14:37:30

重金属污染现状

重金属污染现状篇(1)

[中图分类号] X53 [文献标识码] A [文章编号] 1003-1650(2017)05-0287-01

陆良县隶属于云南曲靖,陆良县位于云南省东部,素有“滇东明珠”之称。我县土地面积广阔,农业粮食的播种面积901050亩,轻重工作发展迅速,经济实力雄厚。但是由于工业的发展和其他因素的影响,导致了我县的环境遭到了严重污染,尤其是土壤的重金属含量过高,严重阻碍了我县农业经济发展。针对这样一个状况,我农业综合服务中心相关负责人组织工作小组,制定了工作重点,积极寻求土壤重金属的污染成因、污染特点、污染危害,然后探讨了土壤重金属污染的预防和治理方式,科学合理的保护土壤,缓解重金属污染,促进农业健康发展。

1 土壤重金属污染现状

1.1 金属汞污染

土壤中汞的来源包括土壤母质、大气中汞的干湿沉降、工业污染源、农业污染源、含汞废弃物。其中农业污染主要是含汞农药的使用、含汞废水、废气、废渣的排放而污染土壤所致。较低含量的金属汞一般不会造成土壤污染,但是在土壤微生物作用下, 汞金属转化为具有剧烈毒性的甲基汞, 也称汞的甲基化。金属汞污染对农作物的危害随着作物的种类不同而有不同。

1.2 重金属镉污染

在我国的重金属土壤污染中,镉污染是危害性最大的,镉污染土壤特点有色金属矿产开发、冶炼及其他工业生产排出的废气、废水和废渣都会造成镉污染。而耕地大量使用的磷肥中也有相当高的镉含量,因此当这些磷肥进入土壤,也加重了土壤中的镉浓度。此外,城市污泥和垃圾的焚烧也可导致土壤中镉含量增高,由于土壤对镉有很强的吸着力, 因而镉易在土壤中造成蓄积。

1.3 重金属铅污染

铅是土壤污染较普遍的元素。污染源主要来自铅化工业的发展产生的废气、废水、废渣, 汽油燃烧后的尾气中含大量铅, 矿山开采、 金属冶炼、 煤的燃烧、大量含铅化肥使用、蓄电池的丢弃等也是重要的污染源。

1.4 重金属砷污染

土壤砷污染主要来自大气降尘、 尾矿与含砷农药, 燃煤是大气中砷的主要来源。砷中毒可影响作物生长发育, 砷对植物危害的最初症状是叶片卷曲枯萎, 进一步是根系发育受阻, 最后是植物根、 茎、 叶全部枯死。

总的来说,土壤重金属污染对植物的影响主要是对其生理生态过程、植物的产量和质置方面,如果污染过于严重的话,就会直接导致植物根系坏死,植物得不到应有的土壤营养,生长寿命大大缩减,甚至于直接死掉。

2 土壤重金属污染的预防措施

2.1 加大环境监管和治理力度

土壤重金属污染的情况越来越严重,造成了严重的危害,因此,政府必须引起高度重视,加大对土壤重金属含量的监测。首先政府部门应该组织一批专业的技术人才,采用先进的监测技术和设备,对我县的土壤进行动态监测,全面掌握重金属污染的类型、污染的程度,充分了解土壤中金属成分、含量的变化,统计监测信息,将土地进行重金属筛选,根据土壤污染的具体情况,恰当的选择土壤修复技术,为治理更大范围的重金属污染区积累经验;其次要坚强环保部门对环境的监管力度,杜绝重金属污染的来源,督促相关工业园区引进净化设备,含重金属元素的废弃物进行净化处理,减少排出量,同时严格控制城市生产生活废水直接进入农田,从根本上防止重金属对土壤的污染。

2.2 扩大土壤重金属污染宣传

重金属污染已经成为我县首要的土壤污染类型,必须提高人们的防范意思。我们可以利用先进的技术,通过互联网平台、以手机为载体,传统的书籍报刊等多种形式和途径,深入开展农产品产地土壤重金属污染防治的宣传工作,广泛动员和组织社会各界力量积极参与农产品产地土壤重金属污染防治工作,在全社会形成一种良好的社会风气,提高人们对土壤重金属污染的关注,让人们了解土壤重金属污染的严重危害性,自觉进行 土壤保护。

2.3 加强技术培育

将土壤重金属污染的专业技术人员组织起来,成立土壤重金属防治小组,深入我县各地区,对土壤重金属污染进行调查研究,为了更好的开展工作,一要积极开展技术培训,不断提高其整体业务素质,特别是基层机构人员的知识结构、技能和业务素质,提高他们的专业水平,同时我们还要根据污染情况,有针对性的开设培训内容,更好的服务于我县的土壤治理工作中。

2.4 客土深翻,缓解污染

重金属的土壤污染,阻碍作物的生长发育,必须在短时间内根除,才能进行的正常的农运活动。因此我们可以在污染地区彻底挖去污染土层,换上新土,以根除污染物,也可以进行土壤的耕翻土层,采用深耕,将上下土层翻动混合,使表层土壤污染物含量减低。

2.5 施用化学改良剂,

根据土壤重金属污染的类型,向土壤中施用石灰、碱性磷酸盐、氧化铁、碳酸盐和硫化物等化学改良剂,加速有机物的分解,使重金属固定在土壤中,降低重金属在土壤及土壤植物体的迁移能力,使其转化成为难溶的化合物,减少农作物的吸收,以减轻土壤中重金属的毒害。

土壤重金属污染的防治是环境监测的重要任务,是保障我县广大人民群众身体健康的根本,是促进经济快速发展的主要推力。采取科学有效的土壤污染防治措施,能够有效改善土壤结构,提高土壤肥力,降低土壤环境的污染。在未来的环境监测和农业生产中,政府和人民更应该携起手,爱护我们共有的生存土地,让重金属污染事件不再发生,远离人民群众,实现环境友好型的生存环境。

参考文献

重金属污染现状篇(2)

中图分类号:S163.6 文献标识码:A 文章编号:0439-8114(2014)04-0798-04

Situation of Heavy Metals Pollution in the Agricultural Soil of Hancheng City

HU Ming

(College of Chemistry and Life Science,Weinan Normal University / Key Laboratory for Eco-environment of Multi-River Wetlands in Shaanxi Province,Weinan 714000,Shaanxi, China)

Abstract: In order to study the soil distribution characteristics of heavy metals in Hancheng city, contents of 5 heavy mentals in surface sediments were sampled and analyzed. The single factor pollution index and comprehensive pollution index were used to evaluate the data. The results showed that the pollution of Cr, Cu were serious. Pb was in the state of light pollution and the levels of Zn, Mn were the lowest. Analyzed with the comprehensive pollution index, the heavy metal pollution of agricultural soil in Hancheng city was in the state of high pollution. With the view of spatial distribution, heavy metal pollution in the southwest area of Hancheng was the most serious, and the northwest area was the lightest. It was suggested that appropriate measures should be taken to prevent and control metal pollution in the region to avoid making harm to human health.

Key words: Hancheng city; soil heavy metal; spatial distribution characteristics; pollution assessment

农田土壤重金属污染状况、污染机理及其修复直接关系到人们的身体健康与社会稳定发展,倍受各级政府的关注,是当今土壤科学和环境科学研究所面临的重要课题。农田土壤污染因素很多,在自然条件下土壤中重金属含量高低受到成土母质以及生物残落物的影响。除此以外,在现代社会背景下,土壤处在自然环境的中心位置,承纳着来自工业、农业以及生活污水、固体废弃物、农药化肥、大气降尘及其酸雨等多方面的约90%的污染物[1]。农田土壤中重金属含量的高低直接影响到农产品的质量安全。全国大约有20%的粮食、34%的农畜产品和56%的蔬菜因质量安全问题危及着人们的身体健康[2]。

关中灌区在工业的影响下,河流重金属污染相对比较严重,根据汪新生等[3]的研究,陕西省2007年工业重金属,主要是重金属铅、镉、六价铬被排放到渭河流域,而关中地区农业依赖渭河灌溉,这对当地农产品质量势必产生较大影响。已有学者对关中灌区土壤污染状况开展过研究,郑国璋[4]以背景值为指标,对于关中地区宝鸡峡灌区、交口灌区、洛惠东灌区农业土壤中Cd、As、Cr、Pb等重金属元素的污染程度进行研究,得出关中灌区土壤重金属综合累积程度从高到低依次为交口灌区、宝鸡峡灌区、洛惠东灌区,灌区农田土壤重金属Pb的累积程度普遍较高,主要是长期污水灌溉所致。易秀等[5]对泾惠灌区土壤中Hg、Cd、Cr、Pb、As、Cu、Zn等7种重金属含量的研究发现部分点位属于中度污染。

本研究以陕西省韩城市农田土壤为研究对象,对受到渭河灌溉以及金矿开采影响下的农业土壤污染现状进行评价,并绘制出农田土壤中重金属累积与空间分布状况图,以期为当地农产品的质量安全及其土壤管理提供科学依据。

1 材料与方法

1.1 研究区概况

研究对象为韩城,区域地理坐标34°37′-35°19′N,110°17′-110°29′E,属暖温带大陆性半干旱季风气候。

1.2 研究方法

1.2.1 样品采集 在研究区域内共选取了25个采样地块,采样点布局见图1,每个地块设置15个重复,采集0~20 cm耕层的土壤样并充分混合,用四分法取500 g样品放入聚乙烯塑料袋。

1.2.2 样品前处理 将采集的土壤样品在室内风干,风干前尽可能剔除枯枝落叶、根茎、石子、动物残体等杂质,待完全风干后,用木棒碾碎过2 mm筛,将每个样品取出100 g左右,供测定土样有机质和重金属的含量用。

1.2.3 样品分析 土壤样品经过浓硝酸、浓盐酸、氢氟酸、高氯酸消解后,利用原子吸收光谱法进行测定[6]。

1.2.4 评价方法 采用单因子污染指数法和综合污染指数法相结合的方法,评价研究区土壤重金属的污染程度。单因子污染指数评价,即以介质中某污染物含量值与该污染物的评价标准之比作为污染指数;通常用来评价单污染元素对土壤质量的污染程度,单项污染指数愈小,说明环境介质中受这种元素的污染程度愈轻[7],其计算公式为:

式中,Pi为i污染物的污染指数;Ci为i污染物的实测值;Si为i污染物的评价标准。Pi≤1,表示未受污染;Pi>1表示已受污染,其值越大受污染程度越严重。根据式(1)计算出的污染指数可以对元素污染程度进行分级,单项污染指数的评价方法,其实是计算超出背景值的倍数。本研究以当地土壤中元素背景值[8]作为污染指数的基数进行单因子评价。

综合污染指数采用内梅罗污染指数[7],计算公式如下:

式中,Piave和Pimax分别是平均单项污染指数和最大单项污染指数。内梅罗污染指数较多地强调了最大污染指数对环境的影响,易造成计算结果的失真,而采用姚志麒[9]对平均值赋予较大权系数(X/Y)的方法可解决该问题。X代表最大单项污染指数,Y代表平均单项污染指数,则公式(2)可写成公式(3):

在式(3)中,P综为内梅罗污染指数;Pi为单因子污染指数;Pimax为最大单项污染指数;n为污染项目数。

空间分析利用ARCGIS 9.3地理系统统计分析模块获取研究区域土壤重金属的空间分布情况。

2 结果与分析

2.1 土壤重金属统计与对比

对所采样品进行一定的筛选,剔除可能因为分析失误所造成的可疑数据,然后把选出的数据进行统计分析。表1为韩城土壤中5种重金属含量基本统计信息。从表1可以看出,Zn、Pb、Cr、Cu、Mn 5种元素的变异系数介于0.21~0.40之间。变异系数反映一个数据集的离散程度,其值越大表示数据离散度越高,其值越小越离散度越小。由此可见,这5种重金属各样点间具有一定的离散度,Cu的离散程度相对于其他4种重金属元素较高。

研究区综合污染指数的范围为2.49~5.97,平均值为3.61。划分等级后,研究区土壤样点主要集中在重度污染,占到了总样本数的64%,其余36%为中度污染,说明当地农业土壤重金属污染情况较为严重,在农业操作当中应该重视重金属对土壤的污染。有研究表明土壤中的重金属污染的原因主要有矿石开采、城市化建设、固体废弃物堆积、施用化肥、污水灌溉等原因[10,11],当地农田土壤又主要依赖黄河、渭河的污水漫灌以及长期施用化学肥料,这些是造成当地农业土壤重金属污染程度较高的主要原因。总体而言,韩城市农业土壤重金属污染较为严重。

2.3 土壤重金属污染分布情况

从图2中Zn的分布可以看出,在研究区的西南部地区土壤Zn的富集程度较高,整个北部地区的含量较低,其他地区都处于中间水平。但从整体上来看,农业土壤中Zn的污染水平较低,仍处于一个相对安全的范围内。图3中土壤Pb的污染范围及程度与Zn相近。

农业土壤中Cr的分布为西南部地区污染程度较高,中部偏东污染程度相对较高,其他地区污染程度较一致(图4)。但从表2可以看出,研究区Cr污染已经非常严重,再结合Cr的空间分布情况可以得到当地农业土壤中Cr的污染在西部及西南部地区最为严重。从图5可以看出韩城农业土壤中Cu的污染现状,其空间分布为南部地区污染最为严重,向东北部污染程度逐渐降低,但在中部偏东土壤中Cu含量相对较高,中部及西北部地区的Cu污染程度最低。结合表2来看,研究区农业土壤中Cr、Cu的污染程度非常高,应加强农业土壤重金属Cr和Cu的治理。

从Mn在研究区的空间分布情况(图6)来看,土壤中Mn污染较以上几种重金属有所差异,除南部地区污染严重外,其他地区也有污染相对严重的点,但并未造成较大面积的集中污染。结合表2可以看出, Mn只在少部分采样地块出现了轻度污染,其他大部分样地仍然处于清洁、尚清洁水平。

由于受到Cr、Cu两种重金属的影响,研究区域内农业土壤重金属的综合污染指数分布规律也与Cr、Cu的分布规律相似,即西南部地区污染严重,西北部地区污染相对较轻,其他地区的污染程度处于两者之间(图7)。

3 结论

1)研究区内农业土壤重金属中Cr、Cu污染情况最为严重,污染指数平均值分别为4.93、4.55,已达到重度污染水平。在所有的监测点中,Cr、Cu重度污染点分别占100%和84%。Pb在研究区内主要为轻度污染。Zn、Mn处于较安全的范围。

2)从农业土壤中Zn、Pb、Cr、Cu的空间分布可以看出,西南部地区重金属的积累程度较高。

3)从综合污染指数空间分布来看,研究区内农业土壤的重金属污染处于重度污染水平,且研究区农业土壤西南部污染较为严重,西北部污染较轻。

参考文献:

[1] 邢光熹,朱建国.土壤微量元素和稀土元素化学[M].北京:科学出版社,2002.

[2] 夏家淇.土壤环境质量标准详解[M].北京:中国环境科学出版社,1996.

[3] 汪新生,郭 琦.陕西省重金属污染特征分析[J].中国环境监测,2011,27(4):22-27.

[4] 郑国璋.关中灌区农业土壤重金属污染调查与评价[J].土壤通报,2010,41(2):473-478.

[5] 易 秀,谷晓静,侯燕卿,等.陕西省泾惠渠灌区土壤重金属污染潜在生态风险评价[J].干旱地区农业研究,2010,28(6):217-221.

[6] 鲁如坤.土壤农业化学分析法[M].北京:中国农业科技出版社,2000.

[7] 陈玉娟,温琰茂,柴世伟.珠江三角洲农业土壤重金属含量特征研究[J].环境科学研究,2005,18(3):75-77.

[8] 中国环境检测总站.中国土壤元素背景值[M]. 北京:中国环境科学出版社,1990.

重金属污染现状篇(3)

土壤重金属污染是指由于人类活动,土壤中的微量金属元素在土壤中的含量超过背景值,过量沉积而引起的含量过高。土壤重金属是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。随着工业的发展、城市化的扩大和农用化学物质的频繁使用,重金属大量进入土壤环境,造成生态环境恶化又由于重金属不可降解,对土壤造成的长期的污染,已经成为现今危害最大的环境问题之一。

一、土壤污染的原因

中国的海陆总面积有1260万平方公里,其中陆地面积就占了960万平方公里,由此说明我们国家有大约2/3的面积都是土地,我们在这片土地上面建设自己的家园,可就因为这快速发展的科技和文化,我们面对的问题也逐渐变多,其中最为严重也最为重要的就是土壤问题,当我们的土壤问题逐步加重,我们将失去我们赖以生存的家园,同时,土壤污染也会给我们的生命造成威胁,经过调查土壤污染可以分为很多种类,根据污染类型可以分为大气污染,污水污染,化学污染等,根据污染种类又可以分为铅,铬汞等污染,本文主要将土壤的污染分为了两大类:工业污染和农业污染。

1.工业污染

(1)污水污染:工业废水里面含有很多种元素,其中包括氮、钾、磷等土壤所需要的元素,所以少量污水排放到土壤中还可以起到增肥的作用,但是如果不经过处理直接排放到土壤中的话,污水中的氰化物和其他重金属物质比如说汞和铅之类的元素则会富集到土壤中,当大量排放后土壤的结构就会被这些重金属物质所破坏,从而不能继续使用。

(2)大气污染:工业排放出来的有毒气体也是致命的打击,工业废气中主要含有二氧化硫、一氧化碳等有毒有害气体,这些气体排放到大气中之后则会引起酸雨等酸性过高的雨水,这些雨水不仅会破坏植株,更会影响到土壤中的酸碱平衡,杀死很多农作物,这些气体以雨水为媒介进入土壤中,而一些颗粒状的物质则因为大量排放而聚集沉淀到土壤中,直接对土壤造成了污染。

2.农业污染

(1)化肥污染

化肥的作用就是通过人工的手法增加农作物的产量,少量的使用氮肥磷肥或者其他的硝化肥料可以增加农作物的产量,但是如果盲目的或者一味的使用这些肥料会使土壤出现富营养化,破坏土壤的结构,使土壤灰化。土壤结构遭到破坏,农作物就不能生长,影响了我们的食物生产,就算还可以得到农作物,也会影响到人体的健康。

(2)农药污染

r药的作用就是防止植物被虫害或者使农作物能够经得起极端条件,恰当的使用可以使农作物增产,但是农药里面含有大量的氰化物,杀虫剂和防腐剂等物质,这些物质大量的使用或者沉积同样也会破坏土壤的组织结构,而且这些农药也会导致一些鸟类或者对植株有益的动物远离,这样不仅破坏了生态环境也减弱了粮食的生产。

二、土壤重金属污染对人体的危害

重金属污染导致土壤中金属离子超标,又因为土壤污染很难自身降解,所以就会不断的积累,这些重金属离子根据生态系统的物质循环进入人体内,这种高浓度的金属会与人体内的蛋白质氨基酸结合被人体吸收,引起重金属中毒。

1.最引人关注的就是铅中毒,相传伟大的罗马帝国就是因为铅中毒而灭亡的,罗马人在生活中大多使用铅制品,大量的摄入铅会使人的神经系统崩溃,消化系统损坏,当铅进入人体血液之后会干扰血红蛋白的合成,从而引起人贫血,铅中毒也会影响生育能力,1931年的日本也因为铅中毒出现了一种名为“痛痛病”的怪病。

2.重金属污染的另一种危害就是镉污染,镉主要是通过肺或者食物进入人体,镉中毒会导致人体的肾功能衰竭或肺水肿等致命疾病。典型的镉污染案例有:湖南省浏阳市镇头镇双桥村事件;广东北江流域镉超标事件;稻米镉超标事件。

3.汞中毒,汞中毒则会引起呼吸道,消化道,肾功能等等功能的衰竭,从而致死。典型的汞污染案例:贵州万山汞污染事件;河南汞污染等等。

4.砷中毒,砷和含砷金属的开采、冶炼,用砷或砷化合物作原料的玻璃、颜料、原药、纸张的生产以及煤的燃烧等过程,都可产生含砷废水、废气和废渣。砷污染主要来自工业生产及含砷农药的使用、煤的燃烧。含砷废水、农药及烟尘都会污染土壤,砷和砷化物一般可通过水、大气和食物等途径进入人体,造成危害。元素砷的毒性极低,砷化物均有毒性,三价砷化合物比其他砷化合物毒性更强。典型的砷污染案例有:湖南岳阳砷污染事件湖南石门砷污染事件等等。

5.铬中毒,主要来源于劣质化妆品原料、皮革制剂、金属部件镀铬部分,工业颜料以及鞣革、橡胶和陶瓷原料等;如误食饮用,可致腹部不适及腹泻等中毒症状,引起过敏性皮炎或湿疹,呼吸进入,对呼吸道有刺激和腐蚀作用,引起咽炎、支气管炎等。工业废水中主要是六价铬的化合物,常以铬酸根离子[(CrO4)2-]存在。煤和石油燃烧的废气中含有颗粒态铬。而六价的铬毒性较强,易被人体吸收,在人体积攒时间一长更容易致癌。典型的铬污染案例:云南铬污染事件;大连某工厂铬污染危害土壤事件等等。

少量的金属元素的吸入对人体是有益的,但是由于排放出来的金属元素价态的改变或者结构的变化就会对人体有致命的打击,过度的吸入有害物质对人们的生长发育也会有阻碍作用,其实土壤对人体危害不仅至来源于农作物,很多时候皮肤的接触也会导致各种疾病,所以如果不加以防治,只会变得越来越严重。

三、土壤重金属污染现行治理方法

1.化学方法

化学修复是利用加入到土壤中的化学修复剂与污染物发生一定的化学反应,使污染物被降解和毒性被去除或降低的修复技术,包括施用有机物料、施用沉淀剂、吸附剂或粘合剂,施用化学改良剂等方法。对于重金属轻度污染的土壤,使用化学改良剂可使重金属转为难溶性物质,减少植物对它们的吸收。常用的化学改良剂有石灰、石膏、磷石膏、硫酸亚铁,硫磺、腐殖酸、腐殖酸钙等。例如,施石灰于酸性土壤,可减弱土壤的酸度,使镉、锌、铜、汞等形成氢氧化物沉淀,从而降低它们在土壤中的浓度,减少对植物的危害。对于硝态氮累积过多并已流入地下水体的土壤,一则大幅度减少氮肥施用量,二是配施脲酶抑制剂、硝化抑制剂等化学抑制剂,以控制硝酸盐和亚硝酸盐的大量累积。

化学治理措施的有点事治理效果和费用适中,缺点是容易再度活化。

2.工程治理方法

工程治理措施主要包括:客土、换土、去表土和深耕翻土等措施。

改变耕作制度会引起土壤环境条件的变化,消除某些污染物的危害。对于污染严重的土壤,采取铲除表土和换客土的方法;对于轻度污染的土壤,采取深翻土或换无污染客土的方法[1]。这些方法适用于小面积改良。但对于大面积污染土壤的改良,非常费事,难以推行。

3.生物治理方法

(1)微生物土壤生态改良剂

能够促进离子交换、调节pH值,具有良好的吸附、代换能力,可以净化土壤,改善土壤年理化性状和生物活性。作物施用后可以有效改善农产品外观,促进可溶性氨基酸、维生素等营养元素的合成,降低硝酸盐、重金属等有害物质含量。

(2)植物修复

严重污染的土壤可改种一些非食用的植物如花卉、林木、纤维作物等,具体方法包括植物提取,植物降解,植物稳定,植物挥发。

4.农业治理方法

(1)施加有机肥料

施加有机肥料可增加土壤有机质和养分含量,既能改善土壤理化性质特别是土壤交替性质,又能增大土壤容量,提高土壤净化能力。收到重金属和农药污染的土壤,增施有机肥料可增加土壤交替对其的吸附能力,同事土壤腐殖质可络合污染物质,显著提高土壤钝化污染物的能力,从而减弱其对植物的危害。

(2)改变轮作制度

改变轮作制度会引起土壤环境条件的变化,可消除某些污染物的毒害。据研究,实现水旱轮作是减轻和消除农药污染的有效措施。如DDT农药在棉田中的降解速度很慢,残留量大,而棉田改水之后,可在很大程度上加速DDT的降解[2]。

四、土壤重金属污染的现状

环境保护部和国土资源部公布的《全国土壤污染状况调查公报(2014)》披露,我国部分地区土壤污染较重,耕地土壤环境质量堪忧,工矿业废弃地土壤环境问题突出。

(1)全国土壤总超标率为16.1%,其中重度污染点位比例为1.1%。土壤污染以无机型为主。南方土壤污染重于北方,长三角、珠三角、东北老工业基地等部分区域土壤污染问题较为突出,西南、中南地区土壤重金属超标范围较大。镉、汞、砷、铅4种无机污染物含量分布呈现从西北到东南、从东北到西南方向逐渐升高的态势。

(2)耕地土壤点位超标率为19.4%,其中轻微、轻度、中度和重度污染点位比例分别为13.7%、2.8%、1.8%和1.1%,主要污染物为镉、镍、铜、砷、汞、铅、滴滴涕和多环芳烃。林地点位超标率为10.0%,草地点位超标率为10.4%,未利用地点位超标率为11.4%。

(3)k、汞、砷、铜、铅、铬、锌、镍8种无机污染物点位超标率分别为7.0%、1.6%、2.7%、2.1%、1.5%、1.1%、0.9%、4.8%,其中镉重度污染点位比例为0.5%。六六六、滴滴涕、多环芳烃3类有机污染物点位超标率分别为0.5%、1.9%、1.4%。

(4)在调查的690家重污染企业用地及周边土壤点位中,超标点位占36.3%,主要涉及黑色金属、有色金属、皮革制品、造纸、石油煤炭、化工医药、化纤橡塑、矿物制品、金属制品、电力等行业。调查的工业废弃地中超标点位占34.9%,工业园区中超标点位占29.4%。

(5)在调查的188处固体废物处理处置场地中,超标点位占21.3%,以无机污染为主,垃圾焚烧和填埋场有机污染严重。

调查的采油区中超标点位占23.6%,矿区中超标点位占33.4%,55个污水灌溉区中有39个存在土壤污染,267条干线公路两侧的1578个土壤点位中超标点位占20.3%。

不难看出我们国家的污染现状是多么的恐怖,在我们亲身的实践经历中我们发现,很多地区的土壤颜色各不相同,当我们走访各小区或者街道进行调查的时候,很多人都不了解土壤污染是什么,都不知道土壤污染的严重性,就是这样的无知和不重视才会导致土壤问题越来越严重。而且根据我们测量的数据趋势也不难看出土壤污染正在逐年恶化。

2010年,中国水稻研究所与农业部稻米及制品质量监督检验测试中心《我国稻米质量安全现状及发展对策研究》称,我国1/5的稻米耕地受重金属污染。2011年全国人大常委会会议上,环保部部长周生贤披露的数字是:中国受污染耕地约有1.5亿亩,占18亿亩耕地的8.3%。2013年年底国土资源部副部长王世元在土地调查新闻会上公布中国内地中重度污染耕地大约为5000万亩。2014年4月17日环境保护部和国土资源部公布的《全国土壤污染状况调查公报》中显示全国土壤总超标率为16.1%,其中重度污染点位比例为1.1%。

根据这些数据我们大胆的猜测,在多少年之后我们的土壤将全部被污染,或者换一种说法,我们还有多少时间去浪费?虽然到目前为止,这些大数据后隐藏的信息,受影响的地区和人群,给人们生活带来的影响等等,都还未公布于众。但我们可以看出,土壤污染问题从来都没有消退,他一直存在并且愈加愈烈。

五、展望

国务院关于印发土壤污染防治行动计划的通知指出,要到2020年,全国土壤污染加重趋势得到初步遏制,土壤环境质量总体保持稳定,农用地和建设用地土壤环境安全得到基本保障,土壤环境风险得到基本管控。受污染耕地安全利用率达到90%左右,污染地块安全利用率达到90%以上。到2030年,全国土壤环境质量稳中向好,农用地和建设用地土壤环境安全得到有效保障,土壤环境风险得到全面管控。受污染耕地安全利用率达到95%以上,污染地块安全利用率达到95%以上。到本世纪中叶,土壤环境质量全面改善,生态系统实现良性循环。

这是国家对土壤问题所提出的解决办法,而我们则应该从身边做起。

这是我们赖以生存的土地,他现在已经被我们破坏的千疮百孔,不知道什么时候就会被人类全部毁灭,虽然国家出台了各种法律来保护防治土壤的问题,但是我们更应该从科学的角度来治理土壤,研究出更多的生物化学方面的东西来更加有效的改善土壤问题。

参考文献:

[1]赵美微,塔莉,李萍.土壤重金属污染及防治/修复研究[J].北方环境,2007.

重金属污染现状篇(4)

随着城市化进程的加快,工业、农业的发展,排放的工业三废及大量施用的农药、化肥等越来越多,使菜地土壤重金属含量超标严重,不仅对土壤生物种类的多样性及生态环境的安全性产生威胁,具有一定的生态风险[1,2],而且直接或间接为害人体健康[3,4]。据统计,2007年我国受污染的耕地已达

1 000万hm2 [5],其中土壤重金属污染尤为突出[6]。环境污染的严重性使人们越来越意识到土壤尤其是菜地土壤重金属污染评价的重要性,如北京、天津、上海和广州等大城市于20世纪80年代就已系统地对郊区蔬菜的污染状况开展了调查和研究[7]。近几年来,湖南环洞庭湖区[8]、广西桂林[9]、湖北武汉[10]等地也陆续开展了蔬菜基地重金属污染现状评价工作。调查结果显示,环洞庭湖区典型蔬菜基地土壤Cd污染严重,超标率达到45%以上,Ni也有不同程度的超标[8],虽然大多数城市蔬菜基地土壤重金属含量低于国家土壤环境质量标准(二级)[11],但土壤中Pb、Cd、Zn等重金属含量均较高,且重金属具有隐蔽性、长期性、累积性和不可逆性等特点[12],因此必须予以重视。

武汉周边地区蔬菜基地,是武汉市的蔬菜生产和供应的主要来源,与城郊居民的日常生活息息相关。为实现蔬菜从田间到餐桌的质量安全控制,提高蔬菜质量,全面调查了武汉市洪山区、蔡甸区、东西湖区以及新洲区的24个蔬菜基地土壤的pH值、EC值以及Cu、Zn、Pb、Cd 4种重金属含量,对武汉近郊菜地土壤重金属污染现状进行了评价,提出相应的防治措施,以期为环境保护及无公害蔬菜生产的可持续发展提供科学依据。

1 材料与方法

1.1 样品采集与处理

以武汉市江夏区、洪山区、蔡甸区、东西湖区、新洲区的24个蔬菜生产基地为监测样点,按照《土壤环境监测技术规范》(HJ/T 166-2004)[13]布设监测点并采集0~20 cm耕层土壤,每个蔬菜生产基地采集不同位置、不同点数的土样混合均匀,每个点获得复合样1份,共采集土壤样品24份。

将所取土样置于室内通风阴凉处风干,去除杂物,经100目筛后混匀,保存于采样袋中,待测。

1.2 测定项目及方法

土壤浸提后用电导仪测定pH值和EC值;有机质含量参照鲍士旦[14]方法,用重铬酸钾容量法-外加热法测定;样品重金属测定包括铜(Cu)、锌(Zn)、镉(Cd)和铅(Pb),参照《土壤环境质量标准》(GB 15618-1995) [11],将土壤经过盐酸-硝酸-高氯酸消解后,原子吸收分光光度法测定。

2 结果与分析

2.1 不同菜地土壤理化性质和重金属含量比较

表1显示,除蔡甸区及其他区少量菜地土壤偏酸性外,其他菜地土壤大都呈中性或偏碱性。蔡甸区的有机质含量平均较高,新洲区的最低,其中蔡甸区张湾村蕹菜菜地土壤有机质含量最高,为30.22 g/kg,是新洲区双柳先正达基地的4.6倍。参照湖北省土壤背景值(土壤的环境要素在未受人类明显污染时,其化学元素的正常含量称为土壤背景值,或土壤环境背景值)以及国家土壤背景值二级标准[15],全部样点土壤的Cu、Zn、Cd、Pb平均含量均在国家土壤背景值标准以内,且低于湖北省土壤背景值(Pb除外)。其中,新洲区的所有菜地土壤Pb含量低于湖北省土壤背景值,且远远低于国家土壤背景值。

2.2 不同区蔬菜生产基地重金属含量差异

表2显示,新洲区菜地土壤的Cu含量平均值最高,江夏区最低;洪山区菜地土壤的Zn含量最高,江夏区的最低;蔡甸区土壤中的Cd平均含量最高,为洪山区和新洲区的2倍;江夏区菜地土壤的Pb平均含量最高,新洲区的最低。但相同区不同取样地点的重金属含量差异较大,如新洲区双柳镇东家村的Cu含量是双柳刘镇村的17倍;东西湖区柏泉农场的Zn含量是走马岭四季豆菜地的34.9倍。

3 结论与建议

3.1 结论

通过田间采样和室内分析,试验结果显示,所调查的24个武汉市蔬菜基地土壤大部分呈中性或偏碱性,有机质含量差异较大,重金属含量均低于国家土壤背景值二级标准,说明这些蔬菜基地不存在重金属污染问题。但是洪山区菜地土壤Pb平均含量较高,可能是因为该地区处于武汉市中心繁华阶段,车流量大,空气质量较差,另外江夏区部分菜地土壤Pb含量也较高,这2个区进行蔬菜生产时应予注意。此外,洪山区洪山菜薹原产地,蔡甸区张湾村蕹菜基地、白菜基地和金鸡苦瓜基地,东西湖区柏泉农场生菜基地土壤酸化比较严重,必须予以高度重视。

3.2 建议

根据所得试验结果以及无公害蔬菜生产的要求,应采取以下措施保障蔬菜产品质量安全,降低和控制土壤和蔬菜的重金属含量。

①源头控制重金属污染源 土壤中重金属主要来源于灌溉水、大气沉降物[16]、工业“三废”排放、汽车尾气[17]等,应加强环境保护,减少有毒、有害物质的任意排放。

②合理规划蔬菜生产基地 在规划蔬菜生产基地之前,应对基地周边的环境进行调查,如附近有无污染性的工厂,对水源、土壤的重金属含量进行监测,应选择3 km以内水源、土壤和空气重金属含量在国家标准规定范围内、土壤有机质含量高的地块[18]。

③科学配方施肥 农业生产过程中,除水源中可能含有重金属外,施用的肥料中也含有一定量重金属元素[19]。因此,在实际生产中,应采取测土配方施肥,合理、适时、适量施用化肥,尽量施用充分腐熟有机肥,减少肥料中的重金属源。

④调节土壤pH值 Singh等[20]认为土壤中的重金属活性与土壤pH值有关,pH值越高,重金属被解吸的越少,活性越弱,越不易被植物吸收,反之越易向植物体内迁移。因此,应结合蔬菜对土壤pH值的要求采取合适的措施调节土壤pH值,如对于酸性土壤,可增施熟石灰、草木灰等[21];对于碱性土壤,可使用燃煤烟气脱硫副产物[22]、沸石[23]等。

参考文献

[1] 孔凡美,冯固,李晓林,等.土壤重金属污染对丛枝菌根真菌产孢量的影响[J].应用与环境生物学报,2004(2):218-222.

[2] 朱永恒,濮励杰,王宗英.芜湖市郊土壤污染对土壤动物群落结构的影响[J].应用与环境生物学报,2005(3):319-323.

[3] 高树芳,李斌,刘晓芳.有机-中性化技术对镉铅污染土壤春菜生长的影响[J].江西农业大学学报,2004(1):123-126.

[4] 赖发英,叶青华,涂淑萍,等.重金属污染地区的植物调查与研究[J].江西农业大学学报,2004,26(3):455-457.

[5] 国土资源部.我国1.5亿亩耕地遭污染[J].环境保护,2007(4B):21.

[6] 林玉锁,李波,张孝飞.我国土壤环境安全面临的突出问题[J].环境保护,2004(10):39-42.

[7] 朱美英,罗运阔,赵小敏,等.南昌市近郊蔬菜基地土壤和蔬菜中重金属污染状况调查与评价[J].江西农业大学学报,2004,27(5):781-784.

[8] 朱奇宏,黄道友,樊睿,等.环洞庭湖区典型蔬菜基地土壤重金属污染状况研究[J].农业环境科学学报,2007,26(增刊):22-26.

[9] 石卉,黄慧来,文建辉.桂林市蔬菜种植基地重金属污染调查及分析[J].环境科学与技术,2007,30(7):43-45.

[10] 禹红红,胡学玉.武汉市郊区设施蔬菜地土壤重金属含量及其生态风险[J].应用与环境生物学报,2012(4):582-585.

[11] 国家环保局环境科学研究院.土壤环境质量标准GB 15618-1995 [S].北京:中国标准出版社,1995.

[12] 张楠.土壤重金属污染的特点及防治措施探讨[J].现代农业,2010(11):22-23.

[13] 国家环境保护总局.土壤环境监测技术规范 HJ/T 166-2004[S].北京:中国环境科学出版社,2004.

[14] 鲍士旦.土壤农化分析.3版[M].北京:中国农业出版社,2000.

[15] 中国环境检测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.

[16] 张乃明.大气沉降对土壤重金属累积的影响[J].土壤与环境,2001,10(2):91-93.

[17] 肖厚军,李剑,闫献芳.贵阳市郊区菜地土壤铅含量及影响因素研究[J].农业环境科学学报,2008(1):174-177.

[18] 丁华荣,吴同书,韩树林,等.无公害蔬菜基地选择与生产技术[J].上海农业科技,2003(6):78.

[19] 陈林华,倪吾钟,李雪莲,等.常用肥料重金属含量的调查分析[J].浙江理工大学学报,2009,26(2):224-227.

[20] Singh B R, Kristen M. Cadmium uptake by barley as affected by Cd sources and pH levels[J]. Geoderma, 1998, 84: 185-194.

重金属污染现状篇(5)

中图分类号 X56 文献标识码 A 文章编号 1007-5739(2016)13-0227-01

东莞市位于广东省中南部,属珠江、东江冲积平原,土地肥沃,有丰富的土地、森林资源,濒临南海,地处北回归线以南,属于南亚热带海洋性气候,年平均气温22.3 ℃,降水量1 780.4 mm,日照量1 780.4 h,具有良好的农业生产气候条件。蔬菜在东莞农业生产中占据了极其重要的地位,一直以来是我国供港蔬菜的生产和出口基地,2014年东莞蔬菜的播种面积保持在2万hm2左右,随着经济的发展,大量工厂产生的废气废水致使蔬菜中重金属检出率很高[1]。蔬菜重金属污染问题不仅影响了东莞市蔬菜出口和菜农收入,还影响消费者的健康。本文在综述东莞蔬菜重金属污染状况的基础上,提出生产过程中的多种防治措施。

1 蔬菜重金属污染现状

近年来,东莞城市化和工业化快速发展,大量工厂的出现,给农业土壤带来了严重的污染过,特别是土壤重金属污染。经过调查,珠江三角洲典型地区中山市与东莞市铅、镉的污染比较严重,平均有13.2%的蔬菜样品中铅与镉的含量超过国家卫生标准的允许量[2]。土壤中镉污染为5种重金属中最严重,平均污染指数超过警戒线4倍,为严重污染等级[1]。东莞市菜地土壤整体受到了轻度的重金属污染,以西北部污染较为严重,东北部污染最轻[3]。东莞市土壤中主要受到Cd和Hg污染,许多蔬菜对重金属都有积累能力,例如芥兰对汞和铬积累的能力较强,空心菜、白菜和油菜对铅、镉的积累能力强。

2 蔬菜重金属污染来源

2.1 大气污染

东莞市有一些大型的蔬菜基地位于交通繁忙地带或毗邻高速公路。大气污染主要来源于工业生产、汽车尾气排放。大量的有害气体和粉尘中含有重金属。气体中的重金属经过自然沉降和水沉降进入土壤。污染物以二氧化硫、烟尘和粉尘为主,其次还有氮氧化物、一氧化碳、硫化氢、氟、铅等。

2.2 水污染

东莞市的蔬菜用地环境受到周边企业工业“三废”、城镇生活垃圾和农业垃圾等涌入河道,使得河道里的水资源受到污染,污水中的重金属随着灌溉进入农田。

2.3 土壤污染

土壤污染表现在肥料元素积累过多、多种重金属污染严重、农药和有机物污染物残留量高等方面。过度施肥造成土壤酸化,导致土壤盐渍化,土壤中的污染物主要包括Hg、Cd、As、Zn、Pb等重金属。

3 防治措施

随着社会的不断发展,环境污染问题日益突出。蔬菜重金属污染具有潜伏性、地域性、长期性、难治理性等特点,其防治应坚持“预防为主,防治结合、综合治理”的基本方针。针对东莞蔬菜重金属污染提出几点防治措施。

3.1 合理规划蔬菜生产基地

随着社会工业经济的不断发展,城镇化水平不断提高,工业产区与农业生产区不断向郊区转移。蔬菜生产基地应该远离工业产区和城市生活污染区,选择环境较好的地区作为蔬菜生产基地。除此之外,对基地的环境要进行实时动态监测与评价。

3.2 隔绝污染源,控制重金属流入食物链

治理重金属污染问题,首先最重要的是从源头上做起,控制和消除污染源。在农业生产方面,减少化肥和农药的使用量,减少其在土壤中的残留。此外,对于用来灌溉的水源,要制定相应的标准,禁止使用污水进行灌溉。土壤中的重金属主要通过植物的吸收积累,进而通过食物链对人体造成危害。因此,控制植物对重金属的吸收,可减少其在植物可食部分的积累量。

3.3 根据不同蔬菜累积重金属的能力,合理布局

对于不同区域主要污染重金属,筛选出选择可食部分低累积重金属的蔬菜作物或对污染重金属有强抗性的蔬菜品种栽培,并合理安排茬口进行轮作。

3.4 改良土壤结构,提高土壤重金属污染的抵抗能力

从源头上改善土壤的组成与结构,从而减少土壤中的重金属,降低作物对重金属的吸收累积量。改变土壤中重金属的存在形态,如增加有机肥的使用量,可增加土壤胶体对重金属的吸附能力,使得重金属元素不易被作物吸收,也可促使土壤中某些重金属的形态发生变化,从而有效降低其毒性[4]。

4 参考文献

[1] 张冲.东莞蔬菜产区重金属污染调查评价及土壤环境因子相关性分析[D].武汉:华中农业大学,2008.

重金属污染现状篇(6)

中图分类号 X53 文献标识码 A 文章编号 1007-5739(2013)09-0229-03

重金属是指比重大于5.0 g/cm3的金属元素,包括Cu、Zn、Ni、Pb、Cr、Cd、Hg、As、Fe、Mn、Mo、Co等。通常自然界中重金属元素的背景值很低,其暴露不会对周围环境造成影响。但由于工业生产规模扩大,城镇化迅速发展,在农业生产中,污水灌溉和化肥、农药的使用量加大,导致土壤系统中重金属不断累积,明显高于其背景值,从而恶化了生态环境的质量,并通过食物链直接危害人体健康。据统计,全世界平均每年排放Hg约1.5万t,Cu 340万t,Pb 500万t,Mn 1500万t,Ni 100万t[1]。随着重金属污染问题的日益突出,土壤污染防治工作已在“十一五”期间被提上中国环境保护工作的重要议程,并成为第1个“十二五”国家规划。针对上述情况,笔者结合我国土壤重金属污染的现状,对当前土壤重金属污染的修复技术及其作用机理进行分析,并总结其各自的优势与不足,以期为综合治理土壤重金属污染提供参考依据。

1 我国土壤重金属污染现状

我国面临着相当严峻的土壤重金属污染问题。农业部调查数据显示[2],我国约140万hm2的农业用地采用污水灌溉,受到重金属污染的土地面积占污染总面积的64.8%。据有关资料表明,我国重金属污染的农业土地面积为2 500 hm2左右,导致粮食减产逾1 000万t,并造成1 200万t以上的粮食被重金属污染,将各项经济损失进行合计,至少高于200亿元[3]。污染土地中,严重污染面积占8.4%,中度污染面积占9.7%,轻度污染面积占46.7%。Hg 和Cd 的污染面积最大。如上海农田耕层土壤Hg、Cd含量增加了50%,江西大余县污灌引起的Cd污染面积达5 500 hm2,沈阳张士灌区Cd污染面积达2 533 hm2。我国农田土壤污染除Cd、Hg污染外,Pb、As、Cr和Cu的污染也比较严重。以保定市污水灌区为例,其Zn、Cu、Pb、Cd的检出超标率分别达到100.0%、27.5%、50.0%、87.5%[4]。此外,我国菜地土壤重金属污染也较为严重[5-7]。广州市蔬菜地Pb污染最为普遍,As污染次之;重庆近郊蔬菜基地土壤重金属Hg和Cd出现超标,超标率分别为6.7%和36.7%;珠三角地区近40%菜地重金属污染超标,其中10%属严重超标。近年来,由于工业“三废”、机动车废气和生活垃圾等污染物的排放,我国城市土壤普遍受到不同程度的重金属污染,主要污染元素为Pb、Cd、Hg。且城市土壤中大部分重金属污染含量普遍高于郊区农村土壤,并具有明显的人为富集特点[8]。

2 土壤重金属污染修复技术

2.1 物理修复

物理修复是指通过各种物理过程将污染物从土壤中去除或分离的技术,主要包括土壤淋洗法、工程措施法、电热修复法等。

2.1.1 土壤淋洗法。该方法是应用最多、应用最早、技术最成熟的物理修复方法。采用淋洗液(包括无机溶液清洗剂、复合清洗剂、清水、表面活性剂、有机酸及其盐清洗剂、螯合剂等)对土壤进行淋洗,使固相重金属转化为液相,重金属从土壤中转移到废水,再通过对废水进行回收处理,从而实现土壤的修复。Wasay et al[9]研究发现,EDTA和DTPA能有效地去除土壤中Hg以外的重金属元素,同时也提取出大量土壤营养元素。土壤淋洗法简便、成本低、处理量大、见效快,适用于大面积重度污染土壤治理,尤其是轻质土和砂质土。但这种方法在去除重金属的同时,易造成地下水污染及土壤养分流失。因此,既能提取各种形态重金属又不破坏土壤结构的淋洗液,将为该方法修复重金属污染土壤提供广阔的应用前景。

2.1.2 工程措施法。该方法是较为经典和传统的土壤重金属污染修复方法,包括深耕翻土、换土、客土等。深耕翻土与污土混合,或者通过换土和客土等手段,可以使土壤中重金属的含量有效降低,从而降低其对植物的毒害。不同的方式适宜于不同污染程度的土壤,重污染区的土壤宜使用换土和客土方法改良,而轻度污染的土壤则适宜于采用深耕翻土的方法进行修复。工程措施法的优势在于效果稳定和彻底,但是也存在一定的不足,如费用高、工程量大、易降低土壤肥力和破坏土壤结构,还有换出的污染土壤也存在二次污染的隐患,应妥善处理。据报道,对1 hm2面积的污染土壤进行客土治理,每1 m深土体需耗费高达800万~2 400万美元[10]。因此,工程措施不是一种理想的污染土壤修复方法。

2.1.3 电热修复法。该方法利用高频电压产生电磁波,再通过电磁波作用而产生热能,从而促使土壤中挥发性重金属得以分离,实现土壤的修复和改良。目前,该方法适用于修复受Hg或Se等可挥发性重金属污染的土壤。有研究表明,采用该法可使砂性土、黏土、壤土中Hg含量分别从15 000、900、225 mg/kg降至107、112、115 μg/kg,回收的Hg蒸气纯度达99%[11-12]。这种方法虽然操作简单、技术成熟,但能耗大、操作费用高,也会影响土壤有机质和水分含量,引起土壤肥力下降,同时重金属蒸气回收时易对大气造成二次污染。

2.2 化学修复

化学修复也是一种原位修复技术,即通过向重金属污染土壤中添加改良剂,以调节和改变土壤的理化性质,使重金属发生沉淀、吸附、拮抗、离子交换、腐殖化和氧化还原等一系列化学反应,降低其在土壤中的迁移性和被植物所吸收的可能性,从而达到治理和修复污染土壤的目的。常用的改良剂有石灰性物质[13-15]、磷酸盐化合物[16-17]、硅酸盐化合物[18]、金属及其氧化物[19-20]、黏土矿物[21-23]、有机质[24-26]等,其作用机理见表1。这种方法虽然简单易行,但其不足在于它只是改变了重金属在土壤中的存在形态,却没有把重金属从土壤中真正分离出来,如果土壤环境发生变化,容易造成其再度活化,引起“二次污染”。

2.3 生物修复

生物修复是利用生物(主要是微生物、植物和动物)的新陈代谢作用吸收去除土壤中的重金属或使重金属形态转化,降低毒性,净化土壤。该方法是运用生物技术治理污染土壤的一种新方法,具体包括微生物修复法、植物修复法、动物修复法等。由于该方法效果好、易于操作,日益受到人们的重视,已成为污染土壤修复研究的热点。

2.3.1 微生物修复。该方法是通过微生物进行作用,将土壤中重金属元素进行沉淀、转移、吸收、氧化还原等,从而对污染土壤进行修复。如柠檬酸菌能够与Cd形成CdHPO4沉淀;无色杆菌、假单胞菌能够使亚砷酸盐氧化成砷酸盐,从而降低As的转移和毒性;还有些微生物能够把剧毒的甲基汞降解为毒性小、可挥发的单质Hg[3]。尽管微生物修复引起极大重视,但大多数技术仍局限在科研和实验室水平,很少有实例报道。但随着分子生物学的发展,一些如细菌表面展示技术、噬菌体抗体库技术、酵母表面展示技术等[27],有望在治理土壤重金属污染中发挥重要作用。

2.3.2 植物修复。植物修复广义上是指利用植物提取、吸收、分解、转化、固定土壤、沉积物、污泥或地表、地下水中有毒有害污染物技术的总称;狭义上是指利用耐性和超富集植物将污染土壤中的重金属浓度降低到可接受的水平。根据其修复过程和机理,植物修复法可分为以下4种:①根部过滤[28],即通过耐性植物根系对重金属的吸收并保持在根部。常用的植物有水生植物、半水生植物以及个别陆生植物,如向日葵、耐盐野草、宽叶香蒲等。该法多应用于修复水体的重金属污染。②植物稳定[29],即利用植物根际的一些特殊物质,使土壤中污染物转化为相对无害物质的方法。常用的植物有印度芥菜、油菜、杨树、苎麻等。该法多应用于治理废弃矿场和重金属污染严重地区。③植物挥发[30],即利用植物吸收土壤中的重金属,并将其转化为可挥发状态,通过植物叶片等部位挥发出去,以降低土壤中重金属的含量。常用的植物有印度芥菜以及湿地上的一些植物。该法多应用于修复污染土壤中含有挥发性的重金属(如Hg、Se等),但易造成大气污染。④植物提取[31],即利用超富集植物从土壤中吸取重金属,并将其转移、贮存到地上部,然后通过收获,从而达到去除污染土壤中重金属的目的。目前,已发现超富集植物有700种以上,且广泛分布于约50科中,并主要集中在十字花科。该法适用面广,对于修复多种重金属污染土壤均有效。

植物修复法成本低,对环境扰动小,能绿化环境,具有良好的社会、经济、环境综合效益,适用于大规模污染土壤的修复,属于真正意义上的绿色修复技术。但该方法也有一定的缺点:一是超富集植物生长缓慢,常受土壤类型、气候、水分、营养等环境条件限制,导致修复污染较严重土壤的周期长;二是修复过程局限在超富集植物根系所能伸展的范围内;三是超富集植物只能积累某一种重金属,而土壤污染大多是重金属的复合污染;四是超富集植物需收割并作为废弃物妥善处置,将对生物多样性存在一定的威胁。

2.3.3 动物修复。动物修复是利用土壤中的某些低等动物(如蚯蚓等)吸收重金属的特性,在一定程度上降低受污染土壤的重金属比例,以达到修复重金属污染土壤的目的。有研究表明[32],蚯蚓在其耐受浓度范围内,对重金属的富集量随着重金属浓度的增加而增加,同时对重金属的选择性受其体内酶的影响。但这种修复方法不足在于低等动物吸收重金属后可能再次释放到土壤中,造成二次污染。

2.4 农业生态修复

农业生态修复是近几年新兴的修复技术,它是通过改变耕作制度、调整作物品种、调控土壤化学环境(包括土壤pH值、水分、氧化还原电位等)、改变土地利用类型、增施有机肥(堆肥、厩肥、植物秸秆等)、控施化肥等措施,以减轻重金属对土壤的危害[33]。我国在这一方面研究较多[34-36],并取得了一定的成效。这种方法具有投资少、无副作用等特点,适用于中轻度污染土壤,但也存在修复周期较长、效果不太显著等不利因素。

3 结语

综上所述,目前重金属污染土壤的修复技术很多,但就单一技术来看,任何一种修复技术都有其局限性,难以达到预期效果,进而无法大力推广。而且土壤重金属污染修复作为一项系统工程,不仅需要土壤学、植物生理学、遗传学、环境工程学、分子生物学等多个学科的共同努力,还需要多种修复技术的综合应用,即将物理修复、化学修复、生物修复科学地结合起来,取长补短,才能达到更好的效果。

4 参考文献

[1] 李俊莉,宋华明.土壤理化性质对重金属行为的影响分析[J].环境科学动态,2003(1):24-26.

[2] 崔德杰,张玉龙.土壤重金属污染现状与修复技术研究[J].土壤通报,2004,35(3):366-370.

[3] 骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508.

[4] 谢建治,刘树庆,王立敏,等.保定市郊土壤重金属污染现状调查及其评价[J].河北农业大学学报,2002,25(1):38-41.

[5] 茹淑华,孙世友,王凌,等.蔬菜重金属污染现状、污染来源及防治措施[J].河北农业科学,2006,10(3):88-91.

[6] 唐书源,李传义,张鹏程,等.重庆蔬菜的重金属污染调查[J].安全与环境学报,2003,3(6):74- 75.

[7] 魏秀国,何江华,陈俊坚,等.广州市蔬菜地土壤重金属污染状况调查及评价[J].土壤与环境,2002,11(3):252-254.

[8] 和莉莉,李冬梅,吴钢.我国城市土壤重金属污染研究现状和展望[J].土壤通报,2008,39(5):1210-1216.

[9] WASAY S A,BARRINGTON S,TOKUNAGA anic acids for the in situ remediation of soils polluted by heavy metals:Soil flushing in columns[J].Water,Air,and Soil Pollution,2001(3):301- 314.

[10] CHANEY R L,LI Y M,ANGLE J S,et al.Phytoremediation of soil metals[J].Current Opinion in Biotechnology,1997(8):279-284.

[11] KAWACHI T,KUBO H.Model experimental study on the migration behavior of heavy metals in electric to kinetic remediation process for contaminated soil[J].Soil Sci Plant Nutr,1999,45(2):259-268.

[12] 刘磊,肖艳波.土壤重金属污染治理与修复方法研究进展[J].长春工程学院学报:自然科学版,2009,10(1):73-78.

[13] CHEN Z S,LEE G J,LIU J C.The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils[J].Chemosphere,2000,41(1-2):235-242.

[14] 廖敏,黄昌勇,谢正苗.施加石灰降低不同母质土壤中镉毒性机理研究[J].农业环境保护,1998,17(3):101-103.

[15] 陈宏,陈玉成,杨学春.石灰对土壤中Hg、Cd、Pb的植物可利用性的调控研究[J].农业环境科学学报,2003,22(5):549-552.

[16] SEAMAN J C,AREY J S,BERTSCH P M.Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition[J].J Environ Qual,2001,30(2):460-469.

[17] 周世伟,徐明岗.磷酸盐修复重金属污染土壤的研究进展[J].生态学报,2007,27(7):3043- 3050.

[18] DA CUNHA K P V,DO NASCIMENTO C W A,DA SILVA A J.Silicon alleviates the toxicity of cadmium and zinc for maize(Zea mays L)grown on a contaminated soil[J].Journal of Plant Nutrition and Soil Science,2008,171(6):849-853.

[19] GRAFE M,NACHTEGAAL M,SPARKS D L.Formation of metal-arsenate precipitates at the goethite-water interface[J].Environmental Science and Technology,2004,38(24):6561-6570.

[20] KUMPIENE J,ORE S,RENELLA G,et al.Assessment of zerovalent iron for stabilization of chromium,copper,and arsenic in soil[J].Environ-mental Pollution,2006,144(1):62-69.

[21] 娄燕宏,诸葛玉平,顾继光,等.粘土矿物修复土壤重金属污染的研究进展[J].山东农业科学,2008(2):68-72.

[22] 柯家骏,陈淑民,胡向福,等.膨润土粘土矿物吸附重金属的研究[J].重庆环境科学,1993,15(1):4-6.

[23] MAHABADI A A,HAJABBASI M A,KHADEMI H,et al.Soil cadmium stabilization using an Iranian natural zeolite[J].Geoderma,2007(137):388-393.

[24] VACA-PAULIN R,ESTELLER-ALBERICH MV,LUGO-DE LA FUENTE J,et al.Effect of sewage sludge or compost on the sorption and distribution of copper and cadmium in soil[J].Waste Management,2006, 26(1):71-81.

[25] 陈世俭,胡霭堂.有机物质种类对污染土壤铜形态及活性的影响[J].土壤通报,2001,32(1):38-40.

[26] 华珞,陈世宝,白玲玉,等.有机肥对镉锌污染土壤的改良效应[J].农业环境保护,1998,17(2):55-59,62.

[27] 李宏,江澜.土壤重金属污染的微生物修复研究进展[J].贵州农业科学,2009,37(7):72-74.

[28] DUSHENKOV S,VASUDEV D,KAPULNIK Y,et al.Removal of uranium from water using terrestrial plants[J].Environ Sci Technol,1997, 31(12):3468-3474.

[29] 敖子强,熊继海,王顺发,等.植物稳定技术在金属矿山废弃地修复中的利用[J].广东农业科学,2011(20):139-141,147.

[30] MITCH L,NICOLE P,DEBORAH D,et al.Zinc phytoextraction in Thlaspi caerulescens[J].International Journal of Phytoremediation,2001, 3(1):129-144.

[31] 丁华,吴景贵.土壤重金属污染及修复研究现状[J].安徽农业科学,2011,39(13):7665-7666,7756.

[32] 伏小勇,秦赏,杨柳,等.蚯蚓对土壤中重金属的富集作用研究[J].农业环境科学学报,2009,28(1):78-83.

[33] 刘候俊,韩晓日,李军,等.土壤重金属污染现状与修复[J].环境保护与循环经济,2012(7):4-8.

重金属污染现状篇(7)

DOI:10.3969/j.issn.1005-5304.2016.02.040 

中图分类号:R282 文献标识码:A 文章编号:1005-5304(2016)02-0134-03 

Research Status of Heavy Metal Pollution and Evaluation Methods of Traditional Chinese Medicine ZHAO Rong, YANG Hui-xia, PU Jin, WANG Dan-jie, ZENG Guang (Beijing University of Chinese Medicine, Beijing 100029, China) 

Abstract: Heavy metal pollution in traditional Chinese medicine has become a concerned hot issue both at home and abroad. Understanding and mastering the situation of heavy metal pollution in traditional Chinese medicine is not only beneficial to the general situation of judgment of heavy metal pollution, but also provides the data foundation for the development of relevant policies. In this article, the current heavy metal pollution of traditional Chinese medicine and its evaluation methods were summarized, in order to provide supports for the follow-up systemtic evaluation of heavy metal pollution in traditional Chinese medicine. 

Key words: traditional Chinese medicine; heavy metal; evaluation methods; review 

土壤是中药材生长最基本的要素,为其生长提供了有机质和矿物营养元素。因此,一般说来土壤重金属污染越严重,中药材受重金属污染也就越严重,其产量和品质也越差。为此,笔者对近十几年的相关研究进行总结,为进一步系统评价我国中药材重金属污染提供参考。 

1 中药材重金属污染研究 

1.1 现状 

近几年的研究表明,我国中药材重金属超标的严峻形势不容忽视。2011年,邹氏等[1]对“浙八味”品种生长调查发现,浙贝母、温郁金、白术、白芍镉(Cd)超标情况相对严重,尤其温郁金100%超标,有的甚至超过标准数倍。冯氏等[2]对100种中药材进行测定,结果显示铅(Pb)、Cd、砷(As)等有害重金属元素存在于大部分的中药材中。王氏等[3]对金银花、山楂、红花等10种中药材所含As、Cd、铜(Cu)、汞(Hg)、Pb进行了测定,发现除山楂外,其余9种中药材均超标。其中金银花As超标率为24%,Hg超标率为47%,Cd超标率为24%,Pb超标率为6%;积雪草Cd超标 

通讯作者:曾光,E-mail:zengg1234@163.com 

率为100%,As和Pb超标率为18%,Cu超标率为9%。杨氏等[4]对黔东南州9种中药材重金属污染情况进行了评价,结果7个品种重金属超标,其中金银花Pb和Cd含量超标、黄柏Pb含量超标。颜氏等[5]对陕西和山东产丹参进行了重金属检测,结果两地产丹参均含As、Hg、Cu、Cd、Pb等,其中Cu超标相对较为普遍。陈氏等[6]对医院药房常用10种中药饮片进行了As、Hg、Pb、Cd、镍(Ni)测定,结果在35个样本中有18个样本的重金属含量超标,占总样品量的51.4%。其中泽泻、白术Cd超标,黄芪、丹参、甘草、泽泻Hg超标,丹参、柴胡、甘草、当归Ni超标;按品种计,10个品种有7个受污染,比例达70%。采自药店的10个样品中有4个受重金属污染,比例为40%。 

由此可见,目前我国中药材重金属污染形势十分严峻,尤其是近30年来,随着城市化和工业化的快速发展,大量未经处理的生活污水和工业废弃物任意排放,以及不合理使用化肥农药,导致我国中药材重金属超标现象严重,品质不断下降。因此,解决中药材重金属污染的问题迫在眉睫。 

1.2 污染来源 

1.2.1 中药材自身特性 中药材对某些金属元素具有生物富集能力,在按自身需要特定比例主动吸收同时,对土壤中富集元素也会相应地被动吸收,这是导致中药材重金属超标的重要途径。如顾氏等[7]研究了川附子与土壤中重金属元素的关系,发现重金属的存在形态决定了川附子对土壤中重金属的吸收。 

1.2.2 工业废弃物 这是土壤重金属污染的主要来源之一。工业废弃物对中药材重金属污染主要表现为:一方面,工业生产将大量含重金属的有害气体排放到空气中,植物叶面通过主动或被动吸收,将废气中的有害物质吸收;另一方面,含有重金属的废水、固体废弃物通过灌溉,造成中药材的间接污染[8]。

1.2.3 农药和化肥 农药一般含有As、Hg、Pb、Cu等重金属元素,用于喷洒中药材时,易被其吸收并渗透于根茎、叶片及果皮等组织内,造成重金属污染。此外,中药材在种植过程中需使用肥料,其中磷肥的大量使用,会明显增加土壤Cu、Cd等重金属元素的含量,导致中药材被污染[9]。 

1.2.4 其他 因容器或辅料含有重金属,中药材在加工、炮制过程中也可能被污染。顾氏等[7]研究发现,炮制后的川附子在As、Cu等重金属元素的含量高于炮制前。另外,为防治鼠害、霉变等,中药材在存储前会使用重金属制品的熏蒸剂,这也是造成中药材重金属污染的原因之一。 

2 中药材重金属污染评价方法 

笔者通过查阅近十几年文献,发现目前对中药材重金属污染的常用评价方法有2种:一是以2001年国家颁布实施《药用植物及制剂外经贸绿色行业标准》[10]重金属限量值或《中华人民共和国药典》[11]重金属限量值为标准,评价中药材重金属的超标率;另一种方法是评价中药材重金属污染程度的大小,因中药材重金属污染可能既是单一元素也是多元素共同作用的结果,因此,须相应采用单项污染指数或综合污染指数法评价中药材重金属污染程度。 

2.1 超标率的计算 

中药材重金属超标率,是指所取样本中重金属含量超过了《药用植物及制剂外经贸绿色行业标准》或《中华人民共和国药典》中重金属限量值标准的样本的百分数,是反映中药材重金属污染状况的指标之一。评价标准参照《药用植物及制剂外经贸绿色行业标准》或《中华人民共和国药典》重金属的限量值,两者关于重金属限量值是一致的,即Pb≤5 mg/kg,As≤2 mg/kg,Hg≤0.2 mg/kg,Cd≤0.3 mg/kg,Cu≤20 mg/kg。 

在我国,计算重金属超标率是评价中药材重金属污染普遍使用的一种方法。叶氏等[12]参照《药用植物及制剂外经贸绿色行业标准》,对贵州省4个种植基地的5种中药材所含Pb、Cd、Hg、As、Cu等重金属含量进行了测定分析。结果Cd的超标率最严重,茎叶类药材Cd的超标率最高达84%;其次是Cu,茎叶类药材超标率为76%,花果类药材超标率为60%。李氏等[13]对中药材41种无机元素的总含量进行了测定,并参照《药用植物及制剂外经贸绿色行业标准》分析了重金属元素超标情况,结果Cu、Pb、As、Cd、Hg的超标率分别为5.2%、4.7%、2.4%、20.0%、1.3%。高氏[14]测定7个主产地甘草中Ni、Cu、Zn、As、Cd、Hg、Pb、铋共8种重金属的含量,并将测定结果与《中华人民共和国药典》重金属限量标准进行对比,结果发现As、Hg、Pb是造成甘草重金属超标的主要因素。 

2.2 单项污染指数和综合污染指数法 

中药材的重金属污染可能由单一重金属元素所致,也可能是由多种重金属元素共同作用的结果。目前单项污染指数是国内普遍采用的方法之一,但单项污染指数只能反映某一种重金属元素对中药材的污染。为了能够全面反映各重金属对中药材的作用,并突出高浓度重金属元素对中药材质量的影响,还需采用综合污染指数法对中药材重金属污染进行评价。 

2.2.1 单项污染指数法 单项污染指数定义为Pi=Ci÷Si,式中Pi为中药材中重金属元素i的污染指数,Ci为中药材中重金属元素i的实测浓度,Si为中药材中重金属元素i的限量标准值(通常以《药用植物及制剂外经贸绿色行业标准》或《中华人民共和国药典》重金属的限量值为评价标准)。当Pi≤1时,表示中药材未受污染;Pi>1时,表示中药材受到污染,且Pi越大则中药材受到的污染越严重。 

2.2.2 综合污染指数法 综合污染指数能全面反映重金属对中药材的污染,并突出了高浓度重金属元素对中药材的影响。其定义为P综合= ,式中Pave为中药材中各单项污染指数之和的平均值,Pmax为中药材中各单项污染指数中的最大值。当P综合≤1时,表示未受污染;P综合>1时,表示受到污染,且P综合越大则表示受到污染越严重。 

迄今,有不少学者采用单项污染指数和综合污染指数法对中药材重金属污染情况进行过研究。如褚氏等[15]研究了河北省安国市种植区中药材重金属污染情况,结果发现As含量0.04~1.02 mg/kg,未发现超标样品,但紫菀平均污染指数最高为0.28;Hg含量0~0.244 mg/kg,有一产地为安国北郊的白芷样品超标,其污染指数为1.22;Pb含量0.06~7.10 mg/kg,有一产地为西王奇的北沙参样品超标,其污染指数为1.42。杨氏等[4]对黔东南州9种中药材重金属污染情况进行了评价,结果显示其重金属平均污染指数相差较大,综合污染指数相差较小。在平均污染指数中,Pb最大,其最大值高达4.94;其次为Cd,最大值2.40;而Hg和As的平均污染指数均<1.0。说明黔东南州部分地区中药材的主要污染因子是Pb,其次是Cd,而Hg和As则基本无污染。另外,从综合污染程度看,9种中药材中钩藤受到中度污染,杜仲、金银花受到轻微污染,其余6种未受到污染。秦氏等[16]对贵州省11个“中药材生产质量管理规范”(GAP)基地的26种155批道地中药材样品重金属含量进行了测定与评价,结果平均污染指数大小顺序为Cd>Cu>As>Pb>Hg,茎叶类的艾纳香和块根类的淫羊藿根综合污染指数均>1,说明在所调查的样品中只有艾纳香和淫羊藿根受到重金属轻微污染,大部分未受到污染。由此可见,单项/综合污染指数法应用于评价中药材重金属污染程度是一种较为可靠的方法。 

重金属污染现状篇(8)

一个地区长期进行矿山开采、加工以及利用重金属作为原料的工业发展,如不重视对重金属污染物有效防治,重金属污染物将在土壤、大气、水中逐渐累积,从而形成重金属污染。本文以南京市重金属污染的产生、排放为例,对重金属污染产生的原因进行分析,并提出治理污染的对策。

1.南京市重金属污染物产生和排放现状

南京市的重金属污染主要来源于工业;南京市13个区县中涉及重金属污染物产排的企业数为82家;重金属污染物排放主要通过废水和废气排放。

涉重废水排放总量为1075.24万吨/年,废水中各重金属污染物排放量分别为汞(Hg)0.27kg/a、镉(Cd)25.86kg/a、总铬(Cr)449.24kg/a、六价铬(Cr6+)361.14 kg/a、铅(Pb)174.67kg/a、砷(As)2.81 kg/a、铜(Cu)698.03 kg/a、镍(Ni)96.23kg/a;涉重废气排放总量为74591.10×104m3/a,废气中各重金属污染物排放量分别为汞(Hg)0.032kg/a、镉(Cd)52.66kg/a、铬(Cr)28.85kg/a、铅(Pb)150.68kg/a、砷(As)39.43kg/a。

含重金属危险废物产生量为4956.33t/a,其中综合利用量为3123.67t/a,处置量为1706.06t/a,贮存量为126.6t/a,排放量为零。

2.南京市重金属污染的主要原因

通过对南京市涉及重金属污染的企业的调查分析,南京市重金属污染的主要原因有以下几个方面:

(1)企业规模以中小型为主,分布散乱

南京市涉重企业规模普遍偏小,分布散乱,遍布区县各处,污染物未能全部稳定达标排放,废水、废气治理措施较传统、简单,很多企业大部分企业未能进入工业园区进行统一管理,为环境监管带来了很大的不便,也为加快区域内资源共享、信息公开化建设设置了障碍。

(2)产业结构不尽合理,发展方式粗放

近年来,南京市一直致力于产业结构的调整,目前正处于产业结构的转型期,仍有一部分高投入、高耗能、高污染的企业未被淘汰,特别是一些涉重的中小型企业,工艺落后,经济基础薄弱,从经济、技术等各方面开展重金属污染治理的难度又都比较大,即使企业关闭,重金属累积的特性也会给企业所在区域带来隐患。

(3)法规制度建设滞后,环境标准不健全

目前我国还没有重金属污染治理和土壤污染治理的专门法规,南京市主要按照现行的《环境空气质量标准》和《地表水环境质量标准》中对重金属的控制要求对涉重企业进行管理;现行标准主要针对污染源达标排放提出,不涉及重金属的累积效应,关于人体健康的重金属环境标准不健全。

(4)基础工作薄弱,相关技术欠缺

由于长期对重金属污染忽视,重金属的监测、防治技术研究等基础工作较为薄弱,南京市重金属污染物整体排放情况和环境受污染程度尚未完全摸清,对重点防控企业、区域及污染隐患的危害程度掌握不够。同时重金属污染的科学研究、技术政策等还远远滞后于污染防治的迫切需求。

(5)污染隐蔽性强,治理周期长

重金属元素化学性质稳定,通过水、气、固废等多种途径可以在环境中长期积累,并通过食物链逐级富集,最终进入人体累积,使得留在人体的重金属含量成倍放大,传统的环境达标观念由于重金属的富集特性失去效用,待累积到一定程度发生污染事件时大多已经造成了极为严重的后果。一旦环境受到污染,需要比常规污染物治理更长的治理周期、更多的治理成本和更高的治理难度。

(6)环境监管能力不足,监管难度大

长期以来,南京市对重金属污染重视力度不够,各级环保管理仍主要针对常规污染物的管理,重金属污染监管措施不完善,特别是企业废气中重金属污染的管理几乎为空白;各级环保监测系统建设均主要注重常规性污染物指标监测,重金属监测能力不足,缺乏高精确度重金属检测仪器。

3、重金属污染防治对策

消除重金属污染除了对污染进行治理、对环境进行修复外,更需要对可能出现的重金属污染进行预防,从根本上解决重金属污染的问题。

(1)大力推行清洁生产审核,提升企业清洁生产水平

通过清洁生产审核,对企业的生产、产品或提供服务全过程的定性和定量分析,找出高物耗、高能耗、高污染的原因,有的放矢的提出对策、制定方案,从源头减少和防止重金属污染物的产生。对国内外现有的先进技术、工艺进行科研攻关,研究和开发具有自主知识产权、符合国内重金属行业发展要求的清洁生产核心技术和装备。

(2)严格控制企业、区域内部重金属污染物排放

严格控制区域内企业的重金属废气排放,重金属废气需进行处理,排放口达标率为100%;强化无组织废气收集、治理技术,在运输、生产的过程中减少无组织废气对环境的危害。区域严格执行《中华人民共和国固体废弃物污染环境防治法》等有关法规,实现固废的全面无害化处理。

(3)开展重金属排放企业专项整治。

要结合环保专项行动,对涉及排放重金属的企业进行全面排查和整治,彻底解决工艺落后、污染严重的铅酸蓄电池、铅冶炼等企业的环境安全隐患,严厉惩治涉及重金属的环境违法违规问题。对位于饮用水源保护区的企业一律停产关闭;对污染治理设施不正常运行、长期超标及超量排放的企业一律停产治理;对发现重大环境安全隐患的企业一律停产整改,整改不到位的坚决予以关闭。

(4)加快区域内资源共享、信息公开化建设

通过信息交换中心的企业环境行为公开披露的功能,把建设项目审批程序、重金属污染物排污费缴纳标准、资源型企业可持续发展准备金制度、达不到环保要求的重金属企业名单和来信来访处理等信息全部向社会亮相公开,主动接受广大公众和社会各界监督,督促企业保护环境。。

(5)加强政府行政干预、监督管理

加强政府行政干预,建立健全环境执法机构,加强和充实环境执法力量,制定赔偿和生态补偿等管理政策和其他约束性政策。实施环境保护目标责任制,明确环境保护目标的分管部门和分管领导,奖惩制度,并定期检查与考核目标落实情况;落实环境行政执法责任制,规范环境执法行为,加强环境执法硬件水平;建立和落实岗位责任制及其考核要求。

(6)建设区域环境风险预防和应急体系

区域必须建立统一的风险防范组织管理机构,根据《国家突发环境事件应急预案》,制定区域重金属环境事件应急预案,建立环境风险应急监测和管理系统,制定园区安全、健康与环境风险防范政策,初步建立区域安全与健康、风险防范体系。开展社会风险防范宣传教

育,提高人们的风险防范意思,要求区域内企业对紧急事故能够做出快速反应,及时采取补救措施,减少环境危害和企业的经济损失。

(7)加速已污染区域修复治理工作

对已造成重金属排放的重点区域,要重点抓好土壤污染本底调查,布设更密集的监测位点,采样分析重金属污染现状,针对各区域的污染程度和污染特征,制定详细的区域重金属污染修复治理计划,并作为重金属污染修复试点,选择成熟的修复方案,进行可行性研究,改善质量,防范风险。

(8)开展重金属污染健康危害监测与诊疗

建立和完善覆盖全市的重金属污染健康监测网络,建立重点防控区健康监测和报告制度、敏感人群定期体检制度,完善重金属污染健康危害评价、人群健康体检及诊疗和处置等工作规范。开展重金属环境与健康危害的调查研究。定期对重点防控区域内潜在风险人群有计划地进行健康检查,对可能发生的健康危害进行预警,对需要治疗的人群积极诊疗。

(9)对发生事故的区域实行限批

重点防控区内如发生涉重污染事故,需对肇事企业立即停产治理,情节严重则由地方政府责令关闭,对外环境造成的影响应进行评估,采取相应措施,减轻或消除对外环境和人群造成的影响,在事故处理结束前对区域内所有涉重项目实行区域限批。

4.总结

重金属污染是一个长期累积而形成的,必须在重金属污染产生之前进行预防,对重金属污染必须进行源头治理,从根本上解决重金属污染问题。

参考文献

重金属污染现状篇(9)

中图分类号:X53 文献标识码:A DOI 编码:10.3969/j.issn.1006-6500.2016.07.002

Abstract: The application of pesticide, fertilizer and industrial waste emission result in heavy metals to the environment. And it`s hard to transfer by food chain and also not easy to degradation. So it caused serious influence to human and environmental. The method of fixing and passivation of heavy metals in soil by applying the modifier is widely used because of its simple operation and economical and practical characteristics. At present, the improved agent types mainly include organic matter, alkaline substances, and clay minerals. The effect of the improved agent was mainly derived from the soil pH and the adsorption, complexation and precipitation of the modified agent itself and heavy metals. In the region where the soil heavy metal pollution is serious, the effect of the application of single modified agents is not very ideal, using the modified agent mixed with different agent can increase the effect to a certain extent.

Key words: heavy metal;soil improvement;improvement agent

1 土壤重金属污染途径

随着工业化进程的逐步深入,农业发展加速,废弃物逐步增多且相关处理措施不当,这导致农田中土壤重金属含量逐步增加。农业部曾对全国土壤调查发现,重金属超标农产品占污染物超标农产品总面积80%以上[1],土壤重金属超标率更是达到了12.1%[2]。据国外相关研究得知,土壤重金属含量已经达到影响作物生长的地步[3-4]。而龙新宪等人的研究发现:土壤重金属离子含量达到一定程度,这些重金属离子将通过被植物吸收而进入食物链,最终威胁人类身体健康[5-7]。同时,重金属污染的表层土还会通过风力和水力等作用进入大气引发大气污染、地表水污染等生态环境问题[8]。

1.1 大气运动

大气运动是土壤重金属污染来源的一个重要途径[9]。大气成分并不是一直不变而是随着地球演化而变化,大气中的成分做周而复始的循环,这其中就包括某些重金属。近年来工业飞速发展,大量化石燃料被燃烧,其释放的酸性气体和某些重金属粒子参与到大气循环当中。

大气运动主要有2个方面体现。一方面来自工业、交通的影响,Bermudied等[10]研究发现,工业、交通影响重金属的大气沉降,如阿根廷尔多瓦省的小麦和农田地表中的Ni、Pb、Sb等来自于此。Kong[11]通过对抚顺市不同类型大气PM10颗粒中的Cr、Mn、Co等多种重金属含量检测发现,机动车排放、工业废气向大气中排放重金属而后进行大气沉降。另一方面来自矿山开采和冶炼[9]所带来的大气沉降也是土壤重金属的重要来源,常熟某电镀厂附近土地发现Zn和Ni的污染现象,该污染随着距离增加而污染减轻,同时Zn的污染逐年加剧[12]

1.2 污水农用

污水农用指的是利用下水道污水、工业废水、地面超标污水等对农田灌溉。据我国农业部的调查,发现灌溉区内重金属污染面积占灌溉总面积的64.8%,其中轻度污染占46.7%,中度占9.7%,重度占8.4%[13]。天津种植的油麦菜有60%受到污染[14]。昊学丽等[15]调查发现,沈阳市浑河、细河等河渠周边农田中Hg、Cd含量分数高于辽宁土壤背影值,更是严重高出国家二级土壤标准。根据相关人员对保定、西安、北京等地调查,发现上述地区的污灌区表层土出现不同程度的重金属污染现象[16-17]。不仅国内如此,国外也同样有此问题,如伦敦、米兰等地一直使用污水灌溉[18]。在缺水地区污水农灌更是应用广泛,巴基斯坦26%的地方使用污水灌溉,加纳则约有11 500 hm2使用污水灌溉,而墨西哥则达到了2.6×105 hm2[19]。杜娟等[20]模拟污灌的研究发现,表层土中的Zn、Cd、As等含量均有增加,同时还发现土壤中的盐分含量逐步累积

[2]傅国伟. 中国水土重金属污染的防治对策[J]. 中国环境科学,2012, 2(2): 373-376.

[3]GRANT C A, BACKLEY W T, BAIKEY L D, et al. Cadmium accumulation in crops[J]. Canadian Joumal of Plant Science, 1998,78:1-17.

[4] MCLAUGHLIN M J, PARKER D R, CLARKE J M. Metals and micronutrients-food safety issues [J].Field Crops Rensearch,1991,60:143-163

[5]BRZISKA M M, MONIUSZKO-JAKONIUK J. Ineractions between cadmium and zinc in the organism[J]. Food and Chemical Toxicology,2001,19:967-980.

[6]SPONZA D, KARAOGLU N. Environment L geochemistry and pollution studies of A liaga metal industry district [J] Environment International,2002,27:541-533.

[7]龙新宪, 杨肖娥, 倪吾钟. 重金属污染土壤修复技术研究的现状与展望[J]. 应用生态学报, 2002, 13(6): 757- 62.

[8]毛绍春,李竹英.土壤污染现状及防治对策初探[J].云南农业,2005,13:26-27.

[9] 樊霆,叶文玲,陈海燕,等,农田土壤重金属污染状况及修复技术研究[J] . 生态环境学报 2013,22(10):1727-1736.

[10] BERMUDEZ M A, JASAN R C, Rita Plá et al. Heavy metals and trace elements in atmospheric fall-out: their relationship with topsoil and wheat element composition[J]. Journal of Hazardous Materials, 2012, 30(213/214): 447-456

[11] KONG S F, LU B, JI Y Q, et al. Levels, risk assessment and sources of PM10 fraction heavy metals in four types dust from a coal-based city[J]. Microchemical Journal, 2011, 98(2): 280-290.

[12] HANG X S, WANG H Y, ZHOU J M. Soil heavy-metal distribution and transference to soybeans surrounding an electroplating factory[J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 2010, 60(2): 144-151.

[13]王海慧, 郇恒福, 罗瑛,等. 土壤重金属污染及植物修复技术[J]. 中国农学通报, 2009, 25(11): 210-214.

[14]王婷, 王静, 孙红文,等. 天津农田土壤镉和汞污染及有效态提取剂筛选[J]. 农业环境科学学报, 2012, 31(1): 119-124.

[15]吴学丽, 杨永亮, 徐清,等. 沈阳地区河流灌渠沿岸农田表层土壤中重金属的污染现状评价[J]. 农业环境科学学报, 2011, 30(2): 282-288.

[16]王国利, 刘长仲, 卢子扬,等. 白银市污水灌溉对农田土壤质量的影响[J]. 甘肃农业大学学报, 2006, 41(1): 79-82.

[17]杨军, 陈同斌, 雷梅,等. 北京市再生水灌溉对土壤、农作物的重金属污染风险[J]. 自然资源学报, 2011, 26(2): 209-217.

[18] Australian Academy of Technological Sciences and Engineering. Water recycling in Australia[M]. Victoria, Australia: AATSE,2004.

[19] MASONA C, MAPFAIRE L, MAPURAZI S, et al. Assessment of heavy metal accumulation in wastewater irrigated soil and uptake by maize plants (Zea mays L) at firle farm in Harare[J]. Journal ofSustainable Development, 2011, 4(6): 132-137.

[20]杜娟, 范瑜, 钱新. 再生水灌溉对土壤中重金属形态及分布的影响[J]. 环境污染与防治, 2011, 33(9): 58-65.

[21]NZIGUHEBA G, SMOLDERS E. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries[J]. Science of the Total Environment, 2008, 390(1): 53-57.

[22]CARBONELL G, DE IMPERIAL R M, TORRIJOS M, et al. Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.)[J]. Chemosphere, 2011, 85 (10): 1614-1623.

[23]崔德杰, 张玉龙. 土壤重金属污染现状与修复技术研究进展[J]. 土壤通报, 2004, 35(3): 365-370.

[24] LUO L, MA Y B , ZHANG S Z, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90 (8): 2524-2530.

[25] HLZEL C S, MLLER C, HARMS K S, et al. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance[J]. Environmental Research, 2012, 113: 21-27.

[26] 陈苗, 崔岩山. 畜禽固废沼肥中重金属来源及其生物有效性研究进展[J]. 土壤通报, 2012, 43(1): 251-256.

[27]叶必雄, 刘圆, 虞江萍,等.施用不同畜禽粪便土壤剖面中重金属分布特征[J]. 地理科学进展, 2012, 31(12): 1708-1714.

[28]包丹丹, 李恋卿, 潘根兴, 等.垃圾堆放场周边土壤重金属含量的分析及污染评价[J]. 土壤通报, 2011, 42(1): 185-189.

[29] TANG X J, CHEN C F, SHI D Z, et al. Heavy metal and persistent organic compound contamination in soil from Wenling: an emerging e-waste recycling city in Taizhou area, China[J]. Journal of Hazardous Materials, 2010, 173(1/3): 653-660.

[30]林文杰, 吴荣华, 郑泽纯, 等.贵屿电子垃圾处理对河流底泥及土壤重金属污染[J]. 生态环境学报, 2011, 20(1): 160-163.

[31]王文兴,童莉,海热提.土壤污染物来源及前沿问题[J]. 生态环境, 2005,14(1):1-5.

[32]《中国环境年鉴》编委会. 中国环境年鉴[M]. 北京: 中国环境年鉴社, 2001.

[33] RASHID M A. Geochemistry of marine humic compounds[M]. NewYork: Springe,1985.

[34]NARWAL R P, SINGH B R. Effect of organic materials on partitioning extractabilityandplant up takeoff metals in analum shale soil, water[J]. Air Soil Poll,1998, 103(1):405-421.

[35]WALKER D J, CLEMENTE R, BEMA M P. Contrasting effects of manere and compost on solPh heavy metal availability and growth of Chenopodium abum L in a soil contaminated nu pyritic mine[J].Waste Chemosphere,2004,57(3):215-224.

[36]BASTA N T, MOGOWEN S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter contaminated soil[J]. Environ Pollut,2004, 127(1):73-82.

[37]BROWN S, CHRISTENSEN B, LOMBI E, et al. An inter laboratory study to test the ability of amendments to reduce the availability of Cd Pb and Zn in situ[J].Environ Pollut, 2005,138(1):34-35.

[38]WALKER D J, CLEMENTE R, ROIG A, et al. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils[J]. Environ Pollut,2003,122(2):303.

[39]高卫国,黄益宗.堆肥和腐殖酸对土壤锌锅赋存形态的影响[J].环境工程学报,2009,3(3 ):550-552.

[40]IBRAHIM S M, GOH T B. Changes in macroaggregation and associated characteristics in mine tailings amended with humic substances communication[J].Soil Sci Plant,2004,35(19/14):1905-1922.

[41]ROSS S M.Retention, transformation and mobility of toxic metals in soils[M]//Ross S M. Toxic metalsin soil-plant systems. Chichester: John Wiley and Sons Ltd, 1994:63-152.

[42]白厚义.试验方法及统计分析[M].北京:中国林业出版社,2005: 110-112.

[43]陈恒宇,郑文,唐文浩.改良剂对Pb污染土壤中Pb形态及植物有效性的影响[J].农业环境科学学报,2008,27(1):170-173.

[44]李瑞美,王果,方玲.钙镁磷肥与有机物料配施对作物镉铅吸收的控制效果[J].土壤与环境,2002,11 (4): 348-351.

[45]陈晓婷,王果,梁志超,等.韩镁z肥和桂肥对Cd、Pb、Zn污染土壤上小白菜生长和元素吸收的影响[J].福建农林大学学报,2002, 31 (1): 109-112.

[46]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004:317-319.

[47]杨超光,豆虎,梁永超,等.硅对土壤外源镉活性和玉米吸收镉的影响[J].中国农业科学,2005,38(1):116-121.

[48]徐明岗,张青,曾希柏,等.改良剂对黄泥土镉锌复合污染修复效应与机理研究[J].环境科学,2007,28(6):1361-1366.

[49]杜彩艳,祖艳群,李元.施用石灰对Pb、Cd、Zn在土壤中的形态及大白菜中累积的影响[J].生态环境,2007,16(6):1710-1713.

[50]李国胜,梁金生,丁燕,等.海泡石矿物材料的显微结构对其吸湿性能的影响[J].硅酸盐学报,2005,33(5):604-605.

[51]罗道成,易平贵,陈安国,等.改性海泡石对废水中Pb2+、Hg2+、Cd2+吸附性能的研究[J].水处理技术,2003,29(2):89.

[52]SLAVICA L,IVONA J C J. Adsorption of Pb2+,Cd2+,and Sr2+ions onto natural and acid-activated sepiolites[J]. Applied Clay Science,2007,37:47-57.

[53] 徐应明, 梁学峰, 孙国红,等. 海泡石表面化学特性及其对重金属Pb2+,Cd2+,Cu2+吸附机理研究[J].农业环境科学学报, 2009, 28(10):2057-2063.

重金属污染现状篇(10)

中图分类号 X522 文献标识码 A 文章编号 1007-5739(2013)16-0224-01

白银市地处黄河中上游,东大沟地区作为白银市的主要工业区之一,流域内分布着以资源开发、加工为主的有色金属、化工行业企业,流域周边企业排放废水和废渣中含有大量重金属,重金属具有高度迁移性,长期堆置不仅造成大量有价金属流失,而且对土壤、地下水等周边生态环境构成潜在污染威胁[1]。

1 东大沟污染现状

1.1 水环境质量现状

东大沟流域多个断面水质监测数据均不能满足《污水综合排放标准(GB 8978-1996)》中一级标准的要求。水质偏酸,氟化物含量超标,上游Zn、Cd的污染较为突出,下游COD、Cu、As污染显著。

1.2 土壤质量现状

东大沟上游有色金属加工企业重金属粉尘、尾水、废渣排放,导致河岸两侧土壤中重金属严重超标,土壤中重金属主要富集在地表以下0~20 cm,部分区域污染深度达到50 cm,土壤污染现状呈现以Zn为主的多种重金属复合污染现象。

1.3 底泥质量现状

底泥的污染来源于有色金属加工企业冶炼废渣堆放以及含重金属废水排放,通过对底泥样品的采样调查,底泥中重金属As、Pb、Cu、Zn的含量最高值均高于加拿大制订的NOAA标准,Pb、Zn 2种重金属的最大峰值分别出现于20、80 cm,而Cu的最大峰值则出现于40、80 cm,As的最大峰值出现于80 cm。

2 治理工艺及技术可行性

重金属污染河道治理工程主体工艺包括废渣及表层污染底泥异位贮存,表层污染底泥重金属固化/稳定化修复工程以及重金属污染植物修复[2-3]。

2.1 废渣及表层污染底泥异位贮存

2.1.1 治理工艺。由于河道自身情况较为复杂,底泥的深度也难以在抽样调查中完全体现,根据已有的调查数据,研究区域河道底泥挖掘深度拟定为50~120 cm,具体的挖掘情况应根据现场挖据底泥的颜色等进行定性判断,并且在挖掘过程中对50 cm深度的底泥进行再次取样分析,如果效果仍不能达标,需要继续向下挖掘,具体深度视分析结果而定。

河道疏浚的目的是对污染底泥沉积层采用工程措施,最大限度地将储积在该层中的污染物质移出,改善水生态循环,遏制自然水体退化。该次治理区域大部分底泥含水量较低,为了不增加底泥的水力负荷以及废水处理强度,采用机械疏浚的方式,底泥自然蒸发脱水干化与废渣密闭运至弃渣场妥善处置。

2.1.2 技术可行性。含Cu、Pb、Zn、As等重金属的废渣、底泥及土壤均未列入《国家危险废物名录》。根据对研究区域废渣及表层污染底泥的重金属浓度监测,pH值均在6~9,未超出《危险废弃物鉴别标准——浸出毒性鉴别(GB5085.3-2007)》中要求的pH值范围,属于一般工业固废。采用异位贮存方式是一种最为经济、适宜处理大量工业废渣且不受工业废渣种类限制的处理方式。

2.2 表层污染底泥重金属固化/稳定化修复

2.2.1 治理工艺。通过采样分析,选取含As、Zn、Cu、Pb等重金属离子污染程度均严重区域底泥进行固化/稳定化修复,由于底泥中含有As、Zn、Cu、Pb等多种重金属离子,且所含各种重金属离子的种类和含量存在不稳定性,为确保固化/稳定化处理达标,需要根据污染元素和污染浓度来选取药剂。

针对Zn、Cu、Pb的固化,通过加入天然矿物质混合药剂,经氧化还原反应、矿化作用、分子键合反应和共沉淀反应将交换态重金属离子转化为重金属的单质、硅铝酸盐、硅酸盐和多金属羟基沉淀物等自然环境中极稳定的物质,防止其被植物的根系所吸收;针对As的固化,采样铁锰复合氧化物,经吸附、氧化作用,实现重金属污染底泥的固定化修复。

2.2.2 技术可行性。固化/稳定化是向污染底泥、土壤或废渣中投加固化/稳定化制剂,改变土壤的酸碱性、氧化还原条件或离子构成情况,进而对重金属的吸附、氧化还原、拮抗或沉淀作用产生影响的稳定化技术,实现重金属污染土壤的修复。采用该工艺处理后底泥中重金属的浸出浓度低于一般工业固废的入场标准,满足Pb浸出毒性低于5 mg/L、Cu浸出毒性低于75 mg/L、Zn浸出毒性低于75 mg/L、As浸出毒性低于2.5 mg/L的要求。

2.3 重金属污染植物修复

2.3.1 治理工艺。在清除废渣和浅层底泥后回填基质土种植重金属超富集植物,对剩余底泥和部分河岸进行植物修复。普通植物体内Pb含量一般不超过5 mg/kg,Cu的正常含量为5~20 mg/kg,过量重金属对普通植物有很大的毒性,在Zn、Pb、Cu复合污染土壤中,种植普通植物很难达到从污染土壤中快速清除Zn、Pb、Cu复合污染物目的。因此,需要选择对重金属有较强耐受及吸收能力的植物作为首选修复物种,并且超富集植物必须适应白银市当地气候,能够在当地很好地生长,才能保证较好的修复效果[4]。根据白银市当地土质情况及需修复的土壤现状,选取的修复植物为枸杞、红柳、沙枣、国槐、火炬、垂柳、土荆芥、披碱草、芦苇、紫花苜蓿等。

研究发现,禾本科多年生草本植物披碱草具有修复Pb污染土壤的潜力,狗尾草等对As有一定累积效果,且生物量大,为适宜的土壤重金属污染修复植物。紫花苜蓿等牧草对Pb等有较强的富集能力,是土壤Pb污染的理想修复植物,且拥有强大的根系和顽强的生命力,兼具水土保持效果,可用于干旱地区重金属污染的修复。灌木灯心草中的Pb含量测定符合Pb超富集植物,地上部分Pb富集量大于1 000 mg/kg的临界标准,转运系数大于1,在重金属污染土壤修复方面具有潜在的应用价值。上述植物均为当地常见物种,可以很好地适应当地环境,确保生长,同时对重金属具有一定的修复效果。

2.3.2 技术方案可行性。植物修复技术是利用植物来转移、容纳或转化污染物,通过植物的吸收、挥发、根滤、降解、稳定等作用达到土壤修复目的的方法,是一种成熟且发展迅速的清除环境污染的绿色技术[5]。该项目建设区表层50~120 cm表层污染底泥、废渣经处理后,剩余底泥仍具有不同程度的污染,需种植适应在当地生长的重金属超富集植物,以达到较好的治理效果。植物修复技术成本低廉,能增加土壤有机质肥力,且环境扰动小,大面积处理易为公众所接受,并有很好的绿化作用。

3 结语

由于长期遭受重金属毒害作用,东大沟河道生态功能已经完全丧失。针对东大沟典型重金属复合污染问题及生态脆弱的现状,采用异位贮存、固化/稳定化修复以及植物修复等重金属治理技术对区域内的底泥、废渣等介质进行无害化处理与处置,并建立重金属污染土壤植物修复示范区,可实现河道生态恢复和景观重建,初步恢复遭到重金属污染胁迫的东大沟河道生境。

4 参考文献

[1] 黄河上游白银段东大沟流域重金属污染整治与生态系统修复规划[M].北京:北京大学出版社,2012.

[2] 蒋培.土壤镉污染对芦蒿生长和品质安全的影响及调控措施研究[D].南京:南京农业大学,2009.

上一篇: 医养结合的重大意义 下一篇: 低碳环保的意义
相关精选
相关期刊