时间:2023-06-15 17:25:04
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇量比的应用范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
在大跨度桥梁施工中,运用到悬臂桥梁施工,是利用其施工机械操作简单,不需要大量使用支架等优势。桥梁施工一般具有地形复杂,施工复杂,工期较长等特点,因此,在施工中不仅要考虑质量,也要考虑效率和经济性。采用悬臂桥梁施工工艺中的挂篮施工等环节,就可以帮助桥梁施工克服各种不利的条件,顺利进行,使桥梁工程保质保量完成。
1 工程概况
海南西环铁路跨大丰立交双线特大桥工程跨越大丰互通主要干道,穿行车流量相对密集。跨越宽度分别为44+80+44m左右,桥梁结构为连续箱梁,上部结构为变截面单箱单室连续箱梁,顶宽11.9m,底宽6.4m,顶面横向不设坡度,箱梁根部梁高为6.3m,梁底板顶、底板按照二次抛物线变化,设支点横隔梁,0号段墩顶横隔梁厚度为245cm,梁端横隔梁厚度为120cm,箱梁采用C55混凝土,采用三向预应力体系。
2 悬臂梁施工工艺特点
对于悬臂梁施工工艺的特点分析,首先提到悬臂,悬臂的作用是在跨度较大的预应力混凝土桥梁上进行施工中,当遇到钢结构连续施工的时候,需要在结构上确立是否使用落底支架,而且不用到其中设备等大型设备。在不使用其他施工支架的下,运用悬臂梁施工就要使用挂篮,这是悬臂梁施工中最主要的工艺特点。整体施工流程包含了绑扎钢筋、立模、浇筑等等施工项目。因此,采用悬臂梁施工工艺的时候,可以看到挂篮的移动是对称向下的。通过该施工工艺,施工中的高度、水位等问题得到缓解,而且悬臂梁施工工艺的是影响非常强,适合在大跨度混凝土的连续桥梁的施工中运用。
根据施工经验,悬臂梁的施工也有一定不足,如混凝土的加载时间过短,混凝土在加载的过程中如一出现收缩和徐变。对这一不足进行弥补的方法,就是利用事先计算和分析的结果,有效预估可能出现的问题,并加以克服。
3 悬臂梁施工工艺流程
首先将桥梁0号墩作为起始施工的位置,施工中要注意后续悬梁的施工,为悬臂施工找到起始的支撑位置。在设计工作中,将支撑位置的设计列为较为重点的环节,保证在支点进行施工的时候,浇筑成型工作能够一次成功,为后续的施工提供支撑。
如果工程需要进行跨河施工,因此需要搭设支架。支架的设立包含的众多的环节,一个是将下部的支架与墩顶进行斜拉结合的处理,搭建模板平台为支架提供支护作用,使支架能够在不受到荷载压力的作用下产生支护作用。
然后进行钢筋骨架和预压和施工,检查支架的搭建是否完成,确保支架能够保证工程的安全和稳定,利用压载支架的弹性形变的技术,将支架尽心高程等的调节,家在后做浇筑的准备,做好管道中的钢筋和预应力的结构施工,保证按照设计的要求,在钢筋的布设和预应力管的设置上,能够按照设计的要求进行下料,将下好料的施工材料运动到现场后进行绑扎。
进入浇筑阶段后,施工过程是对立模进行从低到高的的施工,浇筑的注意事项就是要暗中啊横向对称的方式进行,浇筑的量要保持均匀,高程的上升要稳定,避免出现结构扭曲导致失衡。
在底板的浇筑和养护上,注意搭设顶板支架以利于将设计强度进行处理。浇筑的位置一般是对底腹板的混凝土进行,浇筑完成后,采取养生的方法,保证洒水,时间大约在14天左右,混凝土的强度达到了设计的预应力张拉的90%,就可以按照设计的要求来控制张拉。
混凝土达到设计的强度护,可以拆除支架和模板,也要先进行张拉预应力的测试,然后,再进行吊装的设备拆除等工作。
4 挂篮的设计
悬臂梁施工中的挂啦属于重要设备,具有平滑移动的特点,可以作为操作平台,在脚手架上活动,挂篮的支撑点一般位于浇筑的箱梁的部位。具有承载能力,帮助完成悬臂构建的浇筑。挂篮的施工,需要各个节段的支持,如模板、钢筋、管道等,完成的任务包括预应力筋的张拉,灌浆等等。施工中将挂篮的承载结构作为施工的重点,在作业F场进行施工后,采用锚固的措施解决挂篮,然后可以移动到下一个施工现场中,实现悬臂梁工程的反复。
挂篮的技术经过不断的研发和完善,已经形成了现有的自锚平衡式结构。承载的结构已经发展到了万能杆件和贝雷钢架。经过实际的运行,基本是可以达到设计要求并满足施工需要的。挂篮的选择和应用,必须对一些要素加以掌握,一个是承载能力、一个是刚度,还有稳定性等。
在实际运用中,挂篮的使用首先要保证结构的简单,受力的明确。并且,刚度和锚固拼接要稳固。长度不能过长,自重不能过大。对于挂篮的哦断面的选择,首先要根据施工中桥梁工程的建设情况,选择单箱或者双箱的结构,然后对挂篮的自重、模板的重量等进行设计,形成荷载中的各种要求的状态,注意箱梁的重量、平衡重量,道真的设备、千斤顶油泵等重量,都属于挂篮要成灾的荷载。因此,如果要控制住挂篮行走的稳定性,就必须要注意挂篮和浇筑混凝土之间的稳定系数,这个系数不能大于1.5 。
5 悬臂梁浇筑
对于悬臂梁的浇筑一般采用的是快速凝结的技术,水泥必须具有高强度的特点,在自然条件下,浇筑的时间不能短于35小时,强度要达到标准的79%,在实际的施工中,考虑到悬臂的施工一般为8天左右,因此,根据施工中工作量、设备、施工场地的气候等条件,在悬臂的浇筑施工中,注意了下列几点:
一是对挂篮进行施工的过程中,要对模板的吊架进行安装和校正。控制模板的中心位置与高程的控制保持抛高,通常要计算出高量和挂篮的形变。然后,将模板与前段的混凝土进行紧密的平整,将高程的误差调整到模板安装需要的数值。分批次浇筑要等到箱梁的梁段出现凝结后,采用混凝土浇筑的方法进行施工,在施工过程中注意挂篮,防止出现二次形变导致开裂。可以采用压重凉的方法。在梁段拆模后,对梁段的端口进行凿毛,然后浆梁段紧密结合,安装好新旧的梁段的接风,保证钢筋和锚具的重量,将接缝的位置加以连接,避免出现开裂。
预应力管道的安装,要进行衔接的勘察,保证前后施工段的衔接顺畅,线型的顺畅,角逐中对振捣工艺要严格控制,保护预应力管道,将混凝土的强度不断提高,可以在混凝土的配合中加入外加剂。
浇筑施工中需要重视的是预拱度的控制。一般可以采用钢绞线于块件连接的方式,形成连续性桥梁悬臂施工,保证施工的完整程度。在对块件进行浇筑的过程中,要确保浇筑的结构能够满足成桥的线形,并且通过设计测量的数据,可以采用数据仿真的方法进行建模和计算,得到精确的数据信息,帮助工作人员制定相应的修正值,防止模板出现变形等。
6 结语
结合实际案例对悬臂梁施工工艺和施工的效果进行分析后,得到了对悬臂梁施工工艺优势的分析结果。在这一结论的基础上,得出以下几点经验。首先是悬臂梁施工机械设备可以节约工程投入的成本,在施工工序上 也较为简便,并且施工质量在循环操作下得到了保证,而且悬臂梁的施工可以适应大跨度桥等各种桥梁施工建设,因此,在今后的桥梁建设工程中适合广泛推广。
参考文献
1.1 临床资料
选择2008 年1―12 月期间在我院行鼻内镜手术治疗的鼻窦炎患者224 例,男137 例,女87 例,年龄11~78岁,平均年龄(44.9±16.6)岁,按照海口标准[1],Ⅰ型31 例,Ⅱ型179 例,Ⅲ型14 例。将224例患者用随机数字表法分为膨胀止血海绵组(A组)与藻酸钙纤维组(B组),A、B两组均加用可吸收性止血绫。A 组110例,其中男68例,女42例;Ⅰ型15例,Ⅱ型88例,Ⅲ型7例。B组114例,其中男69例,女45例;Ⅰ型16例,Ⅱ型91例,Ⅲ型7例。所有患者术前凝血谱均在正常范围。两组患者年龄、性别、鼻窦炎构成比、凝血相关因子比较差异均无统计学意义(P>0.05),具有可比性。全部手术均由同一诊疗组熟练医师操作完成。
1.2 材料
① 可吸收性止血绫,商品名泰绫(Tistat);规格为8 cm×5 cm;北京泰科博曼医疗器械有限公司生产。② 膨胀止血海绵,商品名Ivalon;规格为8 cm×1.5 cm;美国MEDSORB DOMINICANA公司生产。③ 藻酸钙纤维,商品名Sorbalgon;规格为2g/30cm;德国HARTMANN保赫曼股份公司生产。
1.3 方法
A组:术后用可吸收性止血绫+膨胀止血海绵填塞术腔,每个鼻腔术腔予半块止血绫纱布分4小块,涂金霉素眼膏后放入,膨胀止血海绵3细条,每细条为8 cm,一剪为二,填入中鼻道及术腔。B组:术后用可吸收性止血绫+藻酸钙纤维填塞术腔,每个鼻腔术腔予半块止血绫纱布分4小块,涂金霉素眼膏后放入,藻酸钙纤维2细条,每细条为1根藻酸钙纤维,一分为二,搓成麻花状塞入,填入中鼻道及术腔。所有病例均行FESS手术,采用Messerklinger术式,均于术后24 h抽取鼻腔填塞物。
1.4 疗效观察
① 术后24 h记录患者头痛和鼻腔胀痛程度:患者感到无痛或极轻微痛,无需处理为(+);患者感到较痛,能忍受,但不影响睡眠为(++);患者疼痛明显,需服用止痛药,且影响睡眠为(+++)。
② 观察术后24 h内鼻腔渗血量和分泌物:小于等于20 mL为(+);大于20 mL小于等于40 mL为(++);大于40 mL为(+++)。
③ 观察抽除鼻腔填塞物时出血量:小于等于3 mL为(+),无明显出血,无需特殊处理; 大于3 mL小于等于6 mL为(++),有鼻腔活动性出血,经1.0%麻黄素棉片压迫1~2次后出血停止;大于6 mL为(+++),需经1%麻黄素棉片压迫3次以上,或需明胶海绵等再次填塞。
1.5 统计学处理
采用SPSS 13.0统计软件进行两样本比较的秩和检验,比较两组之间差异是否有统计学意义。
2 结果
A组头痛与鼻胀痛较B组明显,H=41.26>χ20.01(2)=9.21,Pχ20.01(2)=9.21,P
表1 两组疗效观察指标的比较
组别例数
头痛与鼻胀痛++++++
填塞后24 h内鼻腔渗血量++++++
抽除填塞物时鼻腔出血量++++++
A110294932692615294932
B1147141275281195145
3 讨论
长期来鼻腔手术后和鼻出血的止血方法,填塞压迫仍然是主要手段。传统的填塞材料多为凡士林纱条或碘仿纱条,用这些材料压迫止血效果都很好。但纱条填塞时患者异常痛苦,填塞时间较长,填塞手法技巧要求较高,需牢固塞紧,否则填塞止血效果不令人满意,有些人还会因此需要重新填塞。填满鼻腔并压紧后产生的不舒适让患者感到非常痛苦,过早抽除纱条常有程度不等的出血,鼻腔填塞时间要求较长,一般需3 d左右方可抽纱条,且往往需分多次才能取完纱条,抽取纱条时的疼痛及鼻腔出血也使患者非常恐惧。另外,碘仿所特有的刺激性味道也令患者难以忍受,故碘仿纱条不适宜鼻内镜微创手术。
随着鼻科学技术的发展,鼻内窥镜手术的应用,鼻手术时创面小、损伤轻、出血量明显减少。选择理想、合适的止血材料可有利于鼻腔止血,促进创面愈合,减少并发症,减少患者痛苦。我们利用膨胀止血海绵及藻酸钙纤维两种止血材料的优点,同时联合可吸收止血绫纱布应用于鼻窦炎术后患者,取得了良好的疗效,不仅使患者鼻腔填塞的痛苦大大减轻,而且使患者术后出血降到了最低。
吸收性止血绫是一种局部止血材料,为水溶性可吸收止血织物,主要化学成分为羧甲基纤维素钠,由再生纤维素经化学变性而成。无任何药物附着,具有物理、化学和生理三重止血功能。它可以吸附红细胞,黏附血小板,水解后激活凝血因子,启动内源性凝血系统,加速纤维蛋白间交连,同时形成凝胶状物质,堵塞血管,从而达到止血目的。它可被人体降解并吸收,局部组织无明显反应,最后绝大部分通过循环系统排出体外。使用吸收性止血绫安全无不良反应,具有止血迅速、可靠、易溶解、组织相容性高等特点。吸收性止血绫应用于功能性鼻内镜手术后的填塞,能有效减少术后渗血及出血,减少鼻腔填塞时间,减轻患者痛苦。
膨胀止血海绵为外科用聚乙烯醇, 是一种高膨胀材料,具有高度的亲水性, 一旦遇水、遇血迅速膨胀, 可达原体积的数倍, 变得柔韧有弹性。膨胀的止血海绵将术腔各个腔隙填充, 向四周压力均衡, 止血充分, 鼻胀痛轻, 填塞效果良好,止血效果明显。并可根据术腔大小适当修剪材料的形状,在置入鼻腔之前涂以金霉素眼膏,以减少黏膜损伤。故是鼻内窥镜手术后良好的填塞止血材料。但其表面无湿润保护作用, 且易黏附凝血块, 取出时可能再出血。
藻酸钙纤维是由藻酸钙类纤维组成的止血敷料,是从海藻中提取的带二价阴离子的多糖藻酸盐与带二价阳离子的钙离子通过交联聚合作用而形成。藻酸钙纤维与伤口接触后能吸收大量组织渗出液和血液,藻酸钙纤维内的钙离子有促进血液凝固作用,藻酸钙纤维在接触了组织渗出液和血液中的钠离子后逐渐变成凝胶物质, 这种物质起止血、保护创面作用,为伤口创造了一个湿润的环境,有利于创面自然愈合。藻酸钙纤维质地松软,能填到凹凸不平区域,填塞后遇渗出液和血液纤维体积会缩小, 压迫、压紧鼻腔的感觉很轻, 所以头痛及鼻胀痛也很轻。因有凝胶物质存在于藻酸钙纤维与创面之间,易滑落至鼻咽部,因此填塞时要注意技巧, 将藻酸钙纤维拧成麻花状填塞入中鼻道,两头在中鼻道及鼻顶部,这样可有效防止滑落并易于抽除
。藻酸钙纤维被认为是无毒、无过敏、组织反应极轻的敷料。由于鼻腔鼻窦术腔为深在的腔隙, 表面黏膜具有分泌能力, 因而很适合用藻酸钙敷料填塞。在鼻内镜术后藻酸钙纤维填塞鼻腔的止血效果好, 头痛及鼻腔胀痛程度轻, 抽取填塞物时鼻出血少,对术腔上皮化无明显影响。
藻酸钙纤维填塞中鼻道及术腔,下鼻道往往无填塞物,患者术后仍能用鼻腔呼吸,因而头痛及鼻胀痛不明显,甚至患者有时感觉不到鼻腔填塞物的存在。而膨胀止血海绵吸收血液及水分后膨胀,压迫术腔及整个鼻腔,下鼻道亦被完全阻塞,不能用鼻呼吸或仅能部分经鼻呼吸,头痛及鼻胀痛较明显。膨胀止血海绵抽除时出血较多,可能与抽除时形成瓶塞样鼻腔负压有关,故缓慢抽除及抽除前注入生理盐水有助于减少出血。
我们的体会,藻酸钙纤维是一种理想的鼻腔填塞物, 适用于各种鼻腔手术及鼻出血的患者, 填塞时间短, 患者基本无不适症状。膨胀止血海绵亦是一种较好的鼻腔填塞物, 尤以功能性鼻内镜鼻窦手术合并鼻中隔矫正的患者为佳, 而传统的凡士林纱条及碘仿纱条则对于鼻腔鼻窦肿瘤术后或顽固性后鼻孔出血的患者仍为首选。可吸收性止血绫纱布能有效治疗功能性鼻内镜手术后创面出血,明显缩短鼻腔填塞的时间,减少住院天数,从而减轻患者经济负担。膨胀止血海绵及藻酸钙纤维均为功能性鼻内镜术后的有效鼻腔止血材料,而藻酸钙纤维更合适。
4 参考文献
[1]中华医学会耳鼻咽喉科学分会,中华耳鼻咽喉科杂志编委会.慢性鼻窦炎鼻息肉临床分型分期及内窥镜手术疗效评定标准\.中华耳鼻咽喉科杂志,1998,33:134.
[2]何甫成,陈特锐,崔江,等.鼻内镜术后鼻腔鼻窦填塞材料的对比研究\.临床耳鼻咽喉头颈外科杂志,2007,21(6):276-277.
[3]黄宇勇,黄晓华.不同鼻腔填塞物对鼻内镜术后伤口疼痛和止血效果的临床观察\.中国耳鼻咽喉颅底外科杂志,2006,12(4):308-309.
随着我国医学技术的提升,在临床医学治疗中,影像学设备得到了显著发展,将影像学设备应用到各种临床诊断中已经成为目前临床医学诊断的发展趋势,尤其是在放射治疗、介入治疗中,利用碘对比剂进行影像学诊断已经得到广泛应用,为了能够进一步提高碘对比剂的应用效率,降低碘对比剂产生的不良影响,需要对碘对比剂产生的不良反应进行分析,并提出相关的解决对策,本文就碘对比剂在临床诊断中存在的不良反应类型以及临床表现等进行分析,针对相关不良反应提出具体的预防和处理措施。1 碘对比剂概述对比剂主要成分为碘,在临床上将其称为含碘对比剂(iodinated contrast agents,ICAs),根据用处不同含碘对比剂再配置过程中浓度不同。在临床上采用对比剂主要是进行辅助检查,通过在临床检查和治疗过程中使用对比剂能够有效增强诊断患者内脏、器官、组织的对比度,进一步清晰地反映患者内脏、器官、腔道、组织的形态、轮廓、大小以及器官等病变情况,在临床上也被称为对比剂。常用的碘对比剂包括优维显(碘普罗胺)、双北(碘海醇)、碘淳宁(碘克沙醇)等。在临床上,对比剂具有较广的应用范围,能够广泛应用于血管成像以及多种疾病的临床诊断中,根据对比剂渗透压不同,可将其分为高渗、低渗以及等渗对比剂3种类型。高渗对比剂主要为离子型单体,低渗对比剂又能够进一步分为非离子型单体以及离子型二聚体两种。等渗对比剂主要是非离子型二聚体。另外,有机碘对比剂也有多种分类,主要包括离子型和非离子型。离子型碘对比剂常见的包括复方泛影葡胺注射液等,非离子型碘对比剂常见的包括碘化油注射液、碘海醇注射液等。2 碘对比剂在临床应用中存在的不良反应目前,碘对比剂在临床应用中存在的不良反应主要包括全身性不良反应、急性肾损伤以及碘对比剂的血管外渗等。其中,具体不良反应主要为:
2.1 全身性不良反应
吴春梅等[1]学者探讨优质护理干预在CT增强扫描碘对比剂不良反应中指出,患者在进行诊断时出现全身性不良反应,根据反应时间不同可以将其分为急性不良反应以及迟发性不良反应两种类型。张海萍[2]指出急性不良反应主要是指患者在进行诊断过程中注射碘对比剂1 h内产生的不良反应,而迟发性不良反应主要是指患者在进行诊断过程中,注射碘对比剂时没有立即发生不良反应,而是在注射后1 h~1周内逐渐产生的不良反应。一般来说,发生全身性急性不良反应患者多见于50岁以下患者,根据产生的不良反应的严重程度可以将其分为轻、中和重度3种类型。其中,轻度不良反应和中度不良反应在临床上较为常见。霍然等[3]认为发生轻度不良反应时,不需要进行特殊治疗,其不良反应持续的时间较短、产生的症状不明显,中度不良反应在临床上具有较为明显的表现。通过研究分析表明,碘对比剂在发生中度急性不良反应时,主要表现为过敏反应,该过敏反应一般为假性过敏反应,并非由抗原-抗体结合导致的,而是在诊断注射碘对比剂时,对比剂与患者体内的蛋白相结合,从而产生抗原,导致机体出现过敏反应。冉超[4]在分析碘对比剂不良反应信号时认为患者出现中度急性过敏反应后,主要表现为荨麻疹、血管性水肿、支气管痉挛、呼吸困难等症状,严重时还会出现休克症状。当患者出现重度过敏反应时,会导致血脑屏障被损坏,引发癫痫等症状。
2.2 急性肾损伤
王冠杰等[5]认为急性肾损伤主要是指患者在进行影像学检查过程中,通过注射碘对比剂时产生的不良反应。在国际医学诊断标准中没有对急性肾损伤进行一个统一的认定标准,不存在其他干扰因素下,发生急性肾损伤时,患者体内的血清肌酐值有明显升高现象。在分析急性肾损伤发生过程中,原本就存在肾功能损害的患者发生急性肾损伤的概率较高,占总发生率的25%,患有糖尿病肾病患者发生急性肾损伤的概率为50%。由此可见,当患者在进行影像学诊断时,通过对患者注射碘对比剂时,发生急性肾损伤不良反应的危险因素较多,与碘对比剂剂量、给药途径以及患者自身的患病因素有关。高龄患者、糖尿病患者、心血管疾病患者等发生急性肾损伤的概率更大。
2.3 碘对比剂血管外渗
何敏宁[6]在研究CT增强扫描碘对比剂不良反应过程,对患者进行碘对比剂注射时,还会产生碘对比剂血管外渗不良反应。在诊断过程中,对患者进行碘对比剂注射时,注射的血管壁存在损伤现象,或者针尖不小心与血管壁接触到、患者静脉血管较细等,容易引发碘对比剂血管外渗现象。发生碘对比剂血管外渗不良反应时,樊庆利和杨微[7]在研究碘对比剂不良反应时认为在临床上主要表现为患者注射位置出现局部灼痛现象、有一定的压痛感,同时在碘对比剂血管外渗部位还会出现水肿和红斑现象,如果碘对比剂血管外渗现象较为严重时,会出现水疱、皮肤溃疡甚至软组织坏死等症状。发生碘对比剂血管外渗的原因除了与上述原因有关外,在注射碘对比剂过程中,采用高压注射器进行注射引发碘对比剂血管外渗的概率要大于普通注射器注射的概率。黄涛[8]认为当采用高压注射器进行注射过程中,发生碘对比剂血管外渗现象,需要及时停止注射,并对外渗位置和渗漏量进行检查,分析血管外渗程度,分为少量渗漏和大量渗漏。另外,何敏[9]研究认为碘对比剂血管外渗现象除了与采用注射器的规格不同有关以外,还与医护人员的注射技术有关,同时患者的配合程度、患者的身体素质等也直接影响碘对比剂血管外渗的发生概率。3 碘对比剂不良反应发生时间碘对比剂不良反应发生时间主要根据不良反应发生时间速度快慢进行区分。当注射对比剂1 h内出现各种不良反应被列入急性范围,当注射对比剂1 h~1周内出现各种不良反应被列入迟发性范围,当注射对比剂1周以上时间才出现各种不良反应被列入晚发范畴。在临床研究中表明,对患者注射离子型和非离子型碘对比剂后,出现不良反应主要表现为急性不良反应,有70%的患者注射对比剂5 min左右就会出现明显不良反应。某些患者在注射对比剂1 h后才会陆续出现各种不良反应,常见的迟发性不良反应在临床上主要表现为皮肤反应,容易出现血管性水肿、荨麻疹以及红斑症状。4 诱发碘对比剂不良反应发生因素和检测方法诱发碘对比剂不良反应发生因素主要与患者年龄、既往病史以及身体自身原因有关。发生对比剂不良反应人群多为儿童和中老年人,其原因主要是由于儿童和中老年人抵抗力、免疫力较弱,在诊断过程中对对比剂不耐受等因素造成的。既往病史常见于患有哮喘病、过敏、心脏疾病、肾病史等症状患者,临床上存在脱水、血液疾病等症状患者也会诱发对比剂不良反应发生。其中,血液疾病主要包括镰状细胞性贫血、红细胞增多等。当患者在临床治疗中长期服用β受体阻滞剂、非甾体抗炎药和白细胞介素-2等药物时也会诱发碘对比剂不良反应发生。通过临床进一步研究发现,患有对比剂过敏史、海鲜过敏史的女性患者发生对比剂不良反应的概率更大,属于危险诱因之一。同时,哮喘在临床上属于严重不良反应危险诱因,合并心血管疾病属于轻度不良反应危险诱因。在临床诊断过程中,针对某些因食物因素造成对比剂不良反应发生的病例很多医师和患者往往存在误解情况,对因食物因素引起的不良反应不重视,从而导致救治时间被耽误。
为预防患者出现对比剂不良反应,在临床上需要对患者进行有效的检测,常见的检测方法包括静脉注射试验方法、皮内试验方法、结膜试验方法等。其中,静脉注射试验方法主要是将同一品种对比剂按照浓度为30%、注射剂量为1 m L的配比缓慢对患者进行静脉注射,注射后对患者临床表现进行观察15~30 min,当患者出现恶心、呕吐、头晕以及荨麻疹、气急等症状时,属于阳性反应,需要做好相关的预防和治疗措施,并停止对患者进行对比剂辅助检查。皮内试验方法是将同一品种对比剂按照浓度为30%、注射剂量为0.10 m L的配比缓慢对患者进行皮内注射,将对比剂注入患者前臂皮内,注射后对患者临床表现进行观察15~30 min,当患者出现超过直径1 cm红斑等症状时属阳性反应。结膜试验方法将同一品种对比剂滴入患者一侧眼内,剂量为1~2滴,观察时间为3~4 min,当患者眼结膜出现明显充血现象、血管怒张或曲张等表现属于阳性反应。5 碘对比剂不良反应处理方法5.1 全身性不良反应处理方法
李元[10]在研究不同对比剂在影像学检查中发现,为有效避免患者在注射碘对比剂过程中出现全身性不良反应,需要采取具有针对性的预防措施。由于碘对比剂自身具有一定的毒性,因此,在对患者进行注射和诊断过程中,需要采取积极的预防措施。其中,最常见的预防措施包括医护人员必须熟练掌握碘对比剂在使用过程中的禁忌证、对碘对比剂的使用方法和使用量进行严格把控,在对患者注射碘对比剂过程中,需要针对患者的既往病史进行分析,评估患者在注射碘对比剂可能存在的危险情况,做好相关的危险评估工作。同时,医院需要定期对医护人员进行相关疾病知识的培训,通过理论配合和实践培训,提高医护人员使用碘对比剂的能力,并熟练掌握碘对比剂注射过程中发生意外事件的急救措施,在发生不良反应或者意外事件时,能够第一时间识别患者产生的不良反应类别,并做好相应的急救工作。徐玉玲[11]在注射碘对比剂时,针对患有甲状腺功能亢进患者时,需要严格禁止这类型患者使用碘对比剂进行诊断。另外,当患者在注射碘对比剂过程中,如果出现任何轻微症状,医护人员就必须引起重视,对患者的生命体征进行严密观察,直到患者症状消失,同时对于发生重度不良反应患者,要第一时间停止注射碘对比剂,及时呼叫临床主治医师,进行心、肺、脑复苏,及时给予抗过敏、抗休克治疗。
5.2 急性肾损伤处理方法
关键词: 工字木梁;高墩;悬臂模板
Key words: wooden H beam;high pier;cantilever template
中图分类号:U445 文献标识码:A 文章编号:1006-4311(2013)21-0091-03
0 引言
20世纪60年代,工字木梁模板兴起于西欧,并以其质轻、灵活性好、刚度高等特点受到建筑界的广泛关注。在20世纪80年代,我国建筑界引进了工字木梁的全套生产技术,建成了全亚洲首屈一指的木梁生产线,自此,工字木梁模板开始应用在本国的建筑施工中。工字木梁质轻,灵活性好,除了被广泛应用在建筑行业以外,水利工程、核电工程等多个领域都有其成功应用的范例。近几年来,国内的桥梁工程方兴未艾,工字木梁模板也逐步被引入桥梁施工中。
某大桥位于河南省卢氏县境内,墩高69m~77m,最高墩高达77米,墩身采用双肢等截面矩形实体墩,肢间距5.6米,单肢截面尺寸为7×1.7米,为确保施工工期,加快施工进度,应用工字木梁悬臂模板施工。
1 工字木梁悬臂模板系统的结构
1.1 工字木梁平面模板组成 工字木梁悬臂模板包括:①模板(芬兰21mm厚的进口维萨板);②竖肋,H=200mm工字木梁;③横肋,2[12槽钢;④连接爪(用于工字木梁横肋和竖肋的连接);⑤上平台;⑥主背楞桁架;⑦斜撑;⑧后移装置;⑨受力三脚架;⑩主平台、吊平台及预埋系统。(如图1所示)
1.2 工字木梁模板特点 工字木梁模板的结构设计经济合理,而且采用的是高标准制造工艺。单块模板采用地板钉、自攻螺丝来连接胶合板和竖肋,通过连接爪连接横、竖肋,竖肋两侧布设2个相互对称的吊钩。模板之间通过芯带连接,用芯带销插紧,使模板均匀受力,确保模板的完整性。木梁直墙模板一律为拆装方便且可以随意拼接成各种尺寸的装卸式模板。模板刚度大,便于接高或接长,最高可一次浇筑十米以上。
1.3 直墙模板拼缝结点 直墙木梁模板通过芯带进行连接,模板与模板之间直接拼缝时,采用拼缝一的做法,当模板与模板之间不能拼在一起时,则增加拼缝模板,用芯带压住拼缝模板,按拼缝二做法。(如图2所示)
此墩为两面收坡阳角处模板通过拉杆来控制,角部模板做启口并贴上海绵条,能有效保证模板角部不胀开和漏浆。
2 技术原理
根据墩身形状,将工字木梁悬臂模板划分为多个单元,每个单元模板和三角形支撑爬架构成一个整体,再用埋设与墩身混凝土内的爬锥进行固定,借助塔吊分别对各单元模板进行提升和组装;模板高4.65米,按照施工标准,一次浇筑成型的模板高4.5米。
承载设计参数:混凝土侧压力P=40KN/m2,混凝土浇筑高度H=4.5m,纵向、横向各两榀模架。
3 工字木梁悬臂模板系统的特点
工字木梁悬臂模板主要用于桥墩等竖向方形结构的双侧模板施工。安装、拆卸、维修简便,是一种理想的墙体模板体系,主要有以下技术特点:
①由对拉杆、预埋件、承重三脚架承担支架、模板及施工荷载,不借助脚手架就能直接用于高空作业;
②模板可平移65厘米,避免在循环施工过程中的重复调运,且不影响钢筋绑扎和涂刷模板脱模剂;
③模板部分 可相对支撑架灵活调节位置。且利用斜撑模板可前后倾斜或微调以确保模板垂直度,最大角度
为30°;
④模板构件由通用零部件组成,标准化程度高,模板支撑架或面板损伤的情况下可随时更换以确保混凝土施工质量;
⑤模板采用质地轻且刚度大的工字木梁胶合板模板。其质量是钢模板重量的一半(55kg/m2),施工安全性高。
4 工艺流程及操作要点
4.1 工艺流程 工字木梁悬臂爬模施工工艺流程图见图3。
4.2 操作要点
4.2.1 模架组拼 现场拼装模架(通常两榀为一单元),同步拼装爬架和面板。
面板拼装顺序:①搭设平台支架;②铺设横向槽钢背楞+摆设工字木梁;③横竖背楞固定;④铺设面板固定。
用丙烯酸油漆对切割与钻孔部位进行二次封边,降低其吸水率、提高周围次数;组装面板的过程中,为防止其变形影响拼装质量,在面板之间预留0.5mm到1mm的间隙,再用玻璃胶均匀涂抹。架体拼装好后用塔吊吊放于预埋受力螺栓上,用安全插销固定。用塔吊将拼装好的模板吊装在模架上,安装背楞扣件及其配套装置,角度与垂直度可通过斜撑作调整,微调后移装置使模板就位。按要求装设钢筋和埋件系统,报检合格后开始混凝土浇筑施工。
4.2.2 首次混凝土浇筑 在结构基础施工阶段,要预埋钢筋或地脚螺栓等固定模板的装置;拼装模板并现场加固,参照施工要求将预埋件装设在模板上。首次浇筑混凝土具体情况参见图4。
将模板安装在指定位置之前,通过模板面板上的孔,将埋件系统(埋件板、受力螺杆、爬锥)用M36×60高强螺栓临时固定在模板上,埋件距混凝土顶面50厘米,随模板一起吊装。混凝土采取自动计量搅拌站集中拌和,混凝土罐车运送,泵送入模,严格控制层厚不大于30厘米,按施工要求进行振捣,确保混凝土密实。混凝土浇筑达到一定强度后,卸下M36×60螺栓,将模板后移,受力螺栓安装在爬锥上。将模板爬架吊装就位,安装三角架,爬架卡在受力螺栓上,插上固定销子。
4.2.3 模架首次提升 完成混凝土的首次浇筑滞后,混凝土强度≥6MPa可松动埋件螺栓;混凝土强度≥10 MPa即可拆模、拆模架;将模板表面杂物清理干净后吊装爬架(就是将爬架挂在埋件点高强螺栓上);模板垂直度可用斜撑来调整,借助后移装置对模板下沿进行微调,使其紧密贴合上次浇筑完的混凝土结构表面,以防错台或漏浆。上图5为模架首次提升示意图。
吊平台装设在首次提升的爬架下,将方便周转的埋件拆卸掉以备后用,通过人力修饰混凝土表面。
4.2.4 循环模架提升、混凝土浇筑 后移模架提升悬臂模架合模就位浇筑混凝土,按以上工序循环完成各节段墩身施工,直至墩顶,拆除模架。
4.2.5 注意事项 ①通过高强度钢管连接同单元的两榀桁架,确保施工平台稳定牢靠。②在制定位置埋设好预埋件,浇筑施工开工前仔细审查埋件系统,确保浇筑施工不会扰动预埋件,同时将误差控制在1mm以内。③拆模后一定要彻底清理面板上的杂物,而且先刷脱模剂再浇筑,避免模板遭受二次污染。④整体提升模板时,切忌吊钩吊在模板吊钩上,正确的操作是吊在主背楞上部的吊具上。⑤浇筑施工开工前,必须确保模板的下部与已浇筑混凝土紧密贴合,防止漏浆及错台。同时检查对拉杆以防止侧压力过大导致模板变形。⑥按要求做好模板支撑后,各单元间次背楞必须用芯带及楔形销连接,确保所有单元模板连成一整体,且连好后必须成一条直线。⑦模板单元上的螺丝必须定期检查,及时紧固松脱的螺丝。
5 质量控制
加强面板保护。将脱模剂涂刷在模板表面;模板如有破损,切忌用铁铲清理表面,正确的操作是采用添加固化剂的树脂或腻子修复破损部位。模板安装完成后,断面转角处用对拉螺杆拉紧,保证模板整体性。
模板拼装成型标准:板面对角线误差控制在3mm以内,两模板拼缝间隙不得超过±0.5mm,板面平整度控制在±0.5mm以内,局部变形量≤1mm。浇筑施工段的模板和已浇筑混凝土上沿应反包15厘米,并贴合紧密,以防上下接缝漏浆或错台。
6 结论
通过应用工字木梁悬臂模板,该大桥墩柱施工每循环4.5米一节,混凝土方量54m3,平均4d一循环,施工过程完整、高效,且外观与实体质量较高。工字木梁悬臂模板与钢模相比,运输方便、可现场裁剪拼装、保温效果好、少设拉筋、高空作业安全系数高,既方便拆装、节省投资、减轻重量,同时也能解决变坡、变截面墩身施工等技术难题,经济、社会效益显著,推广前景广阔。
参考文献:
胡青 HU Qing
(陕西省建筑职工大学,西安 710065)
(Architecture Labor University of Shaanxi Province,Xi´an 710065,China)
摘要: BIM(建筑信息模型)是以三维数字技术为基础,综合集成建筑工程项目各相关信息的数据模型,服务于工程项目全生命周期。本文介绍了BIM技术在国内外的应用特点,结合桥梁工程的施工特点阐述了BIM 技术的优势,同时提出了 BIM 技术在设计运营等阶段的特点,以促进BIM 技术的成熟和普及。
Abstract: BIM (Building Information Modeling) is the data model based on three-dimensional digital technology, integrating all relevant information of construction projects and serving in the whole project life cycle. This article describes the characteristics of BIM technology in home and abroad, elaborates the advantages of BIM technology by combining with the construction characteristics of the bridge project, and also proposes the characteristics of BIM technology in design and operation stage to promote maturity and popularity of BIM technology.
关键词 : BIM技术;信息化;桥梁工程;施工
Key words: BIM technology;informatization;bridge construction;construction
中图分类号:U448 文献标识码:A文章编号:1006-4311(2015)20-0073-02
1BIM技术发展现状
BIM(建筑信息模型)是一种基于三维模型的智能工作方式,它能够创造、发掘和保存建筑设计、施工、运营全流程中的各项数据,从而大幅度提升决策效率和生产力,促进建筑业转型升级。预计未来两年内,中国BIM应用率较高的施工企业数量将会有108%的增长,它将广泛应用与建筑设计和道桥建设领域。
2BIM技术在桥梁施工阶段的应用
2.1 数字信息化施工
钢构桥梁所用的部分构件可以异地加工,然后运至施工现场进行拼装。运用数字信息化手段可以预制桥梁结构,然后通过工厂化的生产制造手段防控施工中的各种不利因素,以确保构件质量达标,同时进一步桥体施工周期,提高效益。
2.2 施工模拟
基于BIM技术的4D桥梁施工模拟技术可以在项目建造过程中编制科学的施工组织计划,同时严格把控施工进度,合理布置场地并优化资源配置,从而以点带面,全面把控整座桥体的施工进度和工程质量,以期在提高工程质量的前提下节约施工总成本,提高经济效益。
2.3 安全数据信息管理
基于BIM技术的桥梁安全数据信息管理平台可以搭载管理施工中的关键数据,并利用集成平台实现数据共享,使各单位全面掌握桥梁施工的安全信息,以便制定科学有效的施工组织方案,防止因安全信息数据管理滞后而埋下安全隐患,甚至引发施工安全事故。
2.4 物料设备管理
在BIM技术问世之前,施工单位往往借鉴物流行业比较成熟的管理经验及技术方案,例如使用无线射频识别电子标签技术;可以将桥梁构件、工程设备以及相关物料贴上标签,以此跟踪管理施工进度。但RFID技术只能识别一部分信息,无法掌握桥梁施工全过程的数据流,这点缺陷可以通过基于BIM技术的桥梁信息模型来弥补。
2.5 协同作业
协同作业是设计之外的各种设计文件与办公文档管理、人员权限管理、设计校审流程、计划任务、项目状态查询统计等与设计相关的管理功能,以及设计方与业主、施工方、监理方、材料供应商、运营商等与项目相关各方,进行文件交互、沟通交流等的协同管理系统。在桥梁工程施工过程中,利用BIM技术实现协同作业,能保证施工科学合理化。BIM技术不仅在施工领域发挥巨大的作用,并且对提高设计、运营领域的效率、节约成本也将起到积极的推动作用。
3BIM技术带给桥梁工程的革新
3.1 方案评审的直观性
基于BIM的桥梁工程,可以让业主在方案选择评审阶段更加直观地看到工程完工后的效果及相关数据分析。
3.2 更加准确的工程造价
基于BIM模型的工料计算相比基于2D图纸的预算更加准确、而且更多的工作由计算机完成,且节省了大量时间。
3.3 提高生产效率、节约成本
BIM技术所提供的协同设计、参数化设计功能,有助于优化桥梁结构设计,可以避免施工环节多次返工,既节省时间和成本,又能保证施工效率。新型生产方式的兴起,如构件的模块化、预制化程度大大提高,BIM数据信息模型代替传统图纸移交给施工单位等。
3.4 有助于桥梁工程的创新性与先进性
作为当今建筑业最具前瞻性的技术之一,BIM技术用可视的数字模型串联起设计、建造和运营全过程。BIM所提供的信息共享交互平台能使早期参与方案设计的各个协作方进行互相经验探讨、信息协调,实现项目创新性与先进性。
3.5 方便工程及相关设备管理与维护
BIM竣工模型传递到工程运营管理单位,能为其日常的常规运营管理、安全管理、养护维修等工作带来便利。先进的工程进度管理与质量控制,业主可利用BIM技术所输出的可视化效果、监视工程进度,校验工程完成的质量。
4BIM技术在桥梁工程中应用的案例分析
4.1 项目概况
陈翔路为城市次干路I级,双向4车道,起点里程K3+170,自西向东依次穿过规五路、古猗园路、轨道11号线、沪嘉高速、瑞林路、通湖路,终点里程K3+670,全长约500m。包括道路、桥梁、建筑、园林、排水、交通设施等常见的专业内容,是一个典型的市政工程案例。
4.2 BIM在陈翔路地道工程中的典型应用
陈翔路地道工程是上海市城市建设设计研究总院第一次在市政工程中采用BIM技术。在项目进行中,上海市城市建设设计研究总院做出了大量的探索性实践,从方案开始,到初设、施工图,再到施工等各项目阶段,都充分发挥了BIM的技术优势。
4.2.1 BIM在勘察阶段的应用
工程测量需获取工程及周边环境的大量空间信息和基本属性信息,运用Autodesk Revit软件帮助完成三维地质模型的建立,而借助这一模型,设计和施工人员可以清楚地洞察拟建工程内容与工程环境之间的关系,从而快速了解和掌握土层、地下水、管线、地表等情况,也助力项目组处理不良地质、管线交叉等问题。
4.2.2 BIM在设计阶段的应用
陈翔路地道工程涉及专业较多,根据工程项目特点,需要充分发挥BIM模型参数化建模优势对项目进行全工程内容的BIM模型(含钢筋)应用,包括地质、地道主体结构、桥梁、管理用房、雨污水系统、泵站及周边环境等内容。依靠BIM技术的优势,利用Autodesk Navisworks对节点的碰撞校核功能进行智能化碰撞检查,根据生成的碰撞检查报告,直接索引到BIM模型中打开生成的局部三维模型,在其中找到相应的构件并进行调整,从而避免在设计、构件制作以及现场施工阶段产生矛盾。
Autodesk Navisworks、Autodesk Infrastructure Modeler等软件可将BIM模型与项目进度表动态链接,较为直观地表现出施工流程。在BIM技术的统一设计平台帮助下,在各阶段都可以与各专项设计团队紧密同步并且共享设计成果,这一模式避免了不同团队之间由于沟通问题而产生失误与返工,从而大大提高了设计效率。
在基于BIM的地道结构计算应用研究中,通过BIM建模软件Autodesk Revit到BIM分析软件AutodeskRobot的无缝连接,并将BIM计算结果与通用有限元软件进行对比分析,进而得出,RSA的计算结果是可靠、有效的,能够满足工程设计计算的要求。其计算结果的准确性,不仅使得从BIM建模到BIM设计一步到位,节省单独建模计算的时间和精力,而且使得三维复杂结构计算分析效率大大提高。
4.2.3 BIM在施工中的应用
在施工阶段,城建总院购置了机器人全站仪,率先将机器人全站仪应用于市政工程中。通过将已在Autodesk Revit中建立的模型直接导入测量手簿,实现现场直接放样,省去了利用图纸等其他元素计算放样点位坐标的繁琐过程,避免了复杂的计算,从而达成效率与精度提高2~3倍的效果。在陈翔路地道工程项目中,将三维激光扫描技术与BIM技术结合应用,完成了工作现场的勘察、信息建模、信息管理等大量工作,不仅在勘察前期作用巨大,而且还为设计到施工阶段提供了可靠的数据信息。
4.3 实际效果分析
在陈翔路地道工程施工过程中,通过Autodesk Navisworks、Autodesk Infrastructure Modeler等软件将BIM模型与项目进度表动态链接,较为直观地表现出施工流程。此外还进行施工进度模拟、施工场景模拟,并结合视频制作技术支撑视频,帮助设计与建筑专业人士整合设计成果,优化施工方案。基于欧特克系列BIM软件的通用性以及便捷性,实现现场环境、方案设计、模型分析、施工模拟、安全管理等各方面的综合提升,大大提高了模型的重复利用率,降低了应用研究的综合成本,成果斐然,为工程建设赢得更好的经济效益和社会效益。
5结论
桥梁作为重大的公益性建筑,理应体现高水准的工程质量和服务品质。而基于BIM的欧特克软件可实现现场环境、方案设计、模型分析、施工模拟、安全管理等各方面的综合提升,大大提高了模型的重复利用率,降低了应用研究的综合成本。
参考文献:
关键词:菱形挂篮 悬臂箱梁
一、工程简介
S336省道靖江改线段工程项目十圩港大桥主桥为三跨预应力混凝土变截面连续箱梁,跨径组合为55+75+55m,半幅桥宽12.5m,底板宽6.7m,翼缘板悬臂长2.9m。根据施工图要求,除两边跨各有一现浇段和主墩墩顶的0#节段及合拢段外,其余块件全采用挂篮悬臂浇注施工。挂篮采用菱形桁架式挂篮。主梁1至3节段长3m,最大控制重量为1#节段103.2t;主梁4至6节段长为3.5m,最大控制重量为4#节段95.9t;主梁7至10节段长为4m,最大控制重量为7#节段93.9t。
二、菱形挂篮的构造
菱形挂篮由主桁架、行走及锚固装置、底模架、内外侧模板、前吊装置、后吊装置、前上下横梁、后下横梁、内外滑梁等组成。 其中主桁架由上纵梁、下纵梁、前支脚、后支脚,以及横向联结杆件组成。
主桁架采用32#b槽钢,重量为8.87t;前上横梁采用双拼40#a工字钢,重量为1.62t;前下横梁采用双拼40#b槽钢,重量为1.565t;后下横梁采用双拼32#a槽钢,重量为0.914t;钢底模及模架,重量为5.59t;侧模及模架,重量为8.6t;内模及模架,重量为0.536t;内滑梁采用32#a槽钢,重量为0.914t;外滑梁采用双拼32#a槽钢,重量为1.37t;后锚扁担梁采用双拼20#a槽钢,重量为0.431t。
总重为30.413t。
三、主桁架计算
由挂篮结构设计图可知,主桁架由2件对称的桁架式承载构件联结而成,因此只需计算其中
一件的受力和应变情况。可以确定主桁架是简支结构,杆件间以销轴连接,所以不存在超静定问题。
1、混凝土荷载:
取钢筋混凝土湿容重2.6 t /m3计算:
1#节段长300cm,方量39.7m3,重量103.2t;4#节段350cm,方量36.9m3,重量95.9t;7#节段长400cm,方量36.1m3,重量93.9t。
2、挂篮主纵梁在各种荷载组合下前端受力分析
在计算挂篮主纵梁前端受力计算时,根据节段长度和对应的混凝土重量及各种荷载组合情况下分别计算,找出作用在主纵梁前端上最不利的荷载组合。
挂篮自重
故在挂篮浇筑7#节段时,两根主纵梁前端受力最不利。
根据规范要求,验算结构强度时采用荷载组合:砼重量+动力附加荷载+挂篮自重+施工机具和人群重。
施工荷载和人群重:施工人员及机具荷载取2KN/m2,振捣砼时产生的荷载取2KN/m2,其他可能的荷载取1KN/m2。由以上可知施工荷载为5KN/m2。
在挂篮浇筑7#节段时,产生的施工荷载为:
两根主纵梁前端最大受力:
负荷由两个主构架前端部承受,则一个主桁架负载为672.46/2=336.23KN。
3、主桁架受力分析及计算
根据菱形桁架的几何结构可计算得,AC杆件承受最大拉内力,为707KN;BD杆承受最大轴向压内力,为676KN。前支座B承受压力753KN,后支座A承受拉力405KN。
(1)压杆稳定性验算
在主桁架中,各构件由两根32B槽钢拼焊而成,杆件截面惯性矩:
柔度小于弯曲极限,这是个强度问题。
(2)杆件的抗拉强度验算
则,为计算的AB、BD、CD杆件显然安全
(3)端部D点挠度
根据结构力学求解器计算得出端点D的挠度为8.2mm
(4)前上横梁的强度计算
施工中浇筑混凝土的重量由侧模、内模、底板共同承担,则必须对其重量进行分配。
从挂篮设计图可知,前上横梁有12个吊点,其中2个用于侧模,2个用于内模。5个用于底模,另三个吊点备用,按9个吊点计算,假定同一部分吊点力相等。
作出受力简图,利用结构力学求解器可计算得到,前横梁承受最大弯矩为 。最大剪力为
前上横梁为双拼40#a工字钢,其抗弯截面模量为
弯矩最大处的横梁应力为
剪力最大处的剪切应力为
(5)吊杆强度和变形
经计算满足安全要求
(6)滑梁的强度和挠度计算
经计算,内外滑梁均满足安全要求。
从以上计算看出,主桁架满足安全要求。
四、挂篮施工时抗倾覆稳定性计算
1、后锚强度计算
每榀菱形桁架后部都有两根后锚扁担梁,各通过两根Φ32mm精轧螺纹钢与桥面锚固,所以每榀菱形桁架有四根后锚杆。扁担梁长1.3m,两端后锚杆各距边缘20cm。
每榀菱形桁架的后锚力为405KN,而每根精轧螺纹钢的许用抗拉强度为
则四根后锚杆的许用拉力共计 故后锚安全。
2、后锚扁担梁的强度验算:
扁担梁由两根20B型槽钢和1cm铁板拼焊而成,扁担梁的抗弯截面模量:
截面积:
后锚所受最大弯矩
扁担梁承受的最大弯曲应力
但是根据《路桥施工计算手册》钢材容许应力的取值,新钢材支架容许应力可以提高1.25倍。
扁担梁承受的剪切应力:
所以,后扁担梁安全。
综上分析可知,挂篮施工时的抗倾覆稳定性可靠。
五、挂篮拼装与预压
0#块施工完成后,拼装挂篮并进行预压。挂篮预压方法采用三角形反力架与千斤顶逐级加载试压,预压荷载为最大块件重量的1.4倍。
预压完成后整理资料并输入计算机,绘出挂篮荷载―变形曲线。在挂篮悬浇施工过程中利用荷载―变形曲线得出相同荷载下的挂篮变形,并结合相邻块件实测资料进行修正,以便准确控制挂篮的施工挠度。
六、挂篮的拆除
待合龙段施工前,便可拆除挂篮,拆除顺序如下:
1.在梁顶面安装卷扬机,吊着外侧模前后吊杆(底模架吊在走行梁上)徐徐下放,落至船上。或先放底模架,后放外侧模。
2.合龙段不用的内模、走行梁,在合龙段施工前拆除,余者可从两端梁的出口拆除。
3.拆除前上横梁。
4.主构架可移至塔吊可吊范围内,分片拆卸。
5.拆除轨道及钢(木)枕。
七、应用菱形挂篮进行悬浇施工的几点注意事项
1、要确保混凝土浇筑时主桁前支座材料强度满足受力要求,因前支点反力较大,必要时须对主桁片进行加固,防止出现压杆破坏。
前言
建筑行业作为国民支柱性企业之一,其对于高新科技的应用程度相对也比较深。而随着我国建筑行业在近些年发展速度的加快,BIM技术在我国工程项目建设工作中的应用范围也愈发的广泛。就BIM技术本身来看,其在工程项目设计、施工、竣工后运营维护等阶段的应用都能够发挥出极大的作用。因此,对BIM技术在工程项目中,特别是在工程测量工作中发挥的作用,以及其在其他阶段具体的应用情况展开研究,可以帮助相关人员制定更加完善的工程测量中BIM技术的应用策略和工程项目的具体施工方案。
1 BIM技术简单概述
所谓的BIM技术,就是人们常说的建筑信息模型。就该技术本身来看,其主要是以三位数字技术为依托,通过将建筑工程项目施工建设过程中包含的各类相关信息进行集成处理的方式,形成有关该工程的数据模型。同其他技术相比,该项技术本身具有模拟性、可视化、可出图、协调性、优化性等优势。截止到目前为止,我国有关BIM技术的定义和解释存在较多的版本,在这些版本中,没有任何一个版本是被人民群众广泛接受和认可的。现阶段,人们对BIM技术的认知仍旧停留在三维模型这一层面,这使得人们往往只能够认识到该项技术的直观性、可视性、真实性等优势,忽视了其最为重要的一个方面,即信息[1]。将BIM技术应用到工程项目中,不仅能够使项目本身具有可视性的特点,且利用该技术建设完成数据模型中,每个构建都包含一定的信息。这样一来,相关人员就可以通过工程项目的设计情况,实时观察和变更各构件上包含的数据信息,从而确保一处变更就能够带动全部图纸同步变更的目标得以实现,进而有效避免了以往利用CAD软件制图需要进行多次变更的弊端。此外,在工程项目中应用BIM技术的另一个优势还能够实现各专业间的协同,确保专业设计师在设计项目图纸时,不会出现因为沟通不顺畅造成各专业间相互碰撞的问题。
2 BIM技术在项目各阶段的应用情况
2.1 在工程测量中的应用
作为工程项目的基础部分,BIM技术在项目测量阶段的有效应用,对于控制项目施工质量,提升测量结果的精准度等可以起到一定的积极意义。通过相关数据统计分析发现,我国在2009年施工企业的年平均利润在百分之三点五一左右,同设计机构和开发商相比具有极大的差异,这一问题的产生,主要是因为工程测量技术水平相对较低,导致其依照测量结果设计施工方案不准确,在施工期间经常会发生返工的情况,增加施工成本,降低企业经济利润。放样作为工程测量阶段的重要工作内容,在放样工作中应用BIM技术,对于提升放样测量水平和工程测量整体质量可以起到极大的促进与作用。在以往的测量放样工作中,工作人员使用的都是二维图纸,所以,其在放样前需要先计算和整理所有的放样数据,且在放样过程中使用的是一系列的坐标。这种放样形式无法被直观的表达出来,不同放样点间相对位置和几何关系也不是清楚,导致放样期间的错误问题无法被及时找出。而BIM技术的应用,则简化了放样过程,使一些BIM图纸与相应的配套测量设备可以在三维模型中直观的显示出来,从而帮助放样人员可以直接选择出每个人放样点,从而方便、直观的将等待放样的位置直接的放样出来。这样一来,放样工作效率和放样测量结果精确度都可以得到极大的提升。
2.2 在基坑测量中的应用
BIM技术在该项工作的应用,可以帮助工程项目的施工技术人员更好的理解设计人员做出的设计方案,以便为后续协同施工工作的进行奠定良好的基础。BIM技术对于管理建筑工程全生命周期,提升该项工作的整体效率可以起到极大的作用,这也是该项技术被全面应用到了基坑测量监测工作中。将BIM技术应用到基坑测量和监测这项工作中。该项技术在该阶段工作中的应用,主要具有以下几项优势:一是能够将变形体实际变形情况直观形象的展示出来,方便后续施工人员根据该结果,借助动画方式预测工程未来变形情况。二是将变形危险点快速、准确的确定下来,以便为后续应急方案的制定奠定良好的基A。三是能够有效降低基坑测量工作的专业程度,确保各个利益相关方都能够明确测量报告上有段基坑问题的测量结果,从而以此为基础,制定出具有较高针对性且十分有效的后续施工方案与基坑变形问题解决对策,进而从根本上为提升工程项目整体施工质量奠定良好基础。
2.3 在设计阶段的应用
第一,在设计初期使用BIM技术,能够对不同类型的方案展开模拟分析,及时优化方案中的不足支出,保证决策正确性。第二,BIM技术能够协调各专业的设计空间,减少出现碰撞冲突的频率,减少设计失误问题的发生,极大的节约了设计工作需要花费的时间。第三,借助BIM技术构建的工程模式来模拟施工,能够使原本在施工时才可以被发现的问题,能够在设计阶段被消除掉,极大的缩短了施工期间,降低了施工成本。第四,借助BIM技术,可以在变更某一处设计内容的同时,自动变更其他相关信息,极大的节约了人力和时间。
2.4 在施工阶段的应用
首先,BIM技术制作出的三维模型,不仅可以让设计效果变得可视化,还能够通过对建筑物结构、内部设备布置等其他关键部位的渲染,让业主可以观看到更加直观和真实的施工效果图,提升企业的中标概率。其次,BIM技术构建出的5D施工模拟,能够对施工方案进行优化,将自己建设完成的三维信息模型成功导入到相关的施工管理软件之中,从而对整个工程项目的施工现场和过程进行模拟[3]。再次,当前国内工程项目对BIM技术应用最多的就是在检查建筑物内部管网碰撞情况的工作上,利用BIM技术,能够及时准确的发现管网存在的不合理布置情况,从而及时调整相关方案,预防在施工期间产生碰撞问题,对施工工期产生影响。最后,BIM技术的应用能够精确施工计划,确保精细化施工目标得以实现。利用BIM技术建设完成的建筑模型本身都具有信心,所以,施工企业就可以获得工程项目在施工期间需要的基础性数据,从而在施工企业制定精确的项目施工计划,安排施工人员、准备施工设备与材料时提供有力的支撑,有效防止在仓储、运输和人员方面的资源浪费[4]。
3 结束语
总而言之,我国建筑行业的传统发展模式因为自身信息化程度相对较多,导致行业内部管理较为混乱、项目施工期间存在较为严重的浪费情况,且投资回报率相对较低。而伴随该行业的逐步发展和信息化建设水平的提升,该行业必须要改变这种传统粗放式的行业内发展模式,对BIM技术进行细致的分析与研究,找出该项技术在工程项目中的具体应用方案,利用该项技术推动建筑行业信息化建设水平的提升,从而促使建筑行业可以逐渐朝着精细化、信息化、可持续的发展方向迈进。
参考文献
[1]李昂,石振武.BIM技术在建筑工程项目中的应用价值[J].经济师,2014,01:62-64.
相关资料显示,我国建筑业目前已逾十万亿元的产值规模。然而产值规模虽大,但产业集中度依然不高,信息化水平落后,建筑业生产效率更与国内其他行业、国外的建筑业有着较大的差距。我国建筑施工企业一直在提倡集约化、精细化,但缺乏信息化技术的支持,很难落实,而BIM技术的出现则为建筑业的发展提供了新思路。
在上海举办的2013广联达建设行业年度信息化峰会上,中国建筑金属结构协会会长、中国民族建筑研究会会长、中国节能协会副理事长姚兵表示,“从建筑行业上面来说,我们的信息技术将成为建筑工业化的重要工具手段,主要表现在BIM技术在节能工业化的应用,它作为一种新型的建筑业素质化建设和基础性运作,具有强大的信息共享能力、协同工种能力、专业能力。城镇化为新型建筑工业化提供更大的规模,为信息化也提供更广的应用范围。同时,信息化、新型建筑工业化将为城镇化提供方向。”
BIM即建筑信息模型技术,它对建筑全生命周期进行全方位管理,是实现建筑信息化跨越式发展的必然趋势。随着BIM理念的不断普及,现在在谈到BIM的时候,更需要明确并注意的是,它并不只是建筑生命的第一个部分设计、出图和可视化等,而是建筑全生命周期的管理。BIM的出现使得整个工作流程发生了变化,这其中包括了设计、施工以及最终的运维管理。
可以说,BIM是一种很好的全生命周期解决方案,因为它本身就是为了建筑的全寿命周期产生的,它是建筑全生命周期的一种信息模型,而不是针对某一个阶段。它不仅是设计阶段的信息模型,同时也是施工阶段、运维阶段的信息模型。用BIM可以很好的去打通每一个阶段,信息模型会从一个阶段传递到另一个阶段,真正做到信息可以流动,模型也可以流动,并贯穿项目整个过程。
深耕建筑领域
智慧的建筑是通过信息化的手段达成的,在绿色环保方面具体有两种体现。一是帮助建筑形成资源的循环使用,这包括水能循环、风能流动、自然光能的照射,科学地根据不同功能、朝向和位置选择最适合的构造形式。二是实现建筑自身的减排,构建时,以信息化手段减少工程建设周期;运营时,在满足使用需求的同时,还能保证最低的资源消耗。住房与城乡建设部仇保兴副部长指出:“以智能化推进绿色建筑,节约能源,降低资源消耗和浪费,减少污染是建筑智能化发展的方向和目的,是绿色建筑发展的必由之路。”
《绿色建筑行动方案》提出了中国绿色建筑行动的主要目标:“十二五”期间新建绿色建筑10亿平方米,2015年城镇新建建筑中绿色建筑的比例达到20%。方案提出,要在建筑的全生命周期内,最大限度地节约资源(节能、节地、节水、节材)、保护环境和减少污染,为人们提供健康、适用和高效的使用空间,与自然和谐共生的建筑。“如果说前几年建筑行业更多的重视以硬件为代表的基础设施建设,那么现阶段、以及未来的阶段重点在智慧建筑的背景下会聚焦BIM等深入的应用,这个阶段更多的以软件公司、互联网公司为代表。随着国内软件进一步的发展、工业化和信息化的融合,这个巨大的市场会诞生一批很有潜力的软件公司。” 广联达软件股份有限公司总裁贾晓平对《中国信息化周报》说到。
据了解,芬兰作为全球最先一批采用基于模型设计的国家,一直以来,积极推进建筑信息技术的开放标准,在 BIM 实践应用方面有着丰富的实战经验。2013广联达建设行业年度信息化峰会上特地请来 Building SMART 芬兰区主席 Tomi Henttinen先生, Tomi Henttinen告诉本报记者,在芬兰软件公司和建筑行业关系很紧密,从施工阶段到机械设备、安装方面再到设计阶段,芬兰的软件公司都会深入,软件公司甚至会关注到产业的流程、工作方式的变化,建筑业的发展与软件企业的技术贡献密不可分。
BIM带来的变革
有人说:“2012年是中国BIM非常重要的一年。” 2012年各大设计单位、施工单位和业主探讨尝试性应用BIM,2012年BIM已经进入了政府的桌面。政府开始重视BIM,开始考虑如何推进BIM的应用。
但风头正劲的BIM技术也面临着认识不足、随处应用的状态。业界现在将BIM分三个层面:第一阶段,专业BIM以完成单项任务为主,如完成算量;第二阶段,可以完成阶段性工作;如:规划、设计、施工,和相关阶段信息共享;第三阶段,建筑的全生命周期信息共享。
不少业内人士认为,BIM可谓是工程建设行业的第,在过去两年看BIM的时候,一些人对BIM还是持观望态度。如今,BIM的快速发展颠覆了很多人的预期,BIM可以为建筑施工企业带来更多实际价值,比如节省成本,提高企业管理水平等等。随着越来越多人认可BIM,它的发展速度也将更加迅速。
1.前言
为比较分析桥梁病害加固方案及应用材料,以某桥梁为例,桥梁支座下存在开裂墩身、梁体结构出现裂缝等一些病害,由有关技术人员在两个月期间分阶段对现场病害情况进行检测。结合检测结果可知,该桥梁结构中的预应力混凝土简支空心板多处发生程度不同的病害,主要是高架桥引桥段桥台盖梁出现裂缝、跨梁底出现裂缝、墩身在墩支座下发生开裂、空心板梁间上部出现碱化碳化、渗水、梁体移位等问题,主桥结构表现出良好状况,桥面不存在严重的病害。
2.加固桥梁结构的原则
维修加固桥梁主要是加固桥梁原设计荷载条件,恢复设计功能,与加强抗震设计的新规范相结合,使桥梁结构改善受力性能,以保证桥梁安全。考虑影响桥梁结构的病害、劣质材料、在结合性及材料方面新旧材料之间存在的差异;采用检测桥梁现状的结果对材料、几何参数进行取值;对桥梁原结构损伤严格控制加固设计及施工。
3.比较桥梁结构的加固方案
在桥梁结构加固中,增大截面法、粘贴纤维复合材料法、粘贴钢板法、体外预应力法等都是常用的结构加固方法。其中影响桥梁外观较大的是增大截面法,其余三种方法在市区桥梁中应用较多,现分别比较这三种方案的差别。
粘贴纤维复合材料法较适合于碳纤维满足结构强度及耐久性,可使桥梁提高安全储备。碳纤维因其物理力学性能十分突出,可使混凝土结构构件提高承载力,也能使其受力性能得到有效改善。曲线构件等不适合粘贴钢板,十分困难的施工条件及恶劣环境等情况也比较适合。该方法施工便利,无需较长时间及较多人员,不会占用较大的施工场地,可确保施工质量。碳纤维具有良好的柔性,可使粘贴效率得到有效保证。其预浸料较薄及较轻质量,对原结构不会增加尺寸和质量。只是受力前碳纤维布存在变形,厚度较薄,补强效果不佳,易引发混凝土转变为脆性破坏,产生严重后果。
粘贴钢板法对于解决梁式桥梁主梁、桥墩盖梁达不到强度时更为适合。无需对桥梁原结构破坏,确保空间要求,使桥梁主梁提高承载力。只需较短时间施工,对桥梁使用结构几乎不产生影响,工艺简单且十分成熟,操作便捷,更适宜确保桥梁结构原貌,相对于其它加固方法更加经济。只是将膨胀螺栓安放到钻孔中对钢板锚固,易使结构受力产生破坏。钢板尺寸设计较大时,粘贴钢板需要较多人力及较大场地施工。钢板尺寸设计较小时,钢板需复杂焊接工艺,焊接处焊接效果不佳。
体外预应力法通常在加固箱梁、钢结构及T梁桥中比较常用,对于小跨境桥梁具有较大的应力损失。可使旧桥承载力明显提高35%左右。加固过程中对交通几乎不产生较大影响,对原桥梁结构只有较小损伤,对桥下净空不产生影响。能够参与恒载受力,具有较高的效率。只是具有较为复杂的锚固、转向结构,与原结构之间产生较大影响,在后期养护方面将增加一定费用。
上文中提到的桥梁采用连续梁结构的引桥,对其加固若采用预应力法,将导致重分配内力,不必要的被动加固工程增加或降低其它部位安全储备。主梁底板只有14厘米厚,碳纤维尽管强度高,但弹性模量接近普通钢筋,在混凝土应变达极限时,碳纤维无法充分发挥材料性能,并具有较高造价。考虑到很多桥梁都是采用抗剪控制方法实现抗震加固,增大截面法可使抗剪能力有效增大,本桥引桥是以旱地V型墩作为固定墩,若在墩内侧将截面增大,利于施工,也不能使净空增加。因此,对墩身、梁体、盖梁加固拟采用粘贴钢板法来,采用增大截面法加固固定墩抗震。
4.选择适宜的加固材料
4.1混凝土
在桥梁加固中可采用C40微膨胀防水混凝土用于桥面现浇层,采用C30微膨胀混凝土用于修复墩身、加固抗震,从而达到预期效果。
4.2胶黏剂
胶黏剂应采用专用质量合格的改性环氧胶黏剂、改性氨基甲酸酯或乙烯基酯胶黏剂等A级胶用于钢板粘贴、锚固植筋。在工厂制胶时应及时添加填料,在施工现场不可掺入,胶黏剂应达到有关安全性能指标。改性环氧树脂固化剂不可应用乙二胺,也不能将挥发性有害溶剂和非反应性稀释剂掺入其中。胶黏剂必须要检验毒性,检验结果应与无毒卫生等级规定相符。钢-钢黏结应检验湿热老化,使其达到抗剪性能。
4.3砂浆
采用M20环氧砂浆处理桥梁构件的缺陷。
4.4钢筋
钢筋大于12毫米直径的采用热轧螺纹钢筋,钢筋小于12毫米直径的采用热轧圆钢筋,钢筋性应达到国家标准中的有关规定要求。
4.5角钢
加固用热轧等边角钢及材质应达到国家相关技术标准中的要求,通知应采用E50XX级焊条进行焊接。
4.6钢板
应采用国家有关技术标准要求的Q345C钢板用于全桥加固,钢板主要机械性能和冲击韧性应达到下列要求:屈服强度不小于345千帕,抗拉强度不小于510兆帕,伸长率不小于20%,V形缺口试件冲击功不小于34焦,采用E50XX级焊条进行焊接。
4.7加固锚栓
应采用开裂混凝土性能相适应的5.8级定型化学锚栓用于桥梁加固用锚栓,锚栓和螺杆性能指标应达到国家有关技术标混中的要求。
4.8其它材料
应采用渗透型阻锈剂作为钢筋及钢板防锈材料防水涂料宜采用水泥基渗透结晶Ⅱ型,材料性能指标应达到国家相关技术标准的规定。
5.总结
综上所述,桥梁实际应用一段时间后,难免会产生不同程度的病害,若对其处理不够及时,病害将愈加严重,甚至将对桥梁使用安全性构成严重威胁。通过深入分析桥梁病害的具体成因,对桥梁采用的维修加固方案应慎重选择,对桥梁病害维修处理应认真选择适宜的施工材料、工艺,并加强管理桥梁的运营养护,以确保桥梁结构保持良好的使用状态,使其使用年限尽可能得到延长,以实现桥梁承载和通行能力的实际需要。
参考文献
[1]安井刚,胡爱敏.桥梁加固与维修的基本措施[J].施工技术,2013.10
[2]张树仁,宋建永,张颂娟.桥梁加固钢筋混凝土受弯构件斜截面承载力计算方法及试验研究[J].中国公路学报,2012.5
[3]王肇文.粘钢工艺在桥梁加固工程中的应用[J].辽宁省交通高等专科学校学报,2014.11
证明 如图1,过C作CF∥BG交AG于F,因为AK=KC,所以AG=CF.(1)连接AD,因BG是圆的切线,故∠ADG=∠AGK=∠AFC.于是A、D、F、C四点共圆.从而由相交弦定理得AG・GF=CG・GD.(2)因此以GF代AG,由(1)、(2)即得AG2=CG・GD.
注 证明本题的关键在于以等线GF代替AG从而利用相交弦定理得证.
2 等比代换
例2 已知ABCD是圆内接四边形,E是AB、DC延长线的交点,F是AD、BC延长线的交点,求证:EDFB=EAFA.
证明 如图2,连接AC、BD.在ACF和BDF中,因为∠CAF=∠DBF,∠AFC=∠BFD.
所以ACF∽BDF.所以FAFB=ACBD(1),同理ACE∽DBE,所以ACBD=EAED(2),因此由等比代换,从(1)、(2)得FAFB=EAED,即EDFB=EAFA.
注 证明本题的关键在于通过中间过渡比“ACBD”,借助于ACF∽BDF和ACE∽DBE得证.3 等积代换
例3 如图3,已知AD是ABC外接圆的直径,CFAD交AD于E,交AB于F.求证:AC2=AB・AF.
证明 连接CD、BD,因为AD是圆的直径,所以∠ACD=∠ABD=90°.因为CEAD.所以AC2=AE・AD(射影定理) (1).又在RtABD和RtAEF中,因为θ为公用角,所以RtABD∽RtAEF,所以ABAE=ADAF,所以AE・AD=AB・AF (2),故由等积代换,从(1)、(2)得AC2=AB・AF.
注 证明本题的关键在于利用射影定理先将结论比例式代换为证明AE・AD=AB・AF的等积式,而后由RtABD∽RtAEF得出相关线段比,代换即得证.4 等线等比代换
例4 已知PA、PB是O的切线,它们与O分别切于A、B两点.PD是O的割线,与O相交于C、D.求证:AD・BC=AC・BD.
免责声明以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。