仓库通风设计汇总十篇

时间:2023-06-05 15:33:48

仓库通风设计

仓库通风设计篇(1)

中图分类号:TU2 文献标识码:A

随着物流市场的发展,立体式仓库的应用也越来越广泛,仓库作为物流企业管理、销售的中心,在现代物流经济中起着重要作用。而立体式仓库的出现使得物流企业的运营成本和经济收益都得到了极大的优化,整体式立体仓库作为立体式仓库的一种,其所具有的空间利用率高、建设工期短、投资少等优点,使得整体立体式仓库在近年得到了广泛发展。

整体立体式仓库概述

自动立体式仓库是利用立体式的仓库设备实现仓库操作简便化、存取自动化以及高层合理化的仓库形式,其主要由货架、工作台、巷道式堆垛起重机以及操作系统等组成,其货架与传统仓库货架不同,多是采用钢结构或钢筋结构的结构体或建筑物,根据自动立体仓库建筑的形式可以将其分为两类,一类是分离式,即货架与仓库建筑物是单独存在的,而相对的另一类整体式则是货架与仓库建筑本身连接在一起,成为仓库自身的一部分。整体立体仓库具有结构轻、抗震性能好以及整体性良好等优点,其货架作为仓库的骨架支撑着墙面和屋面,因而整体立体仓库的技术关键点是货架系统,货架系统的制造、安装与整个仓库的稳定和存储能力有直接关系。由于其性能突出,近年在物流行业中得到了广泛应用,发展前景无限。

二、整体式立体仓库的货架设计依据

由于整体立体仓库的技术关键点在仓库的货架系统,所以其设计依据也主要体现货架系统方面,货架的受力分析和计算是这一技术的重点。对货架系统设计受力分析主要从以下几个方面来进行:

1、受力恒荷载方面,恒荷载力主要是来自结构自身自重以及其所承受的来自周围相连接结构的重量,由于整体立体仓库的货架与仓库自身相连,因而在设计时不仅要考虑货架自身的重量,还要考虑货架所承受的屋面、墙板和房架等的重量;2、受力活载荷方面,活载荷主要是由结构上的人群、工具、材料或自然产生的荷载,对于整体立体仓库的货架而言,受力活载荷则主要是来自日常货架上的货物重量和托盘重量,以及仓库屋顶所承受的雨雪重量;3、竖向冲击荷载方面,竖向冲击荷载是在结构受到垂直方向高速的力作用时产生的,对于货架而言就是在机器向货架上存放货物时所产生的荷载力;4、风载方面,风载即风的动压力,是流动空气对工程结构产生的作用,一般来说高度越高或跨度大的结构,其所承受的风荷载越大。而整体立体仓库的建设者为了尽可能扩大存储空间,一般都会将仓库的高度设置得较高,而仓库高度升高之后,其货架所承受的风荷载力也会增大,因而设计师在设计时也要将风荷载考虑进去,计算风荷载对货架立柱产生的影响;5、抗震裂度方面,抗震是建筑物重要技术关键点,为保证仓库的稳定性和抗震性,设计师要提前将仓库所能承受的最大荷载计算清楚,包括在全库空载、风荷载起作用的情况下仓库的受力情况,在全库满载、水平地震作用的情况下仓库的受力情况,以及在仓库一侧满载、一侧空载情况下的受力情况。只有将这些情况下的受力情况都考虑到,才能保证设计出来的仓库结构具有良好的抗震性。而影响立体仓库稳定性的关键因素就是货架的型式,货架型式主要有两种,一是整体焊接式货架,二是组装式货架,由于组装式货架的稳定性不如整体焊接式优秀,因而目前整体立体仓库中货架一般选择应用整体焊接式货架,以获得良好抗震性能。

整体式立体仓库的技术特点

1、有效利用仓库空间。整体立体仓库由于其货架自身与屋面相连,在起支撑作用的同时也向上扩展了仓库空间,使得仓库能够装载的货物量更多,在经济效益和空间利用率上较分离立体仓库更为优秀,因而更多的企业商选择投资整体立体仓库。

2、库内无结构立柱。由于整体立体仓库的货架本身就能够充当结构支柱的作用,不需要另立结构支柱来支撑屋面和墙面,因而使得立体仓库中货架和立柱占用的空间大大减少,货物存储的空间大大增加,避免了因结构立柱的影响而使得货位出现浪费的问题。同时没有结构立柱,设计师在设计时受施工现场大小的限制就会减小,不用考虑结构立柱给仓库带来的额外宽度。

3、抗震性能较好。整体立体仓库将货架与屋面、墙面、房架以及仓库钢结构联系起来形成一个整体,使得其相较于分离式仓库而言,抗震能力大大增强,能够抵抗震级较低的地震,减少了地震对企业造成的经济损失。也正是由于其抗震性能较为突出,因而在地震多发的台湾和日本得到了应用推广。

4、库内设备安装施工便利,速度快。由于整体立体仓库其货架与建筑物形成一个整体,节省了建设结构立柱的材料,且在最初施工过程中就已经货架安装在仓库内,省去了后期安装的麻烦,因而较分离式仓库而言施工安装更加便利。

整体式立体仓库的相关技术

1、水平梁

由于整体立体仓库所承受的恒载、动载和风荷载较大,在荷载力过大的情形下,货架基础可能会发生沉降变形,因而需要在货架基础和堆垛机下装设水平梁,然后将货架和堆垛机都安装在已经装设好的水平梁上,这样能够保证货架基础的水平度。同时,水平梁技术还能够在库内货物和设备重量分布均匀时平衡仓库两边的受力,减轻不均匀的垂直荷载对仓库强度的破坏性。另外,水平梁的应用也使得货架基础设计更加简单,缩短了建设工期,节省了建设费用,尤其适合于巷道和高度都很长的大型立体仓库。

2、通风系统

由于整体立体仓库所承受的风荷载较大,因而对通风系统的建设技术有特殊要求。整体立体式仓库的通风系统不仅要具有调节库内温度,保持空气流通的作用,而且还要具有调节仓库内外压强差,调节风荷载对仓库的影响作用。因而对于风荷载较大的整体立体式仓库,设计师往往应用特殊的通风系统来帮助调节仓库风荷载,保持仓库受力平衡。通常设计师会选择的方案是在仓库彩钢板围护的底层设置百叶窗,并在仓库库顶装设旋转风机,并通过操作控制系统来控制通风直径和打开百叶窗的数量,保持仓库内外荷载的平衡。

3、消防技术

整体立体式仓库由于其规模较大,目前应用整体立体式仓库的企业都是大型企业或流通中心,因而其中的货物和设备非常多,加上工作人员有限,因而对其进行消防管理就比较困难,在发生火灾时光靠人力来扑救是绝对来不及的。因此为了避免火灾带来的巨大损失,现代的整体立体仓库中往往都采用自动式消防系统。自动消防系统能够监测仓库内的温湿度情况,在仓库温湿度超过一定界限时发出警报并自动控制仓库内的消防装置进行灭火,同时也可由工作人员手动启动,以保证能够及时扑灭火灾,将灾害损失降到最低。在设置仓库内的消防装置时,仓库管理部门可根据库内货物的性质来确定具体的灭火装置。

4、彩板围护

彩色钢板是一种新兴建筑材料,其具有防火、保温、维护方便、美观等优点,在近几年建筑业中得到了广泛应用。由于其具有防火、安装方便等优点,在仓库系统中也得到了应用,仓库管理部门可以根据自身所在地的温湿度、库内存放货物的性质以及仓库的消防要求来选择不同厚度和夹芯材料的彩色钢板。

结语:

整体立体式仓库将货架与仓库的承重机构融合在一起,因而货架系统的受力分析就成为制约整个仓库各方面性能的关键,货架的强度、刚度和精度对仓库的稳定性和使用寿命具有重要影响,因而整体立体式仓库的施工自动化要求也较高,前期的建设周期也较长,这也是整体立体仓库发展缓慢的原因。但随着科学技术的发展,仓库技术不断向自动化、系统化和无人化方向发展,使得整体立体仓库在未来的发展前景无限。

参考文献:

[1] 孙永吉.自动化立体仓库高层货架瞬态动力学分析[J].兰州工业高等专科学校学报,2013(01)

[2] 胡耀阳,王哲峰,杨玮,张海鹏.航空企业自动化立体仓库输送系统的调度优化[J].西安航空技术高等专科学校学报,2012(05)

仓库通风设计篇(2)

一、概述

在粮库建设的各种仓型中,平房仓作为一种投资省、施工周期短、适应性强的仓型而被广泛地采用。平房仓具有跨度大、堆粮高、单仓仓容量大、储存管理集中、设备利用率高,保粮措施简单等优点。同时也存在着占地面积大,清仓困难等不足。据有关资料,在我国建国后历次的粮库建设中,平房仓的仓容量约占全国建仓总仓容量的80% ,目前平房仓仍不失为一种经济实用的仓型。

二、平房仓工艺设计

工艺设计内容应包括:输送工艺流程、设备选用、机械通风、熏蒸系统等。根据粮食品质、种类、储存时间及气候等条件选择合理的通风、熏蒸方式和熏蒸剂。储粮时间超过6个月的平房仓内应设机械通风、熏蒸系统。粮食进出仓作业宜采取防尘措施,改善作业环境。选用的设备应具有安全可靠、高效低耗、破碎率低、操作方便等性能,符合环保、卫生要求。散装仓宜选用移动式设备,应根据仓容量、接卸设施的作业时间等条件确定设备的生产能力。在粮库建设中,平房仓的一般多用于储备仓。平房仓按其结构形式的不同,可分为折线形屋架平房仓、门式钢架平房仓、彩板刚架屋盖平房仓、拱板平房仓。各种结构形式的平房仓按其跨度的不同分为21、24、27、30米, 长度分为60、54、48、42、36米,但无论何种形式和跨度的平房仓,其工艺作业基本相同。平房仓的工艺设计要满足“四散”储粮技术,确保储备粮的推陈储新、吞吐自如、快速集散的要求。由于粮食收购任务往往在几个月内完成,任务大、时间紧,所以平房仓工艺流程的设计是否简捷、合理,送机械设备是否配置适宜,在整个粮食转运过程中就显得十分重要。设计时应根据建库规模,粮食接收及发放等具体情况确定工艺流程,粮食进出库作业方式;根据仓容量配备粮库所需的各种设备型号、产量和数量。

三、平房仓工艺流程

主要包括粮食进仓、出仓、倒仓、清仓、清理、打包、补仓等作业工序。粮食由汽车运入粮库后经计量、取样、清理、入仓储存;出仓时通过扒谷机、输送取样、计量装车发放。通常采用以下的工艺流程进行粮食入仓及出仓作业。进仓:汽车来粮汽车衡移动式皮带机移动式清理筛移动式皮带机移动式转向胶带输送机入仓。出仓:扒谷机移动式皮带机移动式打包机移动式皮带机装车发放。虽然平房仓的工艺作业流程较简单,但由于其作业面积大,输送距离长,一般需要采用移动式输送设备相互搭接组成输送线才能实现机械化作业。一旦其中一台设备需要进行移位,与其相接的所有设备均需随之移动,因此作业过程中设备的频繁移动给进仓和出仓作业带来了很大的不便。为此,提高平房仓进、出仓散粮的机械化程度,提高储粮效益,是当前迫切需要解决的任务。为此,在部分粮库的工艺设计中,采用了吸粮机和其它的移动式输送设备相结合的作业方式,来进行平房仓的进、出粮作业,其工艺流程如下:进仓:汽车来粮移动式吸粮机(负压)移动式皮带机移动式清理筛转向皮带机入仓。出仓:仓内粮食移动式吸粮机(负压)移动式皮带机移动式打包机装车发放。由于吸粮机的吸口位置可在3~20米之间的距离内随意调整,可减少设备的移动次数,进粮时将吸口直接插入汽车(或火车) 上卸粮,解决了人工作业时效率低、速度慢以及作业环境恶劣等问题。出仓时将吸粮机的吸嘴直接插入粮堆内,后续设备基本固定不动或移动次数很少,且可将粮仓内的任何角落都清理干净,作业环境清洁、无粉尘飞扬,还解决地上笼的存在给其它进仓作业设备在仓内作业时带来的困难,吸粮机还可进行补仓、清仓等作业,一机多功能, 有效地提高了工作效率。不同的设备组合,其进、出仓作业的方式、速度、难易程度各不相同,因而装仓、出仓的效率也不一样。

四、粮食进出仓作业方式

平房仓的进出仓工艺系统, 包括平房仓进、出粮作业及完成进、出粮作业所需的基本设备。

1.粮食进仓:散粮运至仓门外由移动式胶带输送机输送入仓堆高, 局部用移动式装仓从仓房窗口处补粮, 人工扒平。

2.粮食出仓:将仓门挡粮板处出粮口的手动闸门打开,自流部分粮食,由移动式胶带输送机装车发放,待挡粮板移开后,由移动式扒谷机、移动式胶带输送机作业,把粮食输送出仓外,散粮发放时直接装汽车,由汽车衡计量出库。需包装发放时,经移动式打包机和胶带输送机联合作业, 装汽车发放。

3.输送工艺应满足下列要求:

作业线应连贯,每组设备生产能力应匹配;粮食进出仓作业应设置输送、取样、计量、清理等设备。需包装发放时应配置打包设备;粮食入仓作业过程中应减少粮食的自动分级;挡粮板应设置出粮孔,出粮孔位置应满足与之衔接设备的进料要求。包装仓输送工艺应根据其功能、作业线运输距离等因素确定合理的工艺流程。应根据进出仓作业要求、时间、包装袋尺寸等条件确定设备数量。

4.包装仓输送工艺设备可按下列要求选配:

进出仓可配置移动式包粮胶带输送机、平板车、电瓶车、叉车、码垛机等设备;码头中转库宜设起重机配合作业。起重机作业能力应与运输设备能力匹配;粮食加工厂成品包装仓应根据打包车间位置合理设置固定设备,设备作业能力应与打包车间设备的生产能力匹配。

5.通风:散装仓粮堆机械通风系统宜按通风降温要求设计,应通风均匀,操作管理方便。通风道形式可采用地槽或地上笼,风道宜对称布置、简捷,单廒间内风道型式应统一。进风口应与通风机等设备对接方便,并应满足保温、气密、防腐蚀、防潮等要求。进风口盖板应拆装方便。应设有安全可靠的风量调节装置,风量调节装置可按空仓调节要求设计。各支风道应设有检测孔。空气分配器开孔率应大于25%,孔眼尺寸以不漏粮为限。风道各接口处应采取有效措施防止粮食漏入通风道。金属构件应进行防腐、防锈处理。仓内通风道必须能承受设计装粮高度的粮食压力。地槽空气分配器、盖板必须能承受进出仓机械设备的最大荷载。

6.散装仓机械通风主要参数选择。

仓库通风设计篇(3)

中图分类号:TD724文献标识码: A

引 言

近年来,随着国民经济的发展和网民的不断增长,网络购物成为一种消费主流,电子商务因此发展迅速。随之产生了很多物流公司,各地的物流仓库面积也在急速扩大。

作为暖通专业的任务就是,使用最低的成本来做好物流仓库的通风以及防排烟措施。本文根据作者近几年的设计工作经验,总结了一套较为完善的大型仓库通风系统,并浅谈一下仓库排烟系统排烟量的计算方法。

一、通风系统

大型的物流仓库,里面既有来回运作的各种车辆,又有很多负责装卸的工作人员,因为有人员的存在,导致物流仓库及要有普通仓库的功能,还需要兼具部分办公环境的功能,以保证装卸人员有一个尽可能舒适的工作环境来提高工作效率。而近些年的建设单位对物流仓库的设计要求也越来越高,即要保证结构简单,造价低廉,又要求仓库整洁舒适,空气新鲜。这就催生作者思考总结出下面一套较为完整且可以灵活变动的仓库通风系统。

图一:

图一是作者构想的仓库通风系统的简化版本,新鲜的空气通过屋顶的自动排烟天窗(1)进入大型节能风扇(2)上部的负压区,然后通过大型节能风扇(2)送至仓库下部,触地之后扩散开来,当空气流通至侧墙附近时,经由仓库门、自垂百叶或者侧墙上安装的大风量低静压排风扇(3)排出,形成一个完整的空气流通过程。在这个流通过程中主要的空气流通动力来源是大型节能风扇(2),因此大型技能风扇下方的气流组织及流动速度是我们必须要了解的信息,通过多次模拟实验和实地检测,得出风扇下方的气流组织如下图:

图二:

而在不同的吊装高度和半径范围内,空气流速有所不同,具体情况如图所示:

图三:

当大风扇吊装在6米以上的空间高度时,地面3米空间内的风速在3.5米以下,在20米的半径范围内风速在0.7米到3.5米之间,这个区间的风速恰好接近自然微分的速度,人体处在这个风速的气流范围里,感受是较为舒适的。当库内气流被风扇吹动,扩散开来,接近仓库墙壁的时候,再借助墙上安装的大风量低静压排风扇(3)的抽力,使得20米的微风范围扩大到跟长的距离上。最后气流穿过排风扇排风扇完成一次循环。.

二、排烟量计算

现在新建的物流仓库高度普遍大于6米,因而目前比较通用的计算方法是依据《建筑设计防火规范》GB50016-2006第9.4.5条规定,不在库内划分防烟分区,用整个防火分区面积乘以60m3/h得到物流仓库的排烟量。这种方法简单、实用,但是不够准确。但我们的设计要力求准确,因此作者找到了一种比较准确的计算方法,在上海市工程建设规范《建筑防排烟技术规程》DGJ08-88-2006上,对这种方法有详细介绍。

下面我们就以一个层高7米的仓库为模型举例,来比较一下这种计算方法和传统计算方法的区别。

上海规范要求仓库也要划分防烟分区,因此先假设仓库内单个防烟分区的面积为1015。则计算情况如下:

1、采用《建筑防排烟技术规程》DGJ08-88-2006的计算方式:

综合考虑排烟系统启动时间及仓库内可能有的着火典型材料,计算热释放量取值为1.5MW。

最小清晰高度公式:

Hq=1.6+0.1H

计算得到最小清晰高度为2.3m。

热释放量的对流部分:

Qc=0.7Q=0.7x1.5x1000=1050kW

火焰极限高度:

Z1=0.166 Qc2/5=0.166x10500.4=2.683m

现控制燃料面到烟层底部的高度Z=5.3m时(大于Z1),则烟缕质量流量为:

Mρ=0.071Qc1/3Z5/3+0.0018 Qc

= 0.071x10501/3x5.35/3+0.0018x1050

=13.5165

烟气平均温度与环境温度差为:

ΔT= Qc/ MρCp

=1050÷(13.5165x1.02)

=76.1598℃

取环境绝对温度T0为273+20=293℃,则环境温度下的气体密度为:

ρ0=1.2kg/ m3

则排烟量为:

V=MρT/ρ0 T0(其中T= T0+ΔT)

得V=14.2388m3/s

则每小时为14.2388x3600=51259 m3/h

Z与最小清晰高度Hq的关系如图:

图四:

2、采用《建筑设计防火规范》GB50016-2006的计算方式:

单个防烟风区面积为1015,

则排烟量为:

V=1015x60=60900 m3/h

设计为每台排烟风机排烟量为65370 m3/h,满足要求。

两种计算方法的区别显而易见,上海的排烟量计算方法跟建筑面积没有关系,但是要求划分防烟分区。传统的计算方法不要求划分防烟分区,但是是依据面积指标估算的。上海规范的计算方法优势在于,它考虑到了具体的燃烧材料,仓库高度,着火温度及烟气高度等具体问题,这样计算就不会导致计算量过大而致使设备选型过于浪费。我们在具体运用过程中,可以先依据《建筑防排烟技术规程》DGJ08-88-2006来计算出排烟量,然后再根据《建筑设计防火规范》GB50016-2006反推防烟分区面积,进而划分防烟分区和选择排烟风机,这样做出的设计才比较经济合理。

参考文献:

【1】全国民用建筑工程设计技术措施-暖通空调.动力2009版

中国建筑标准设计研究院出版

【2】上海市工程建设规范《建筑防排烟技术规程》 DGJ08-88-2006 J10035-2006

作者:何海波

出生日期:1985.12

目前职称:助理工程师

仓库通风设计篇(4)

2改进思路

对于电能计量设备管理工作中存在的问题,经过分析,确定通过重新梳理工作流程、规范管理制度的方式保障电能计量设备管理工作有序开展,避免工作交叉;通过以“大仓库、大配送”总体部署,围绕“标准设计、定额存储、动态补仓”供应策略为依据,建立电能计量设备储备定额管理机制,实现动态补仓机制,解决以项目申购采购供货周期长、项目物资无法共用,造成资源浪费的问题;通过建立电能计量仓储管理机制及物资属性库区,电能计量设备的出、入库有据可循,解决无供应商送货计划、无各生产部门及区局配送计划、仓库积压但无可用(检定合格)设备的问题;通过对信息系统的功能优化,实现业务系统之间的数据共享和业务贯通,提升信息系统对于电能计量设备管理工作的有效支持。

3改进措施

3.1优化管理流程为了避免业务工作的交叉,保障电能计量设备管理工作的顺利开展,以信息系统为基础,管理部门对电能计量设备管理流程进行了优化。新工作流程主要将电能计量设备管理工作和信息系统结合开展工作,通过计量检定系统、物资系统、营销系统、项目管理系统的信息共享,各业务系统间协同开展工作,实现一站式作业,提升电能计量设备管理工作效率,保障电能计量设备供货的及时性和规范性。新电能计量设备管理工作流程如图2所示。新流程改变了当前电能计量设备管理过程中需求申报、采购、检测(质检、检定)、配送、领用、安装的顺序管理,实现定额管理、采购和发码单据同步开展;改变多个部门需要反复沟通的问题,市场营销部上报年度电能计量设备储备定额后,直接以储备定额为依据进行补仓采购并授予条形码。

3.2规范管理制度管理部门同时明确了电能计量设备的管理要求,规定了各流程环节的工作时限及各岗位管理职责,改进了电能计量设备管理业务规则,明确了各管理节点岗位职责,具体如下:(1)优化品类,动态补仓。为缩短电能计量设备采购周期、解决项目物资无法共用,电能计量设备采购储备定额管理方式,由市场营销部上报年度电能计量设备储备定额量,物资部门以储备定额为依据实现动态补仓配送及动态补仓采购。(2)到货档案。采购设备到货仓库后,由该仓库仓管员2天内办理到货档案批次,并抽样送检。(3)检测(抽检、检定)。物资部门办理到货批次并送检后,由检测单位制定检测计划并安排检测工作,检测完成后通知仓管员回库。(4)配送至各生产部门及区局。各生产部门及区局发起补货需求后由仓管员2天内完成物资的配送工作。(5)补货规则,按电能计量设备采购四级补仓机制。各使用单位提出补货需求时,仓管员检查成品仓物资是否满足,满足则直接从成品仓进行补货配送;如成品仓不能满足则检查待检定仓物品量及检定计划;待检定仓物品无法满足则从待检仓进行补仓进行检定;当待检仓无法满足时检查同合供货情况,通知供应商送货或提交待检仓补仓采购需求。

3.3规范仓库管理规范物资仓库物资存储区域,划为仓库为待检区、检测区、换货区、成品区,电能计量设备存放仓库规范:电能计量设备到货后由仓管员存放至待检仓;由检测单位检测中的设备存放至检测区,检测不合格的物品存放至换货区,检测合格的物品存放至成品区,成品区的物品方可配送至各生产部门及区局安装使用。各生产部门及区局发生领用需求时,首先开具移库、配送各部门急救包的“营销计量仓”仓。这样既保证了仓库管理员账实一致,清晰掌控仓库各状态物资库存情况,保证物资供应及补货,又同时提升了工作人员的沟通效率。

3.4明确工作界面,优化信息系统功能明确工作界面,市场营销部负责营销项目下达及年度储备定额修编、物资部门负责物资供应、计量中心负责设备检测;各专业管理系统(物资系统、计量检定、营销系统、项目管理系统)根据新电能计量设备业务管理流程需求进行系统功能的优化,实现几个系统之间的信息共享及业务贯通。物资系统中可以自动依据一级仓、急救包的库存及年底电能计量设备定额自动提醒补货,物资部管理员实时根据系统的补货提醒进行补仓配送或补仓采购;到货后由仓管员收货、建立到货档案批次并抽样、送检;系统自动将抽取的样品及到货物品信息同步至计量检定系统,由检测部门检测负责人安排检测工作;检测完成后检测结果同步至物资系统;由仓管员将检测合格物品移库至成品区,成品区物品按需移库、配送至各生产部门及区局营销计量仓;各生产部门及区局根据营销系统供电服务订单情况维护工单,工单信息包含需求物资信息;工单建立完毕后自动同步至物资系统的营销计量仓管理员的领料待办提醒;营销计量仓管理员根据工单物资需求发送实物并办理领用手续;已领用电能计量设备同步至营销系统进行安装运行。

3.5建立电能计量设备生命周期档案库物资状态贯穿电能计量设备管理全过程,已签合同未到货、已到货未抽检、抽检中、抽检不合格、整批换货中、抽检合格、强检中、强检不合格、零散换货中、强检合格、已配送、已领用,运行中、已拆卸、已报废各状态物资一目了然。

4取得成效

通过对电能计量设备管理模式的优化,解决了历史上信息不能共享、项目物资不能共用导致库存积压但无项目需求可用设备、工作人员沟通繁琐、无检定计划、无补货计划、无配送计划,无库存跟踪等问题,重新规范了电能计量设备管理过程,优化了管理流程、提升了管理效率。(1)集中的储备管理策略,有效保障物资供应及时性。电能计量设备通过储备方式进行管理,围绕“标准选型、定额存储、动态补仓”供应策略,根据全局的实际需求制定科学的储备方案,并按照储备方案和实际用料需求进行实物采购和储备。改变以往按实际领料项目申购的分散管理的混乱现象,实现集中式的管理;同时,在储备方式的基础之上,制定完善的领用管理规范,破除以往领用项目难以互通的壁垒现象,形成补仓采购运作机制(资金预算、采购支付、核算机制),有效保障物资供应及时性,提升库存物资周转率,减少工程余料(定额物资)产生,提高资金使用率。从而有效提高管理的效率、降低成本,提高设备质量。(2)优化物资品类,降低采购成本。补仓采购机制的关键任务包括:标准选型及品类优化;颁布定额储备方案;落实财务预算;动态补仓机制;建立领用机制;JIT项目里程碑节点衔接;仓库分级管理;业务流程梳理及信息系统支撑。其中标准选型及品类优化是开展补仓采购工作的坚实基础,电能计量设备从以往的130多种品类优化至80种,极大程度上减少了仓储物资种类和补仓采购成本,充分发挥补仓采购管理模式的优势,提升资金的集成效益和物资服务水平。(3)规范“先抽检、后入库”运作模式,归避财务风险,保障在库设备质量。将以往“先入库、后抽检”调整为“先抽检、后入库”模式,解决以往供应商货到仓库后,由仓管员直接办理入库单,待入实物账、财务账后再进行抽检,存在的在库物资未抽检付款供应商存在一定的财务风险问题、检测不合格换货难的问题,从而归避财务风险、保障在库设备质量,缩短设备供货周期,减少在库设备量,提高仓库周转率,降低仓库管理成本。(4)补仓采购机制,缩短供货周期,减少需求误差,降低采购风险,物资供货及时率达100%。仓库结构优化为一级中心仓加急救包,根据各品类物资储备定额量,实时监控各使用单位急救包在库物资情况,自动发起补货需求,仓管员检查成品仓物资是否满足,满足则直接从成品仓进行补货配送;如成品仓不能满足则检查待检定仓物品量及检定计划;待检定仓物品无法满足则从待检仓进行补仓进行检定;当待检仓无法满足时检查合同供货情况,通知供应商送货或提交待检仓补仓采购需求。实现物资需求直接从急救包领用。提升了物资供货的时效性,减小需求误差,降低采购风险,有利于提升物资需求准确性以及计量设备管理水平。(5)己构建流畅的管理流程,提高管理规范性。制定了电能计量设备管理管理要求,明确各个部门的职责和工作界面,梳理清晰的电能计量设备管理流程并进行优化提升,使得电能量计量设备的管理能够畅通、高效。(6)全生命监控计量设备管理过程信息。通过梳理和规范电能计量设备的管理,对电能计量设备全生命管理过程的各个业务环节进行业务梳理,明确时效性要求的管理指标,保障电能计量设备的采购、检测、配送等工作有序、顺利开展;通过信息系统进行全生命周期过程进行监控,实现各信息系统之间的数据联动与共享,保证了数据的一致性及减少数据的重复录入,大大提高管理的效率和质量。(7)条形码规范化管理,单个设备管理过程清晰了然。梳理规范各类电能计量设备条码规则,合同签订环节生成条码,供应商按码生成并贴码,单个设备系统档案及实物唯对应,解决以往无法掌控到单个设备的全生命周期情况,通过实物标识实现。图3为计量物资全生命周期信息展示平台示意图。(8)建立档案批次管理机制,保障在运行设备的精确可靠、稳定性。同批到货设备建立档案批次,在运行设备抽检根据单个设备的运行稳定性跟踪该批次设备的运行情况,大大保障在运行设备的精确可靠,解决以往运行抽检只能针对单个设备进行检测、更换,无法针对整批同属性设备的质量跟踪。(9)实现电能计量设备管理的效率、成本、服务的最优化。通过以上从管理制度、管理规范、部门职责、信息化实现等多个方面进行梳理和优化,已基本实现电能计量设备管理的效率、成本、服务的最优化。

仓库通风设计篇(5)

一、国债建库催生集成创新

(一)改变储粮落后状况是“四合一”技术研发基本目标 建国后至1998年以前,我国粮食供应长期处于短缺状态,粮食储备数量相对较少,对仓储设施需求不高,设施建设投入较少,建设标准很低,配套设施设备少,保粮技术比较落后。相当部分仓房是上世纪50年代仿造前苏联粮库建设的苏式仓和简易平房仓,设施陈旧简陋,只能保证粮食不被日晒、雨淋,保温、隔热、门窗气密、地坪防潮等条件很差。由于保粮技术落后,储粮安全主要靠人工艰苦劳动来保证。粮温测报靠人工入仓检查,时间长,效果差;害虫防治由人工进仓投药完成,作业有一定危险,而且用药量大,杀虫还不彻底;粮食出入库作业要靠人背肩扛,劳动强度大、效率低、费用高、粮食损耗严重。因此,当时我国大部分粮库的原有仓房设施条件和技术水平难以满足中央储备粮安全储存、品质良好的要求,科学储粮新技术的研发应用成为建立粮食储备保障体系亟需攻克的难题。

(二)三批国债投资粮库建设为“四合一”技术研发和大规模应用提供难得机遇为应对1997年下半年发生的亚洲金融危机,建立健全国家粮食安全保障机制,筑牢国民经济持续健康发展和社会稳定基础,党中央、国务院于1998年6月决定发行国债用于建设包括储备粮库在内的六个方面的基础设施。国家共分三批安排了国债粮库建设项目。一是1998年安排172亿元建设250亿公斤仓容规模的国家储备粮库。二是1999年和2000年国务院又决定再投资150亿元分别建设两个100亿公斤仓容规模的国家储备粮库。三是2002年和2003年再次安排21亿元投资用于粮食仓储设施的完善配套和功能提升。三批国债粮库建设共投入资金343亿元,建设储备粮库项目1114个,建设各类专项工程1936个。共建成储备仓容510.5亿公斤。这是我国历史上集中建设粮库仓容规模最大的一次,使全国粮库有效仓容到2005年末达到2600亿公斤的历史最高水平。

国债粮库项目主要建设了高大平房仓、浅圆仓和立筒仓等仓型,实现了创新推广现代化仓型、改善储粮设施条件的重大飞跃。其中高大平房仓是主导仓型,占新建仓容的83%。仓房跨度从21米到72米不等,散粮装粮高度一般为6米,单仓容量可达500万公斤,是旧式平房仓的2~3倍、苏式仓的5倍。浅圆仓占新建仓容的10%,是一种占地面积小、单仓容量大、机械化程度较高的新仓型,可同时满足中转和储备的需要。

高大平房仓和浅圆仓作为储备粮库,因单仓容量大、堆粮高,储粮周期长,配套设备要求高,原有的仓储技术、工艺设备及作业方法已不适应安全储粮和高效运营的要求,创新研发推广亟待突破。为此,原国家粮食储备局组织科研院所进行技术攻关,广大科技人员克服困难,很快形成科研成果,“四合一”储粮技术研发推广应运而生。2010年度国家科学技术进步奖一等奖获得者国家粮食局科学研究院副院长吴子丹等有关科研人员是全行业科研队伍的突出代表,还有许多无名英雄为推广储粮新技术作出了贡献。

“四合一”储粮技术彻底解决了高大平房仓和浅园仓储存粮食面临的粮堆环境复杂、湿热转移严重、易结露、易发热霉变、害虫易扩散、熏蒸杀虫不彻底以及储粮品质陈化快等难题。总之,三批国债投资粮库建设坚持以科技为先导,将“四合一”储粮技术研发成果作为解决新型粮仓建成后安全储粮的主要支撑,保证了项目的投资效果,确保了粮库安全储粮和高效运营,提升了粮库管理水平和科技含量。同时,国债粮库从项目建设和使用管理等多方面提出了技术创新、研发应用的新要求,提供了广阔的集成试验空间,促进了“四合一”储粮技术的研发集成,推进了技术成果在粮食行业的广泛应用,极大地提高了我国粮库建设和粮食仓储技术水平。

二、转化应用取得显著成效

科技成果的生命力在于转化应用。为做好“四合一”储粮技术向现实生产力的转化工作,国家粮食局高度重视“四合一”储粮技术在国家投资建设粮库项目中的推广应用,重点抓了通用图设计技术集成、实仓试验完善标准和设施建设与改造中的大面积推广应用工作,取得了显著成效。

(一)采用通用图设计,全面应用“四合一”储粮技术1998年三批国债投资粮库建设项目启动之初,原国家计委和国家粮食储备局为选好储备粮库建设的仓型和储粮工艺,专门委托国贸工程设计院、郑州科研设计院、无锡科研设计院、郑州粮油食品工程建筑设计院等单位,在总结我国粮库建设经验的基础上,充分借鉴国内外先进建设经验和储粮技术,编制各种仓型通用设计图纸。请郑州粮食学院、郑州粮油食品建筑设计院结合仓型通用图设计制订了统一的安全储粮工艺技术要求。1998年第一次编制《中央直属储备粮库仓型设计选用图集》和《中央直属储备粮库储藏工艺设计图集》并推广使用,2000年和2001年又陆续对设计图集作了修订完善。该套通用图在2004年荣获国家第七届优秀标准设计金奖,2 009年获得中国勘察设计协会颁发的建国60周年“作用显著标准设计项目”大奖。

国家粮食局还了《中央直属储备粮库浅圆仓设计暂行规定》、《200亿斤国家粮库平房仓通用施工图优化设计统一技术规定》、《国家粮库建设项目初步设计编制和审批管理暂行办法》等规范性文件。粮库建设历史上第一次将安全储粮、作业装备、信息管理、质检监测等技术与粮库建设全面结合实施,彻底解决了以前存在的粮库建设与建成后使用“两张皮”的问题。建库期间,国家粮食局组织了多次粮情测控、环流熏蒸、机械通风、谷物冷却机、烘干机、吸粮机等一类设备的公开招投标,组织了三期大型粮仓设备展览会,促进了科研与设备制造的有机融合,使粮食仓储设备质量与技术水平有了明显提高,大大缩小了我国与国际先进水平的差距。三批国债粮库项目所建粮库全部配备了“四合一”储粮技术系统,共配备粮食检测系统1169套,环流熏蒸系统1118套,购置计算机6213台,谷物冷却机645台。

(二)通过大规模实仓试验,不断完善“四合一”储粮技术 “四合一”储粮技术推广使用是粮库建设和管理的一项重大变革。推广之初,四项新技术

研究成果只在少数库点做过一些单项试验,尚未在全国不同地区、不同条件下进行系统生产试验,技术标准、操作规程尚需完善,粮库管理和技术人员亟需培训。为此,国家粮食局组建了粮食储藏技术咨询专家组和机械通风、谷物冷却、环流熏蒸、粮情检测等专项技术组,从1999年到2000年分别在全国13个省(区、市)的21个粮库,进行了为期一年多的生产性试验,获得了宝贵的科学试验数据,编制(修订)了《高大平房仓储粮技术规程》、《浅圆仓储粮技术规程》、《粮情测控系统》、《储粮机械通风技术规程》、《粮食仓库磷化氢环流熏蒸装备》、《磷化氢环流熏蒸技术规程》、《谷物冷却机低温储粮技术规程》等多项技术规程和标准。配合生产性试验,国家粮食局编印了《储粮新技术应用简报》30多期,很好地指导了新仓储粮工作。总结生产性试验成果,编制了《储粮新技术教程》和四套多媒体教材,举办仓储技术培训班,先后为全国近千个粮库培训了一万多名技术骨干,为“四合一”储粮技术推广使用奠定了人力资源基础。

(三)“十一五”期间继续推广应用“四合一”技术,全国粮食仓储技术水平不断提高 “十一五”期间,国家粮食局将“四合一”储粮技术作为保障储粮安全的关键技术进行了推广应用,促进了科技成果转化。一是进一步完善粮食工程建设标准和粮食仓储技术规范,不断将新技术新成果纳入国家或行业标准,强力推进转化应用;二是通过编制和实施粮食现代物流、粮油仓储设施建设等专项规划,突出国家补助投资重点,引导企业在粮食现代物流、粮库建设、维修改造项目中积极采用“四合一”储粮技术;三是将采用“四合一”储粮技术作为中央储备粮代储资格认定企业的必备条件,明确标准和要求,严格审核,截至去年年底,全国认定的1906家中央储备粮代储资格企业全部采用了该技术;四是把采用“四合一”储粮技术纳入粮油仓储企业规范化管理考核的重要内容,全国326家规范化管理先进企业技术装备水平、管理水平明显提高。

通过上述措施,“十一五”期间,无论是中央投资安排的储备粮库建设项目、现代物流项目,还是地方政府和企业投资的省级储备粮库和市县中心粮库建设以及粮库维修改造项目,都广泛采用了“四合一”储粮技术。

截至2009年底,全国粮库有效仓容中应用“四合一”新技术的比例比2005年底有了很大提高,综合应用技术增加40%以上。全国共有1.29亿吨仓容的仓房装备了专业的环流熏蒸设备,占总仓容的40%:1.76亿吨仓容的仓房装备了计算机测温系统,占总仓容的54%;2.44亿吨仓容装备了机械通风设备,占总仓容的75%;南方地区粮库共装备谷物冷却机1029台,基本上可满足高温高湿地区低温储粮的需要。

“四合一”储粮技术在全国粮库投入使用以来,取得了巨大的经济效益和良好的社会效益:一是保证了粮食安全储存,减少了粮食数量损失。粮情电子检测实现了粮情变化的动态监管,为及时采取相应技术措施提供了可靠的依据。采取机械通风、低温冷却、环流熏蒸等措施有效防止了粮食虫、霉、鼠害发生,控制了水分减量,减少了粮食数量损失。二是保证了粮食品质,提高了粮食耐储藏性。以低温低氧和物理防治技术为主,辅以必要的低剂量、无残留的化学药剂熏蒸,减少了药物污染,实现了绿色环保、安全储粮。试验表明:储存三年后的粮食与当年新粮的品质没有差异,各项卫生指标安全可靠。2009年全国粮食清仓查库结果显示,中央储备粮中的陈化粮已被全面消除,储粮损耗也从“十五”初期的4%降到目前的1%以下,体现粮食新鲜程度的宜存率指标从以前的70%上升到99%。三是提升了粮食流通设施建设和仓储管理水平。粮库项目建设与“四合一”储粮技术推广应用相结合,培养和锻炼出一支工程设计、技术研发、粮库保管化验和仓储企业管理队伍,大幅提升了粮食流通机械化、自动化水平,彻底改变了粮食仓储落后面貌。

三、创新发展提升建设水平

创新发展永无止境。根据《粮食行业“十二五”发展规划纲要》和粮食科技发展规划要求,“十二五”期间要继续发挥科技支撑作用,大力推进粮食仓储设施建设技术创新和成果转化。

(一)搭建科技成果转化平台 通过编制和实施粮食流通设施建设规划和粮食工程建设标准,继续做好新技术、新材料、新仓型、新设备在储备粮库建设、粮食现代物流和市场体系建设、粮库维修改造、农户储粮等重大项目上的成果转化。特别要突出国家投资补助的引导作用,在项目设计和安排投资中优先支持节能环保、绿色安全的设施建设和储粮新技术的应用。

仓库通风设计篇(6)

中图分类号:TP393 文献标识码:A 文章编号:2095-1302(2014)01-0071-02

0 引 言

粮食是关系国家稳定的战略性商品,是国民经济的命脉。确保国家储备粮食数量真实、质量完好,确保在需要时调得动、用得上,是国家储备粮管理的基本要求[1]。为此,粮食仓储过程中已经应用了一些物联网技术,比如:温湿度传感器以及在此基础上构建的粮情检测系统已经得到较大范围地应用;虫害传感器及虫害自动检测系统、霉菌(二氧化碳)传感器及粮食质量实时检测系统、氮气传感器及自动气调系统、磷化氢浓度在线传感器及自动熏蒸系统、压力传感器及粮食数量实时监测系统、在线水分传感器及烘干水分在线自动控制系统等已经得到初步应用;粮食体积传感器、密度传感器等,以及相应的清仓查库设备和系统研发也已经取得重要进展[2]。

目前粮库普遍使用的温湿度采集系统,通常采用有线的方式接入各类型传感器,这种方式存在着布线及测算困难、传感器重复利用性差、故障排查困难、采集系统扩展能力差、传感器缺少统一管理等问题;同样,其他正在示范应用的系统都是单独部署通信线路,系统部署成本较高、维护困难;另外,目前粮食仓储企业的整体信息化水平较低,一些有信息化基础的企业也仅仅局限于粮情测控系统、出入库管理系统、办公自动化、财务等系统,单个应用系统没有集成,是一个个信息孤岛[3],没有给粮库管理带来信息集成共享效益。

在这种情况下,采用统一的集成终端对各类传感器进行统一数据预处理、通信和控制,降低系统成本,提高易用性,是粮食仓储环节物联网技术发展的必然趋势和提高传感器应用效率的必然选择。基于统一的集成终端设计的智能化数字粮库监管系统已经在江苏省十几家粮库进行了建设实践,并取得了良好的应用效果。

1 总体架构

本文提供了一种基于物联网的智能化数字粮库监管系统,以实现对粮库中的通风控制、熏蒸作业和库容计算等作业进行自动管理控制。系统的总体架构如图1所示.

基于物联网的智能化数字粮库监管系统包括以下单元:

(1)硬件设备单元,包括:温度传感器、湿度传感器、通风设备、熏蒸设备、气体采集设备、虫害检测设备。用于采集粮库的各种具体服务的业务数据,将该业务数据发送给智能传感器集成终端,所述业务数据包括温度数据、湿度数据、虫害数据、气体浓度数据;

(2)智能传感器集成终端,用于通过异构整合技术将所述硬件设备单元上报的各种不同消息格式的业务数据进行消息解析后,转换为具有统一的消息协议格式的业务数据,并对所述业务数据进行加工处理,形成具有业务特性的数据并发送给粮库集成管理平台;接收粮库集成管理平台下发的智能传感器集成终端和硬件设备单元的控制命令,向硬件设备单元下发来自粮库集成管理平台的控制命令;

(3)粮库集成管理平台,用于接收和存储智能传感器集成终端发送的具有业务特性的数据,根据所述具有业务特性的数据和设定的控制算法在所述粮库中进行库容监测、熏蒸控制、通风控制、温湿度监测和/或气体浓度监测。

2 功能简介

2.1 粮库集成管理平台的系统功能

(1)库容监测,查看各个仓库存粮概况。仓库状态通过颜色标识淡绿色表示空仓,浅绿色表示有存粮,并通过色块大小标识存量多少,鼠标放在仓库时显示仓库存粮信息。

(2)熏蒸管理,包括熏蒸计划和熏蒸记录功能。其中熏蒸计划就是根据仓库的虫情信息制定熏蒸计划,熏蒸计划能做的操作以及当前所处的状态紧密相关;而熏蒸记录则是根据通风计划对仓库进行熏蒸操作,并登记熏蒸信息。

(3)通风管理,包括通风计划和通风记录功能。其中通风计划是根据仓库的粮情信息制定的通风计划,通风计划能做的操作以及当前所处的状态紧密相关;而通风记录是根据通风计划对仓房进行通风,并将通风方式、通风具体操作等信息登记下来。

(4)温湿度监测,通过列表和图表等不同的展现方式查看仓库粮食温度。其中列表方式可显示采集时间、仓内温、仓内湿、仓外温、仓外湿、最高温、最低温、平均温、最高湿、最低湿、平均湿等内容;折线图可显示粮食的温度趋势变化;另外,三维展示图可显示粮食的3D粮温图。

(5)气体浓度监测,是对于安装气体传感器的粮仓,可以设定气体浓度报警功能,对气体浓度大于或小于某个阈值时,进行气体浓度报警提示,报警的阈值可以根据粮仓的实际情况进行设定,如对于氧气浓度报警,《缺氧危险作业安全规程GB8958-2006》中规定“当氧气浓度为19.5%时,即为缺氧危险作业”[4], 考虑到氧气传感器的精确度,可考虑当氧气浓度小于20%时,弹出报警页面。

(6)虫情监测就是登记和查看害虫情况。点击要查看的仓库,进入该仓库虫情记录页面,记录的属性包括主要害虫、虫害密度(头/公斤)、霉变情况等[5]。

2.2 智能传感器终端功能

(1)数据采集

对于各种异构传感器的接入和数据采集是智能传感器集成终端设备的一个核心功能。传感器可以通过设备上的串口、I/O等接口以有线的方式接入,也可以通过ZigBee无线传感网络、无线路由节点以无线的方式接入。设备支持多样的接入形式和庞大的接入数量,可以满足粮食监管中所需的温湿度、气体、水分等各类传感器的接入需求[6]。

(2)数据整合加工

不同的传感器采集到的数据格式各不相同,如果不作处理将大大增加监管中心的数据分析和管理难度。通过智能传感器集成终端设备的数据整合能力,能够将不同格式的采集数据进行翻译,转换为统一的协议形式,方便统一分析处理。此外,也可以过滤掉由各种原因造成的噪音数据,提高数据的有效性、准确性。

(3)数据警情上报

智能传感器集成终端设备作为安置在粮库前端的数据采集设备,最终要将有效的数据通过有线网或无线网络传送到监管中心,对于重要的数据,要尤其保证数据发送的完整性、实时性,防止丢失。此外,前端传感器等各种设备出现损坏、丢失等意外情况时,终端设备也能将相应的报警信息及时反馈给监管中心,以便迅速作出应对措施。

(4)设备远程控制

除了能够接入传感器外,智能传感器集成终端还能通过串口、I/O等方式接入各类控制设备,如通风设备、熏蒸设备、充氮设备等。通过消息协议转换,可以在监管中心方便地控制各粮库的这些前端设备,实现设备远程控制。

(5)数据存储

对于重要的传感器数据或监控录像,智能传感器集成终端提供了本地存储的能力,使得当出现网络异常等情况,集成终端无法与监管中心通信时,重要数据不至于丢失,也可在出现特殊情况时调用本地录像,重现事件经过。

2.3 传感器及控制设备功能

智能传感器集成终端设备将以统一的数据标准、开放的公共接口,成功接入或兼容现有主流测温设备、测虫设备、智能通风设备、视频监控设备等,可以实现仓储管理相关设备、数据以及作业情况的信息整合。

3 应用验证

本文提出的基于物联网的智能化数字粮库监管系统已经在江苏省十几个大中型粮库进行了应用示范,取得了良好的效果,具体如下:

粮库物联网应用系统的部署复杂度和建设成本比以往多传感器分别部署的情况有了很大改观;

库容检测可以使用户对仓库粮食的存量信息一目了然,为清仓查库提供了动态的、精确的数据基础;

实时的虫情检测为熏蒸计划的制定提供了可靠的依据,并为有效评估熏蒸效果提供了有力的信息支持。气体浓度监测为熏蒸人员的作业安全保驾护航;

生动展示的温湿度信息为通风计划的制定和变化提供了直观的依据,并为通风效果的评估提供了支撑条件。

4 结 语

试验证明,该系统能够广泛集成已有粮食流通物联网传感器,使得粮食流通物联网应用系统部署复杂度降低、建设成本降低、传感器的联动使用的效果更加丰富,能够有力地提高粮食流通物联网规模应用水平。

参 考 文 献

[1]于滨.以多元化信息安全全力服务“新四化”[N].中国航天报,2013-01-06.

[2]臧传真,李其均.粮食流通动态跟踪关键技术研究[J].物流技术,2009,28(2):109- 112.

[3]臧传真.现代粮食流通体系与技术支撑系统研究[J].物流技术,2010,29(1):1-3.

仓库通风设计篇(7)

“两磨一烧”是水泥生产的核心,普遍会引起水泥工艺设计人员的重视,但是对于辅助车间的设计,如果重视程度不够,也会影响调试生产的正常进行,甚至会严重影响整条水泥生产线的达标达产。本文以我公司设计的一条日产3200吨水泥熟料生产线为例,对原料配料站工艺设计时应该注意的问题谈谈自己的想法。

1原料配料站的设计方案

原料配料站在粉磨系统中担负着不可忽视的重任,其主要作用有两个:一是原料储存[1],要求各个厂根据生产线规模和使用的原料情况确定每种物料的储期,特别是对于粘湿物料要减少储量;二是配料计量[1],要求每个原料仓底能下料顺畅,计量准确,以保证原料粉磨系统的正常运转,生产出合格的生料。水泥生产一般使用的原料为石灰质原料(石灰石、泥灰岩、白垩)、硅质原料(粘土、页岩、砂岩)和校正原料(铁矿石、硫酸渣、铝矾土、自燃煤矸石)等。本厂在设计期间业主给出的原料为石灰石、铁矿石、砂岩和页岩,其中石灰石由自有矿山开采破碎后经过长皮带输送至厂内圆形预均化堆场,其它原料则通过汽车运输至厂内堆棚,堆放一段时间后经破碎机破碎输送至长形预均化堆场。根据工厂提供的原料种类,我们设计了混凝土圆库储存石灰石和钢板仓储存辅料的组合方案,如图1所示。考虑到石灰石水分不高,流动性好,石灰石库储量设计为850吨,锥体角度设计为60°,库底采用皮带秤计量;铁矿石钢板仓储量为100吨,锥体角度设计为76°,页岩钢板仓和砂岩钢板仓的储量均为150吨,其锥体角度设计为70°,三种辅料钢板仓底均采用链板秤计量取代传统的板喂机+皮带秤组合计量方案,链板秤是近年来逐渐采用的一种计量设备,由于其计量精度完全可以满足生产要求,特别是对于粘湿物料和高温物料(熟料),链板秤具有明显的优势。另外,考虑到实际生产时有可能增加其它品种的原料作为辅料,原设计时特别增加一个备用仓,其仓底设计方案与页岩钢板仓相同。对于库底收尘系统,设计为库底单独放置收尘器取代从库底皮带机导料槽顶部引收尘风管至库顶收尘器的模式,使库底收尘系统与库顶收尘系统分开,互不干涉。其中石灰石计量称落料点处单独设计一台气震式箱体袋收尘器(处理风量6900m3/h),其它辅料由于水分高,灰尘不大,合用一台气震式箱体袋收尘器(处理风量6900m3/h)。

2原料配料站存在的问题及处理方法

综合其它水泥厂出现过的问题,原料配料站经常出现的问题是库底下料不顺畅,板喂机与皮带秤协调计量困难等。对于本厂的原料配料站,虽然设计时进行了一系列的改进优化,但还是由于考虑不周,导致调试生产时出现了库底下料不畅的问题。调试生产之前,业主对辅料品种进行了更换:图1中的铁矿石库更换为储存湿粉煤灰(进厂湿粉煤灰夏季平均水分为14%~15%);砂岩库没有使用,作为备用库;页岩库更换为储存高铁页岩(进厂高铁页岩夏季平均水分为16%~17%);原备用库用来储存高硅页岩(进厂高硅页岩夏季平均水分为13%~15%)。调试初期,尽管钢板仓锥体部分的角度设计的较大,但由于辅料水分高,物料依然很容易囤积在钢板仓锥体部分,造成三种辅料下料困难,需要人工捅料才能维持立磨的调试生产。由于锥体上原设计的捅料孔直径小,而且数量不多(捅料孔直径设计为Φ279毫米,每个钢板仓锥体设计4个捅料孔),造成人工捅料很不方便,捅料效果欠佳。为此现场对钢板仓锥体与计量秤进料口之间的部分进行了改造,如图2所示:首先移除钢板仓锥体下部至棒条闸门之间的溜子,更换成棱台外形的储仓式溜子,溜子顶面全敞开,并与钢板仓锥体底部脱开不接触,锥体底部插入溜子内约100毫米高度,溜子底面与棒条闸门则用法兰连接。由于改造之后溜子的顶面全敞开,岗位工则可围绕溜子四周任意位置进行捅料,无死角,大大的提高了捅料效果。随着原料粉磨系统调试生产过程中的优化改进,生料的产量得到逐步提高,自然而然对原料配料站底部的顺畅卸料提出了更高的要求,使得捅料间隔时间进一步缩短(每种辅料大约2分钟就需要进行一次捅料),造成工人劳动强度很高,此非长久之计。为此现场又在之前改造的基础上安装仓壁振动器进行振打卸料,如图3所示:在棒条闸门之上的溜子外壁(在计量秤尾轮的上方一侧)先焊接一块钢板,加强此处的受力,然后将仓壁振动器固定在此钢板上。刚开始时,振动器的运行和停止由岗位工现场控制,后改为由中控室控制,当计量秤监测到断料时,即刻将信号传输至中控,中控则开启振动器,大约运行10s后振动器自行停止。经过此项改进,仓底卸料顺畅,不需要再进行人工捅料,即节省了大量的劳动力,也满足了后续的立磨满负荷生产对原料的需求。对于石灰石储库,由于石灰石流动性良好,调试生产期间锥体至皮带秤进料口之间未出现下料不畅的问题。关于配料站的收尘系统,调试生产时库顶和库底均未出现冒灰问题,鉴于当地的辅料水分较高,从计量称落入皮带时不易起灰,辅料收尘系统设计时可以适当减小处理风量。

3原料配料站优化设计的结论

通过本厂对原料配料站的优化改进,有效解决了辅料钢板仓底下料不畅的难题,为立磨粉磨系统的正常生产奠定了坚实的基础。基于本厂的调试经验,结合其它项目的建议,可得出如下关于原料配料站设计时的相关结论:1)石灰石储库(石灰石含水不超过3%,夹土不超过5%),库底锥壁倾角可以控制在65°左右。2)粘湿物料储仓(粘土、页岩、砂岩、铁粉、湿粉煤灰、连同水泥配料中的石膏、火山灰、矿渣等),宜采用浅仓,适当减少储存堆积时间,并加大锥体出料口的长宽比,仓底锥壁倾角要求不小于75°,并要求考虑设计人工清堵和机械振打清堵措施。3)计量给料设备选用时,对于流动性良好的物料,可选用传统的皮带计量秤;对于粘湿性物料宜选用链板计量秤,集强制卸料和定量称量于一体,控制方便,也可采用传统的在皮带计量称前加设运行速度较低的调速板式喂料机,用板喂机强制卸料至皮带秤后再进行计量。4)配料站收尘系统设计时,对于灰尘大的干性物料,宜选用处理风量大的气震式箱体袋收尘器,对于冒灰微弱或者没有灰分的粘湿性物料,宜设计为几种物料合用一套收尘系统,选用处理风量小的气震式箱体袋收尘器。综上所述,水泥厂设计过程中,虽然存在着主要车间和辅助车间的划分,但是如果辅助车间设计时不引起重视,同样会对调试生产的顺利进行造成严重的制约,影响整条水泥生产线的正常运转。本项目通过对原料配料站库底部分的有益改进,取得了较好的生产和经济效果。

仓库通风设计篇(8)

中图分类号:TJ410.89 文献标识码:A 文章编号:1009-914X(2016)24-0156-01

引言

我军各种型号的弹药,平均有80%的可靠寿命是在仓库中度过的,因此仓库弹药储存安全管理,历来是弹药管理活动的重中之重。若仓库弹药储存中出现事故,极有可能造成燃烧、爆炸等重大事故,这可能带来的装备损失、财产损失和人员伤亡是难以估量的。因此,仓库弹药储存安全管理工作中应经常开展风险分析与总结活动,并制定科学有效地管理策略。

1 仓库弹药储存风险因素分析

1.1 人为风险因素

据调查,我军仓库弹药储存安全事故中,有70%以上是人为因素导致的,人为风险因素主要包括以下几类:1)专业知识和管理技能不过关,上岗前未接受充分的专业教育和培训;2)思想麻痹,风险意识不足,对待工作懒散马虎,模式管理规定和安全规章制度;3)违反操作规定,制定多余的或不应出现的操作,不按规定穿着防静电鞋、规定服装等;4)意外因素,包括不慎碰撞、跌落等。

1.2 设备风险因素

设施风险因素即因设备故障、损毁造成的仓库弹药安全隐患,常见的情况有:1)后方仓库危险场所采用的设施设备不符合防火、防爆、防静电、防雷击等方面的要求;2)设备维护检修不当,保养不及时,使用不规范,设置不合理;3)不恰当使用材料,例如用塑料薄膜等绝缘材料接触爆炸物品等等。

1.3 环境风险因素

环境因素风险主要包括社会环境风险和自然环境风险:1)社会环境风险即治安不稳定、流动人员,恐怖袭击、人为破坏活动等等;2)自然环境因素主要指因恶劣天气、气候突变、虫蛀、鼠咬、雷雨、自燃、泄露等因素造成的安全隐患。例如:库区周围的枯枝落叶杂草等可燃物常年堆积,在生物、理化作用下发热自燃,可引发周围的可燃物着火而造成弹药安全隐患;又如:雷雨季节易受雷击区发生燃烧而引发火灾隐患,对弹药安全造成威胁等等。

1.4 管理风险因素

管理风险因素主要指仓库弹药储存管理中因制度、模式、方法不合理、不科学而造成的风险。常见的管理风险因素包括:1)管理活动开战前未进行充分的安全教育,技能培训等;2)装置维护管理、检修管理制度不合理;3)管理任务、管理时间安排不合理,造成管理人员疲劳或连续作业时间过长而导致管理失误;4)未对特殊型号的弹药或特殊需求的管理项目给予充分的重视,未采用规定的技术或方法进行储存而造成安全隐患。

2 仓库弹药储存风险管理对策

针对上述风险因素,应分别采取以下管理对策:

2.1 认为风险因素规避对策

首先,应确保仓库弹药管理人员在工作中具有良好的生理状态。对此,应通过仓库弹药管理队伍每年的体检结果合理筛选合格的管理人员,并合理安排每位管理人员的工作量和工作时间,避免因超负荷工作影响其生理状态,而造成精神恍惚、记忆力下降、疲劳等不佳状态而影响管理活动的规范性。

其次,应确保仓库弹药管理人员具备良好的心理状态、弹药仓储安全的人为要素中,心理因素主要包含情绪状况、心理防备能力和承受能力、不适合工作的性格缺陷。对此,除了要认真筛选心理素质合格的管理人员外,还应通过合理的工作负荷、丰富的业余集体活动等方式帮助管理人员纾解压力,以维持心理健康。

最后,应不断提高仓库弹药储存管理人员的业务素质。通过岗前培训教育、在职培训教育,专题讲座,张贴海报,专业知识考核等方式不断开展专业知识、技能教育,以提升仓库弹药管理人员的综合专业素质和风险意识、安全意识,进而提高个体对人为失误的控制,避免事故的发生。

2.2 设备风险因素规避对策

设备风险因素的规避主要应从以下几方面做起:1)严格按照防火、防爆、防静电、防雷击规定采取合理的设备安全管理措施;2)结合设备的特征和用途,按照设备供货方的说明采取全面、及时的保养、维护、检修策略;3)按照设备的运行状态和使用寿命合理淘汰和更新换代;4)禁止采用不符合规定的材料、设备进入弹药仓库。

2.3 环境风险因素规避对策

仓库弹药储存管理中,一方面要严格按照规定做好仓库内的防潮、防虫、防鼠、防泄漏、放电、防雷管理,另一方面要经常对仓库周围的环境进行巡视,以及时发现和排除安全隐患。此外,仓库建设及其环境管理是一个系统工程,需要设计、施工、管理等方面人员统筹计划,协同合作才能做好,因此管理人员除了做好分内工作外,还应与气象、土建、设计、技术等相关部门保持沟通,共同规避环境风险。

2.4 管理风险因素规避对策

为了减少管理不利、监督不足的情形,应进一步提高仓库弹药储存管理活动的规范性,具体可从以下几个方面做起:1)完善仓库弹药储存管理规章制度,对各项管理活动的执行、监督、评价制定明确的流程和评价标准,以敦促管理人员规范自身管理行为;2)采取责任制,对仓库弹药储存管理目标进行细化、下放,明确小组和个人的管理任务,并定期进行考核评价,以充分调动仓库弹药管理全员的主动性。

3 总结

综上所述,仓库弹药储存的风险因素较为复杂,但多不外乎人为、设备、管理几个方面,因此只要全面认识仓库弹药储存风险,并重视储存管理工作,就能有效规避风险,提升仓库弹药储存的安全性。对仓库弹药储存的管理,也应从人为、设备、环境、管理等因素入手,以确保仓库弹药储存管理的安全面性和有效性,更好地规避安全事故和保障储存安全。

参考文献:

[1]秦翔宇、张景臣、孟庆龙.后方仓库弹药储存安全风险评估问题分析[J].装备学院学报.2014.25(3):42-45.

仓库通风设计篇(9)

DOI:10.16640/ki.37-1222/t.2017.09.184

1 概述

随着电子商务的快速发展及整个经济市场的大量需求,近几年来物流仓库的建设在整个建筑行业崭露头角。与民用建筑相比,物流仓库具有占地及建筑面积大,按防火分区租赁,着火速度快等特点。在电气设计时,需充分考虑以上特点,使得整个供配电系统在安全可靠的前提下,做到技术先进和经济合理[1]。

本文主要基于《建筑设计防火规范》GB50016-2014和《火灾自动报警系统设计规范》GB50116-2013的要求,结合工程实例,介绍丙二类物流仓库在供配电、照明控制、防雷接地、火灾报警等方面的电气设计要点。甲、乙类仓库的电气设计可在丙二类物流仓库(以下简称仓库)电气设计的基础上,并满足《爆炸危险环境电力装置设计规范》GB50058和《石油化工可燃气体和有毒气体检测报警设计规范》GB50493的相关规定。

2 供配电系统

高压供电方式选择:因仓库项目一般位于工业区,且用电负荷主要为二、三级负荷,所以大部分仓库采用一路高压加柴油发电机供电方式[2]。

负荷分级:仓库用电按功能区域分为仓库和办公区域。消防、安防、通讯、计算机网络按二级负荷供电;办公区空调,仓库区约70%照明、维修用电插座、普通风机等负荷和业主要求的重要负荷为三级用电负荷。业主要求的重要负荷一般包括库内办公区照明、插座;仓库内约30%照明、工业提升门、升降台、充电插座。重要负荷概念的提出,主要是满足在市电断电情况下,重要负荷由发电机作为备用电源继续供电。需要注意的是,重要负荷原则上还是三级负荷,只是为了满足仓库在市电断电时需要维持基本运行而提出的概念[3]。

低压配电系统:以无锡一物流仓库项目为例,由5个单层仓库和一个办公楼组成,建筑总占地面积为54642m2,建筑总面积为64015 m2。此项目电气负荷计算采用需要系数法,经负荷计算采用2台1000KVA变压器,变压器负载率分别为78%和80%,另设1台810KW柴油发电机作为消防等二级负荷和重要负荷的备用电源。此项目低压配电系统采用单母线分段运行方式,低压设置母联开关,并设置自动切换柜,切换柜的作用为:消防负荷和重要负荷在市电停电时采用变电房内自动切换柜自动切换,由柴油发电机供电。需要注意的是,重要负荷和消防负荷不应同时使用。低压配电系统接线图见图1:

低压配电系统接线图系统说明:正常运行时,K1、K2、K5合闸,K3、K4断开;K1和K2均失压而脱扣,K4合闸。市电恢复后,K1和K2合闸,经延时后K4分闸。

变压器和柴油发电机容量校验:因仓库项目消防水泵容量较大,为了避免在火灾发生时,消防水泵出现不能正常启动的情况,变压器和柴油发电机容量需进行校验。仍以无锡一物流仓库项目为例,消火栓泵容量为132KW,一用一备;喷淋泵容量为160KW,二用一备;一个防火分区的消防风机27KW。因为应急照明等负荷容量较小,校验计算忽略不计[4]。

2.1 消防水泵启动和运行工况

《消防给水及消火栓系统技术规范》GB50974-2014第11.0.3要求:消防水泵应确保从接到启泵信号到水泵正常运转的自动启动时间不应大于2min;第11.0.15要求:当工频启动消防水泵时, 从接通电路到水泵达到额定转速的时间不宜大于表11.0.15的规定值。在以上启泵工况下,按最大一台并最后启动的消防泵电动机校验发电机及变压器容量。

2.2 发电机容量校验:

(1)根据《全国民用建筑工程设计技术措施:电气》第4.2.2.4条(P48页):按最大一台电动机启动条件校验发电机的容量,即:Pe≥K・P1+P

式中Pe―柴油发电机额定功率(KW);

K―发电机组供电负荷中最大一台电动机的最小启动倍数(见表2.1);

P1―最大一台电动机额定功率(KW);

P―在最大一台电动机启动之前,发电机已带的负荷(KW)。

表2发电机组供电负荷中最大一台电动机的最小启动倍数(K)

校验过程:

本项目P1=160KW;P=132(1台消火栓泵)+1x160(1台喷淋泵)+27(1个防火分区消防风机)=319KW,按表4.2.2,发电机母线允许电压降为15%,K取2.3。

Pe≥K・P1+P=2.3x160+319≥687KW。

(2)根据《工业与民用配电设计手册》第66页公式2-8:

按发电机母线允许压降计算发电机容量:

式中―按母线允许压降计算的发电机视在功率,KVA;

―发电机母线允许电压降,一般取;

―发电机瞬态电抗,一般取;

―导致发电机最大电压降的电动机的最大启动容量,KVA。

式中L―星三角启动倍数;

P―电动机容量,KW;

―功率因数;

―电动机效率。

校验过程:本项目最大一台喷淋泵容量为160KW,采用星三角降压启动,电动机星三角启动电流倍数为2.3,电动机的功率因数为0.85,电动机效率为0.92。经计算:一台160KW的喷淋泵起泵时,发电机容量为320KW。考虑最后一台喷淋泵⒍时,1台132KW消火栓泵、1台160KW喷淋泵及一个防火分区的消防风机27KW正常运行,所以发电机容量应为639KW。

综合以上两种校验结果得出结论:本项目选用1台810KW柴油发电机组满足校验要求。

(3)变压器容量校验:按照满足消防泵起动要求,参照发电机的选定容量折合变压器容量应大于900KVA,本项目选用1000KVA变压器满足校验要求。

3 照明控制

因仓库防火分区场地大,一般情况下,灯具布置在货架走道上方;在货架布置没有确定的情况下,灯具按12m柱距布置两列。仓库灯具控制不能参照民用建筑灯具控制做法,需结合业主需求和实际使用确定合理经济的控制方式。根据已经竣工的仓库项目,笔者总结仓库照明控制有以下几种方式:

(1)交流接触器控制:在照明配电箱设置照明总断路器,在照明总断路器后面设置交流接触器,照明配电箱上设置接触器控制按钮,实现分区分组手动控制照明灯具的目的。

(2)智能照明控制:在照明配电箱每个照明配电出线回路设置智能继电器RY,RY具有手拔功能,可对各个照明回路进行手拔开关控制,或是根据已设控制模式控制灯具回路。

(3)人体感应控制:在仓库灯具附近安装高位运动传感器,在感应范围内感应有人存在可自动点亮灯具。

总结:在实际的设计过程中,设计者可根据具体仓库项目及租户具体需求采用多种照明控制方式。

4 防雷接地

仓库防雷接地设计与民用建筑存在很大的差异。一般情况下,民用建筑需在屋面另外敷设接闪带,基础接地网则利用基础及梁内钢筋。而仓库项目利用金属屋面作为接闪器,利用钢柱作为防雷引下线,利用钢梁或钢檩条作为屋面防雷网格[5]。简而言之,仓库项目不需要另外在屋顶敷设接闪器及防雷网格,需要注明的是,参照防雷与接地安装图集99D501-1第2-38页,屋面与檩条,檩条与钢柱之间采用螺栓连接可以满足防雷要求,防雷验收时需要加以说明。

另需要提及的是,仓库项目的变电房一般设置在仓库外,仓库进户总配电箱的浪涌保护器(SPD)应为Ⅰ级试验型(此条为强条)。

5 火灾报警系统

仓库的消防控制室一般设置在门卫与监控室合用,仓库采用集中报警系统[6]。与民用项目相比,仓库火灾报警系统设计有以下几点特殊性:

(1)由于仓库环境噪音大,设置消防广播时,需满足《火灾自动报警系统设计规范》第6.6.1.3条规定:在环境噪声大于60dB的场所设置的扬声器,在其播放范围内最远点的播放声压级应高于背景噪声15dB。基于此条要求,建议选择5W的消防广播,广播间距可在满足规范的基础上适当减小。

(2)仓库的防火分区的排烟风机数量较多且功能相同,在设计风机的手动控制时,手动控制线分区控制排烟风机,即一组手动控制线控制多台排烟风机,建议一个防火分区设置两组手动控制线。另关于一组手动控制线的根数选择一直存在较大差异,笔者认为手动控制线作为在火灾时启动消防设备的应急措施,实现最基本的启动、停止即可,所以选择两根就可满足使用要求,另外也减少室外线路及工程造价。

(3)火灾探测器的选择:由于仓库的高度一般大于12米,传统的点型火灾探测器不能在仓库使用。仓库项目可根据规范要求选择管路采样式吸气感烟火灾探测器或线型光束感烟探测器。由于上海消防局沪消【2006】303号文件《上海市大型物流仓库消防设计若干规定》第4.6条规定仓库应设置空气采样烟雾报警等早期火灾报警系统,所以上海仓库选用空气采样式感烟火灾探测器,除上海外的仓库项目可根据租户需求选用空气采样式感烟火灾探测器或线型光束感烟探测器。

仓库项目还应根据相关规范要求设置电气火灾监控系统、消防电源监控系统和防火门监控系统[7]。电气火灾监控系统和消防电源监控系统相辅相成,电气火灾监控系统主要监控低压配电柜非消防配电出线回路,而消防电源监控系统主要监控主干消防设备电气回路,各自分工,确保整个配电系统安全可靠运行[8]。仓库的疏散防火门多为常闭防火门,所以防火门监控系统主要监控常闭防火门的开、闭状态。

6 结语

根据物流仓库的特点,重点介绍了物流仓库供配电系统、照明系统及火灾自动报警系统的设计,防雷接地的注意事项。在安全可靠的前提下,实现了仓库电气设计技术先进和经济合理的设计理念。为同类仓库设计提供了参考。

参考文献:

[1]公安部沈阳消防研究所.火灾自动报警系统设计规范GB50116-2013[M].北京:中国计划出版社.

[2]中国中元国际工程公司.建筑物防雷设计规范GB50057-2010.北京:中国计划出版社.

[3]公安部天津消防研究所,公安部四川消防研究所.建筑设计防火规范GB50016-2014[M].北京:中国计划出版社.

[4]中国机械工业联合会总编.供配电系统设计规范GB50052-2009[M].北京:中国计划出版社

[5]中建筑设计科学研究院.建筑照明设计标准GB50034-2004[M].北京:中国建筑工业出版社.

仓库通风设计篇(10)

中图分类号:TU249 文献标识码:A 文章编号:

物流企业在设计仓库储存产品的流程时,都遵循使产品能够直接在整个仓库设施中流动的原则,物流行业要求库存货物不断进行流动、分拨和整理。物流企业运营模式导致物流仓库具有与一般仓库不同的火灾风险。事故致因理论是从本质上阐明事故的因果关系,说明事故的发生、发展过程和后果的理论。基于事故致因理论,分析物流仓库火灾风险,可以提出有正对性的火灾预防控制措施,对于物流仓库的防火工作具有指导意义。本文在分析物流仓库火灾特点的基础上,基于事故致因理论,从第一类火灾危险源、第二类危险源(包括人的不安全行为、物的不安全状态、环境的不安全条件)等方面分析物流仓库火灾风险,并提出预防控制措施。

1 物流仓库火灾的主要特点

(1)空间规模大、荷载高、蔓延快。为了便于流转降低物流成本,近几年物流仓库的建筑面积一般都在20000m2左右,防火分区内的建筑面积约10000m2,由于货架堆放物品的密度大、数量多、品种复杂,建筑高度多在12m以上,货物堆垛高度在10m以上。通常储存和理货区分别占总建筑面积的60%和30%左右,多个区域之间物品的流动频繁,整座建筑空间呈现连续开放的形态,发生火灾后,极易形成大面积火灾。

(2)火灾报警时间长、排烟困难、结构易坍塌。目前物流仓库一般不要求设机械排烟设施,现有物流仓库的排烟方式主要有天面或靠近天面的墙上开设常开窗进行自然排烟和在顶部设置机械排烟设施两种方式,无论采用哪种方式,由于仓库空间高大,烟气受到货架和货物的阻挡,到达屋面层的时间较长,热烟气从产生到排出室外,将在室内停留较长一段时间,引燃热烟气流经过处的可燃物,消耗大量氧气,加热室内空气,使室内在短期内形成黑暗和有毒的空间环境,易对人员疏散及火场扑救造成困难。另外由于物流仓库的体量大、防火分区划分复杂、空间高度高对感烟探测器和喷头的灵敏度有影响,为早期发现和控制火灾增加了难度。物流仓库大多采用钢结构或钢筋混凝土柱、彩钢屋顶承重构件,在火灾温度达到500℃时,钢结构的承载力下降到原来的四分之一,如果火灾温度达到600℃时,钢结构承载力完全失效,会造成大面积坍塌。

(3)灭火难度大,疏散困难

物流仓库货物堆垛高度大都超过7m,属于高架仓库,货架连续长度为30-60m,一般每隔30m处设置一个宽度约为1.4m的联络通道,货架与货架间通道宽度在1.1-3.5m。一旦发生火灾,烟雾弥漫,很难找到起火点。由于货架大都采用钢质材料,加上堆物的重量,在火灾情况下可能变形坍塌,这对灭火人员的安全带来很大的威胁。加之发生火灾后,库房内堆垛物资倒塌,通道受阻,也给扑救造成困难。

2 基于事故致因理论的物流仓库火灾风险分析

2.1 第一类火灾危险源

第一类危险源是指有可能导致能量意外释放的能量拥有体。物流仓库内有大量的可燃物,这些属于第一类火灾危险源,如货架、托盘、输送设备上的橡胶履带;货物的包装材料,主要有纸张、泡沫塑料、塑料薄膜;铲车及铲车充电区内的蓄电池以及可燃货物。

2.2 第二类危险源

第二类危险源是导致能量约束或屏蔽实效的各种因素,包括物的故障、人的失误和环境因素,是事故的必要条件,决定事故发生的可能性。以下从人、机、环境系统的角度来阐述物流仓库火灾的成因。

2.2.1人的不安全行为

(1)放火。放火的形式主要有:故意破坏以达到扰乱社会治安、破坏正常经营活动为目的的放火;因个人恩怨、经济纠纷等报复性放火;骗保放火,多是经营者因种种原因,为了获取最大利益,先对堆垛原料进行保险,后再自己放火,以骗取高额保险金;此外,还有精神病患者放火等。

(2)管理不善。库区管理制度不落实是人为过失引发火灾的根本原因。库区管理不善引发火灾的原因主要以下几个方面:外来火种的进入,如高温或已经发生阴燃又未被查出的物品直接进库上架;工作人员或货车司机随便吸烟。在维修仓库建筑物及货架的钢结构进行防锈油漆时,操作人员自身静电、金属撞击引起火花,引燃油漆、易燃溶剂起火。电瓶车在操作时打出火花或蓄电池老化、接触不良引起火灾。

2.2.2 物的不安全状态

(1)整理分拨环节存在火灾隐患。货物进出物流仓库时需经过归类整理和重新包装, 不少物流企业为方便机械搬运流转, 一般在入库打包整理时加上木质或塑料铲板, 造成大量的铲板成为额外的可燃物在物流仓库内流转的情况, 增加了火灾荷载。尤其是塑料铲板, 一旦燃烧, 其放热量、发烟量、燃烧速率远大于一般可燃物, 极易扩大成灾。有的物流库整理、分拣货物区域面积不足, 进出货物时容易出现物品堆垛阻塞疏散通道或妨碍消防器材使用的情况,给消防安全管理带来不利影响。

(2)储存区的火灾危险性较大。物流储存区货物相对集中, 为提高空间使用效率普遍采用机械操作的货架系统, 将立体空间划分成若干货格, 货格根据货箱的大小而设置。按规定, 货架储物仓库的最大净空高度或货品最大堆积高度超过规定要求时, 应设货架内喷头。部分物流仓库因为设计、安装货架内喷头比较困难或担心货架内喷头被误操作或破坏, 在货架安装或调整后取消货架内喷头, 形成喷淋保护盲区。有的物流仓库内货架连片成排布置, 货架与货架的间距小, 人员疏散困难。

2.2.3 环境的不安全条件

自然环境条件。如建筑物没有安装避雷设施,或者避雷设施损坏、不完善,货架又没有可靠的接地装置,在遭受雷击时,极有可能因为强大的雷击感应电流通过金属构件产生高温热效应导致货物着火。

3 火灾风险预防控制措施

3.1 增强耐火等级,防止物流仓库坍塌

为提高物流仓库的耐火等级,可采取对钢结构进行防火涂料保护,以减轻钢结构在火灾中的破坏,避免局部或整体倒塌,并减少火灾后的修复费用,缩短钢结构功能恢复周期,这是提高钢结构耐火极限的根本方法。

3.2 严格控制防火分区面积

根据“建规”的要求,一、二级耐火等级的单层丙类可燃固体和丁类物流仓库每个防火分区的最大允许建筑面积分别为 1500、3000m2,戊类物流仓库面积不限,仓库内设置自动灭火系统时,每个防火分区最大允许建筑面积可增加 1倍。防火分区必须采用防火墙分隔。对于流货品中可燃物数量少或较少的仓库,如果仓库消防能力强(设置了喷淋、报警及排烟设施),不划分防火分区也可有效控制火灾蔓延。对于储存区火灾载荷较大、火灾损失大的物流仓库,在综合考虑建筑功能、空间条件、火灾荷载及消防设施配置标准、人员疏散难易程度的前提下,宜对储存区采取防火隔墙保护,并对分拣整理区域放宽分区面积限制,尽量减少防火分隔对物流管理的不利影响。

3.3 采取先进可靠的消防设施,提高初期火灾的扑救能力

物流仓库一般设置在郊区,消防给水设计一般应设置消防水池,采用常高压消防给水系统并配备柴油消防泵,消防给水管网要设置成环状,保证消防供水管网供水的可靠性和灭火救援水源的充足。还应设置可靠的自动喷水灭火系统,选用快速响应早期抑制喷头、大水滴喷头等针对仓库设计的大流量喷头,将火灾控制在一个较小的范围内。此外要尽量设置一些技术先进的探测器,如空气采样烟雾报警系统等早期火灾报警系统。该系统具有早期探测,及时联动,对环境适应性强等,是解决目前大型物流仓库报警不及时、探测灵敏度不高的较好办法。

3.4 实现自然排烟,加设机械排烟

物流仓库内即可设置自然排烟设施又可设置机械排烟设施。对于大型物流仓库来说,应二者结合,在屋面设置排烟风机和易熔采光带。易熔采光带既能作为屋顶采光,又可以作为自然排烟口,而且排烟口是均匀布置在整个屋面,对排烟有利。火灾发生初期,因为仓库较高,易熔采光板还没熔化,在这之前,先通过排烟风机机械排烟,可以减少先期高温烟气层的危害,等易熔采光板熔化后,就形成自然排。

3.5 加强物流仓库消防安全管理

物流仓库应当严格落实消防安全责任制,落实安全防范措施,消除火灾隐患,防止火灾事故发生。物流仓库的消防安全应当明确主管部门和相关人员的责任,制定仓库用火、用电管理制度。仓库内电气设备应经常检查,并每半年进行一次绝缘测试,发现异常情况,必须及时修理。加强消防设施的维护管理,确保消防设施自投入使用开始必须处于运行和备用状态。消防控制室的设备应当实行每日 24 小时监控,确保及时发现并准确处置火灾和故障报警。

3.6 提高员工的防火意识

物流仓库管理人员应以多种形式对企业员工进行经常性的防火安全教育,普及防火、灭火知识,以提高员工的防火意识。消防安全管理人员每天应进行巡视检查,检查以火源管理、电源管理、仓库和库存物品管理、灭火器材及消防设施运行情况、值班在岗情况、使用明火情况等为重点,发现火灾隐患必须坚决整改,切实消除火灾隐患,确保仓库消防安全。

4 结论

(1)在分析物流仓库火灾特点的基础上,基于事故致因理论,从第一类火灾危险源、第二类危险源(包括人的不安全行为、物的不安全状态、环境的不安全条件)等方面分析物流仓库火灾风险。

(2)以事故致因理论分析结果为基础,从技术和管理两个方面提出物流仓库火灾风险预防控制措施。

参考文献:

上一篇: 量化股票投资策略 下一篇: 小学数学课堂训练
相关精选