铝合金论文汇总十篇

时间:2023-06-01 15:51:56

铝合金论文

铝合金论文篇(1)

随着科技的不断进步,汽车越来越多地使用铝合金轮毂。铝合金轮毂相比钢制车轮有如下4大特点:(1)节能。铝合金密度低,轮毂质量轻,加工精度高,高速转动时的阻力小、变形小,可提高汽车的行驶性能,减少油耗。(2)安全。铝合金的导热系数是钢的3倍,散热效果非常好,可增强制动性能,提高使用寿命,保障汽车行驶安全。(3)舒适。一般与铝合金轮毂配用的是扁平轮胎,其缓冲和吸震性能均优于普通轮胎,使汽车坎坷道路上或快速行驶时,舒适性提高。(4)美观。铝合金轮毂外观设计精美,造型多样化,可做到对比突出、车毂合一,提高整车的视觉效果。

1.2轮毂的结构特点

轮毂由轮辋、轮辐、轮芯及轮毂盖、附件等组成,如图1所示。轮毂一方面通过轮辋与轮胎配合,另一方面通过轮辐与车桥相连,发挥其承载、行驶、转向、驱动和制动等作用[2]。其中,轮辋的设计应按照标准规定选用与整车要求相配的轮辋规格,尤其是宽度和直径尺寸应严格按标准检测,以确认轮辋能否满足与轮胎的配合要求。轮芯的设计则根据轮毂与车桥车轴上的安装盘等安装定位要求进行。可见轮毂造型中最关键的是轮辐,其造型可随意变化,无标准和规律可循。轮辐作为轮辋与轮芯的中间连接件,主要起到支承和传递载荷的作用,在保证具有足够的承载、抗弯、抗冲击强度性能前提下,其造型应具有美观、动感和时尚性。而附件、轮毂盖对轮毂造型美观起衬托、辅助的作用,可根据情况适当添加。

1.3轮毂造型设计目标

轮毂造型设计应以轮毂的材质、轮毂造型数量、轮毂的尺寸、轮毂外观工艺的设定和输入为指导[2]。结合轮毂的结构特点、配套车型、目标客户群的审美特点和汽车品牌的文化特征,确定轮毂造型设计的目标:(1)满足结构性能要求;(2)按车型选定车轮结构尺寸;(3)结合品牌文化的美观造型;(4)彰显用户心理特征;(5)可制造加工性。

2造型与结构一体化设计

2.1性能要求

根据轮毂装配于整车后的功能,针对铸铝合金轮毂各国均有相应的标准,考虑轮毂使用中的功能需求,SAE,JASO及ISO等标准和我国标准主要对轮毂的强度及疲劳性能提出了具体要求[3],轮毂制造企业必须要对每一批制造出的产品进行如表1所示的性能试验。

2.2尺寸设计

汽车轮毂的主要参数有胎环直径、胎环宽度、螺栓孔节圆直径、偏距、中心孔等,一般常根据胎环直径和胎环宽度来划分不同尺寸型号。直径和宽度通常是在整车设计方案中确定的,综合考虑了汽车动力、自身质量及阻力等方面因素,选择使车辆性能最优的轮毂尺寸,轿车原车轮毂主要的直径尺寸为381mm(15inch),406.4mm(16inch)和431.8mm(17inch),也有越野型轿车的轮毂直径达到508mm(20inch),533.4mm(21inch)和558.8mm(22inch)。直径和宽度确定后,轮毂的轮辋部分便可根据标准进行造型设计。螺栓孔节圆直径、偏距及中心孔的尺寸亦由整车设计中轮毂的安装要求确定,从而决定了轮毂的轮芯部分的造型要求。因此,轮毂的造型以轮辐部分的设计为主。

2.3造型与结构一体化设计

随着计算机技术的飞速发展和广泛应用,有限元法已成为求解科学技术和工程问题的有力工具[4]。将有限元分析方法应用于工业产品设计,用仿真引领设计,改变传统仿照设计的方法,可增强产品设计的创新性。在轮毂的造型设计中,由于轮辐是造型的关键,也是承受载荷的关键部位,因此,非常适合将有限元分析的方法引入轮毂的造型设计中来,进行造型与结构的一体化设计。传统的轮毂造型设计,首先进行二维造型草图设计,设计中融入品牌文化及车型特征,经过反复在整车模型侧面上的贴图评审确定下来;其次进行三维模型的构建,根据车轮尺寸设计要求构建轮辋的三维模型,根据车轮的安装配合尺寸设计轮芯的三维造型,主要是根据评审确定下来的二维造型草图进行轮辐部分的三维模型设计,此阶段更多考虑的是外观造型;再次根据三维数据制作油泥模型,反复调整模型,更新三维数据,甚至在实车上评审造型;最后是制作硬质轮毂样件,通常用ABS工程塑料,进一步检验轮毂设计的细节,完成造型设计。之后整车厂会将以上完成的造型设计提供给轮毂供应商制作小批真实样件,通常这时轮毂制造厂在试制生产前会对客户提供的模型进行有限元分析以保证样件的试验通过率,避免直接开模、试制、试验不通过造成的报废、修模、重新试制等过程的浪费,主要是针对结构性能的分析。可见,传统设计中造型设计与结构设计是分开进行的,有限元分析并未发挥其最大的作用,没能用于指导造型设计,因此可能会导致后期有限元分析验证结构设计合理性时对前期造型设计方案的,或者独立的造型设计导致结构的安全裕度过大,造成材料的浪费,不能实现最优的轻量化设计。因此,将有限元分析提前到造型设计的过程中,一旦二维造型方案确定,构造出三维模型就对其进行有限元分析,将避免一些不必要的尝试,并带来更加创新优化的设计结果。造型与结构一体化设计方法的流程如图2所示。

3案例

以福特2015年新款Focus车型431.8mm×177.8mm(17inch×7.0inch)的轮毂设计为例,展示由于有限元分析方法的引入而形成的造型与结构一体化设计方法的应用。轮毂造型效果如图3所示。采用福特产品设计通用的I-DEAS有限元分析软件在轮毂造型设计的各阶段对其进行有限元分析,分析中采用10节点四面体单元进行网格划分,材料属性取铝合金材料的机械性能参数,弹性模量6.9×1010Pa,泊松比0.33。对13°冲击试验,根据前述试验条件,在轮毂安装盘面及5个PCD孔锥面上施加6个自由度的全约束,使车轮相对于水平o-xy平面旋转翘起13°,在最高轮辋边缘向轮芯偏移19mm的位置以外的轮辋上施加载荷,冲击试验的载荷是使质量为547kg的冲击锤自230mm高度落下。弯曲疲劳试验则根据前述试验条件,在无轮辐支撑侧的轮辋边缘施加固定约束,在轮芯的安装面及PCD孔上通过建模添加加载臂结构,加载臂长度为660mm,根据试验要求的载荷3587N•m计算出加载臂末端应施加的力为5435N,根据不同的轮型结构通常根据旋转一周的情况选定几个方向进行加载计算,取分析所得最危险的结果进行评判。径向载荷疲劳试验按前述试验条件,分析中对轮芯的安装盘面和PCD孔锥面分别进行全约束,在60°夹角范围内的轮辋两侧胎圈座上分别施加呈半正弦函数分布的径向载荷q1和q2,根据试验要求径向载荷15007N和轮毂尺寸参数由以下公式计算得到,并在整个外轮辋上施加充气压力300kPa,同弯曲疲劳试验,根据轮型结构选取几个位置分别加载分析,取最危险的分析结果进行评判。该型轮毂最终造型设计在三性能试验条件下的有限元分析结果分别如图4a,4b,4c所示。其中,图4a为在以上冲击试验约束和载荷条件下的vonMises应力分析结果,其最大值为56.8MPa,发生在冲击部位正对的辐条根部;图4b为以上弯曲试验约束和载荷条件下的vonMises应力分析结果,其最大值为105MPa,发生在辐条背面根部位置;图4c为以上径向载荷试验约束和载荷条件下的vonMises应力分析结果,其最大值为40.7MPa,发生在无辐条支撑侧的轮辋外缘处。铝合金材料的屈服强度为178MPa,根据文献[3]中通过实验验证建立的分析模型和评价标准,以上3个性能试验有限元分析的vonMises应力最大值分别小于70MPa,110MPa(30万转)和70MPa(100万转)为合格。从有限元分析的结果可以看出该设计可全部通过标准要求的轮毂性能试验,在达到造型设计的同时满足了结构设计的要求。在结合车型特点等因素确定初步的设计方向和设计尺寸后,首先根据标准要求的轮辋形状、尺寸进行轮辋造型设计,其次进行轮辐的造型设计,设计中通过以上有限元分析结果,逐步实现了轮毂的最终造型设计。

铝合金论文篇(2)

1.1气孔

铝合金焊接时主要产生的气孔是氢气孔,而氢的来源有三:空气中的水分侵入熔池;保护氩气中含水分大;坡口及焊丝清理不干净。因此,解决气孔的主要措施是:

a)适当预热,降低熔池的冷却速度,有利于气体逸出;

b)制定合理的焊接工艺,采用短弧焊接;

c)提高氩气的纯度;

d)清除焊丝和母材坡口及其两侧的氧化膜、水、油等污物。

1.2裂纹

铝合金焊接中产生的裂纹主要是热裂纹,其中大部分是产生在焊缝中的结晶裂纹,有时在热影响区也出现液化裂纹。除了接头中拘束力的影响之外,结晶裂纹的产生主要是受铝合金化学成分和高温物理性能的影响。当焊接线能量过大时,在铝合金多层焊的焊缝中,或与熔合线毗连的热影响区,常会产生显微液化裂纹。防止裂纹的主要途径是:

a)选配合适的焊丝和尽可能优选母材成分;

b)正确选择焊接方法和工艺参数,宜采用功率大、加热集中的热源;

c)应避免不合理的工艺和装配所引起的应力增大,尽量将焊接应力降低到最小;

d)避免接头在高温下受力,人为地造成裂纹。

1.3焊接接头软化

铝合金管焊接后会产生明显的软化现象,其主要原因是由于焊缝和热影响区的组织与性能变化引起的。防止焊接接头软化的主要方法是:

a)采用加热迅速、热量集中的焊接方法,以减小接头的强度损失;

b)选择合适的焊丝。

1.4焊接接头的耐蚀性

铝合金接头耐蚀性降低的原因,主要与接头的组织不均匀、焊接缺陷、焊缝铸造组织和焊接应力等有关。采取的措施有:

a)选用高纯度的焊丝;

b)调整焊接工艺可以减小热影响区,并防止过热,同时应尽可能减少工艺性焊接缺陷;

c)碾压或锤击焊缝有利于提高焊接接头的耐蚀性;

d)减少焊接应力。

2焊接工艺

2.1焊接方法

通过以上分析和结合现场实际情况,确定焊接方法采用交流钨极氩弧焊。其优点是:具有阴极破碎作用;设备结构和线路简单,不易出现故障;TIG保护性好,电弧稳定、热量集中、焊缝成形美观、强度和塑性高、管材变形小;现场地面施焊,管材可以转动,以平焊位为主,操作容易;可形成较大的熔池,有益于气体逸出,故焊缝中气孔极少。

2.2焊前准备

2.2.1焊接设备与焊材的选用:采用交直钨极氩弧焊机WSE-315,焊材选用HS5356,直径5mm。

2.2.2清理铝合金管母和衬管都有包装,保护比较好,为了避免碰损和油污,在组装焊接时才拆除包装。现场使用坡口机开坡口,用丙酮擦拭坡口及其附近处,然后用铜丝刷清理管母坡口及其内外壁30mm范围、衬管和加强孔附近,之后再用丙酮擦拭,如图1所示。焊丝用化学方法进行清理。管母、衬管、焊丝的清理应根据焊接进度完成,不要一次清理过多,以免造成再次氧化和污染。

2.2.3组装对口制作焊接支架如图2所示,要求管母的轴心线重合,安装可转动胶轮可使管母免受损伤,且焊接位置一直处于水平位置便于焊工施焊,减小了操作难度,保证了焊接质量。衬管的加工要求见图3。制作对口卡具如图4所示,便于定位焊和焊接过程中转动管子时,使高温的焊缝不受外力而产生缺陷。

2.3焊接工艺参数

铝合金管母焊接电流与加热温度的选择尤为重要,如果焊接电流过大,熔池形成速度较快,容易造成烧穿、塌陷等缺陷;如果焊接电流过小,母材较难熔化,熔深浅,易产生气孔、未焊透和熔合不良等缺陷。可通过适当提高预热温度来补偿焊接区热源不足,使焊接顺利进行。具体焊接工艺参数见附表。焊接Φ110mm×4mm铝合金管母线时,焊接电流可适当减小,为160~170A,焊加强孔选择电流200~210A。

铝合金论文篇(3)

2三角板热锻模具设计

2.1中间件设计

根据铝合金锻件的工艺设计原则,采取下料→预锻→终锻→切边的工艺流程,其中预锻主要对三角板中央大面积薄壁区域成形,终锻主要对筋板和凸台成形.铝合金锻件在温度为300~350℃时的收缩率为0.8%,以此分别设计预锻和终锻件.此外,对预锻件的长度和宽度尺寸进行缩小,比例因子均为0.9%;对预锻件的高度尺寸进行增大,比例因子均为1.1%,以保证终锻中锻件充填完好.

2.2模具设计

利用预锻件和终锻件设计铝合金三角板的热锻模具.将预锻模腔和终锻模腔安排在同一个模块上,其目的是减少锻造过程中锻件传输时的热损失.其中预锻模腔和终锻模腔在模块上采用对角式分布,这是为了减少锻造过程中模具的受力不均衡.为了保证锻件不出现塌角等充填缺陷,将预锻件的飞边厚度设计为2mm,终锻件飞边厚度设计为1mm,同时三角板上的凸台在预锻中不锻出.

3有限元模拟

基于有限元软件Deform-3D对三角板的成形过程进行模拟.坯料的材料为6061铝,单元体为78000个,最小网格尺寸为0.5mm,网格比例因子为2.在模拟中开启重划网格选项并进行体积补偿,上下模具设为刚体,模具材料均为H13钢.其中,上模具为主模具并设置运动速度为50mm/s.当预锻飞边为2mm时,上模运动停止;当终锻飞边为1mm时,上模运动停止.

4模拟结果分析

对三角板的热锻成形过程实施数值模拟,分析预锻和终锻过程中的成形载荷、温度场、应力应变场和成形缺陷,以研究工艺模具设计的合理性.

4.1温度场分析

由于预锻中锻件的温降较大,锻件中央大面积区域的温度普遍低于256℃,最低温度为181℃;而终锻中锻件的温度变化不大.这是由于锻件长而薄,导致锻件与模具之间产生大量的热传递,从而使得锻件温度快速降低;而终锻过程中锻件变形量小,工件与模具接触时间短,故少,温降小.可以通过提高模具预热温度来解决工件温降过快的问题,但温度过低会使成形载荷剧增且锻件容易表面开裂,温度过高会导致锻件性能下降,合适的锻造温度为450~480℃.

4.2应力应变场对比

预锻中锻件的等效应力范围为112~140MPa,而终锻中锻件的等效应力主要范围为82~141MPa,说明在预锻和终锻中,锻件的变形能力基本一致.预锻件和终锻件的等效应变分布可见,锻件在预锻和终锻结束时的变形主要发生在飞边附近,而此时正是成形载荷急剧上升的阶段,表明飞边厚度对铝合金锻件的成形至关重要.本文选择的预锻飞边厚度为2mm,终锻飞边厚度为1mm,兼顾了成形载荷和锻件切边变形等因素.

4.3锻造缺陷分析

因为铝合金三角板锻件因其壁厚不易出现折叠,终锻折叠角<211°,因此锻件不易产生折叠缺陷.锻件内壁和飞边区域的破坏因子较高,表明铝合金三角板锻件极易出现开裂,甚至导致锻件报废.同时,应该合理设计锻件的温度和坯料尺寸,避免大变形造成锻件表面的开裂.

铝合金论文篇(4)

1引言

化学镀Ni-P具有厚度均匀、硬度高、抗蚀性优异等特点,因此镀层广泛被应用于需耐磨的工件。但是,铝合金表面即使在空气中停留时间极短也会迅速地形成一层氧化膜,以致影响镀层质量,降低镀层与基体的结合力。

本项研究得出了比较好的预处理方案,从而得到结合力良好,表面比较光亮的Ni-P镀层。

2实验方法

2.1实验工艺流程

试样制备配制除油溶液化学除油水洗侵蚀水洗超声波水洗去离子水洗一次锓锌水洗退锌水洗超声波水洗去离子水洗二次锓锌水洗去离子水洗碱性镀水洗酸性镀去离子水洗吹干冷却

2.2除油配方及工艺

除油:Na3PO4•12H2O(30g/L)NaCO3(30g/L)温度(65℃)时间(3min)

2.3浸锌配方及工艺

ZnSO4(40g/l)NaOH(90g/l)NaF(1g/l)Fecl3(1g/l)KNaC4O4H406(10g/L)

温度(42℃)一次浸锌时间(90S)二次浸锌时间(18S)

2.4镀液配方与工艺

碱性预镀液NiSO4•6H2O(30g/l)NaH2PO2•H2O(25g/l)NH4C6H5O7•H2O(100g/l)温度(65℃)PH值(8.2)施镀时间(8min)

酸性镀液NiSO4•6H2O(30g/l)NaH2PO2•H2O(25g/l)NH4C6H5O7•H2O(10g/l)

乳酸C3H6O3(40ml/l)NaC2H302(10g/L)温度(85℃)PH值(4.8)施镀时间(120min)3实验结果与分析

3.1镀层表面形貌及硬度

镀层表面为致密的胞状、非晶态结构。小胞之间有明显的界线,界线基本为直线,说明小胞在长大的过程中相互受到挤压而发生了变形,镀层中存在应力。镀层的含磷量为13.1%,镀层硬度可达686HV。

温度是影响化学镀沉积速率的最重要因。化学镀的催化反应一般只能在加热条件下发生,温度升高,离子扩散速度加快,反应活性增强,当温度高于50℃时,基体表面才有少量气泡生成,化学镀镍磷合金才能进行,随温度升高基体表面可见明显镀层。反应温度低于80℃时,沉积速率较慢;温度高于80℃,基体表面有大量气泡生成,沉积速率变快;当温度高于95℃时,镀液发生分解,镀液迅速变黑,产生大量气泡,在烧杯底部出现黑色沉淀。

3.2pH值对镀速的影响

在酸性化学镀液中,pH是影响沉积速率的重要因素之一。在化学镀过程中,随着反应的进行,H+不断的生成,镀液的pH值不断降低,使沉积速率受到影响,因此在施镀过程中必须随时补充碱液来调整pH值在正常的工艺范围内。pH值升高使Ni2+的还原速度加快,沉积速率变快。

4结语

(1)通过实验研究得到比较适宜的铝合金基材化学镀镍的前处理工艺,并得出了一套完整的铝合金基材表面化学镀镍工艺条件及配方。

(2)温度和pH值是影响反应速度重要的因素,温度的最佳工艺范围为85~95℃,超过95℃,镀液自分解现象严重;pH值的最佳范围是4.5~5.5,pH值超过5.5沉积速度开始下降。

(3)通过性能检测表明此工艺获得的镀层,镀层硬度可达686hHV,含磷量为11.17%且表面光亮、均匀、结合力好。

参考文献

[1]齐晓全.化学镀Ni-P工艺在制药设备上的应用[J].电镀与涂饰,2006,25(7):15-16.

[2]ParkerK.ElectrolessNickle.StateoftheArtplatingandSurfaceFinishing,1992,34(3):29-33.

铝合金论文篇(5)

 

1.铝合金钻杆的特点

(1)与传统钻杆材料钢相比,铝合金具有宝贵的物理力学性能。铝合金的密度和弹性模量几乎是钢的1/3,而比强度(断裂强度极限与密度之比)却是钢的1.5~2倍。

(2)铝合金钻杆质量轻,在钻机能力一定的条件下,用铝钻杆能钻达钢钻杆无法达到的深度。俄罗斯曾用400t能力的钻机钻成世界最深的СГ- 3井(12262m) ,用300t钻机钻成7000m深井。

(3)铝合金在腐蚀环境中的稳定性非常好。它表面覆盖一层稳定的氧化膜阻止与环境的进一步反应,可用于任何浓度的硫化氢和二氧化碳环境,而且其抗腐蚀能力与温度无关。

(4)铝合金钻杆与井壁的磨阻小,可减轻起下钻的阻卡。铝钻杆的浮力系数比钢小得多,可节省20%~25%的起下钻时间,并节省燃料。所以,铝合金钻杆用于3000m以深的钻井最有效。

(5)在相同井眼曲率下,铝合金钻杆的弯曲应力远小于钢钻杆,从而适用于钻斜井、曲率半径小的定向井和水平段长的水平井。

(6)铝合金钻杆具有和镍钴合金相似的无磁特性,方便随钻测量仪器的使用。

(7)铝合金钻柱对裸眼和套管的作用力减小,能有效地保护套管,适应裸眼段更长的井。铝合金钻杆内泥浆的流动阻力小,可提高钻头的水功率。论文参考。

(8)铝合金钻杆的钢接头可按API标准加工丝扣,正常条件下,一般不会因丝扣磨损而更换钻杆。论文参考。

(9)钻探(井)属于高风险性行业,孔内事故在所难免,尤其是卡钻或钻杆折断事故时有发生。使用钢钻杆时处理孔内钻杆事故常需要漫长的时间,甚至造成钻孔报废。而处理铝合金钻杆事故时,用一般牙轮钻头就可把井下铝合金钻具“消灭掉”,钻速可达30m/h左右。

2.钻杆材料分析

目前世界上已有的钢钻杆、铝合金钻杆和钛合金钻杆基本参数对比,其中钢钻杆的密度、弹性模量最高,但自重过大对深孔钻机的提升能力要求高;铝合金钻杆的密度、弹性模量最低,线膨胀系数最高,可适用于陆地深孔钻进和海底钻进;钛合金钻杆的密度、弹性模量和线膨胀系数都居中,应该是理想的深孔钻探用管材,但其接近天文数字的价格使用户无法承受。

GB/T 20659 - 2006/ISO 15546: 2002中列举了4组铝合金钻杆。其中第二组钻杆最常用,价格也最低,其主要成分为Al-Zn-Mg,最小屈服强度480MPa,最小抗拉强度530MPa (20℃时) ,最小伸长率7%。虽然最高使用温度仅120℃,但对于地质勘探深孔作业而言足够了。高可靠性铝钻杆的抗腐蚀性其腐蚀速度表示每平方米表面积的铝钻杆在不同介质中每小时因腐蚀造成的失重(g)。可见,铝钻杆在碱环境、酸环境下很少腐蚀,而在全饱和的H2S环境下完全不腐蚀。这对于复杂地质条件下使用泥浆化学处理剂和钻进具有腐蚀性的矿产或地下水非常有利。

3.钻杆工艺分析

铝合金钻杆柱的关键结构要素是铝钻杆与钢接头的连接问题。俄罗斯传统铝钻杆采用无止推面的三角形丝扣连接,而高可靠性铝钻杆的连接方式有3个特点: (1)采用梯形丝扣与接头连接;(2)铝钻杆设置了内支撑端面和锥形配合面;(3)通过高温装配工艺实现丝扣、配合面及支撑端面的过盈配合。

在深井(尤其是斜井和水平井)钻进条件下,钻杆柱最容易发生疲劳破坏。而新型铝钻杆的锥形配合面及支撑端面可减轻丝扣的负担,明显提高接头的抗疲劳指标, 比普通三角形螺纹提高抗疲劳强度60%-80%。这类铝钻杆自1993年起已成功用于海洋深水钻井作业。

4.钻杆在深孔中的应用

铝合金钻杆已经在国内外的科学钻探和石油钻井(包括斜井和水平井)中应用,展现了用小吨位钻机钻进深孔的良好前景。(1)铝合金钻杆在俄罗斯СГ-3 超深井的应用。采用高可靠性铝合金钻杆是俄罗斯СГ-3井创造世界超深井纪录的关键技术之一。现场400t能力的钻机额定最大井深为8000m,但用铝合金钻杆取代钢钻杆后钻成了世界最深的井( 12262m) 。统计该井195个回次中¢147mmX11mm规格的铝合金钻杆磨损情况表明,最大磨损量发生在7000~8000m井段,其中钢接头最大磨损618mm,由于钢接头的保护铝合金钻杆本体的最大磨损量仅为0.92mm。(2)铝合金钻杆在塔里木某勘探井的应用。该井井深7600 m,水平位移达1000 m,基本钻进参数:钻压200 kN,转速65 r/min,泵量21 L / s,钻井液密度210 g/ cm3 ,钻速118 m /h。钻进与提升时使用不同钻杆的效果,是使用铝钻杆+钢钻杆除了钻杆伸长量有所增加外,整个钻杆柱的重量、大钩载荷、总阻力、扭矩、水力损失等参数都明显下降。论文参考。

5.结论

深部钻探不能仅着眼于大型深孔设备,还可以在钻杆柱的材质上想办法,在不更换大吨位钻机的前提下使钻孔钻得更深。因此,近年来轻质铝合金钻杆成了国内外同行关注的热点。20世纪60年代初,苏联开始在钻井中使用铝合金钻杆,经过不断改进,目前俄罗斯已批量生产达世界领先水平的高可靠性铝合金钻杆并大量出口。欧盟在俄罗斯铝合金钻杆标准的基础上,于2002年制定了石油天然气工业用铝合金钻杆的国际标准,其地位与美国制定的钢钻杆API国际标准等同。由我国中石油管材所提出,高蓉等人承担制定的等同标准于2006年12月15日作为中华人民共和国国家标准《石油天然气工业铝合金钻杆》正式,自2007年5月1日起实施。因此,让国内钻探技术人员全面了解铝合金钻杆的特点及其在深孔中的应用前景是十分必要的。随着地质工作向深部发展,随着我国自2007年5月1日起正式实施铝合金钻杆国家标准,铝合金钻杆成了国内同行关注的热点。与传统钢钻杆相比,铝合金钻杆在自重、比强度、弹性和耐腐蚀性等方面具有突出的优点。在钻机能力一定的条件下,用铝合金钻杆能钻达钢钻杆无法达到的深度。高可靠性铝合金钻杆采用与钢接头连接的新方法和高温装配工艺,使其在深井、斜井和大位移水平井钻进中可明显提高抗疲劳强度,在深孔、斜孔和水平孔中具有良好的应用前景。铝合金钻杆耐腐蚀,对天然气和煤层气开发(尤其在钢钻杆易发生“氢脆”的井区)具有重要的意义。

参考文献:

[1] 鄢泰宁. 访问俄罗斯有关铝合金钻杆科研生产单位资料[ Z]. 2007.

[2] BS EN ISO 15546: 2002, Petroleum and natural gas industries—Aluminumalloy drill pipe[S].

[3] GB/T 20659-2006/ISO15546: 2002,石油天然气工业铝合金钻杆[S].

[4] 刘希圣,等.钻井工艺原理[M].北京:石油工业出版社,1998.

[5] 鄢泰宁,等.岩土钻掘工程学[M]. 武汉:中国地质大学出版社,2001.

[6] 李冬. 急倾斜临界角煤层开采围岩破坏规律[J].煤炭工程, 2010, (01).

[7] 史文臣. 急倾斜煤层中综采技术的应用[J].陕西煤炭, 2010, (01) .

铝合金论文篇(6)

中图分类号:G712 文献标志码:A 文章编号:1674-9324(2014)16-0188-02

冶金专业主要为企业培养生产、服务、管理等第一线的实用性综合型复合技能型人才,要求学生能发现问题、分析问题、解决问题,不仅会动手而且要会动脑。能根据一些特征现象分析生产中要发生的问题,能快速判断问题产生的原因并及时处理问题。这些都对冶金专业的学生提出了更高的要求。而冶金专业还存在着许多特殊情况,如工作环境差,工作强度大,工作污染性危险性大,温度高,在高温下还要穿厚厚的工作服等,这又使得冶金专业的学生都是不情不愿的,出现了学习热情差,基本对冶金不感兴趣等一系列情况。这些情况都使得冶金专业学生的学习雪上加霜。因此,如何探讨一个可行的并能改善这些情况的方法至关重要。我校根据企业实际用工情况,根据集团下属企业用工主要是铝行业的特点,取有色金属冶金中铝方向进行专业设置,增强了针对性,改变了常规冶金专业什么金属都学什么金属都不专的特点,使得学生的学习范围减小,热情增高,为冶金专业在技工学校大力发展取得了一些经验。

一、以就业为导向,缩减专业范围

技工学校主要是培养动手能力强、责任心强的一线操作人员,基于这种想法,我校组织冶炼专业的骨干教师于2011年深入各冶金企业进行调研,并形成了《企业用人情况调研报告》。从调查情况看,我校学生都是到云南铝业股份有限公司、云南涌鑫铝业有限公司、云南文山铝业有限公司、云南泽鑫铝业有限公司和云南润鑫铝业有限公司等铝业方面公司从事氧化铝生产、铝电解车间控制和生产,还有浩鑫铝箔有限公司从事金属加工等工作,与其他冶金方面知识关联不大,因此把有色金属冶金(铝方向)作为我校的主要冶金专业研究方向,形成以拜耳法、烧结法生产氧化铝-熔盐电解法生产金属铝液-熔炼与铸造加工技术生产铝箔等一条龙的铝板块教学,提高了针对性,改变了传统性的冶金专业什么金属都学,但什么都不精通的弊病,减轻了技校生因基础差而学习困难的问题,满足了定向企业的用人要求,为企业培养了技能型、应用型、复合型的人才。

二、以思想为契机,培养冶金品质

由于冶金行业的特殊性,如工作环境差,劳动强度大,污染性危险性大,工资待遇相对较低,生产一线噪音、空气、高温等都会让学生望而却步,就是到了企业也对生产现场有种种意见,一有机会就会选择跳槽换工作,造成企业培养成本高,学校培养积极性差等。为此,我校加强了思想教育,以冶金行业在社会发展中的不可替代的重大作用唤醒学生的社会责任感,以冶金人的优秀品质树立自己人生价值观。如要求学生脊梁像钢钉,在铁锤的敲打下牢牢地扎根企业;要求学生坚韧像小草,无论环境多差,多少人的踩踏都能够直立起身子;要求学生努力像蜗牛,虽然我们起点低、爬得慢、背负沉重的压力,但我们永远不会停止前进的脚步,总有一天我们会征服一个个难关一个个高山。具备了上述品质,我们才能够适应各种各样的环境。

三、以实用为目的,优化学习内容

由于我校只针对铝方向进行教学,传统的学科设置不能适应我校的实际情况,根据必要性、够用性的原则,我们压缩了公共课,仅设置了化学、德育、体育、三生教育与应用文写作、计算机三合一;而专业基础课为培养专业素质,打下坚实的专业基础功底,设置了有色冶金概论、冶金企业管理、冶金设备、机械制图、安全生产与环境保护。专业课主要体现了实用性和针对性,分为了三大教学模块,主要是氧化铝生产、电解铝生产、铝及铝合金加工。每个模块包括理论教学和专业实践教学两方面。理论方面以氧化铝生产工艺、氧化铝生产设备、铝电解生产技术、电解铝生产工艺与设备、铝合金熔炼与铸造技术、铝及铝合金连续铸轧带坯生产、铝箔生产及深加工、电解铝液铸轧生产板带箔材为主,实践教学方面重点讲授生产一线的工艺流程、机械设备、控制技术、操作技术等。发展以综合性应用理论为基础,以企业现场实际操作为目的的专业性教学。

四、以仿真为手段,身临其境教学

冶金过程是一个复杂而庞大的工业过程。因此,让学生学习好专业理论知识的同时,又能在学习中培训实践操作技能,进行实训教学是必不可少的。通过实训教学,使学生能够在教室里进行实训作业,认识各种生产装置,并亲手进行操作。这样通过实训让学生理解所学的专业理论知识,完成了安全经济的各种实训任务。学校采购了氧化铝生产工艺仿真实训软件和铝电解仿真实训软件,购置了熔炼、干燥、传热、铸轧、压延等实训装置,通过仿真实训实验室,满足了学生的理论学习和技能训练的要求。

五、以实践为重点,强化现场操作

企业需要的是动手能力强的学生,如何培养学生实际动手能力成为冶金专业的重中之重,同时冶金企业缺乏能迅速适应工作岗位的技术人员,这就要求学生在校期间就能够做到上岗前的培训,做到“入厂就入岗”。我校每节课都以实际动手为指导思想,以操作技能为目标,通过老师深入到企业进行摄像,利用录像和图片对相应的内容进行解说,以学校现有的模型进行实物演示,同时每学期开学时到企业进行参观实习,在教学中学习理论一段时间后,根据所学的到企业进行跟班学习,到二年级结束时到企业顶岗实习一年的时间,真正做到和企业不脱钩,零距离的接触。我校冶金05班的10个学生到涌鑫铝业有限公司只经过了三天简单培训时间就直接跟师上岗了。

六、以提高为责任,加强师资建设

我校冶金专业为新专业,但教师质量很高,目前专业课的教育都是在企业工作过有着实践经验的老师,具有研究生学历教师占60%,既有深厚的理论功底,又有丰富的实践经验。学校每年都安排专业教师去企业进行岗位培训,知道企业所需,又能根据所需进行教学。另一方面聘请相关企业的技术骨干或企业高工到校进行兼职。真正做到培养是为了提高,提高教师的专业水平才能提高学生的技术水平。

只有充分认识技工学校开展冶金专业存在的问题和困难,结合职业教育的特点,缩减专业范围,合理进行课程设置,开发职业教育的特色教育,灵活安排教育内容,重视教学方法和实际操作能力的培养,加强师资建设和实训设备投入,才能在当前社会形势下培育出一批“下得去、上手快、留得住、用得上”的新型冶金技能人才。

参考文献:

[1]陈福亮,陈利生,徐征,余宇楠,李柏村.浅谈高职院校冶金工程专业的教学现状和教学改革的对策[J].中国校外教育,2010,(52).

铝合金论文篇(7)

行验证,认为焊接接头的形成是由材料本身的塑性本质、一定的摩擦升温、工具头竖直方向压力3个因素共同作用的结果.整个过程使

接头区域材料发生充分的塑性变形,破坏并清除氧化物、油污,使焊件材料原子之间发生力的作用而形成金属键合。

关键词:铝片一铜管太阳能集热板;超声波焊接;焊接接头

中图分类号:tg453、9 文献标识码:a

当前金属管板式太阳能集热板大多采用铜管一铜片的组

合,这种组合虽然有利于材料的焊接, 易于制造,但成本较

高,不利于普及。而铝的密度小,价格比铜低,工业上经常用

铝代铜.因此用铝片代替铜片作为太阳能集热板的吸热板可以

大大降低成本。虽然铝的导热性能不及铜,但在[,!]材料很薄的情

况下并不影响整体效果.这种新的组合也是金属管板式集热板

的发展趋势。然而,铜铝属于不同种金属,它们之间存在电极

电势差,铜的线膨胀系数比铝的大0.5倍。再加上熔点的差异、

铜铝间易形成金属间化合物等原因.容易引起铜铝接头电化学

腐蚀,同时铜铝变形不一致也容易产生裂纹、夹杂层或出现脆

性金属间化合物等.这些缺陷将会降低接头强度。

为克服铜一铝焊接时所出现的缺点, 一般采用铜一铝压力

焊。如摩擦焊ⅲ、超声波焊 ]、真空扩散焊 等焊接方法.获

得电气性能、抗老化性能、抗腐蚀性能、使用寿命都比较理想

的焊接接头。jiromaru tsujino .tetsugi ueoka等日本学者

长期从事金属超声波焊接研究,对超声波焊接过程中的一系列

问题作了比较全面的探讨.如:频率和压力变化对焊接质量的

影响[31, 实测得到铜铝焊接温度超过436℃ ,同时对铜、铝、

金等金属的焊接性能进行了深入而细致的研究 ,认为超声波

焊接对各种塑性良好的金属材料来说,只要选择合适的设备和

工艺参数,都可能获得良好的焊接接头。james e krazanowski

通过透射电镜(tem)研究焊接区域组织。认为金属超声波焊

接机理是一个金属粘合的过程,而扩散和再结晶等物理冶金反

应在接头成形机理中并不起主要作用[9]。本文从铜铝材料性能

分析人手,推导焊接区域温度, 同时结合实测温度和焊接区域

收稿日期:20__—04—12:修回日期:20__—07—07

基金项目:广州市科技攻关重点项目(20__ z3一do101)

扫描电镜图片探讨铜一铝超声波焊接机理。

1 焊接试验及过程分析

超声波焊接设备包括:超声波发生器、换能器、聚能器

(变幅杆)和工具头等,如图l所示。焊接参数见表1。

图1 超声波焊接设备

表1 焊接参数

汽缸

动块

导轨

频率 功率 工具头转速 焊接压力 振幅 铝片厚度 铜管厚度

f/khz fi,kw (r·min-‘) p/mpa a/1.zm 占l/mm null

15 3 44—49 0.4 、 30 n2 1.0

铝片一铜管太阳能集热板的焊后样品如图2所示。

图2 铝片一铜管太阳能集热板焊后样品

welding technology vo1.36 no.5 oct.20__ ·试验与研究· 15

1.1 材料处理

铜和铝极易在空气中被氧化,在光亮清洁的表面就已经有

约200个分子厚度的氧化膜存在,而且氧化膜也是由晶体组成,

本身也存在不饱和的分子,能够吸引对称性较弱的极性分子

(如水分子、有机物分子等),形成一层油污和水气膜,这些物

质的存在导致表面凹凸不平,使材料原子问距离增大,难于进

行焊接。

1.1.1 铜管表面套拉与翅化

根据金属超声波焊接机理,对材料表面要求高,针对上述

铜管表面状态,需要击碎、破坏、清除铜管表面油污及氧化膜

使其暴露出纯净的金属表面,主要有两步:

第一步,铜管的表面套拉,套拉过程如图3所示。

套拉方向

图3 套拉过程示意图

其作用有:①全面刮削铜管表面.比较彻底地破坏表面氧

化膜暴露出纯净的金属表面;② 由于进行的是冷加工.可以适

当提高铜管硬度,有利于随后的焊接及增加变形抗力以保证在后

续的挤压中维持圆管形状;③将铜管的直径缩口至需要的尺寸。

第二步,利用专用工具头,表面具有微翅结构,如图4a所

示,在铜管表面预先滚压一次,进一步破坏和清除待焊部位的

表面氧化膜。且在铜管表面加工出微翅结构,如图4b所示。

(b)铜表面微翅结构

图4 袭面有微翅结构的工具头及其预滚压铜管后形成的铜表面翅化结构

其作用主要有:①增大铝片和铜管的接触面积,增加机械

嵌合的可能性;②增大接触区域粗糙度,增大摩擦,增加析热

量,从而形成局部高温,有利于焊接;③ 破碎、清理旧表面,

振动滚压出新鲜表面,为金属键合形成接头提供条件。

1.1.2 铝片处理

铝片薄,只能用钢丝刷清除其表面氧化膜,使铝片与铜管

之间通过新鲜表面充分贴合,为原子力起作用提供条件。

1.2 焊接接头形成

铝片一铜管超声波金属焊接过程如图1所示,工具头在汽

缸压力作用下,其表面微翅压入铝片后与铝片发生摩擦.然后

带动铝片以频率,相对铜管振动,在铝片与铜管间剧烈摩擦,

焊接接头区域温度升高,材料发生塑性变形。材料塑性变形、

铝片与铜管间的高频振动摩擦、工具头竖直方向的压力三因素

共同作用,破坏并清除金属表面的油污和氧化物,使彼此的纯

净表面暴露并贴合,在贴合面形成牢固的接头。

2 焊接影响因素讨论分析与试验测定

超声波焊接振动幅度只有几 m到几十 m,而且铜铝的塑

性良好,其振动摩擦作用区域小,很难用直接测温法准确测定

焊接温度;而间接测温, 即通过分析焊接接头组织的扫描电镜

图片(sem)或透射电镜(tem)图片,根据接头组织推断焊

接过程所能达到的温度的方法也受到了限制,这是因为sem图

片难于准确判定组织结构,而tem样品难于制作。

由于测温方法上的限制,各研究者所得结果相差较大.使

得超声波金属焊接温度的作用成为一个有争议的问题,同时学

者对超声波焊接机理也有不同看法。本文先从理论推导出焊接

区域材料主要发生塑性变形而非弹性变形,后通过摩擦力做功

理论推导出焊接区域理论温度,同时通过人工热电偶试验测出

焊接区域实测温度,并结合试验测定焊接接头区域显微硬度.

综合分析超声波金属焊接机理。

2.1 焊接时材料的变形情况分析

从图4b材料表面翅化后形态可以看到.焊接区域铜管表面

产生很大的塑性变形,振动摩擦和材料塑性变形能够破坏、挤

压、清除金属表面氧化 物和油污,这对超声波焊接是非常有利

的。

从图5a e 实测应力一应变关系曲线和图5b理论应力一应变

关系曲线可以看出,材料弹性应变小于0.5% ,本文以0.5%计

算:

f=f , (1)

式中:fn为材料厚度,1.2 mm;8为应变,o.5%。

可见, 弹性变形约为6 m,而工具头振动幅度a为3o

m,所以振动摩擦影响区域主要发生塑性变形, 这可以从图

4b的铜管表面翅化后的sem图片看出,工具头的纵向振动不但

16 ·试验与研究· 焊接技术 第36卷第5期20__年10月

在铜管表面压出新鲜表面,而且在纵向摩擦力的作用下,工具

头表面微齿挤出的材料被翻了过来,发生了大的塑性变形,这

对焊接是非常有利的。

-

z

b

0.002 0.004 0.006 0.008 0.010

6(%)

(a)工业铝实测应力一应变曲线

6(% )

(b)铝等塑性材料理论应力一应变关系曲线

图5 工业铝的实测及理论应力一应变关系曲线

2.2 摩擦做功方程

由华南理工大学机械工程学院在超声波焊接方面的研究 11].

可得到焊接区域的温升公式为:

at-4afw ~’at一

, (2)

cpn

式中,a为振幅,mm;f为频率,khz; 为能量吸收率,

为摩擦系数;p为压强,mpa;at为焊接时间,s;c为比热

容,j/(kg·℃);p为材料的密度,g/cm ; 为受影响厚度,mm。

将公式(2)运用到铝片一铜管的超声波焊接,计算焊接

区域温度,由于铜管和铝片厚度小。其对密度、比热容等影响

非常小,所以铜片一铜管焊接和铝片一铜管焊接不会有非常大

的差异。假定焊接时摩擦振动影响区域厚度h是分别从焊缝向

铝片和铜管壁各取1/2 (即: = (0。1+0.5)mm=0.6 mm,即热

影响区为0.6 mm), 同时铝密度2.78 g/cm ,约为铜密度8.96 g/cm

的1/3,铝的比热容为0.88 j/(kg·℃), 而铜的比热容为

0.385 j/(kg·℃).将比热容及密度也按比例折算为合成比热

容、合成密度。

由公式(2)得:

at-4afrtu~

at

. (3)

c1— 1-zhl一2

式中:c _2为材料合成比热容,取值410 j/(kg·℃);p1-2为材料

合成密度,取值7,8 g/cm ;h1-2为振动摩擦影响材料厚度之和,

0.6 mm;助压强,通过换算可得到p=20 mpa;at为等效点焊

时间。s。

p可以通过焊点的面积为4 minx4 mm.工具头汽缸压强为

0.4 mpa.汽缸直径为32 mm换算得到,焊接区域的压强为汽

缸压强的50倍,所以助20 mpa。

焊接行程为1 886 mm.而连续滚动焊接可看成是点焊叠

加,焊接时间通过测定为18.76 s。可以通过将工具头压下,而

不做直线运动测出点焊接头是面积为4 mmx4 mm的正方形.

计算其点焊时间£为0.04 s。

由式(3),代入各相关参数得:

a/’-730 rgt。 (4)

超声波焊接过程中能量吸收率 和摩擦系数 很难准确测量,

但肛的范围可以通过试验手段得到, 同时结合相关文献查到

铜一铜表面清洁度较高时为1,4.而在一般情况下为0,2左右。

之所以产生这种差异.主要是因为在清洁铜一铜摩擦副的情况

下,铜的塑性好,导致摩擦系数非常大;但在一般情况下,铜

的表面容易发生氧化而覆盖一层氧化物,氧化物硬度大,且有

一定的性能.使摩擦系数大为降低,铝一铜的摩擦系数无

资料可查.只能以测量和类比计算为准。

本试验中,由于铜管表面预先经过滚压, 自然表面全部挤

压翻滚一次而露出新鲜表面.同时铝片也经过了清洗并在焊前

进行了打磨处理,这就和焊接时的条件接近,所以铝片一铜管

之间的摩擦系数应取较大值。通过摩擦系数测定试验,推导出

摩擦系数介于0,5—0.8之间。

能量吸收率 值可以和切削时切削区域情况类比确定,切

削时有70%一90%的热量集中在切削区域,金属超声波焊接时

工具头和焊件金属紧密贴合,焊接区域与切削区域情况相似。

工具头与铜铝间的振动摩擦影响范围小,铜铝均为理想塑性

材料,工具头则可以看成是理想的弹性体。超声波从工具头

传出到铝片铜管接触界面处. 由于铜铝材料的大塑性变形,

超声波在界面处不能远距离传递,大部分的能量以体积变形、

材料内部温升等形式被接头区域材料所吸收,因此吸收效率

为0.7—0.9。

从上面的分析可知,能量并不能远距离传递,其影响区域

非常小.主要集中在铜铝塑性材料的表层,振动摩擦影响不到

深层区域, 式(4)中, 为0.5—0.8, 为0、7~0.9,所以 为

255 525℃ (室温为24—26℃).即焊接区域理论温度推导为

280 550℃

weldinz technolo~ vo1.36 no.5 oct.20__ ·试验与研究· 17

2.3 试验温度测定

直接法测温试验按如下方法设计:在铝片表面布置一个热

电偶,焊接时,工具头直接从热电偶探头上滚压过,此时所测

温度为焊接时工具头和铝片之间振动摩擦在铝片表面所达到的

温度,测量结果如图6a所示,在室温为24~26℃条件下测得最

高温度为392℃ ,最低温度为284℃ 。选用相同的工艺参数,

相同的材料进行测试。在焊接接头形成区域的铝片一铜管间布

置一个热电偶,其所测得最高温度为144℃ ,最低温度仅44℃ ,

整个温度一压强曲线如图6b所示。

汽缸压强 pa 汽缸压强 pa

(a)铝片表面温度一汽缸压强曲线 (b)焊接接头区域温度一汽缸压强曲线

图6 温度一汽缸压强曲线

2.4 焊接区域显微硬度测定

在显微硬度计上进行焊接接头显微硬度测定。母材铜的硬

度为hv90~92.9,而铝的显微硬度为hv42~47。从铜管内表面

开始测,其所测得硬度值分布如图7所示。

到铜管内壁的距离l/mm

m7 样品横截面显微硬度分布

从图7中可见,最高硬度hv942在焊接接头界面处, 当压

痕菱形刚好落在铜铝两侧时,铜边缘发生塑性变形而拱起,导

致测量上的困难,而铝在交界面边缘处发生塌边, 出现碎状,

并且可以看到结合面处出现微小裂纹。结果还显示出,远离结

合面处,铝侧的硬度值也还是比较大,分析认为这是由于焊接

工具头表面微齿高度为0.6 mm,而铝片厚度只有0.2 mm,焊

接时,微齿从铝片表面压穿铝片,而且接触到铜管表面,在焊

接时发生了大的塑性变形,而且由于温度的影响。在铝侧生成

了一定量的a120,, 而a120,的硬度较大,并且同时存在一定的

铝的加工硬化所造成的。

3 超声波焊接机理分析探讨

超声波焊接接头区域呈现复杂和多样的显微组织,有关焊

接过程中所能达到的焊接温度是多少,及焊接过程中起主导作

用的是焊接温度、机械嵌合、物理冶金反应还是金属原子之间

的键合都存在争议。下面结合试验数据和相关理论,对铜一铝

超声波焊接机理进行分析讨论。

3.1 焊接区域温度分析与讨论

焊接温度对金属超声波焊接过程有重要影响,从试验测

得铝片上表面最高温度为392℃ 。铝片铜管接头区域最高温

度只有144℃ 。从理论温度计算来看,其最高温度为550℃ ,

均没有达到焊件材料的熔点(铝的熔点为660.4℃ , 铜的熔

点1 083℃ )。文献[4]认为, 焊接区域温度不低于436℃ ,

该值与本文试验测得的铝片上表面温度及理论推导温度较为

接近。所以, 可以认为,试验测得的温度(392℃)为焊接

区域真实温度。

3.2 机械嵌合、物理冶金反应

较多的压焊专家认为。材料间的嵌合有助于材料原子间

的相互靠近,说明焊接也是塑性变形的结果,这种嵌合结构

在金属超声波焊接接头形成过程中具有重要作用。但从图8

铜一铝接头过腐蚀sem图片来看,与铝结合处,铜管表面为一

微小片面,看不到明显的材料彼此间机械嵌合, 而看到铜管

表面还残留有未腐蚀的绒状铝存在,表现出明显的相互间贴

合。所以本文认为机械嵌合对金属超声波焊接有一定的作

用,但不起主要作用。

图8 铜一铝焊接接头过腐蚀扫描电镜图

james e krazanowski通过经典扩散理论分析认为,焊接过

程中原子的扩散距离不到一个原子直径 。从上述显微硬度测

定来看,铜在远离焊接接头区域的硬度和母材是一样的,但是

在接近接头区域时其显微硬度显著增大, 接头区域达到

l8 ·试验与研究· 焊接技术 第36卷第5期20__年lo月

hv942, 同时有细小裂纹存在, 在铝侧还看到破碎的铝存在,

这表明生成了金属间化合物。李亚江等人在研究铜一铝扩散焊

时,界面出现硬度峰值hv780,分析认为明显存在金属间化合

物[8]。扩散焊接时间越长.铜铝焊接过程越容易出现金属间化

合物,但超声波焊接持续时间短,金属间化合物可能只是在焊

接后才在接头区域形成,而非焊接过程中出现。因此分析认为

物理冶金反应在焊接后出现,对接头的形成作用不明显。

3-3 金属键合过程

从材料表面的状态分析可见.正是由于表面的凹凸不平和

表面氧化物的存在,使得焊接难以进行。从压焊的机理可知,

当材料表面原子贴近到0.3—0.5 nm范围. 即3—5个原子的距离

时,原子之间的作用就能够发生,并在压焊的接头形成过程中

起主导作用。超声波的作用机理和压焊有较大的相似性,在弹

塑性理论推导过程中可以看到,铜铝的塑性变形只有6 m,

而超声波的振动幅度为3o m,铜铝塑性好,铜的显微硬度为

hv90—92.9。铝的显微硬度为hv42~47,焊接工具头的硬度为

hrc58 62,相差较大。焊接时,工具头在焊接过程中压穿铝

片.达到铜管表面,带动铝片和铜管摩擦,同时工具头在竖直

方向压力作用下。使得铜管表面和铝片同时发生充分的塑性流

动,将氧化物、油污等挤出焊接接头形成区域,或将氧化物碎

片通过铜和铝的充分塑性流动而压人铜铝材料里层,使之不能

停留在接头形成界面层。让纯净的金属材料原子之间能够相互

接近到原子作用力范围内。从james e krazanowskit ]的透射电

镜图片中看到碎片和孔洞的存在,原因就是焊接时由于材料接

触界面金属的塑性流动,使得表面氧化层有的被挤出,而有的

卷入基体材料,如果金属氧化物和母体材料的接触性不好,就

可能使得在存有氧化物碎片的地方留下孔洞。

超声波能够将能量传递给材料,能够降低材料原子的活

化能。在焊接过程中,焊接温度或压力并不单独决定焊接接

头的形成, 而是焊接温度、焊接压力、材料本身的塑性共同

决定了接头的形成。压力、温度、材料本身的塑性综合决定

了材料原子的能量状态,从而决定了材料的塑性流动等性

能, 只要3个因素综合作用, 能够使得焊接材料原子间相互

接近no.3—0.5 nm的距离,原子问作用力能够起到主导作用,

焊接接头的形成就是可能的。在图8中有许多绒状铝还粘连

在铜管的表面,可以看到焊接区域铜和铝接触界面处的粘连

状态。但要达到这种状态,材料的塑性流动是充分的,各个

接头的形成条件可能并不相同,但是,材料本身的塑性、压

力和焊接温度相互协调。能够使得材料发生塑性流动, 界面

充分贴合,从而形成接头。

4 结论 .

(1)从理论推导和试验实测得到焊接温度均达不到焊件材

料的熔点。

(2)焊接接头形成过程中。物理冶金反应对焊接接头的形

成并不起主要作用。

(3)铜一铝超声波焊接是由材料本身的塑性、一定的摩擦

升温和工具头竖直方向压力共同作用下.在材料发生充分的塑

性流动及氧化物、油污等阻碍材料焊接的物质被破坏、清除或

压人母体材料的基础上发生的焊接材料原子之间由于原子间作

用力而形成金属粘合的过程。

参考文献:

[1]e d nicholas.friction welding of copper to aluminum [j].metal

construction,march, 1975:12—17.

[2]geo~e g harman,john albers.ultrasonic welding mechanism as

applied to aluminum—and gold—wire bolding in mieroeleetmnies[j].

ieee transactions on parts, hybrids and packaging, 1977, 13

(4):406—412.

[3]jiromaru tsujino,koichi hasegawa, yukio sone,et a1.frequency

characteristics of ultrasonic wire bonding using high frequency

vibration systems of 40 khz to 780 khz [a].ultrasonics

symposium [c].1996:1 021—1 026.

[4]jiromaru tsujino, himyuki yoshihara, kazuyoshi,et a1.welding

characteristics and temperature rise of h j sh frequency and complex

vibration ultrasonic wire bonding[a].ctrasonies[c].1998.59—65.

[5]jiromaru tsujino, tetsugi ueoka.welding characteristics of

various metal plates ultrasonic seam and spot welding systems using a

complex vibration welding tip[a].ultrasonics symposium[c].20__:

669—674.

[6]jiromaru tsujino, tetsugi ueoka, ichiro watanabe, et a1 .

new methods of ultrasonic metal welding[a].uetrasonies symposium

[c].1995:405—410.

[7]jiromaru t sujino.recent developments of ultrasonic welding[a].

ultrasonics symposium[c].1995:1 05 1—1 060.

[8]李亚江,吴会强,陈茂爱,等.cu—al真空扩散焊接头显微组织分

析[j].中国有色金属学报, 20__,11(3):424—427.

[9]james e,krazanowski.a transmission electron microscopy study of

ultrasonic wire bonding [j].transactions on components,hybrids

manufacturing teohnology.1990,13(1):450—455.

[1o]黄文,周元鑫,马钢,等.工业纯铝l2应变率相关的拉伸力

铝合金论文篇(8)

一、外墙铝合金门窗渗漏概述

目前,我国建筑外墙门窗多采用铝合金材料,由于有些铝合金材料受到风、雨等自然因素的侵蚀会导致出现渗漏现象,或者是铝合金门窗生产厂家与安装公司的技术存在问题,导致门窗与实际建筑尺寸不相符,门窗左侧和右侧与外墙连接不当,影响门窗工程质量。此外,我国的一些沿海城市,由于长期受到台风洗礼,门窗容易出现裂缝,甚至在门窗的拼接、铆钉处出现渗漏,影响到房屋的质量。仅2014年上海市受理的铝合金门窗渗漏案件达100余起,引起国家的高度重视[1]。因此,必须采取措施防治外墙铝合金门窗的渗漏。

二、导致外墙铝合金门窗渗漏的因素

(一)材料不符合标准

建筑外墙铝合金门窗的制作安装、材料等都应该达到标准。然而,由于材料不符合标准,导致外墙铝合金门窗渗漏的情况屡见不鲜。有些铝合金门窗材料并未完全具有抗腐蚀性,铝合金门窗易变形。例如,铝合金与外墙的缝隙填塞是一个重要工序,然而,部分门窗并未采用矿棉条进行填塞,而是用水泥砂浆予以填嵌。由于水泥砂浆在雨水的影响下将导致腐蚀,影响门窗的隔音与保温效果。此外,一些铝合金门窗材料使用的铝板条,其刚性较差,容易导致出现渗漏。

(二)门窗制作不规范

外墙铝合金门窗的制作不符合规范将容易引发渗漏。在制作门窗过程中,一些技术人员未能结合外墙的高度与安装坡度对门窗尺寸与材料进行合理的选择,使得材料不是标准的断桥铝,厚度不足2mm[2]。此外,由于外墙具有一定高度,并且在安装过程中有一定坡度,所以,一旦制作不规范将导致窗台内侧高于外侧,铝合金门窗未能与外墙咬合,易出现缝隙,因此,门窗的制作要结合材料、外墙尺寸等条件,从而减少渗漏。

(三)安装不符合标准

外墙铝合金门窗的安装也十分关键,如果在安装过程中窗框与外墙之间产生缝隙,将导致渗水沿着缝隙进入窗内,长期将腐蚀铝合金材料。此外,由于门窗在安装时将有节点产生,安装前未能将灰尘清除,并且混凝土涂抹的厚度不足20mm,将降低门窗的防水性能[3]。在安装时,由于工作人员的疏忽,铁件处理不当,填缝材料不合格,造成门窗渗漏。

三、防治外墙铝合金门窗渗漏的措施

(一)提高铝合金门窗安装技术

加强铝合金门窗安装技术是防治渗漏的关键。在外墙铝合金门窗实际安装过程中,一定要按照规范进行操作。在安装前,要对外墙的整体情况予以分析,窗台板高度不宜超过6cm,坡度为10°,预留洞口的尺寸保持在40mm上下,安装完成后,一定要对预留洞口进行砂浆抹平。此外,铝合金门窗要嵌入窗台板以下,伸入的距离在5mm左右。当然,门窗整体安装一定要采用后塞口,因为后塞口安装时可以不立门窗,先预留一个洞口,并大于正常口尺寸2~3mm[4]。整体安装完成后再立门窗框,这样可以保证在安装过程中对出现的问题及时进行调整,与铝合金门窗固定的铁处理也是十分必要的,安装时,要预设铁件,铁件宽度大于等于25mm,铁件间距小于500mm,然后用冲击钻进行钻孔,孔的直径要超过10mm,同时,铁件预埋后,采用砼嵌法将铁件固定。铝合金门窗整体安装完成后,要用打硅胶对缝隙进行密实处理,因为硅胶具有防水、密封、保暖等功能,然后用泡沫塑料条进行嵌填。总之,要确保外墙铝合金门窗密封性良好,降低渗漏现象出现几率。安装完成后,技术人员要定期对所施工的门窗工程进行监督与管理,对工程进行验收。

(二)合理设计与制作

外墙铝合金门窗是建筑工程的一部分,为了防治渗漏,必须对门窗进行合理的设计与制作。铝合金门窗的设计包含以下几个部分:首先,加强对铝合金门窗的合理设计。由于渗漏现象与门窗、外墙结构等有关。因此,为了降低减少渗漏,必须结合外墙合理设计窗型,使得门窗与外墙间的缝隙控制在误差允许范围内。由于在生产门窗时有节点产生,节点为门窗平开带来阻力,在新的技术指引下,推拉门窗拼接简单,变形小,质量更高。窗台的坡度对门窗也有一定影响,在挡水面高的窗台作用下,产生高强度的锁点,门窗的密封度加强。其次;加强对材料的设计。在设计型材过程中,一定要结合当地的气候,合理选择门窗材料,由于风与雨的强度会对门窗产生一定影响,设计出具有高抗压强度的门窗,铝合金型材要符合国家规定的标准,填充材料应该采用PVFOQM发泡膨胀填缝剂,因为其防水性、密实性较好;再次,加强对外墙结构的设计。建筑商在施工前,要结合建筑、自然等条件,合理设计外墙结构,从而确保外墙与门窗能够合理的连接在一起。外墙要采用空心砖,结构合理,能够保证安装的门窗具有高强度,足以承受外界阻力的影响。同时,外墙要与建筑整体结构匹配,对门窗的推拉起到协调作用,增加墙体强度,降低与门窗间的缝隙出现的几率。此外,无论是外墙的尺寸还是高度都要在建筑安全的允许范围内。总之,防治外墙铝合金门窗中的渗漏,要将外墙、门窗结构等作为主要分析因素,因为这些因素都是确保建筑工程的关键。

(三)做好门窗的密封与防水工作

降低外墙铝合金门窗的渗漏必须要做好门窗的密封与防水工作。由于外墙、窗台的结构不合理,加之门窗尺寸存在误差,使得门窗在安装过程中与墙体间存在缝隙,为了确保建筑不受到影响,必须采用现代新型材料对缝隙予以填充,保证门窗具有高度防水与密封性能。在雨水的影响下,门窗易形成热桥,长期下来将导致门窗与墙体间出现渗漏,所以,选择的密封、防水材料一定要符合国家标准。通常来说,当墙体与门窗产生缝隙时,要用矿棉条进行填充,然后用硅胶进行密封处理,在进行密封前,一定确保窗台面干净。用硅胶进行密封还未能确保门窗的防水质量,还要进行灌浆处理,用水泥砂浆对塞缝进行浇灌,提高门窗的防水性能。由于在雨水的影响下,会在窗框内淤积少部分污水,在铝合金门窗的边框内开凿一个大约4mm宽的水槽,可以将污水引流至窗外,降低对门窗的腐蚀[5]。同时,在窗外设置外密封条是隔离气体的关键,从而提高门窗的防水性和牢固性。

结束语:

外墙铝合金门窗渗漏是我国建筑工程中常见的问题,铝合金门窗出现渗漏现象,降低门窗及建筑质量,对人们的居住环境造成影响。由于门窗渗漏是由于安装、设计等因素导致的。因此,本文针对造成外墙铝合金门窗渗漏的原因进行分析,并提出防治门窗渗漏问题的策略,减少外墙门窗渗漏的现象发生。

参考文献:

[1]张晓生.关于建筑外墙铝合金门窗安装中渗漏原因及对策探讨[J].城市建设理论研究(电子版),2012(17).

[2]陈伟.外墙铝合金门窗防水节点处理与关键工序控制[J].山西建筑,2010,36(7):120-121.

铝合金论文篇(9)

中图分类号TG24 文献标识码A 文章编号 1674-6708(2013)92-0038-02

当今社会,汽车已经成为人们出行的交通工具的首选,从公共交通的公交车,出租车再到私家车等,随着国家对汽车工业的逐渐重视,汽车工业也蓬勃发展,汽车从原来老百姓不可想象的交通工具,变成生活中几乎家家都可以承受的交通工具,汽车的价格也由以前的“天价”变得“平民化”,汽车多了,随之而来的问题也就多了,维修,保养都成了诸多汽车厂商最头疼的问题,诸多的汽车厂商开始研究更持久更耐用的汽车零件。

1 铝合金车轮的优势与组织性能研究

1.1 铝合金轮毂的优势

相对于其他金属,铝合金运用在轮毂上的优势多多,从元素上看铝合金是以铝为基体元素和加入一种或多种合金元素组成的合金。铝的特点是什么,铝的密度比较小,大约是铁的0.33,铁的熔点比铝的熔点要高很多,铝的熔点只有六百六十摄氏度,由于铝的性质偏软所以不能直接做刚性材料,所以需要加入其他金属弥补它的缺陷,所以铝合金就诞生了,既要保证铝的优点,不易腐蚀,质量轻等,又要让其坚硬如钢等。由于有以下一些优势:强度高,密度低,其性能不亚于优质钢材料,可塑性好,导电性好,有着非常强的在加工特性、另外铝合金还拥有,很好的,导电导热性,在工业上的应用可以说和钢是奇虎相当的,从成为了汽车,航天等工业不可替代的金属材料。

1.2 铝合金的组织性能研究

铝合金优点多多,但是其缺点也不少,例如由于铝合金在高温下较软,粘性大,流动性差,容易产生铸件损坏等,甚至引起锻件报废。所以就因运而生了一种技术叫“修伤”,在铸造铝合金过程中,“修伤"是最重要的一个环节,他不仅决定了铸件是否能够承担起使用的责任,而且还决定一个人民生命财产安全问题,所以这一环节我们必须要重视,一般修伤用的工具有风动砂轮机、风动小铣刀、电动小铣刀及扁铲等。修伤前先经腐蚀查清缺陷部位,修伤处要圆滑过渡,其宽度应为深度的5~10倍。铝合金是含有含铜、镁、锰、铬等元素,这些元素可以与铝形成两种及两种以上的高硬度金属间化合物相,2024一般多为压铸态或淬火时效状态(T4-T6),会有大量的金属间化合物相析出,当时间一定时,随着固溶温度升高,化合物相溶解量就增多,当升至较高温度时,化合物相会全部溶入铝中,形成单一的铝固溶体相组织。也就是说,较低温度固溶时只会有少部分化合物溶解(溶解的化合物元素溶入铝固溶体中),淬火后组织为铝固溶体相+大量(保留的)高硬度化合物相,铝合金硬度降低较少;而在较高温度固溶时,化合物大部分或全部溶解,淬火后只会得到单一铝固溶体相(或存留少量化合物相)组织,铝合金硬度明显降低。结论:随着固溶处理的固溶温度提高,化合物相溶解增加,淬火后组织中化合物相减少,硬度降低。

2低压铸造铝合金车轮铸造工艺优化

2.1 低压铸造铝合金技术

什么是低压制造铝合金车轮技术呢?低压铸造铝合金低压铸造的历史是比较长的了,其真正的雏形出现可以说出现在上个世纪之初,这种铸造的方式是最为适合进行铝合金铸造的。铝合金低压铸造已 经是目前经常使用到的铸造方法,这种铸造方法可以让铝合金铸件的性能更强,并且在使用上也更加的方便。低压铸造主要是在密闭的保护炉中进行,在进行铝合金 低压铸造时,其铸件本身的压力效果必须达到可以有效的完成铸件的要求。越来越多的客户对于铝合金低压铸造的零件有着很好的要求,低压铸造的零件可以进行不 同铸型的转换工作,并且在使用上的金属利用率可以达到90%以上。很多制造铝合金出现缺陷是因为工艺不了造成的,主要结果是会产生空洞,而且铸件比较松散,质量有所损失等等,产生这种情况的主要原因是温度过高,还有一种原因就是工具的使用不当,选择不当,所合金的实际结晶温度要比铸造液体温度低五十摄氏度至七十摄氏度。铸造好的金属,温度过高过低都不行,只有恰到火候才可以。

2.2 低压铸造铝合金技术优化

优化可以分几个方面,首先是模具优化,新型的模具运用,能使低压铸造更有效率和更方便,第二方面是,设备优化,引进外国的先进生产设备对生产和加工都有一定的帮助,尤其是在铸件的质量上。第三技术工人的培养,多聘请高素质专业对口的大学毕业生去做,而且要定期送到先进的铸造厂子去培训。只有这样,才能够优化低压铸造技术。工业水平是衡量一个国家的标准,在工业发达的国家,包括美国,英国,德国等,其应用是非常广泛的,我国还处在发展中阶段,所以工业水平有待提高。

3结论

本篇论文我们研究了铝合金铸件的优势与劣势,以及如何克服一些在铸造方面的困难,铝合金在工业上的潜力还很大,还有很多问题有待解决,使我们国家的原材料加工,成为世界上数一数二的国家,这就是我们共同的目标。

参考文献

铝合金论文篇(10)

中图分类号:TM756文献标识码:A

引言

导线是输送电流和功率的载体,是输电线路设计的核心内容,输电导线的每次技术进步和改良,创新都能够带来巨大的经济和社会效益。目前,我国新建输电线路中应用最为广泛的是圆线同心绞钢芯铝绞线,多年的运行实践证明其具有稳定的机械电气性能,施工运行和维护方便,能够较好地适应我国大部分地区的条件和环境。

近年来,现场中开始采用铝合金导线铺设新建供电线路。铝合金导线能够在大幅增供电线路的输送容量的基础上同时节省的投资,因此铝合金导线在超高压、大跨越线路上被广泛的应用。在铝合金导线的应用方面,欧美发达国家走在了世界前列。国外的工程经验表明,铝合金导线的技术性能、力学性能和运行效果非常优秀,被世界各国广泛的采用,特别是在超高压线路和大跨越线路上使用效果和使用范围国家突出。在中国,铝合金导线的研究与应用的发展与西方国家相比还有一定差距。目前,我国超高压电路和大跨越输电线路开始逐步采用国产的钢芯铝制导线,仅少数输电线路采用了耐热铝合金导线。输电导线需要具有良好的抗热膨胀性、抗蠕变性、一定的延伸率、较好的耐蚀性等以延长其使用寿命。研究表明,导电体采用耐热铝时,在降低导线驰度的同时提高导线的载流量。因此耐热铝合金导线能够满足中国电力正在进行日新月异的发展。伴随远距离大容量直流输电技术日趋成熟,全国高压互联网正在形成,架线工艺新技术逐渐采用,提高导线的质量性能的要求日益突出。

一、铝合金导线节能技术原理

近年我国线缆行业发展较快,为达到增容、节能、改善弧垂特性和防振、防腐性能、降低噪声和电晕等目标,出现了各式各样的新型导线产品,其中很多导线都能达到节能的效果。宽泛地说,只要在同等截面水平下,单位长度电阻低于常规钢芯铝绞线的导线,都可以称为节能导线。采用具有一定强度和导电率的铝合金代替钢芯和部分乃至全部电工硬铝,在保证机械强度的同时,总的直流电阻可降低3%左右,并且没有钢芯的磁滞涡流损耗。另外,保持钢芯铝绞线的结构形式不变,也可通过材料和工艺手段提高硬铝的导电率。

根据导线所采用芯线不同,目前比较成熟的主要有钢芯软铝绞线、应力转移型钢芯软铝导线、复合芯倍容量导线等。我国近年通过自主研发,在软质钢芯铝线的基础上,研发出应力转移型特强钢芯软型率铝合金导线。在生产中,通过采用钢铝之间的应力转移技术,使热膨胀系数较小的钢芯承担导线的主要应力。应力转移技术将常规间隙型导线在施工现场的应力转移工作变成在导线制造过程中完成,保证了应力转移的准确与施工的便利。通过晶粒细化、铝线冷拉拔过程的质量控制,以及合金元素的精确控制等方面改进,导线的结构、力学性能及施工条件与普通钢芯铝绞线完全一致,并降低线路的电阻损耗,节能效益明显。

二、铝合金导线工程应用技术原理

相对于常规的导线,铝合金导线由于其特殊的结构形式,具有以下良好的机电性能:等截面条件下线径可压缩约9%,减小了风、冰荷载;大风时体形系数低,进一步减小了风荷载;表面光洁,不易附着杂质,从而降低了电晕放电产生的损耗和电磁环境问题;铝合金导线由于其特有的结构,股线间相互干扰,具有更高的内部自阻尼,有利于微风振动能量的吸收;铝合金导线线绞合,结构紧凑,表面光洁,湿雪不易粘附在导线表面,覆冰容易脱落;铝合金导线线绞合紧密,使雨水灰尘等电化学物质不易进入,有利于保护内部的镀锌层或防腐油脂;绞线相互交叠压制,即使有少量断股也不会脱离导线,不易造成整根导线松动散股等。

前文研究指出,具有节能效果的导线种类繁多,原理各异,因此在推广应用中首先要明确的就是适用范围的问题。不论是老旧线路的增容改造,还是新建超高压大跨度线路,都需要合理选择导线材料。对于老旧线路改造来说,要求尽量利用原塔换线增容,在不增大荷载和弧垂的前提下提高允许载流量。由于往往是无法开辟新通道时“无奈”且“必须”的选择,因此能够接受很高的导线价格和严苛的施工要求。对于新建线路,则应按全寿命周期经济性选择截面,并校验过负荷要求和电磁环境指标。由于新建线路总量巨大,且有优化选择的条件,因此必须注重全寿命周期内的经济性,尽量与现有设计施工方案衔接,而不必刻意追求运行温度和允许载流量的提高。

具体到新建线路工程,节能导线应满足以下几个条件,才具备推广应用的价值。导线价格与常规钢芯铝绞线持平或略高,不会造成基建投资的明显增加,且节约的电能可以在合理的时限内(如10年左右)补偿初投资的增加。机械电气性能能够满足系统和环境要求,且便于施工和维护。与通用设计的杆塔和金具尽可能匹配。根据上述条件,可逐类分析各种节能型导线在新建线路中推广应用的价值。

通过以上分析可见,铝合金导线不但适宜在老旧线路改造中应用,充分发挥其高温运行的优势;且在施工条件较好的新建线路中,经过技术经济比较,铝合金导线也可以采用。总体来说,铝合金导线更适合解决增容问题。

铝合金芯铝绞线、中强度全铝合金绞线以及钢芯高导电率硬铝绞线从全寿命周期经济性、施工和运行方便性、通用设计匹配性三个方面都有良好表现,目前国内产能和制造水平也可以满足工程招标要求,因此适合在新建线路中全面推广。

三、总结

本文总结了国内外输电导线的发展好应用现状,重点研究了铝合金导线节能技术原理,通过对比指出了铝合金导线在导电性、机械强度、施工应用和节能环保等方面的优势,最后对铝合金导线在新建线路中应用的技术原理进行详细的总结分析,发现不论是新建线路还是旧城改造,铝合金导线均有优势,能够解决线路的增容问题,并满足节能环保等需要。在设计、施工和匹配性方面也有良好的表现。因此,铝合金导线可以在新建线路中大面积推广。

参考文献:

[1]岳怡雁.应用耐热铝合金导线提高输送容量[J].吉林电力.2001(6):36-39.

上一篇: 对财务管理的建议 下一篇: 新农村如何建设
相关精选
相关期刊