高强混凝土论文汇总十篇

时间:2023-04-06 18:31:08

高强混凝土论文

高强混凝土论文篇(1)

关键词:钢纤维混凝土;增强机理;力学性能;耐久性

Key words: steel fiber reinforced concrete;mechanism strengthening;mechanical property;durability

中图分类号:TU528 文献标识码:A文章编号:1006-4311(2010)21-0143-01

1钢纤维对混凝土的增强机理

钢纤维对混凝土的增强机理,一种是运用复合力学理论。最先将复合力学理论用于钢纤维混凝土的有:英国的R・N・Swamy,P・S・Mangat等。该理论将钢纤维混凝土简化为钢纤维和混凝土两相复合材料,复合材料的性能为各相性能的加和值。复合力学理论仅适用于钢纤维混凝土初裂前的情况,一旦基体开裂,该理论就不能适用了。

另一种是建立在断裂力学基础上的纤维间距理论。纤维间距理论的主要代表有:J・P・Romualdi,J・B・Batson和J・A・Mandel。该理论建立在线弹性断裂力学的基础上,认为混凝土内部有尺度不同的微裂缓、空隙和缺陷,在施加外力时,孔、缝部位产生大的应力集中,引起裂缝的扩展,最终导致结构破坏。而在脆性基体中掺人钢纤维后,有效地提高了复合材料受力前后阻止裂缝引发与扩展的能力,达到纤维对混凝土增强与增韧的目的。

2钢纤维对混凝土的物理力学性能的影响

2.1 钢纤维混凝土抗压性能一般情况下,钢纤维对提高混凝土的抗压强度不明显,在钢纤维混凝土结构的保守设计中,钢纤维对混凝土抗压强度的改善作用可以忽略。

2.2 钢纤维混凝土抗拉性能钢纤维混凝土试件的劈裂抗拉强度随钢纤维体积率的增加而增加。

2.3 钢纤维混凝土抗弯性能钢纤维增强混凝土的抗弯性能主要包括初裂弯拉强度、弯拉强度、弯曲韧性和弯拉弹性模量等,其中初裂弯拉强度是反映钢纤维增强混凝土初裂前阻裂能力的指标,弯拉强度是路面、道面等工程设计与工程质量检验和验收的主要指标。通过对钢纤维增强混凝土在弯曲荷载作用下的初裂弯拉强度、弯拉强度、弯曲韧性及弯拉弹性模量等抗弯性能的实验,并与普通混凝土相比较表明:钢纤维增强混凝土抗弯性能比普通混凝土有显著的提高和改善。

2.4 钢纤维混凝土抗剪性能混凝土的抗剪性能以抗剪强度为衡量指标。影响钢纤维混凝土抗剪强度的主要因素有混凝土基体、钢纤维的品种、体积率、长径比及界面黏结状况等。

2.5 钢纤维混凝土抗冲击性能钢纤维增强混凝土的冲击试验,目前国内外尚无统一的方法,常用的有受压冲击法和受弯冲击法两种,受弯冲击法比较能反映钢纤维增强混凝土的特性。总之,在冲击荷载作用下,普通混凝土一旦裂缝出现,随即引起崩塌,其初裂和破坏时的冲击次数(冲击耗能)相近。钢纤维增强混凝土则随体积率的增大,不仅初裂次数增多,冲击耗能增大,初裂强度提高,而且破坏时呈多点开裂,且裂而不断。初裂与破坏冲击次数(冲击耗能)随钢纤维的体积率、长径比及基体强度等级的增大而提高。

2.6 钢纤维混凝土弯曲疲劳性能当混凝土中掺入适量的钢纤维时,钢纤维将明显的提高抗疲劳性能。钢纤维混凝土疲劳方程与素混凝土疲劳方程的最大不同点是包含了钢纤维体积率、钢纤维长径比,即在混凝土基材中掺入不同体积率和长径比的钢纤维。因此,钢纤维混凝土的疲劳性能不仅受混凝土基材疲劳特性的影响,而且与钢纤维的体积率、长径比有很大关系。其中长径比是影响疲劳寿命的重要因素。我国有关设计规范中,没有钢纤维混凝土疲劳应力系数的规定,只是简单套用较早的普通混凝土路面的疲劳方程,加上钢纤维的体积率和长径比对疲劳性能的影响。

3钢纤维对混凝土耐久性的影响

3.1 钢纤维混凝土的抗冻性根据赵国藩等著的《钢纤维混凝土结构》,钢纤维体积率对混凝土的抗冻性影响十分明显,其影响程度与混凝土基体强度等级或W/C大小有关。通过大量的实验结果可知:钢纤维对高W/C的混凝土比对低W/C的混凝土有更好的抗冻效果。因为W/C越大,抗冻能力越低,钢纤维对提高这类混凝土的抗冻效果就越突出。

3.2 钢纤维混凝土的抗渗性由大量实验结果可知:钢纤维的掺入对于混凝土的抗渗性有很大的改善。混凝土的抗渗性与其内部的微裂缝有很大的关系。掺入钢纤维后,由于纤维与混凝土之间的粘结作用,纤维降低了原生裂缝的发生;纤维的存在使得裂缝不能直通,阻碍了次生裂缝的发展。当裂缝得不到发展而停留在微裂缝的阶段,即可有效地阻止水的渗透,从而提高了混凝土的抗渗性 。

3.3 钢纤维混凝土的耐磨性研究指明,在混凝土中掺入钢纤维,其耐磨能力高于混凝土基体的耐磨能力。采用钢纤维混凝土强度等级为CF35,中砂,碎卵石,钢纤维掺量为1%,制成50mm×50mm×50mm的钢纤维增强混凝土试件与同类配合比的普通混凝土试件,同时在国产耐磨机上进行实验,每转动10min,取三次磨耗损失质量的平均值。实验结果表明,钢纤维增强混凝土的磨耗损失比普通混凝土的磨耗损失降低了30%左右,因此,钢纤维增强混凝土更适用于有耐磨要求的桥面、路面、溢洪槽以及工业厂房地面等。

3.4 钢纤维混凝土的抗腐蚀性钢纤维混凝土一般采用低水灰比、低渗透性配合比,混凝土质量一般较高,钢纤维又能阻碍和约束裂缝的产生和发展。所以,腐蚀介质很难侵入钢纤维混凝土内部,一般认为钢纤维混凝土具有良好的抗锈蚀性。钢纤维混凝土的工程应用有三十多年的历史,至今未见因钢纤维锈蚀而造成严重劣化或工程失效的报道。

4钢纤维混凝土的发展

与普通的混凝土相比,钢纤维造价较高,若能开发出更好的钢纤维制造工艺,用较少的钢纤维量达到更好的性能,必能降低成本,进一步推广钢纤维混凝土的应用。同时,钢纤维混凝土的增强机理并不完善,纤维间距理论忽略了纤维自身的耦合作用,复合材料理论忽略了纤维复合带来的耦合效应,都有应用局限性,需待进一步的探讨和研究。理论研究的不断深入,也必将使钢纤维混凝土有着更为广阔的工程应用前景,促进我国钢纤维混凝土的研究再上一个新的台阶。

参考文献:

高强混凝土论文篇(2)

 

大体积混凝土施工的主要技术难点是防止混凝土表面裂缝的产生。造成大体积混凝土开裂的主要原因是干燥收缩和降温收缩。处于完全自由状态下的混凝土,出现再大的均匀收缩,也不会在内部产生拉应力。当混凝土处在地基等约束条件下时,内部就会产生拉应力,当拉应力超过当时混凝土的抗拉强度时,混凝土就会开裂。

混凝土中水泥水化用水大约只占水泥重量的20%,在混凝土浇筑硬化后,拌合水中的多余部分的蒸发将使混凝上体积缩小。混凝土干缩率大致在(2-10)x10-4范围内,这种干缩是由表及里的一个相当长的过程,大约需要4个月才能基本稳定下来。干缩在一定条件下又是个可逆过程,产生干缩后的混凝土再处于水饱和状态,混凝土还可有一定的膨胀回复。

大体积混凝土浇筑凝结后,温度迅速上升,通常经3d--5d达到峰值,然后开始缓慢降温。混凝土的特点是抗压强度高而抗拉强度低,而且混凝土弹性模量较低,所以升温时体积膨胀一般不会对混凝土产生有害影响。但在降温时其降温收缩与干燥收缩叠加在一起时,处于约束条件下的混凝土常常会产生裂缝,起初的细微裂缝会引起应力集中,裂缝可逐渐加宽加长,最终破坏混凝上的结构性、抗渗性和耐久性。为尽量发挥混凝土松弛对应力的抵消作用,同时避免在混凝土硬化初期骤然产生过大的应力,应该减慢降温速度。一般规定,混凝土内外温差不大于25℃。

1、混凝土配合比设计:对配合比设计的主要要求是:既要保证设计强度,又要大幅度降低水化热;既要使混凝土具有良好的和易性、可泵性,又要降低水泥和水的用量。

1)选用水化热低的42.5MPa矿渣水泥,水泥用量为340kg/m3。

2)大掺量I级粉煤灰。掺量高达100kg/m3,占水泥用量的29%,占胶凝材料总量的21%。免费论文,混凝土配合比。在大体积混凝土中掺粉煤灰是增加可泵性、节约水泥的常用方法。2、混凝土的浇筑方案选用

全面分层,采取二次振捣方案。混凝土初凝以后,不允许受到振动。混凝土尚未初凝(刚接近初凝再进行一次振捣,称二次振捣),这在技术上是允许的。二次振捣可克服一次振捣的水分、气泡上升在混凝土中所造成的微孔,亦可克服一次振捣后混凝土下沉与钢筋脱离,从而提高混凝土与钢筋的握裹力,提高混凝土的强度、密实性和抗渗性。

全面分层,二次振捣方案就是当下层混凝土接近初凝时再进行一次振捣,使混凝土又恢复和易性。这样,当下层混凝土一直浇完42m后,再浇上层,不致出现初凝现象。此方案虽然技术上可行,也有利于保证混凝土质量,但需要增加人力和振动设备,是否采用应做技术经济比较。

3、预测温度

在约束条件和补偿收缩措施确定的前提下,大体积混凝土的降温收缩应力取决于降温值和降温速率。降温值=浇筑温度+水化热温升值-环境温度。

3.1计算混凝土内最大温升

据资料介绍,有三种计算公式,其一为理论公式:

Tmax=WcxQx(1-e-nt) x£(1)

另一个为经验公式:

Tmax=Wc/10+FA/50(2)

公式(1)可计算各个龄期混凝土中心温升,从而计算每个温度区段内产生的应力,还可找出达到温升峰值的龄期,从而推定采取养护措施的时间。但在介绍该公式的资料中并没有详细说明其适用范围。

该公式似乎未能把大体积混凝土的散热条件和平面尺寸的影响因素充分考虑进去。如能根据不同情况调整m和£的取值,可能会使计算值更接近实际。

公式(2)计算较简便,在该工程中计算值较实测值偏差较小,但无法据此计算应力,也找不出升温峰值出现的时间。

3.2混凝土中心温度值

T1=T2+T(t),

因为T(t)计算值较高,夏季的浇筑温度T1应采取措施降下来。如果不采取水中加冰等降温措施,计算得:

混凝土拌合温度:

Tc=∑Ti•Wi.•Ci/∑Wi•Ci=29.1℃。

混凝土出机温度:

Tj=Tc-0.16(Tc-Td)=30.1℃。

混凝土浇筑温度:

Tj-T1+(Tq-T1)(A1+A2+…)=29.7℃。

这个温度是昼夜平均浇筑温度,如果白天最高气温是35℃,这时的浇筑温度Tj=31.4℃。为了降低Tj,采取如下措施:料场石子进仓前用凉水冲洗,水泥在筒仓内存放15d以上,晴天泵管用湿岩棉被覆盖,气温高时拌合水中加冰降温。其中,拌合水中加冰效果最好。免费论文,混凝土配合比。免费论文,混凝土配合比。

可见,每使混凝土浇筑温度下降1℃,平均要使拌合水温下降近6℃。免费论文,混凝土配合比。免费论文,混凝土配合比。要使混凝土浇筑温度下降3℃,至少每m3混凝土要加0℃冰40kg.无论如何,在工程中实际浇筑温度Tj,都不能超过32℃。免费论文,混凝土配合比。

总之,大体积混凝土是目前施工中应用较多的一项新技术,只要严格施工规范,仔细落实每一个施工环节,认真妥善地作好浇筑完的保温工作,该项技术是完全可以取得满意的效果。

高强混凝土论文篇(3)

1 研究背景

合成纤维混凝土的研究及应用开始于20世纪60年代,在70年代得到了空前的发展。纤维对混凝土性能的提高,必须具备以下条件并且缺一不可:(1)分布均匀;(2)与混凝土的握裹性强;(3)材料本身抗腐蚀、抗碱集料反应强;(4)材质的抗拉强度好。通过以上条件来提高混凝土的抗碎、抗裂、抗折、抗冲击、抗渗水、抗疲劳等综合性能。在合成纤维中聚丙烯纤维的耐腐蚀性、强度、抗碱反应均优于其它纤维。

但是非常薄弱的一个特征是抗火性差,在火灾高温中爆裂的几率比普通混凝土大很多。因为混凝土的爆裂,使得钢筋外露在火灾中,而钢筋在火灾中很容易受热软化,导致承载能力急剧下降,导致构件、建筑物的危险程度大大提高。

因此在积极利用纤维混凝土甚至高强混凝土优点的同时,必须努力改善纤维混凝土的高温爆裂破坏性能。掌握高温后高性能混凝土力学性能和损伤规律,为全面地评价高温(火灾)后高性能混凝土结构性能变化和损伤程度提供理论依据,指导混凝土结构高温(火灾)后的合理而有效的加固修复,具有重要的理论意义和工程价值。

2 国外研究现状

国外对于聚丙烯纤维混凝土的研究,开始于20世纪60年代。纤维混凝土的研究应用与合成纤维技术的突破有非常重要的关联。九十年代以后,国外许多学者对聚丙烯纤维混凝土的抗弯性能、抗裂能力、弯剪性能、抗冲击性能分别作了研究。有关纤维混凝土的理论研究逐渐形成。

F.Hernandez-01ivares,G.Barluenga研究了表面粗糙的橡胶纤维在不同掺量下对高强混凝土高温爆裂性能的改善,发现橡胶的掺入有助于降低高强混凝土的高温爆裂的可能性,尽管抗压强度和韧性有所降低,但是降低量不大[1]。

Yer.Ottens(1975)、Waubke和Schneider(1973)、Zhukov(1976) 等对普通混凝土的研究表明:混凝土结构在火灾受热过程中可能发生毁坏性爆裂。对于脆性和密度更大、渗透性更低的一般高强高性能混凝土,爆裂更易产生,导致材料强度损失甚至构件坍塌,而且压应力越大,这种破坏越严重。

3 国内研究现状及成果

我国纤维混凝土的大规模应用是从钢纤维混凝土和玻璃纤维混凝土起步的。20世纪70年代纤维混凝土技术传入中国。20世纪90年代初,能够应用于纤维混凝土的有机纤维通过商业渠道流入我国,成为纤维混凝土在我国大量应用的契机。1998年6月26日,建设部科技发展促进中心(站)印发了《美国杜拉纤维技术研讨会纪要》,并由此推开了纤维混凝土在我国应用的崭新局面。

为了更加深入了解聚丙烯纤维对纤维混凝土高温性能的改变,国内相关专家针对聚丙烯纤维混凝土的高温性能做了大量的实验,得到了聚丙烯纤维混凝土高温下力学性能的许多重要结论。例如:

林志威的研究认为高性能混凝土具有低渗透性,在火灾高温下不可避免地发生爆炸。试验设计了144个掺有不同聚丙烯纤维(PPF)掺量的高性能混凝土立方体试块,在经历了20~800℃的温度后,研究高性能混凝土在高温后的物理、力学性能变化规律。最后分析了聚丙烯纤维影响混凝土高温后性能的机理[2]。

肖健庄设计了79块掺有聚丙烯纤维的C50,C80和C100高性能混凝土立方体试块。在经历了20~900℃的温度后,得出了外掺聚丙烯纤维高性能混凝土高温后的质量损失率和残余抗压强度,以及未发现高温爆裂的结论。分别针对试块尺寸、强度等级和经历温度等因素,研究了聚丙烯纤维高性能混凝土的高温抗压性能,通过统计回归分析,得出了可供工程设计和事故鉴定用的抗高温设计曲线[3]。

徐晓勇通过对聚丙烯纤维高强混凝土高温后力学性能的试验研究,探讨了聚丙烯纤维高强混凝土的抗压强度、抗拉强度和抗折强度在不同温度下的变化规律,并与高强混凝土火灾后性能变化规律进行比较,分析了聚丙烯纤维改善高强混凝土高温爆裂现象的机理,还阐述了聚丙烯纤维对高强混凝土受高温作用后力学性能的影响机理[4]。

朱江等人经过高温试验,发现聚丙烯纤维的加入能有效地改善高强混凝土和橡胶粉高强混凝土的高温抗爆裂性能,聚丙烯纤维与适量的橡胶粉混杂有利于提高橡胶粉高强混凝土的剩余抗压强度。

同时,他们通过实验比较,发现聚丙烯纤维与橡胶粉混杂的高强混凝土,其工作性能优于单一的聚丙烯纤维高强混凝土。通过对高温后试件爆裂表观形态的比较,发现聚丙烯纤维与橡胶粉混杂的高强混凝土与单一的聚丙烯纤维高强混凝土抗爆裂效果相近,但前者有更好的经济效益和环保作用。通过试件高温前后的立方体抗压强度试验,得到高温前后试件的抗压强度值,并通过剩余强度率比较了单掺聚丙烯纤维、单掺橡胶粉和二者混杂的试件高温后抗压强变化值,总结出800℃高温后聚丙烯纤维与再生橡胶混杂后的抗压强度剩余率高于橡胶粉高强混凝土。

4 结语

本文通过对国内当前不同掺量下的聚丙烯纤维混凝土在高温条件下的力学性质的研究成果进行简要探讨,主要有以下结论:

1 聚丙烯纤维混凝土增强高温抗压性能的原理为:在较高温度下,聚丙烯纤维熔融后,形成新的通道释放蒸汽压,避免了抗压强度过分损失甚至爆裂[1]。纤维混凝土的抗压强度随着聚丙烯纤维掺量的改变有稍微的变动,但影响不大。

2 聚丙烯纤维对混凝土劈拉性能的影响实质上是高温熔化后所留空洞的问题。一方面,与外界连通的孔洞为蒸汽压的释放提供通道,降低了热损伤,防止了高温爆裂,并有效改善了聚丙烯纤维混凝土的高温中劈拉性能;另一方面,孔洞的存在使混凝土基体内部缺陷增多,降低了聚丙烯纤维混凝土的高温中劈拉性能。 基于以上两种相反的作用效果,聚丙烯纤维掺量在适当范围内,融化产生的孔洞较少,引起的内部缺陷也较少,产生的不利作用小于释放蒸汽压产生的有利作用,从而对聚丙烯纤维混凝土高温中劈拉性能有所改善。纤维混凝土的劈拉性能随着聚丙烯纤维掺量的增加会先提高然后再降低,但仍然比普通混凝土的劈拉强度有所提高。

3 聚丙烯纤维对混凝土的高温后抗折性能的影响与聚丙烯纤维的掺量有关,随着聚丙烯纤维掺量的逐渐提高,聚丙烯纤维混凝土的抗折强度也不断提高。(作者单位:郑州大学 水利与环境学院)

参考文献:

[1] F.Herna’ndez—Olivares,G.Barluenga.Fire performance ofrecycled rubber—filled high—strength concrete.Cement andConcrete Research 34(2004)109—117;

[2] 林志威.不同PPF掺量的高性能混凝土高温后性能研究[J].华中科技大学学报.2007,24(2):1-2;

高强混凝土论文篇(4)

 

0.引言

将再生混凝土高性能化,开发商品混凝土,可极大地推广再生混凝土在工程中的应用。高性能混凝土是以耐久性能为主要指标。目前业界还没有统一、明确的定义,但大多数学者认为其是一种应该保证拌合物的高工作性、硬化后的高强度以及使用过程中优良的耐久性等特点的混凝土。

1.当前高性能再生混凝土的途径

采用优选的材料,如高效减水剂,优质骨科,高强度水泥,高活性混合材;设计合理的配合比,如较小水胶比,选择合理砂率,减小用水量等。由于废弃混凝土来源不一,导致再生骨料质量参差不齐,因而很难保证骨料的优质性能。本文将主要通过后一种途径结合再生混凝土的配制技术,通过掺加高活性混合材和高效减水剂初步配制出了工作性良好,强度达到60MPa的高性能再生混凝土。

2.试验

2.1原材料

(1)骨料粗骨料全部采用长治市城市道路改建的废弃混凝土骨料(WCA),吸水率为9.15%,粒径为5~25mm,级配良好;细骨料采用本地人工砂,细度模数为2.8吸水率为4%。(2)水泥(C)和水(W)水泥采用山化天脊生产的42.5R普通硅酸盐水泥,混凝土搅拌和养护用水为长治市饮用自来水。科技论文。(3)粉煤灰(FA)采用漳泽电厂产的Ⅱ级粉煤灰,细度为5090cm2/g。(4)减水剂采用荼系高效减水剂FDN。

2.2配合比设计

2.2.1理论依据

HP再生混凝土配合比设计的理论依据是在配制再生混凝土技术的基础上,通过HPC的配制技术进行修正。HPC配合比的参数主要有水胶比、浆集比、砂率和高效减水剂掺量。(1)水胶比(W/B,其中B为胶凝材料用量,包括水泥C、粉煤灰FA用量之和)低水胶比是HPC的配制特点之一。科技论文。为达到混凝土的低渗透性以保证其耐久性,无论设计强度是多少,HPC的水胶比一般都不能大于0.40,以保证混凝土的密实。(2)浆集比水泥浆和集料的比例为浆集比。根据经验,高性能混凝土中胶凝材料总用量应不超过550kg/m3,并随混凝土强度等级下降而减少,为了保证高性能混凝土的耐久性,胶凝材料总用量也不能低于300kg/m3。根据国内外有关研究报告和工程实践资料,建议配制C50~C70的高性能混凝土,可单独掺加15%~30%的优质粉煤灰或20%~50%矿渣代替水泥;配制C80以上的混凝土,可用5%~10%的硅灰和15%~35%的优质粉煤灰或矿渣混合掺入。(3)高效减水剂掺量高效减水剂的掺量要根据混凝土坍落度来确定。一般情况下,用量越大,坍落度增加越高,但超过一定量后效果不再显著,也不经济。高效减水剂均有其最佳掺量,大多数在1%~2%之间。(4)砂率一般而言,随着混凝土砂率的增加,强度呈增长的趋势,而弹性模量则呈下降趋势。高性能混凝土的砂率可根据胶凝材料总用量,粗细集料的颗粒级配及泵送要求等因素来选择。

2.2.2试件制备

为了研究HPRAC的特性,本试验对比配制了两个系列的配合比,分别为RAC和HPRAC.其中HPRAC配合比设计是在RAC配合比的基础上,保证骨料总用量和胶凝材料总用量相同,通过调节水胶比和合理砂率以及掺入高效减水剂获得的。再生骨料取代率为100%

3.试验结果分析与讨论

3.1拌合物工作性能

为了保证施工的方便和混凝土的浇灌质量,新拌混凝土拌合物必须具有良好的工作性能,因此在混凝土浇注成型之前对新拌混凝土拌合物进行了坍落度的测试。

在相同骨料总用量和胶凝材料总用量的各组中,HPRAC的坍落度比RAC的坍落度值要大得多,且都达到180mm以上,即均达到了高性能混凝土高流动性的工作性能要求,这是由于前者采用了合理砂率并且掺入了粉煤灰和高效减水剂,显著改善了混凝土拌合物的和易性。因此,通过适当的途径,如在配制再生骨料混凝土时掺入粉煤灰、矿渣粉等微细矿物掺料和加入高效减水剂,再生骨料混凝土完全可以获得良好的工作性能,实现高性能化,并满足泵送商品混凝土的要求。

3.2抗压强度

混凝土的立方体抗压强度fcu采用150 mm×150 mm×150 mm的立方体试件,试验测试按照《普通混凝土力学性能试验方法标准》(GB/T50081-2002)进行。试验显示HPRAC的受压破坏过程和破坏形态与RAC的裂纹发展规律和破坏形态基本相同,HPRAC的立方体受压破坏基本为界面破坏,几乎未见到骨料破坏。

通过降低水胶比以及掺入粉煤灰后,在相同骨料总用量和胶凝材料总用量的各组中,HPRAC的立方体28d抗压强度值比RAC要有显著的提高,且均达到了60Mpa左右,即基本达到了高性能混凝土高强度的要求。科技论文。水灰比是影响混凝土强度的主要因素。

随着水灰比的减小,再生混凝土强度逐渐增大,这一点与普通混凝土相似。此外,矿物掺合料(本试验为粉煤灰)在常温下能与硅酸盐水泥浆中的氢氧化钙发生反应,生成附加的水化硅酸钙,使孔隙率显著降低,从而提高混凝土的强度和耐久性。

3.3抗压弹性模量

弹性模量是材料变形性能的主要指标,弹性模量的测试采用150 mm×150 mm×300 mm的棱柱体试件,在试件两侧高度的中线上对称安装2个千分表来测量试件两侧的变形,测量标注为100 mm,加载装置采用200 t压力机,混凝土的静力受压弹性模量Ec按照《普通混凝土力学性能试验方法标准》(GB/T50081-2002)进行。

HPRAC的弹性模量值比相应的RAC弹性模量值有一定程度的提高。混凝土的弹性模量主要决定于骨料种类和混凝土强度等级。密实的骨料具有高弹性模量。通常,混凝土中的高弹性模量粗骨料用量越高,混凝土的弹性模量越大。本试验中,再生骨料的孔隙率大,骨料弹性模量低,因此再生骨料用量越少,混凝土的弹性模量值越大。

4.结语

采用常规的材料,通过调节水胶比和合理砂率以及掺入粉煤灰、矿渣粉等微细矿物掺料和加入高效减水剂,可以使再生骨料混凝土获得良好的工作性能,实现高性能化,其坍落度能满足泵送商品混凝土的要求。高性能再生骨料混凝土的弹性模量值比普通再生混凝土提高不明显。

参考文献

[1]肖建庄.再生混凝土[M].中国建筑工业出版社,2008,38-39.

[2]刘数华,冷发光.再生混凝土技术[M].中国建材工业出版社,2007,121-129.

[3]马保国.高性能混凝土配合比设计及其存在的问题.武汉:武汉理工大学,2004.

[4]赵国藩.高性能混凝土发展简介[J].混凝土, 2002,(4):1-2.

[5]冯乃谦.高性能混凝土[M].北京:中国建筑工业出版社,1996:6-7.

高强混凝土论文篇(5)

 

一、轻骨料混凝土的历史

轻骨料混凝土( 又名轻集料混凝土,Light weight AggregateConcrete) 是指轻粗骨料、轻细骨料(或普通砂)、水泥和水, 必要时加入化学外加剂的矿物合料配制而成, 并且在标准养护条件下,28d 龄期的干表观密度小于1950kg/m的混凝土。。

人造轻骨料最早使用在1920年左右。SJ海德是最初运用回转窑烧制膨胀黏土轻骨料,1928年,美国开始把这种方法用于商业生产。西欧在二战后才开始有了轻骨料的生产,美国和前苏联因缺少天然的普通骨料,大量生产和使用了人造轻骨料,使轻骨料混凝土在这两个国家得到飞速发展,但轻骨料混凝土长期一直被当作非结构材料使用,应用范围受到很大限制。自20世60年代中期,美国采用轻骨料混凝土取代普通混凝土,修建了休斯敦贝壳广场大厦并取得了显著的技术经济效益。如今,国外发达国家高性能轻骨料混凝土的应用已取得丰富经验。CL50一CL6O轻骨料混凝土己在工程中大量使用,结构轻骨料混凝土的抗压强度最高为80MPa,其表观密度1800~2000kg/m之间。

20世纪90年代初期, 挪威、日本等国研究了高性能轻骨料混凝土的配方、生产工艺、高性能轻骨料等,重点在于改善混凝土的工作性和耐久性,并取得了一定的成果。如英国采用高强轻骨料混凝土建造了北海石油平台;挪威应用CL60级轻骨料混凝土建造了世界上跨度最大的悬臂桥;日本则成立了一个由18家公司组成的高强轻骨料混凝土研究委员会,专门研究粉煤灰轻骨料混凝土。挪威自1987年以来,已应用高性能轻骨料混凝土建了11座桥梁。

二、轻骨料混凝土的优良特性

轻骨料混凝土的强度等级用CL表示。强度等级达到CL30及以上者称为高强轻骨料混凝土一般来说,高强轻骨料混凝土有如下优点:

(1)轻质高强:顾名思义,轻骨料混凝土采用轻骨料代替普通沙石材料,可以使得混凝土构件在承载力相同的条件下,减轻自重达20 %~40 %。这样的优势,为设计施工提供了很大的方便。

(2)抗震性能好:由于地震力和上部结构的自重成正比,因此,当结构采用轻骨料混凝土后,自重会明显的下降,也就降低了地震力,减少了地震对结构的作用,提升了结构的抗震性能。同时,由于轻骨料混凝土的弹性模量比同等级的普通混凝土低,结构的自振周期将变长,对冲击能量的吸收快,变形能力增强,不容易遭受外力的破坏。

(3)抗裂性好:由于轻骨料混凝土相比普通混凝土有较小的热膨胀系数和弹性模量,导致冷缩和干缩作用引起的拉应力小与普通混凝土材料,这样的表现就导致了轻骨料混凝土构件的抗裂性能优于普通混凝土,这对改善结构的耐久性,延长结构的使用寿命是非常有利的,并有助于降低结构在使用期间的维护费用。

(4)耐久性好:使用轻骨料能有效避免混凝土的碱集料反应问题,延长结构的使用寿命。同时由于轻骨料混凝土的骨料—基材界面粘结牢固,具有一定的自养护功能和水泥砂浆品相的质量相对较好等因素,轻骨料混凝土抗有害介质侵入的能力也相对较强。

(5)耐火性好:由于轻骨料混凝土采用的是粉煤灰,煤矸石等骨料,而这些骨料都经历高温历练,有良好的耐火性能,使得轻骨料混凝土热工性能好,用以建造的建筑和结构的耐火性能好。一般建筑物发生火灾时,普通混凝土耐火1h,而轻骨料混凝土可耐火4h.

(6)综合技术经济效益好:轻骨料混凝土的骨料通通常来自工业废渣、煤矿的煤矸石、火力发电站的粉煤灰等,可降低混凝土的生产成本,并变废为用,减少占用农田,减轻环境污染,具有良好的社会效益、经济效益和环境效益。

三、轻骨料混凝土的缺点和发展前景

(1)轻骨料性能的完善:如今的亲故料混凝土虽然具有上述轻质、高强、耐久性好等优点。但研究表明,高性能轻骨料混凝土的拉压比要小于相同强度等级的普通混凝土,且随着强度的提高,其脆性相应增大,脆性问题使得高强材料的优越性得不到充分发挥、限制了其在工程中的应用。因此,如何提高高性能轻骨料混凝土的韧性、提高其拉压比,同时又能保持其轻质高强的特点,成为当前高性能轻骨料混凝土研究和应用中迫切需要解决的问题之一。

(2)轻骨料生产工艺和设备的更新:目前轻骨料混凝土配制过程中存在如下问题: ①为降低轻骨料的吸水率 ,改善新拌轻骨料混凝土的工作性 ,普遍在其表面涂蜡、 聚苯乙烯乳液等防水材料或施工前预湿轻骨料。 这些做法降低轻骨料混凝土的力学性能或降低其抗冻耐久性 ,并使生产制作变得复杂; ②在大的初始坍落度时 ,轻骨料易上浮离析 ,采用振捣施工时尤为突出 ,使硬化后混凝土的均质性差 ,耐久性下降 ,并降低其力学性能; ③提高水泥掺量 ,虽能改善新拌混凝土的工作性 ,但增大了轻骨料混凝土的收缩裂缝和温度裂缝引起的危害 ,降低混凝土的耐久性 ,同时又增加工程造价。 因此 ,工程结构迫切需要制作简单、 工作性好、 能免振捣自密实施工、 硬化后质量好、 体积稳定性好、 高耐久、 经济的高性能轻骨料混凝土。。

(3)已有发展:①轻骨料品种的结构组成有较大变化:如今以粉煤灰、尾矿粉和河川污泥为主要原料的绿色轻骨料正在大量推广应用。②轻骨料混凝土及其应用技术的迅速发展: CL40以上的高强性能陶粒混凝土的广泛应用以及轻骨料混凝土泵送施工的普及。③轻骨料生产工艺设备的更新:原材料的微米磨细技术和无胶结料陶粒成球技术得到推广应用,破碎型粒的破碎新技术的广泛应用以及利用化学工业废料加工成的节能燃料的成功开发。

四、总结

轻骨料混凝土的开发和利用,为混凝土的发展和变革添了重要的一笔。。相比普通混凝土,轻骨料混凝土的优异性能使得混凝土的应用领域更为广阔。但轻骨料混凝土也存在着一些缺陷,对于这些缺陷,目前人们的主要解决办法在于添加相应的纤维材料和高聚物等,以提高韧性和其他性能。但是这些还是没有很好的解决轻骨料混凝土存在的问题,还有待于研究。

参考文献

【1】李强.浅析轻骨料混凝土的发展(论文),内蒙古电力堪测设计院,2009.

【2】 郑立,姚道稳.新型墙体材料技术读本.北京:化学工业出版社,2005.

【3】 胡署光,王发洲.轻集料混凝土.北京:化学工业出版社,2006.

【4】王发洲.高性能轻骨料混凝土研究与应用:(博士学位论文).武汉理工大学,2003.

高强混凝土论文篇(6)

 

1.钢纤维混凝土性能

钢纤维混凝土是在普通混凝土中掺入乱向分布的短钢纤维所形成的一种新型的多相复合材料。这些乱向分布的钢纤维能够有效地阻碍混凝土内部微裂缝的扩展及宏观裂缝的形成,显著地改善了混凝土的抗拉、抗弯、抗冲击及抗疲劳性能,具有较好的延性

1.1新拌钢纤维混凝土性能

钢纤维有一个像砂皮般粗糙的表面,使它与水泥浆体的黏结较为牢固,可减少塌边现象。论文大全。一般情况下,钢纤维混凝土坍落度值比相应的普通混凝土小20 mm,经摊铺机振动,即表现出与普通混凝土一样的黏聚性。

1.2硬化后钢纤维混凝土性能

(1)有研究表明[3],钢纤维掺量为30~50 kg/m3时,钢纤维混凝土的弯拉强度比普通混凝土提高约15%~35%,且与钢纤维的掺量成正比。(2)抗冲击性冲击强度反映混凝土在冲击荷载作用下的抗裂性能。将重8 kg的钢球从25 cm高度自由落下冲击经标准养护28 d的标准试件,当试件裂缝大于0.3mm时,记录的冲击次数即为冲击强度。文献表明[3],钢纤维混凝土抗冲击性能随钢纤维掺量增加而提高。钢纤维掺量为30~50 kg/m3时,与普通混凝土相比,其抗冲击性能可提高3~5倍。(3)抗干缩开裂性能试验在工地上进行,在养护28 d水泥稳定碎石基层上浇筑普通混凝土板和钢纤维掺量为50 kg/m3的混凝土板,用碘弧灯强光和风扇强风来加快试板失水,随时观察裂缝产生的时间。与普通混凝土相比[3],钢纤维混凝土裂缝产生时间迟,裂缝产生数量少。这表明钢纤维混凝土用于路面可以延长混凝土面板缩缝间距。(4)耐磨性耐磨性试验采用TNS-04水泥胶砂耐磨试验机。试验前将尺寸为15 cm×15 cm×7 cm的试件在60℃烘箱中烘至恒重,然后在水泥胶砂试验机上磨削50转,磨损面积为0.012 5 m2。计算试件单位面积磨损量,以此作为标准来描述混凝土耐磨性。在混凝土中掺钢纤维可显著提

高其耐磨性能。与普通混凝土相比,钢纤维混凝土耐磨性能提高了24.2%[3]。

2.钢纤维混凝土的应用

钢纤维混凝土在工程中的实际应用始于上世纪70年代,由美国Battele公司开发的熔抽钢纤维技术为钢纤维混凝土的应用提供了条件。此后在加拿大、英国、瑞典、日本等国家也迅速进行这方面的应用研究。我国是从上世纪70年代着手对钢纤维混凝土进行材料力学性能的实验研究,1989年颁布《钢纤维混凝土试验方法》(CECS13: 89),1992年颁布《钢纤维混凝土结构设计与施工规程》(CECS38:92), 2004年颁布《纤维混凝土结构技术规程》(CECS38: 2004)。目前纤维混凝土在结构工程、铺面工程、地下结构及其他特种结构工程等领域得到了比较广泛的应用。

在结构工程方面,那些对抗拉、抗剪、抗弯拉强度和抗裂、抗冲击、抗疲劳、抗震、抗爆等性能要求较高的工程部位,若采用钢纤维混凝土会得到较高的抗拉强度、断裂韧性和抗疲劳等性能。例如在梁柱节点中,已有实验证明钢纤维混凝土梁柱节点与普通混凝土梁柱节点相比,在强度、刚度、耗能能力和梁钢筋粘结锚固方面有较大的改善,采用钢纤维混凝土梁柱节点的框架与普通钢筋混凝土框架相比,结构的延性提高57%,耗能能力提高130%,循环次数提高15%,在框架梁柱节点采用钢纤维混凝土可替代部分箍筋,既改善了节点区的抗震性能,又解决了节点区钢筋过密、施工困难等问题。论文大全。

铺面工程包括公路路面、机场道面、桥面、工业地面及屋面等。因钢纤维混凝土有着优良的抗拉,抗弯、抗裂、抗疲劳、抗冲击、抗收缩、韧性好等一系列物理力学性能,因此,在铺面工程领域中得到较广泛应用。论文大全。文献[4]过恩施州318国道某路段的路面设计对比,采用素混凝土路面,路面板厚度为25cm;采用层布式混杂纤维混凝土路面,路面板厚度为仅为16 cm。

地下结构所用的钢纤维混凝土一般为钢纤维增强喷射混凝土,它具有诸多特点,强度高(抗拉、抗弯、抗剪);抵抗冲击、爆炸和震动的性能高;韧性好;抗冻、耐热与耐疲劳性能好;抗裂性能强;即使构件已产生微小裂缝,也会因钢纤维继续抗拔而使韧性大为提高。

3.总结

钢纤维混凝土具有优异的特性,使其广泛应用于各个工程领域,但其本身存在的问题,也抑制了它的应用。(1)钢纤维造价普遍较高,国产的性能相对较低,难以大规模使用;(2)钢纤维混凝土的增强机理至今也还不是很清楚,现行的几种分析理论,如复合理论和纤维间距理论都并不完善。复合理论忽略了纤维复合带来的耦合效应,纤维间距理论忽略了纤维自身的耦合作用,都有应用局限性,需待进一步的研究和探讨。(3)目前对钢纤维混凝土的研究多集中在物理性能方面,对于化学性能方面(比如耐久性)的研究相对较少。(4) 钢纤维混凝土与普通混凝土相比,在相对较低的水泥用量情况下,钢纤维混凝土具有较高的抗折强度和耐磨性能、良好的抗冲击性能和抗裂性能,非常适合在重载交通路面工程和对耐久性要求严格的工程中应用。

参考文献

[1]时宗滨,齐巧男. 浅谈纤维混凝土的应用[J]. 黑龙江交通科技,2008(6).

[2]蒋应军,刘海鹏等.钢纤维混凝土性能与施工工艺研究.[J].混凝土,2008(8).

[3]焦楚杰,孙伟等.中含量钢纤维高强混凝土施工工艺优选[J].建筑技术,2004(1).

高强混凝土论文篇(7)

1、前言

在大型火力发电厂主厂房结构中,由于其高度较大,且竖向荷载较大,故裂缝问题较为突出。经常出现的情况是:框架柱的断面由轴压比限值确定,而框架柱的配筋由构造配筋率决定,这其中存在着不合理的地方。应用高强混凝土可以显著减小构件的截面尺寸,减轻结构自重和钢筋用量,具有明显优点,可获得较高的经济效益。但高强混凝土的脆性会在某些情况下产生裂缝,强度等级愈高,脆性愈大。因此,在大型火力发电厂主厂房结构框架柱中应用高强混凝土,需研究改善高强混凝土柱抗裂缝能力的有效措施。

在火力发电厂结构工程中,裂缝的防治是一个有较大普遍性的问题。裂缝的扩展是结构物破坏的初始阶段; 同时,对于结构物而言,裂缝可能引起渗漏,影响结构的使用功能,并且引起持久强度的降低,如钢筋混凝土结构中保护层剥落。水工建筑物在水压头不高于水位的l0cm以下,就会产生的裂缝、渗漏、钢筋腐蚀、混凝土碳化等。因此,对裂缝的成因进行分析,在此基础上对预防裂缝的产生和发展及对裂缝形成后的处理

措施进行探讨是非常必要的。

2、高强混凝土框架柱工程的特点

在美国,以圆柱抗压强度标准值达到或超过42MOa为高强混凝土。欧洲国际混凝土委员会1995年的资料通报中定义高强混凝土为圆柱体抗压强度高于50MPa的混凝土,大体相当于我国C60级混凝士。在我国通常将强度等级等于或超过C50级的混凝土称为高强混凝土。这个分类标准适合我国国情。高强混凝土具有以下一些特性:

(1)高强混凝土受压时呈高度脆性,延|生很差。

(2)高强混凝土的抗拉强度、抗剪强度和粘结强度虽然均随抗压强度增加而增加,但它们与抗压强度的比值却随强度提高而变得愈来愈小,所以在处理高强混凝土构件的抗剪、冲切和扭转等问题时必须慎重。

(3)在相同的横向约束力作用下,高强混凝土纵向承载力的改善要比普通强度混凝土稍差,所以在计算配有间接钢筋的螺旋箍筋柱和局部承压等承载能力时,表示横向约束作用贡献的部分也要做出修正。

(4)受压时高强混凝土还有易产生裂缝的倾向,因此在设计局部承压以及钢筋搭接锚固时应特别注意。在这些部位要加强设置横向箍筋以防止裂缝。由于塑性变形能力较差,高强混凝土中钢筋锚固粘结应力的分布变得更不均匀。弯起钢筋的转角处会使混凝土受到较高的局部挤压力,也应注意防止裂缝。

3、混凝土框架柱裂缝的成因

在常用的建材,如钢、混凝土、砂浆等中,均存在有材料内部的初始缺陷。以高强度混凝土为例在尚未受荷的混凝土和钢筋混凝土结构中存在肉眼不可见的微裂。此微裂主要是存在于骨料与水泥石粘接面上的裂缝、骨料与骨料之间的裂缝、以及骨料本身的裂缝。微裂的分布是不规则的,这主要是由于混凝土内部的不均匀所所致。。在受荷的情况下,引起大于等于0.05mm宏观裂缝的产生及发展,形成通常所称的裂缝。由此可见,结构物裂缝的产生是有其内部原因和外部条件的,其内部条件为以上所述的材料的不均匀性所导致的内部缺陷和微观裂缝。其外部条件可概述为以下几点:

(1)由各种直接作用的外荷载如静、动荷载引起的直接应力而导致的裂缝。在电厂结构工程中,常见的有结构物自重、土的主动压力和被动压力、水的侧压力、各类设备的静、动荷载以及风荷载等等。此类荷载产生的应力一般可按常规计算方法得到,比较直接和明确,在设计过程中也较易得到控制,因此,此类荷载引起的应力导致的裂缝约只占结构裂缝的15%-20%左右。

(2)结构次应力引起的裂缝,此类应力产生的原因主要有: 结构物的实际工作状态与常规模型的出入。从而引起结构中应力分布与理论计算不一致;局部的开孔、洞也会引起应力集中现象,使在应力集中的部位产生裂缝。

(3)由变形变化引起的裂缝。此类裂缝在工程实践中最为多见,往往占裂缝的80%左右,比如高强混凝土的脆性会在某些情况下产生裂缝,强度等级愈高,脆性愈大。由于温度场的不均匀、材料的收缩和膨胀,不均匀沉降等也会引起高强混凝土柱裂缝的产生。

4、裂缝的防治策略

高强混凝土的脆性随着强度提高而严重,为了有效防治高强度混凝土柱产生裂缝,必须从以下几个方面加以防治,才能充分利用高强度混凝土的特点,减少其缺陷。

(1)高强混凝土的脆性随着强度提高而严重,所以主要受力截面上压区高强混凝土必须设计成约束混凝土,混凝土受压时在侧向有膨胀趋势,所谓约束就是从侧向给受压的混凝土以约束,限制其横向的膨胀变形,这样就能有效的防止高强度柱产生裂缝。

(2)合理添加外加剂各种止水剂、缓凝剂能有效减少混凝土的离析提高保水性,使混凝土内部结构较为均匀一致,养活因干缩、不均匀收缩、不均匀收缩引起的微裂; 同时,止水剂还能与混凝土的硅酸盐、铝酸盐进一步反应生成网状凝胶,堵塞裂缝,提高裂缝的自愈能力。

(3)注意温度应力的影响,削减施工过程中温度收缩应力和混凝土的干缩应力,从而防止干缩、温度收缩裂缝的产生; 由于混凝土的温差应力和干缩应力主要有气温、水化热温差等早期应力,因此,后浇带的保留时间应尽可能长些,一般不应少于40d。

综上所述,在大型火力发电厂主厂房结构中,采用高强度混凝土柱有利于提高主厂房结构的稳定性,但是由于高强度混凝土脆性随着强度提高而严重等自身的缺点,在施工和维护过程中必须采取合理的措施来防止高强度混凝土柱的裂缝的产生,,这对于最大限度的提高高强度混凝土柱在大型火力发电厂主厂房结构中的优势具有指导意义。

参考文献:

[1] 张国军.吕西林.刘伯权高强混凝土框架柱的恢复力模型研究[D].[期刊论文]-工程力学 2007(3)

[2] 司炳君.孙治国.艾庆华Solid65单元在混凝土结构有限元分析中的应用[D].[期刊论文]-工业建筑 2007(1)

高强混凝土论文篇(8)

钢纤维混凝土(Steel Fiber Reinforced Concrete,简写为SFRC)是在普通混凝土中掺入适量短钢纤维而形成的可浇筑、可喷射成型的一种新型复合材料。它是近些年来发展起来的一种性能优良且应用广泛的复合材料。其中所掺的钢纤维是用钢质材料加工制成的短纤维,常用的有:切断型钢纤维、剪切型钢纤维、铣削型钢纤维、熔抽型钢纤维等。钢纤维在混凝土中主要是限制混凝土裂缝的扩展,从而使其抗拉、抗弯、抗剪强度较普通混凝土有显著提高,其抗冲击、抗疲劳、裂后韧性和耐久性有较大改善,使原本属于脆性材料的混凝土变成具有一定塑性性能的复合材料。

一、钢纤维增强混凝土的基本理论

(一)复合力学理论

复合力学理论是以连续纤维复合材料理论为基础,结合钢纤维在混凝土中的分布特点形成的。该理论是将复合材料视为以纤维为一相,基体为另一相的两相复合材料。

(二)纤维间距理论。纤维间距理论又称纤维阻裂理论,是1963年由J.P.Romualdi和J.B.Batson提出来的。该理论根据线弹性断裂力学理论解释纤维对裂缝发生和发展的约束作用,认为欲增强混凝土这种本身带内部缺陷的脆性材料的抗拉强度,必须尽可能地减少内部缺陷的尺寸,提高韧性,降低裂缝尖端的应力强度因子、减少裂缝尖端的应力集中作用,故在裂缝处用纤维连接,受拉时跨越裂缝的纤维将荷载传递给裂缝的上下表面,使裂缝处材料仍能继续承载,这样,因裂缝的出现孔边应力集中程度就缓和,随着桥接裂缝纤维数目的增多,纤维间距越小,缓和裂缝尖端应力集中程度越大,对裂缝尖端产生的反向应力场也越大,当纤维数量增加到密布于裂缝时,应力集中就会消失,进一步表明纤维的阻裂效应,即在复合材料结构形成和受力破坏的过程中,有效地提高了复合材料受力前后阻裂引发与扩展的能力,达到钢纤维对混凝土增强与增韧目的。

(三)界面应力传递的剪滞理论。钢纤维混凝土中钢纤维周围的水泥基体结构与自身结构是不相同的,即在钢纤维与基体之间存在着界面层。钢纤维混凝土的性能主要取决于混凝土基体性能、钢纤维含量以及它们之间的界面特性。假定界面是一层厚度可以忽略的薄层,但具有一定的力学性能。当荷载作用于钢纤维混凝土时,荷载一般先施加于低弹性的基体,然后通过纤维-基体的界面,把一部分荷载传递给高弹模的纤维,使纤维和基体共同承担荷载,从而起到增强的作用。

二、钢纤维混凝土的应用

钢纤维混凝土作为一种新型复合材料,以其优良的抗拉、抗弯、阻裂、耐冲击、耐疲劳、高韧性等物理力学性能,目前已被广泛应用于建筑工程、水利工程、公路桥梁工程、公路路面和机场道面工程、铁路公程、管道工程、内河航道工程、防暴工程和维修加固工程等各个专业领域。

(一)水利工程

钢纤维混凝土在水利工程中的应用比较广泛,主要将其用于受高速水流作用以及受力比较复杂的部位,如溢洪道、泄水孔、有压疏水道、消力池、闸底板和水闸、船闸、渡槽、大坝防渗面板及护坡等。这些部位对混凝土材料自身的抗拉强度、抗剪强度以及抗裂性能的要求都比较高,也正发挥了钢纤维混凝土的自身优势。我国在实际工程中应用的有:三峡工程、小浪底水利枢纽工程、三门峡泄水排砂底孔等工程。以上工程都获得了较为满意的效果,并取得了较好的经济效益。

(二)建筑工程。钢纤维混凝土在建筑工程中的影响越来越广泛,一般应用于房屋建筑工程、预制桩工程、框架节点、屋面防水工程、地下防水工程等工程领域中。如抗震框架节点中使用钢纤维混凝土,能代替箍筋满足节点对强度、延性、耗能等方面的要求,而且还能提供类似于箍筋约束混凝土的作用,并解决节点区钢筋挤压使混凝土难于浇注的施工问题;钢纤维混凝土还具有良好的抗裂性,可使构件在标准荷载下处于弹性阶段而不裂,不出现应力的重分布;用钢纤维混凝土制成的自防水预应力屋面板,不仅提高了自防水预应力屋面板的抗裂性能,同时也减少了纵向预应力筋的配筋率,提高了结构的耐久性。钢纤维混凝土在建筑中的应用实例有:福州东方大厦、沈阳市急救中心站综合楼、江苏省丹阳市中医院、辽阳市食品公司办公楼等工程。

(三)道路和桥梁工程。钢纤维混凝在道路和桥梁工程方面,主要广泛应用于路面、桥梁、机场跑道等工程中,包括新建及修补工程。钢纤维混凝土较普通混凝土有较好的韧性,抗冲击、抗疲劳性。它可使面层厚度减少,伸缩缝间距加长,使用性能提高,维修费用减低,寿命延长。面层较普通混凝土可减少30-50%,公路伸缩缝间距可达30-100m,机场跑道的伸缩缝间距可达30m。用于路面及桥面修补时,其罩面厚度仅为3-5cm。在实际工程中有:北京东西环路立交桥、沪杭高速公路成渝公路、大足朱溪大桥、广州解放大桥等工程中都采用了钢纤维混凝土解决工程难题,使用效果较好,经济效益显著。

(四)铁路工程。在铁路工程方面,钢纤维混凝土主要用于预应力钢纤维混凝土铁路轨枕、双块式铁路轨枕及抢修铁路桥面防水保护层中。铁路工程承受较大的荷载、较高的速度和数万次的振动,所以要求混凝土必须具有较高的强度、较高的抗冲击性及较大的塑性。这正好利用了钢纤维混凝土的抗冲击性及较好的塑性。建成的工程有:沈阳铁路局长达线维修工程、柳州铁路局黔桂铁路铺设工程、南昆铁路隧道工程和西安安康铁路椅子山隧道等工程土。钢纤维混凝土的应用,使维修工作量大为减少,并提高了线路的使用寿命,效果良好。

(五)港口及海洋工程。钢纤维混凝土在海洋工程中的使用主要是钢纤维混凝土的腐蚀问题,所以有待进一步研究,但在日本和挪威的使用经验是令人鼓舞的。日本钢铁俱乐部采用钢纤维混凝土作钢管桩防腐层,在海水中浸泡10年,钢纤维混凝土防腐完好,钢管表面无锈蚀,仍有金属光泽。挪威将钢纤维混凝土用于北海海底输气管道的隧道衬砌、Forsmark核电站海底核废料库的支护、海洋平台后张预应力管道孔的封堵以及码头混凝土受海水腐蚀部位的修补等。我国江苏石舀港码头的轨道梁工程中也使用了钢纤维混凝土。

除了上述领域外,还有很多钢纤维混凝土的应用的实例,如承受重级工作制造工业厂房和仓库地面、薄壁蓄水结构、预制板、离心管、污水井、游泳池、耐火混凝土和耐火材料、抗爆结构、各类建筑物和构筑物的修补、补强加固、抗震加固等。

三、结束语

钢纤维混凝土具有普通混凝土不具有的优点,且具有良好的经济效益,其在民用建筑楼地面、公路路面、预制构件水利工程、港口码头、机场跑道和停机坪、桥梁隧道以及各种构筑物等方面的应用前景将是十分广阔的前景。

高强混凝土论文篇(9)

0 引言

随着全球可持续发展战略的提出,各国都在研究和开发可再生能源,以达到保护环境、节约天然资源等目的。废弃混凝土块经破碎、清洗和分级后,按一定的比例与级配混和形成再生骨料,部分或全部代替天然砂子或石子等配置而成的新混凝土称之为再生骨料混凝土(简称再生混凝土)[1]。再生混凝土是一种绿色混凝土,符合可持续发展战略。因此,对废弃混凝土再生利用的研究已成为许多国家的前沿课题。国内研究人员也已经对再生混凝土骨料和再生混凝土的力学特性进行了深入的研究[2]。钢管再生混凝土结构可促进再生混凝土在土木建筑结构中的应用和发展,为废弃混凝土资源化提供一条有效的途径。并研究提高再生混凝土的工作性能,使其满足在实际工程中推广应用的相关要求,以及对钢管再生混凝土短柱的轴心受压力学性能进行分析比较,力求对以后钢管再生混凝土规范的推出提出一些数据参考

1、钢管再生混凝土的发展状况

再生混凝土在我国的发展时间的限制,钢管再生混凝土的研究发展在目前来看极其的有限。杨有福等[3]在《钢管再生混凝土轴压短柱力学性能初探》采用直焊缝圆钢管再生混凝土进行了研究。结论表明:1)钢管再生混凝土与钢管混凝土轴压短柱的荷载一变形关系曲线相类似,纤维模型法同样适用于钢管再生混凝土。2)钢管再生混凝土的强度承载力低于钢管混凝土的强度承载力,并且随着骨料取代率的增加而有降低的趋势,这主要是因为随着骨料取代率的增加,再生混凝土的强度逐渐低于普通混凝土。本文主要对无缝钢管再生混凝土轴压短柱的力学性能进行了进一步的研究。

福州大学的杨有福[4]在确定钢材与核心再生混凝土本构关系模型的基础上,采用数值方法对钢管再生混凝土轴心受压、纯弯曲和压弯构件的荷载-变形全过程关系曲线进行模拟,对此类构件的力学性能进行研究,理论分析结果与试验结果非常吻合。最后在参数分析结果的基础上,提出钢管再生混凝土压弯构件承载力的简化计算公式。为了考察钢管再生混凝土构件在一次加载下的静力性能,课题组完成了56个试件的试验研究,同时进行了钢管普通混凝土试件的对比试验。研究结果表明,钢管再生混凝土试件与相应钢管普通混凝土试件的荷载-变形关系曲线类似;但钢管再生混凝土试件的承载力和刚度均低于相应钢管普通混凝土试件。这主要是因为再生混凝土的强度和弹性模量均低于相同配合比的普通混凝土。

本课题组的试验结果表明,将再生混凝土灌入钢管,可有效改善再生混凝土的力学性能,同时由于钢管和再生混凝土之间的组合作用,使得钢管再生混凝土构件的下降段趋于平缓,延性和耗能能力有较大的提高,但是随着再生粗骨料取代率的提高,仍存在弹性模量逐渐降低,峰值应变增大的特点。在确定钢材和核心再生混凝土的应力-应变关系模型的基础上,采用纤维模型法和有限元法对钢管再生混凝土轴压短柱、纯弯构件和压弯构件的荷载-变形关系曲线进行了计算分析。总体上,两种数值方法的计算结果均与试验结果吻合较好。采用纤维模型法对钢管再生混凝土压弯构件的力学指标进行了大规模的参数分析,并提出了钢管再生混凝土轴压短柱、纯弯构件和压弯构件承载力的简化计算公式,公式的计算结果与试验结果均吻合较好,且总体偏于安全。本文的研究成果可为有关工程实践提供参考。

2、钢管混凝土及钢管再生混凝土的基本概念

钢管混凝土即为将混凝土灌注入钢管,形成的具有再生混凝土三向受力结构。钢管混凝土除了具有一般套箍混凝土的强度高、质量轻、塑性好、耐疲劳、耐冲击等优越的力学性能外,还具有以下一些在施工工艺方面的独特优点:

1.钢管本身就是侧压模板,因而浇混凝土时,可省去支模板;

2.钢管本身就是钢筋,兼有纵向钢筋和横向钢筋的功能;

3.钢管本身又是劲性承重骨架,在施工阶段它可起劲性钢骨架的作用。

钢管混凝土也是在高层建筑和大跨度桥梁中应用高强混凝土的一种最有效和最经济的结构形式。其原因有以下几个方面:

1.钢管对核心混凝土的套箍作用,能有效的克服高强混凝土的脆性;

2.钢管内无钢筋骨架,便于浇灌高强混凝土,而且因有钢管分隔,与管外楼盖梁板结构的普通混凝土互不干扰,无交错浇灌的麻烦;

3.钢管外面无混凝土保护层,能充分发挥高强混凝土的承载能力。

钢管再生混凝土即为将再生混凝土灌注入钢管,形成的具有再生混凝土三向受力的钢管混凝土[5]。钢管混凝土利用钢管和混凝土两种材料在受力过程中的相互作用,即钢管对混凝土的约束作用使混凝土处于复杂应力状态之下,从而使混凝土的强度得以提高,塑性和韧性性能大为改善。同时,由于混凝土的存在可以避免或延缓钢管发生局部屈曲,保证其材料性能的充分发挥。

3、钢管混凝土柱的特性

钢管混凝土柱是将混凝土注入封闭的薄壁钢管内形成的钢-混凝土组合构件。钢管混凝土柱可以充分发挥钢管与混凝土两种材料的优势,对混凝土来讲,混凝土受到钢管横向约束而处于三向受压状态,从而使管内混凝土有更高的抗压强度和变形能力。对钢管来讲,由于钢管壁较薄,在受压状态下容易局部或整体失稳而不能充分发挥其强度,填入混凝土后,大大增强了钢管壁的稳定性,使其强度潜力可得到充分利用。因此钢管混凝土柱具有强度高、重量轻、塑性好、耐疲劳、耐冲击等优点[6]。由于钢管能对混凝土提供连续的约束,且钢管具有很大的抗剪和抗扭能力,故可以有效地克服高强混凝土脆性大、延性差的弱点,使高强混凝土的工程应用得以实现,经济效果得以充分发挥。

4、结论:

(1)钢管再生混凝土构件的力学性能和钢管混凝土构件的力学性能有很多相似之处。

(2)再生混凝土在钢管中的应用弥补了再生混凝土结构性能上的不足,使二者都能充分的发挥潜力。同时又有利于环保,在生态方面也有很大的意义。

(3)为再生混凝土在结构上的应用提供了广阔的空间。再生钢管混凝土短柱的研究很有必要,还有许多工作需要进一步展开。

参考文献:

[1] 刘数华,冷发光.再生混凝土技术[M].北京:中国建材工业出版社, 2007

[2] 肖建庄,李佳彬,兰阳.再生混凝土技术研究最新进展与评述.混凝土, 2003(10): 17-20

[3] 吴凤英,杨有福 钢管再生混凝土轴压短柱力学性能初探 福州大学学报(自然科学版),Vol.33 Supp.Oct.2005

高强混凝土论文篇(10)

关键词:

组合柱;双剪统一强度理论;承载力;应力

中图分类号:TU398.9

文献标志码:A文章编号:16744764(2017)02004307

Abstract:

The sectional form of steelconcreteFRPconcrete (SCFC) column, as a novel composite column, has a steel tube as the outer layer and a circular FRP tube as the inner layer, and concrete filled between these two layers and within the FRP tube. Considering the confinements from both outer steel and inner FRP layers, the twin shear unified strength theory and force equilibrium condition are utilized to develop an analytical model of bearing capacity of SCFC column. The accuracy of the proposed model is evidenced through being compared with experimental data. The parametrical study is conducted in order to evaluate the confinements affected by the sectional steel proportion, ratio of FRP to steel, ratio of diameter to thickness of FRP and FRP diameter itself. The results indicate that the greater sectional steel proportion, the larger ratio of FRP to steel, and smaller ratio of diameter to thickness of FRP have positive contributions on the confinements of SCFC. The ratio of FRP diameter to steel side length locates between 0.650.75 can lead to a better confinement.

Keywords:

composite column; twin shear unified strength theory; bearing capacity; stress

随着建筑结构高度与跨度的不断增加,普通钢筋混凝土难以达到结构所需的强度和刚度要求,钢、纤维增强复合材料(FRP)与混凝土的组合应用理念应运而生。目前,应用较为广泛的组合柱类型为:钢管约束混凝土柱(CFST)[12]、FRP约束混凝土柱(CFFT)[35]、复合钢管混凝土柱[67]以及钢管FRP混凝土组合柱等。内置FRP约束混凝土的钢管混凝土组合柱(SteelConcreteFRPConcrete Column,简称SCFC Column)是新近提出的一种钢管FRP混凝土组合柱形式,即钢管混凝土柱内填充FRP约束混凝土。李帼昌等[810]、冯鹏等[11]、Cheng等[12]较早地对这一组合柱进行了研究。这些学者设计的组合柱截面形式为:外管选择方钢管,内管选择FRP圆管,两管间及FRP内管填充混凝土。SCFC组合柱的制作方式有两种:一是先制作并布置好内外两管,最后浇筑内外层混凝土;二是先制作内层混凝土柱,再缠绕FRP以施加约束,将约束混凝土柱置于钢管中,最后浇筑夹层混凝土。内外层混凝土宜采用细石混凝土或自密实混凝土,并采用振动棒贴壁和插入振捣,以保证浇筑质量。此外,FRP管表面的凹凸和粗糙可不作处理,以保证FRP与内外层混凝土的粘结性能。传统的方钢管混凝土组合柱通常由于混凝土侧向变形导致钢管发生屈曲变形,从而削弱了方钢管对混凝土的约束作用[13],SCFC中FRP圆管对核心混凝土提供有效环向约束,降低了核心混凝土的横向变形,由此降低了对方钢管的侧压力,减缓了应力集中现象,从而提高了约束效果,使得构件的承载能力有效提高。文献[8]基于统一理论提出了SCFC的轴压承载力公式,研究了试件的含钢率及CFRP圆管与方钢管的相对配置率对构件轴压承载力的影响。但目前对于SCFC受力机理的研究还比较少,笔者基于双剪统一强度理论,考虑外钢管与内FRP管对混凝土的双重约束作用,对SCFC的轴压承载力进行研究,根据极限平衡原理得出轴压承载力计算公式,并且⒓扑憬峁与实验数据进行对比,验证了轴压承载力计算公式的准确性。

1双剪统一强度理论

俞茂宏在双剪强度理论的基础上,考虑作用于双剪单元体上的两个较大剪切应力及其面上的正应力,建立了一种全新的考虑中主应力影响的适用于各种不同材料的双剪统一强度理论,其数学表达式为

σ2≤σ1+aσ3[]1+a,

F=σ1-a[]1+b(bσ2+σ3)=σt(1a)

σ2≥σ1+aσ3[]1+a,

F′1[]1+b(σ1+bσ2)-aσ3=σt(1b)

式中:σ1、σ2和σ3分别为3个主应力;a=σt/σc为材料的拉压强度比;σt和σc分别为材料的拉伸强度和压缩强度;b为反应中间主应力效应的材料参数,也是反应不同强度理论的参数。

约束混凝土轴压承载力提高的原因在于混凝土在受压时产生侧向变形,随着荷载的不断增加,核心混凝土及夹层混凝土的侧向变形开始增大,而FRP及钢管限制了混凝土的膨胀,由于变形协调而产生了相互作用[8]。李帼昌等[8]及Feng等[11]的试验研究都表明,对于SCFC组合柱而言,当构件进入弹塑性阶段时,混凝土的侧向变形因为微裂缝发展而增大,FRP管处于环拉和径向受压的两向应力状态,外钢管处于轴压、环拉和径向受压的三向应力状态,内外的混凝土处于三向受压的应力状态。FRP环向拉力逐渐增大至FRP断裂强度而退出工作,此时,构件达到极限承载力,在此过程中,FRP有效约束了内层混凝土的变形。此后,钢管与混凝土发生应力重分布,钢管由主要承担竖向力转为承担环向力。同时,由于钢管、混凝土、FRP管之间的相互作用,导致随着含钢率的增加(即钢管厚度的增加),钢管的套箍作用增强,试件的承载力得到明显提升,也证明了内层混凝土的约束作用来自于FRP管及外钢管两部分。因此,对于SCFC而言:夹层混凝土受到外钢管的约束力po,而内层混凝土的约束力由两部分组成:一部分是FRP管对其的约束力pi和外钢管传递过来的约束力p′o。其受力模型如图1所示。

2.3混凝土应力分析

由于钢管和FRP的约束作用使得核心混凝土处于三向受压状态,而此时三向受压混凝土的强度相比于无约束混凝土的强度有明显的提高,因此,受钢管和FRP约束的混凝土的轴压承载力大大高于核心混凝土和钢管以及FRP各自的轴压承载力之和。在SCFC结构中,钢管和FRP的贡献主要体现在对混凝土的约束上,约束后的混凝土强度是影响钢管混凝土轴压承载力的决定性因素。

2.3.1外层混凝土应力分析

方钢管通过面积等效原则简化为圆钢管,其对核心混凝土产生约束作用,使其处于三向受力状态。对于夹层混凝土而言,除了钢管的约束作用,还受到内侧FRP的紧箍作用。假设外层混凝土受到内外均匀的约束力作用,取钢管和FRP约束中的较小值,此时,外层混凝土的应力状态为0>σ1=σ2>σ3,取σ1=po,混凝土处于三向受压状态,应用双剪统一强度理论,并用混凝土凝聚力c和内摩擦角φ表示为

3.2影响因素分析

为了更好地表征SCFC组合柱中钢管与FRP约束对承载力增益效果,定义轴压承载力提高系数η=N/N0,式中N为通过式(18)和(19)计算而得的承载力值,N0为不考虑钢管和FRP约束作用时钢管与混凝土承载力之和。

3.2.1材料配置参数的影响

试验研究表明,影响SCFC组合柱承载力的主要因素为:含钢率As/Ac、FRP与钢管的相对配置率β=Af/As和FRP管的径厚比d/tf。对文献[10]中构件在截面尺寸不变的情况下,变化材料参数,研究各参数变化对于承载力提高系数的影响。

1)含钢率As/Ac,即钢管截面面积与混凝土截面面积之比。在SCFC组合柱截面大小与内部配置的FRP大小一定时,组合柱承载力提高系数随着含钢率的变化如图4所示。随着钢管厚度增大,构件含钢率变大,承载力提高系数变大,说明含钢率越大,钢管对内部混凝土的约束作用越明显,且截面宽度较小时含钢率的变大导致承载力的增益效果更明显,这与文献[1011]的试验结论是一致的。

2)FRP与钢管的相对配置率β=Af/As,FRP截面面积与钢管截面面积比。在含钢率不变的情况下,组合柱承载力提高系数随相对配置率的变化如图5所示,对于含钢率相同的构件,相对配置率越大,FRP所占比重越大,相应的承载力提高越多,这是由于在构件轴心受压时,FRP对核心混凝土的约束作用会随着FRP层数的增加,即Af/As的增加而增加。

3)FRP管的径厚比d/tf,即FRP管直径与厚度的比值。在含钢率不变的情况下,组合柱承载力提高系数随FRP管径厚比的变化如图6所示,随着径厚比的增大,承载力提高系数降低。径厚比的增大可以表现为FRP厚度相同时,其直径增大。由式(5)可知,直径增大将导致约束效果降低,从而导致承载力增益效果下降。

3.2.4内FRP管参数的影响

在含钢率与β不变的情况下,通过变化参数,得到了承载力提高系数与内FRP径厚比、内外管直径边长比d/D的关系,如图7和图8所示。由图7可以看出,含钢率不变的情况下,随着FRP径厚比的变大,承载力提高系数先增加后减小,存在最优值。此外,由图8可知,内FRP直径d为0.65D~0.75D,轴压承载力增益效果较好。

4结论

1)将内置FRP约束混凝土的方钢管混凝土组合柱(SCFC)分为外钢管、外层混凝土、FRP管以及内层混凝土4个部分,考虑外钢管与FRP的双重约束效果,采用双剪统一理论分析了构件的应力状态,得到了轴压承载力计算公式,对比了文献中的试验数据,具有较好的精度。

2)含钢率As/Ac、FRP与钢管的相对配置率β=Af/As和FRP管的径厚比d/tf都对SCFC轴压承载力提高系数的具有一定的影响,随着含钢率的增加、β的提高以及胶癖鹊募跣。SCFC轴压承载力提高系数都有一定程度提高。

3)内FRP直径d为0.65D~0.75D时,轴压承载力增益效果较好。

参考文献:

[1] ELLOBODY E, YOUNG B, LAM D. Behaviour of normal and high strength concretefilled compact steel tube circular stub columns [J]. Journal of Constructional Steel Research, 2006, 62(7): 706715.

[2] CHEN J, JIN W L. Experimental investigation of thinwalled complex section concretefilled steel stub columns [J]. ThinWalled Structures, 2010, 48(9): 718724.

[3] HEECHEUL K, HUN L K, HAK L Y, et al. Axial behavior of concretefilled carbon fiberreinforced polymer composite columns [J]. Structural Design of Tall & Special Buildings, 2012, 21(3): 178193.

[4] WU Y F, JIANG C. Effect of load eccentricity on the stressstrain relationship of FRPconfined concrete columns [J]. Composite Structures, 2013, 98(3): 228241.

[5] LAM L, TENG J G. Designoriented stressstrain model for FRPconfined concrete [J]. Construction & Building Materials, 2003, 17(6): 471489.

[6] HASSANEIN M F, KHAROOB O F, LIANG Q Q. Circular concretefilled double skin tubular short columns with external stainless steel tubes under axial compression [J]. ThinWalled Structures, 2013, 73(4): 252263.

[7] 钱稼茹, 张扬, 纪晓东,等. 复合钢管高强混凝土短柱轴心受压性能试验与分析[J]. 建筑结构学报, 2011, 32(12):162169.

QIAN J R, ZHANG Y, JI X D, et al. Test and analysis of axial compressive behavior of short compositesectioned high strength concrete filled steel tubular columns [J]. Journal of Building Structures, 2011, 32(12): 162169. (in Chinese)

[8] 李帼昌,麻丽,杨景利,等. 内置CFRP圆管的方钢管高强混凝土轴压短柱承载力计算初探[J]. 沈阳建筑大学学报(自然科学版), 2008, 24(1): 6266.

LI G C, MA L, YANG J L, et al. Bearing capacity of short columns of highstrength concrete filled square steel tubular with inner CFRP circular tubular under axially compressive load [J]. Journal of Shenyang Jianzhu University (Natural Science), 2008, 24(1): 6266. (in Chinese)

[9] 李讲,侯东序,李宁. 内置CFRP圆管的方钢管高强混凝土偏压短柱试验[J]. 沈阳建筑大学学报(自然科学版), 2009, 25 (5): 871876.

LI G C, HOU D X, LI N. research on highstrength concrete filled square steel tubular short columns with inner CFRP circular tubeunder eccentric load [J]. Journal of Shenyang Jianzhu University (Natural Science), 2009, 25(5): 871876. (in Chinese)

[10] 李帼昌,邢娜,邢忠华. 内置CFRP圆管的方钢管高强混凝土轴压短柱试验[J]. 沈阳建筑大学学报(自然科学版), 2009, 25(5):244249.

LI G C, XING N, XING Z H. experimental study on short columns of high strength concrete filled square steel tube with inner CFRP circular tube under axial compressive load [J]. Journal of Shenyang Jianzhu University (Natural Science), 2009, 25(5): 244249. (in Chinese)

[11] FENG P, CHENG S, BAI Y, et al. Mechanical behavior of concretefilled square steel tube with FRPconfined concrete core subjected to axial compression [J]. Composite Structures, 2015, 123: 312324.

[12] CHENG S, FENG P, BAI Y, et al. Loadstrain model for steelconcreteFRPconcrete columns in axial compression [J]. Journal of Composites for Construction, 2016,20(5):0401617.

[13] 韩林海, 陶忠. 方钢管混凝土轴压力学性能的理论分析与试验研究[J]. 土木工程学报, 2001, 34(2): 1725.

HAN L H, TAO Z. Study on behavior of concrete filled square steel tubes under axial load [J]. China Civil Engineering Journal, 2001, 34(2):1725. (in Chinese)

[14] 李小伟, 赵均海, 朱铁栋,等. 方钢管混凝土轴压短柱的力学性能[J]. 中国公路学报, 2006, 19(4):7781.

LI X W,ZHAO J H,ZHU T D, et al. Mechanics behavior of axially loaded short columns with concretefilled square steel tube [J]. China Journal of Highway and Transport, 2006, 19(4): 7781. (in Chinese)

上一篇: 土木工程安全论文 下一篇: 本科体育毕业论文
相关精选
相关期刊