裂缝控制论文汇总十篇

时间:2023-03-22 17:32:20

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇裂缝控制论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

裂缝控制论文

篇(1)

优先选用C3A含量低的中、低热的普通水泥或复合、矿渣水泥等,除冬期施工外,不宜选早强型水泥;也不宜采用火山灰水泥,因火山灰水泥需水量大,易泌水。

水泥等级和混凝土等级应相匹配,一般C25以下混凝土宜选32.5级水泥,C30以上混凝土宜选42.5级水泥,但水泥品种不能混用,不同产家、不同品种即是同一水泥等级也不能混用,同厂家、同品种不同批号的水泥原则上也不能混用。因不同厂、不同品种虽说强度等级相同,但其中所含的矿物成分不同,水泥掺合料不同,所产生的水化热亦不同,其收缩、变形、凝结时间等不同,水化时反映了各自水泥的水化个性,所以不能混用,如果混用:(1)可能造成收缩、变形不同,而影响结构的耐久性;(2)凝结时间、需水量、水化速度不同,所产生的混凝土强度不同,将使混用后的混凝土强度降低5%—20%,(3)由于收缩变形不同,产生裂缝隐患存在。不同水泥应分别使用,只能待上一品种水泥产生一定强度后,才可向其上面浇筑其他品种、等级的水泥。在保证混凝土强度的前提下,商品混凝土的水泥用量,应降低到最低程度。

1.2细骨料

细骨料宜采用中、粗砂。泵送砼宜采用中砂并靠上限,0.315mm筛孔筛余量不应少于15%。实践证明,采用细度模数2.8的中砂比采用细度模数2.3的中砂,可减少用水量20kg/m3—25kg/m3,可降低水泥用量28kg/m3—35kg/m3,因而降低了水泥水化热、降低了混凝土温升和收缩。细骨料的含泥量不超过3%,泥块含量不得大于1%。其他质量指标应符合现行行业标准《普通混凝土用砂质量标准及检验方法》的规定。

为保证混凝土的流动性、粘聚性和保水性,以便于运输、泵送和浇筑,泵送混凝土的砂率要比普通流动性混凝土增大约6%,为38%—45%。但是砂率过大,不仅会影响混凝土的工作度和强度,而且能增大收缩和裂缝。

1.3粗骨料是混凝土的重要组成

它在混凝土中主要起到骨架的作用,并且对胶凝材料的收缩具有一定抵抗作用。集料的级配越好,所组成的混凝土骨架越稳定,抵抗变形能力越好。同时,集料的级配越好,能降低混凝土中单方水和水泥的用量,降低混凝土的收缩。此外,粗骨料的含泥量、泥块含量对混凝土的收缩也有很大的影响。

1.4砂

采用中、粗砂,细度模数必须控制在2.3以上,含泥量控制在2%以下。因为采用细度模数为2.8:2.3的中砂每立方混凝土可减少水泥用量约30kg,减少水用量20kg—25kg,从而降低混凝土水化热和温差引起的收缩。泵送混凝土时,砂率应控制在38%—45%。

1.5选用优质高效的外加剂

为达到抗裂、防水的目的,在配制混凝土时,一般需要掺人减水剂、缓凝剂、膨胀剂等。外加剂的质量对混凝土的影响非常大,有些膨胀剂与其他外加剂一起使用可能会产生副作用,因此在使用前应经试验确定。

2设计方面

结构设计规范主要解决的是结构的安全问题。但个别设计者未能作全过程(包括施工过程)数理分析。以混凝土收缩裂缝问题为例。一般的设计文件只给出混凝土的强度等级,没有针对结构具体情况对混凝土的收缩量的限制值及收缩量制值相匹配的后浇带设置。特别是某些工程师盲目地相信某些补偿收缩混凝土的作用,不留混凝土后浇带甚至不留形缝,使得裂缝发展得很快。另外,混凝土收缩裂缝与现在设计的板和墙的尺寸越来越大也有关系。混凝土梁、板和墙的尺寸增大。尺寸大,构件总的收缩量大,容易出现混凝土收缩裂缝。

3施工技术控制

(1)混凝土施工过分振捣,模板、垫层过于干燥。混凝土浇筑振捣后,粗骨料沉落,挤出水分、空气,表面呈现泌水而形成竖向体积缩小沉落,造成表面砂浆层,它比下层混凝土有较大的干缩性能,待水分蒸发后,易形成凝缩裂缝。而模板、垫层在浇筑混凝土之时洒水不够,过于干燥,则模板吸水量大,引起混凝土的塑性收缩,产生裂缝。混凝土浇捣后,过分抹干压光会使混凝土的细骨料过多地浮到表面,形成含水量很大的水泥浆层,水泥浆中的氢氧化钙与空气中二氧化碳作用生成碳酸钙,引起表面体积碳水化收缩,导致混凝土板表面龟裂。

(2)混凝土施工过分振捣,模板、垫层过于干燥。混凝土浇筑振捣后,粗骨料沉落,挤出水分、空气,表面呈现泌水而形成竖向体积缩小沉落,造成表面砂浆层,它比下层混凝土有较大的干缩性能,待水分蒸发后,易形成凝缩裂缝。而模板、垫层在浇筑混凝土之时洒水不够,过于干燥,则模板吸水量大,引起混凝土的塑性收缩,产生裂缝。混凝土浇捣后,过分抹干压光会使混凝土的细骨料过多地浮到表面,形成含水量很大的水泥浆层,水泥浆中的氢氧化钙与空气中二氧化碳作用生成碳酸钙,引起表面体积碳水化收缩,导致混凝土板表面龟裂。

(3)现场养护。现场养护不当是造成混凝土收缩开裂最主要的原因。混凝土浇筑后,若表面不及时覆盖、浇水养护,表面水分迅速蒸发,很容易产生收缩裂缝。特别是在气温高、相对湿度低、风速大的情况下,干缩更容易发生。有资料表明,当风速为16m/s时,混凝土中的水分蒸发速度为无风时的四倍。一些高层建筑的楼面为什么更容易产生裂缝,就是因为高空中的风速比地面大。

4施工后期商品混凝土的养护

由于商品混凝土流动性较大,容易在早期发生混凝土半和物沉缩裂缝,塑性收缩裂缝,干燥收缩裂缝,温度裂缝等,因此必须加强早期养护。养护主要是保持适当的温度和湿度条件。混凝土浇注后应覆盖一定厚度的草袋、麻袋片或塑料薄膜,过高过低的环境温度以及激剧的温度变化都会引起表面开裂。保温能减少混凝土表面的热扩散,降低混凝土表层的温差,防止表面裂缝。但由于热扩散时间延长,混凝土强度和松弛作用得到充分发挥,使混凝土总温差产生的拉应力小于混凝土的抗拉强度,防止贯穿裂缝的产生。浇筑时间不长的混凝土,仍然处于凝结、硬化过程中,水泥水化速度较快,适宜的潮湿条件可防止混凝土表面脱水而产生收缩裂缝。

5裂缝部分处理技术

(1)涂抹:以涂为主,在裂缝表面涂抹新型高分子防水涂料,这种涂料是以合成橡胶或者合成树脂作为成膜材料,效果很好。目前常有聚氨脂,环氧树脂、丙烯酸橡胶、聚酯树脂防水涂料。

(2)封堵:多用于水平面上的裂缝,其宽度大于0.3mm。裂缝较小时,采用低粘度树脂;在干燥自然环境下可采用的材料很多,如高分子涂料,聚合物水泥砂浆及掺有速凝剂的防水砂浆等;在渗漏潮湿环境下必须进行封堵再进行表面处理,封堵用堵漏灵、堵漏王、水不漏等速凝材料;在漏水情况下可采用PBM—7聚合物混凝土封堵。

(3)嵌缝:在裂缝处凿八字形槽,并在槽内嵌填不同材质的密封材料处理。

(4)灌浆:适用于修补较深的裂缝和混凝土内部有空洞、疏散等情况。

(5)增大截面加固法:用同等级混凝土,加大原结构截面,以达到满足承载力的要求。

(6)外包角钢加固法:用角钢镶嵌在四角,并用扁钢将角钢箍紧,以提高结构承载能力。

(7)粘钢加固法:在混凝土表面用结构胶粘贴钢板,以提高混凝土承载力。

(8)增设支点加固法:用增设支点减少结构跨度,达到减少结构受力。

(9)增设剪力墙加固法:结构在地震作用下,其强度与变形不能满足规范要求时,还可以在房屋适当位置增设剪力墙以抵抗地震作用。

篇(2)

1裂缝的性质

引起砌体结构墙体裂缝的因素很多,既有地基、温度、干缩,也有设计上的疏忽、施工质量、材料不合格及缺乏经验等。根据工程实践和统计资料这类裂缝几乎占全部可遇裂缝的80%以上。而最为常见的裂缝有两大类,一是温度裂缝,二是干燥收缩裂缝,简称干缩裂缝,以及由温度和干缩共同产生的裂缝。

温度裂缝

温度的变化会引起材料的热胀、冷缩,当约束条件下温度变形引起的温度应力足够大时,墙体就会产生温度裂缝。最常见的裂缝是在砼平屋盖房屋顶层两端的墙体上,如在门窗洞边的正八字斜裂缝,平屋顶下或屋顶圈梁下沿砖(块)灰缝的水平裂缝,以及水平包角裂缝(包括女儿墙)。导致平屋顶温度裂缝的原因,是顶板的温度比其下的墙体高得多,而砼顶板的线胀系数又比砖砌体大得多,故顶板和墙体间的变形差,在墙体中产生很大的拉力和剪力。剪应力在墙体内的分布为两端附近较大,中间渐小,顶层大,下部小。温度裂缝是造成墙体早期裂缝的主要原因。这些裂缝一般经过一个冬夏之后才逐渐稳定,不再继续发展,裂缝的宽度随着温度变化而略有变化。

干缩裂缝

烧结粘土砖,包括其它材料的烧结制品,其干缩变形很小,且变形完成比较快。[KG-*2]只要不使用新出窑的砖,一般不要考虑砌体本身的干缩变形引起的附加应力。[KG-*2]但对这类砌体在潮湿情况下会产生较大的湿胀,而且这种湿胀是不可逆的变形。[KG-*2]对于砌块、灰砂砖、粉煤灰砖等砌体,随着含水量的降低,材料会产生较大的干缩变形。〖KG-*2〗如砼砌块的干缩率为0.3~0.45mm/m,它相当于25~40℃的温度变形,可见干缩变形的影响很大。轻骨料块体砌体的干缩变形更大。干缩变形的特征是早期发展比较快,如砌块出窑后放置28d能完成50%左右的干缩变形,以后逐步变慢,几年后材料才能停止干缩。但是干缩后的材料受湿后仍会发生膨胀,脱水后材料会再次发生干缩变形,但其干缩率有所减小,约为第一次的80%左右。这类干缩变形引起的裂缝在建筑上分布广、数量多、裂缝的程度也比较严重。如房屋内外纵墙中间对称分布的倒八字裂缝;在建筑底部一至二层窗台边出现的斜裂缝或竖向裂缝;在屋顶圈梁下出现的水平缝和水平包角裂缝;在大片墙面上出现的底部重、上部较轻的竖向裂缝。另外不同材料和构件的差异变形也会导致墙体开裂。如楼板错层处或高低层连接处常出现的裂缝,框架填充墙或柱间墙因不同材料的差异变形出现的裂缝;空腔墙内外叶墙用不同材料或温度、湿度变化引起的墙体裂缝,这种情况一般外叶墙裂缝较内叶墙严重。

1.3温度、干缩及其它裂缝

对于烧结类块材的砌体最常见的为温度裂缝,面对非烧结类块体,如砌块、灰砂砖、粉煤灰砖等砌体,也同时存在温度和干缩共同作用下的裂缝,其在建筑物墙体上的分布一般可为这两种裂缝的组合,或因具体条件不同而呈现出不同的裂缝现象,而其裂缝的后果往往较单一因素更严重。另外设计上的疏忽、无针对性防裂措施、材料质量不合格、施工质量差、违反设计施工规程、砌体强度达不到设计要求,以及缺乏经验也是造成墙体裂缝的重要原因之一。如对砼砌块、灰砂砖等新型墙体材料,没有针对材料的特殊性,采用适合的砌筑砂浆、注芯材料和相应的构造措施,仍沿用粘土砖使用的砂浆和相应的抗裂措施,必然造成墙体出现较严重的裂缝。

2砌体裂缝的控制

2.1裂缝的危害和防裂的迫切性

砌体属于脆性材料,裂缝的存在降低了墙体的质量,如整体性、耐久性和抗震性能,同时墙体的裂缝给居住者在感观上和心理上造成不良影响。特别是随着我国墙改、住房商品化的进展,人们对居住环境和建筑质量的要求不断提高,对建筑物墙体裂缝的控制的要求更为严格。由于建筑物的质量低劣,如墙体裂缝、渗漏等涉及的纠纷或官司也越来越多,建筑物的裂缝已成为住户评判建筑物安全的一个非常直观、敏感和首要的质量标准。因此加强砌体结构,特别是新材料砌体结构的抗裂措施,已成为工程量、国家行政主管部门,以及房屋开发商共同关注的课题。因为这涉及到新型墙体材料的顺利推广问题。

2.2裂缝宽度的标准问题

实际上建筑物的裂缝是不可避免的。此处提到的墙体裂缝宽度的标准(限值),是一个宏观的标准,即肉眼明显可见的裂缝,砌体结构尚无这种标准。但对钢筋砼结构其最大裂缝宽度限值主要是考虑结构的耐久性,如裂缝宽度对钢筋腐蚀,以及外部构件在湿度和抗冻融方面的耐久性影响。我国到现在为止对外部构件(墙体)最危险的裂缝宽度尚未作过调查和评定。但根据德国资料,当裂缝宽度≤0.2mm时,对外部构件(墙体)的耐久性是不危险的。

对砌体结构来说,墙体的裂缝宽度多大是无害呢?这是个比较复杂的问题。因为它还涉及到可接受的美学方面的问题。它直接取决于观察人的目的和观察的距离。对钢筋砼结构,裂缝宽度>0.3mm,通常在美学上是不能接受的,这个概念也可用于配筋砌体。而对无筋砌体似乎应比配筋砌体的裂缝宽度标准放宽些。但是对于客户来讲二者是完全一样的。这实际上是直观判别裂缝宽度的安全标准。

3现有控制裂缝的原则和措施

长期以来人们一直在寻求控制砌体结构裂缝的实用方法,并根据裂缝的性质及影响因素有针对性的提出一些预防和控制裂缝的措施。从防止裂缝的概念上,形象地引出“防”、“放”、“抗”相结合的构想,这些构想、措施有的已运用到工程实践中,一些措施也引入到《砌体规范》中,也收到了一定的效果,但总的来说,我国砌体结构裂缝仍较严重,纠其原因有以下几种。

3.1设计者重视强度设计而忽略抗裂构造措施

长期以来住房公有制,人们对砌体结构的各种裂缝习以为常,设计者一般认为多层砌体房屋比较简单,在强度方面作必要的计算后,针对构造措施,绝大部分引用国家标准或标准图集,很少单独提出有关防裂要求和措施,更没有对这些措施的可行性进行调查或总结。因为裂缝的危险仅为潜在的,尚无结构安问题,不涉及到责任问题。

3.2我国《砌体规范》抗裂措施的局限性

我认为这是最为重要的原因。《砌体规范》GBJ3-88的抗裂措施主要有两条,一是第5.3.1条:对钢砼屋盖的温度变化和砌体的干缩变形引起的墙体开裂,可采取设置保温层或隔热层;采用有檩屋盖或瓦材屋盖;控制硅酸盐砖和砌块出厂到砌筑的时间和防止雨淋。未考虑我国幅原辽阔、不同地区的气候、温度、湿度的巨大差异和相同措施的适应性。二是第5.3.2条:防止房屋在正常使用条件下,由温差和墙体干缩引起的墙体竖向裂缝,应在墙体中设置伸缩缝。从规范的温度伸缩缝的最大间距可见,它主要取决于屋盖或楼盖的类别和有无保温层,而与砌体的种类、材料和收缩性能等无直接关系。可见我国的伸缩缝的作用主要是防止因建筑过长在结构中出现竖向裂缝,它一般不能防止由于钢砼屋盖的温度变形和砌体的干缩变形引起的墙体裂缝。

由此可见,《砌体规范》的抗裂措施,如温度区段限值,主要是针对干缩小、块体小的粘土砖砌体结构的,而对干缩大、块体尺寸比粘土砖大得多的砼砌块和硅酸盐砌体房屋,基本是不适用的。因为如果按照砼砌块、硅酸盐块体砌体的干缩率0.2~0.4mm/m,无筋砌体的温度区段不能越过10m;对配筋砌体也不能大于30m。在这方面,国外已有比较成熟的预防和控制墙体开裂的经验,值得借鉴:一是在较长的墙上设置控制缝(变形缝),这种控制缝和我国的双墙伸缩缝不同,而是在单墙上设置的缝。该缝的构造既能允许建筑物墙体的伸缩变形,又能隔声和防风雨,当需要承受平面外水平力时,可通过设置附加钢筋达到。这种控制缝的间距要比我国规范的伸缩缝区段小得多。如英国规范对粘土砖为10-15m,对砼砌块及硅酸盐砖一般不应大于6m;美国砼协会(ACI)规定,无筋砌体的最大控制缝间距为12-18m,配筋砌体控制缝间距不超过30m。二是在砌体中根据材料的干缩性能,配置一定数量的抗裂钢筋,其配筋率各国不尽相同,从0.03%~0.2%,或将砌体设计成配筋砌体,如美国配筋砌体的最小含钢率为0.07%,该配筋率又抗裂,又能保证砌体具有一定的延性。

关于在砌体内配置抗裂钢筋的数量(含钢率)和效果,是普遍比较关注的问题。因为它涉及到用钢量和造价的增幅问题。

4防止墙体开裂的具体构造措施建议

本文在综合了国内外砌体结构抗裂研究成果的基础上,结合我国当前的具体情况,提出的更具体的抗裂构造措施。它是对“防”、“放”、“抗”的具体体现。笔者认为这些措施可根据具体条件选择或综合应用。该措施已反映到我院为大庆油田砌块厂编制的《砼砌块建筑构造图集》中。

4.1防止混凝土屋盖的温度变化与砌体的干缩变形引起的墙体开裂,宜采取下列措施

4.1.1屋盖上设置保温层或隔热层;

4.1.2在屋盖的适当部位设置控制缝,控制缝的间距不大于30m;

4.1.3当采用现浇混凝土挑檐的长度大于12m时,宜设置分隔缝,分隔缝的宽度不应小于20mm,缝内用弹性油膏嵌缝;

4.1.4建筑物温度伸缩缝的间距除应满足《砌体结构设计规范》BGJ3-88第5.3.2条的规定外,宜在建筑物墙体的适当部位设置控制缝,控制缝的间距不宜大于30m。

4.2防止主要由墙体材料的干缩引起的裂缝可采用下列措施之一:

4.2.1设置控制缝

4.2.1.1控制缝的设置位置

(1)在墙的高度突然变化处设置竖向控制缝;

(2)在墙的厚度突然变化处设置竖向控制缝;

(3)在不大于离相交墙或转角墙允许接缝距离之半设置竖向控制缝;

(4)在门、窗洞口的一侧或两侧设置竖向控制缝;

(5)竖向控制缝,对3层以下的房屋,应沿房屋墙体的全高设置;对大于3层的房屋,可仅在建筑物1-2层和顶层墙体的上述位置设置;

(6)控制缝在楼、屋盖处可不贯通,但在该部位宜作成假缝,以控制可预料的裂缝;

(7)控制缝作成隐式,与墙体的灰缝相一致,控制缝的宽度不大于12mm,控制缝内应用弹性密封材料,如聚硫化物、聚氨脂或硅树脂等填缝。

4.2.1.2控制缝的间距

1对有规则洞口外墙不大于6mm;

2对无洞墙体不大于8m及墙高的3倍;

3在转角部位,控制缝至墙转角的距离不大于4.5m;

4.2.2设置灰缝钢筋

1在墙洞口上、下的第一道和第二道灰缝,钢筋伸入洞口每侧长度不应小于600mm;

2在楼盖标高以上,屋盖标高以下的第二或第三道灰缝,和靠近墙顶的部位;

3灰缝钢筋的间距不大于600mm;

4灰缝钢筋距楼、屋盖混凝土圈梁或配筋带的距离不小于600mm;

5灰缝钢筋宜采用小螺纹钢筋焊接网片,网片的纵向钢筋不小于25,横筋间距不宜大于200mm;

6对均匀配筋时含钢率不少于0.05%;局部截面配筋,如底、顶层窗洞上下不小于38;

7灰缝钢筋宜通长设置,当不便通长设置时,允许搭接,搭接长度不应小于300mm;

8灰缝钢筋两端应锚入相交墙或转角墙中,锚固长度不应小于300mm;

9灰缝钢筋应埋入砂浆中,灰缝钢筋砂浆保护层,上下不小于3mm,外侧小于15mm,灰缝钢筋宜进行防腐处理;

10当利用灰缝钢筋作砌体抗剪钢筋时,其配筋量应按计算确定,其搭接和锚固长度尚不应小于75d和300mm;

11不配筋的外叶墙应设控制缝,控制缝间距不宜大于6m;

12设置灰缝钢筋的房屋的控制缝的间距不宜大于30m。

4.2.3在建筑物墙体中设置配筋带

1.在楼盖处和屋盖处;

2.墙体的顶部;

3.窗台的下部;

4.配筋带的间距不应大于2400mm,也不宜小于800mm;

5.配筋带的钢筋,对190mm厚墙,不应小于2ф12,对250~300mm厚墙不应小于2ф16,当配筋带作为过梁时,其配筋应按计算确定;

6.配筋带钢筋宜通长设置,当不能通长设置时,允许搭接,搭接长度不应小于45d和600mm;

7.配筋带钢筋应弯入转角墙处锚固,锚固长度不应小于35d和400mm;

8.当配筋带仅用于控制墙体裂缝时,宜在控制缝处断开,当设计考虑需要通过控制缝时,宜在该处的配筋带表面作成虚缝,以控制可预料的裂缝位置;

9.对地震设防裂度≥7度的地区,配筋带的截面不应小于190mm×200mm,配筋不应小于410;

10.设置配筋带的房屋的控制缝的间距不宜大于30m;

4.3也可根据建筑物的具体情况,如场地土及地震设防裂度、基础结构布置型式、建筑物平面、外形等,综合采用上述抗裂措施。

参考文献

篇(3)

Abstract: Since engaged in building industry since the job, through years of on-site observation and consulting relevant books of the internal stress, the temperature of the concrete cracks, the concrete temperature control and crack prevention measures are analyzed.

Key words: concrete; temperature cracks; control measures

1引言

混凝土裂缝的存在对工程结构的安全性及耐久性有很大的危害,也给广大居民的使用造成一定的安全隐患,因此我们应该从施工的各个环节人手,不放过影响施工质量的任何一个细节,防微杜渐,积极采取各种行之有效的措施控制裂缝的产生,以极度负责和认真的工作态度对待自己亲历的每一个工程。

控制混凝土在现代工程建设中占有重要地位。在今天,混凝土的裂缝较为普遍,在桥梁工程中裂缝几乎无所不在。尽管我们在施工中采取各种措施,小心谨慎,但裂缝仍然时有出现。究其原因,我们对混凝土温度应力的变化注意不够是其中之一。在大体积混凝土中,温度应力及温度控制具有重要意义。这主要是由于两方面的原因。首先,在施工中混凝土常常出现温度裂缝,影响到结构的整体性和耐久性。其次,在运转过程中,温度变化对结构的应力状态具有显著的不容忽视的影响。我们遇到的主要是施工中的温度裂缝,因此本文仅对施工中混凝土裂缝的成因和处理措施做一探讨。

2 混凝土裂缝产生的原因

裂缝的原因混凝土中产生裂缝有多种原因,主要是温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理,原材料不合格(如碱骨料反应),模板变形,基础不均匀沉降等。混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。气温的降低也会在混凝土表面引起很大的拉应力。当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。混凝土是一种脆性材料,抗拉强度是抗压强度的1/10左右,短期加荷时的极限拉伸变形只有(0.6~1.0)×104,长期加荷时的极限位伸变形也只有(1.2~2.0)×104.由于原材料不均匀,水灰比不稳定,及运输和浇筑过程中的离析现象,在同一块混凝土中其抗拉强度又是不均匀的,存在着许多抗拉能力很低,易于出现裂缝的薄弱部位。在钢筋混凝土中,拉应力主要是由钢筋承担,混凝土只是承受压应力。在素混凝土内或钢筋混凝上的边缘部位如果结构内出现了拉应力,则须依靠混凝土自身承担。一般设计中均要求不出现拉应力或者只出现很小的拉应力。但是在施工中混凝土由最高温度冷却到运转时期的稳定温度,往往在混凝土内部引起相当大的拉应力。有时温度应力可超过其它外荷载所引起的应力,因此掌握温度应力的变化规律对于进行合理的结构设计和施工极为重要。

3 混凝土温度应力的分析

温度应力的分析根据温度应力的形成过程可分为以下三个阶段:(1)早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。这个阶段的两个特征,一是水泥放出大量的水化热,二是混凝土弹性模量的急剧变化。由于弹性模量的变化,这一时期在混凝土内形成残余应力。(2)中期:自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个时期中,温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形成的残余应力相叠加,在此期间混凝上的弹性模量变化不大。(3)晚期:混凝土完全冷却以后的运转时期。温度应力主要是外界气温变化所引起,这些应力与前两种的残余应力相迭加。根据温度应力引起的原因可分为两类:(1)自生应力:边界上没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。例如,桥梁墩身,结构尺寸相对较大,混凝土冷却时表面温度低,内部温度高,在表面出现拉应力,在中间出现压应力。(2)约束应力:结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力。如箱梁顶板混凝土和护栏混凝土。这两种温度应力往往和混凝土的干缩所引起的应力共同作用。要想根据已知的温度准确分析出温度应力的分布、大小是一项比较复杂的工作。在大多数情况下,需要依靠模型试验或数值计算。混凝土的徐变使温度应力有相当大的松驰,计算温度应力时,必须考虑徐变的影响,具体计算这里就不再细述。

4 混凝土温度的控制和防止裂缝措施

温度的控制和防止裂缝的措施为了防止裂缝,减轻温度应力可以从控制温度和改善约束条件两个方面着手。控制温度的措施如下:(1)采用改善骨料级配,用干硬性混凝土,掺混合料,加引气剂或塑化剂等措施以减少混凝土中的水泥用量;(2)拌合混凝土时加水或用水将碎石冷却以降低混凝土的浇筑温度;(3)热天浇筑混凝土时减少浇筑厚度,利用浇筑层面散热;(4)在混凝土中埋设水管,通入冷水降温;(5)规定合理的拆模时间,气温骤降时进行表面保温,以免混凝土表面发生急剧的温度梯度;(6)施工中长期暴露的混凝土浇筑块表面或薄壁结构,在寒冷季节采取保温措施;改善约束条件的措施是:(1)合理地分缝分块;(2)避免基础过大起伏;(3)合理的安排施工工序,避免过大的高差和侧面长期暴露;此外,改善混凝土的性能,提高抗裂能力,加强养护,防止表面干缩,特别是保证混凝土的质量对防止裂缝是十分重要,应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。在混凝土的施工中,为了提高模板的周转率,往往要求新浇筑的混凝土尽早拆模。当混凝土温度高于气温时应适当考虑拆模时间,以免引起混凝土表面的早期裂缝。新浇筑早期拆模,在表面引起很大的拉应力,出现“温度冲击”现象。在混凝土浇筑初期,由于水化热的散发,表面引起相当大的拉应力,此时表面温度亦较气温为高,此时拆除模板,表面温度骤降,必然引起温度梯度,从而在表面附加一拉应力,与水化热应力迭加,再加上混凝土干缩,表面的拉应力达到很大的数值,就有导致裂缝的危险,但如果在拆除模板后及时在表面覆盖一轻型保温材料,如泡沫海棉等,对于防止混凝土表面产生过大的拉应力,具有显著的效果。加筋对大体积混凝土的温度应力影响很小,因为大体积混凝土的含筋率极低。只是对一般钢筋混凝土有影响。在温度不太高及应力低于屈服极限的条件下,钢的各项性能是稳定的,而与应力状态、时间及温度无关。钢的线胀系数与混凝土线胀系数相差很小,在温度变化时两者间只发生很小的内应力。由于钢的弹性模量为混凝土弹性模量的7~15倍,当内混凝土应力达到抗拉强度而开裂时,钢筋的应力将不超过100~200kg/cm2..因此,在混凝土中想要利用钢筋来防止细小裂缝的出现很困难。但加筋后结构内的裂缝一般就变得数目多、间距小、宽度与深度较小了。而且如果钢筋的直径细而间距密时,对提高混凝土抗裂性的效果较好。混凝土和钢筋混凝土结构的表面常常会发生细而浅的裂缝,其中大多数属于干缩裂缝。虽然这种裂缝一般都较浅,但它对结构的强度和耐久性仍有一定的影响。为保证混凝土工程质量,防止开裂,提高混凝土的耐久性,正确使用外加剂也是减少开裂的措施之一。例如使用减水防裂剂,笔者在实践中总结出其主要作用为:(1)混凝土中存在大量毛细孔道,水蒸发后毛细管中产生毛细管张力,使混凝土干缩变形。增大毛细孔径可降低毛细管表面张力,但会使混凝土强度降低。这个表面张力理论早在六十年代就已被国际上所确认。(2)水灰比是影响混凝土收缩的重要因素,使用减水防裂剂可使混凝土用水量减少25%。(3)水泥用量也是混凝土收缩率的重要因素,掺加减水防裂剂的混凝土在保持混凝土强度的条件下可减少15%的水泥用量,其体积用增加骨料用量来补充。(4)减水防裂剂可以改善水泥浆的稠度,减少混凝土泌水,减少沉缩变形。(5)提高水泥浆与骨料的粘结力,提高的混凝土抗裂性能。(6)混凝土在收缩时受到约束产生拉应力,当拉应力大于混凝土抗拉强度时裂缝就会产生。减水防裂剂可有效的提高的混凝土抗拉强度,大幅提高混凝土的抗裂性能。(7)掺加外加剂可使混凝土密实性好,可有效地提高混凝土的抗碳化性,减少碳化收缩。(8)掺减水防裂剂后混凝土缓凝时间适当,在有效防止水泥迅速水化放热基础上,避免因水泥长期不凝而带来的塑性收缩增加。(9)掺外加剂混凝土和易性好,表面易摸平,形成微膜,减少水分蒸发,减少干燥收缩.许多外加剂都有缓凝、增加和易性、改善塑性的功能,我们在工程实践中应多进行这方面的实验对比和研究,比单纯的靠改善外部条件,可能会更加简捷、经济。

5 混凝土温度裂缝预防

混凝土的早期养护实践证明,混凝土常见的裂缝,大多数是不同深度的表面裂缝,其主要原因是温度梯度造成寒冷地区的温度骤降也容易形成裂缝。因此说混凝土的保温对防止表面早期裂缝尤其重要。从温度应力观点出发,保温应达到下述要求:1)防止混凝土内外温度差及混凝土表面梯度,防止表面裂缝。2)防止混凝土超冷,应该尽量设法使混凝土的施工期最低温度不低于混凝土使用期的稳定温度。3)防止老混凝土过冷,以减少新老混凝土间的约束。混凝土的早期养护,主要目的在于保持适宜的温湿条件,以达到两个方面的效果,一方面使混凝土免受不利温、湿度变形的侵袭,防止有害的冷缩和干缩。一方面使水泥水化作用顺利进行,以期达到设计的强度和抗裂能力。适宜的温湿度条件是相互关联的。混凝上的保温措施常常也有保湿的效果。从理论上分析,新浇混凝土中所含水分完全可以满足水泥水化的要求而有余。但由于蒸发等原因常引起水分损失,从而推迟或防碍水泥的水化,表面混凝土最容易而且直接受到这种不利影响。因此混凝土浇筑后的最初几天是养护的关键时期,在施工中应切实重视起来。

6 结束语

以上对混凝土的施工温度与裂缝之间的关系进行了理论和实践上的初步探讨,虽然学术界对于混凝土裂缝的成因和计算方法有不同的理论,但对于具体的预防和改善措施意见还是比较统一,同时在实践中的应用效果也是比较好的,具体施工中要靠我们多观察、多比较,出现问题后多分析、多总结,结合多种预防处理措施,混凝土的裂缝是完全可以避免的。

参考文献

【1】纪午生.常用建筑材料试验手册

篇(4)

中图分类号: TU37 文献标识码: A 文章编号:

混凝土是应用最广泛的土木工程材料之一。它是由水泥、颗粒状集料(也称为骨料)、水以及外加剂和矿物掺合料按一定的比例配制而成的一种重要的人工石材,在工程建设中具有相当重要的作用。混凝土因为来源广、生产工艺简单、价格低廉被广泛使用。此外,混凝土还具有其他作为建材的优势,它的抗压强度高、强度等级范围宽、耐久性好使得混凝土不仅可以在土木工程中使用,而且可以运用在造船业、地热工程、机械工业等领域,可见混凝土已经深入到社会生活的各个方面。混凝土并不是一种均匀的材料,而且它的抗拉强度和抗剪强度都比较低,尽管在实际施工中我们采取很多必要措施,但是混凝土的裂缝还是较为普遍,混凝土施工时产生的裂缝可能会导致严重的后果,以下将简要论述混凝土施工中的温度与裂缝控制。

一、混凝土温度裂缝产生的成因

混凝土的优点是抗压强度高、强度等级范围宽、耐久性好,但也存在着抗拉强度和抗剪强度都比较低、易产生裂缝的缺点。混凝土产生裂缝的原因有多种,包括混凝土的脆性、不均匀性,设计结构不合理,原材料不合格或者模板变形等,但最主要的是温度和湿度的变化。温度变化引起的混凝土裂缝非常普遍,因为混凝土的热胀冷缩等性质使得温度裂缝的控制比较难,其裂缝原因一般是:

1、由内外温差过大引起的裂缝。温差过大引起的裂缝一般在表面,混凝土浇筑完成后,其结构在硬化时水泥水化会散发大量的热,混凝土结构的内部温度会因而升高,由于表面的阻挡会导致大量的水化热无法散出,所以内外温差越来越大,内部受热膨胀,后期随着降温的变化受到旧混凝土或基础部分的约束, 使表面的拉应力过高而产生裂缝。内外温差在表面处表现更加明显,因此此类裂缝只能累及表面混凝土的内部结构仍然是完整的。

2、结构温差过大引起的裂缝。混凝土受到外界因素的刺激产生可以贯穿结构内部的裂缝。比如:进行某些施工时有较大范围的混凝土浇筑,这种情况必须采取合理的措施放松或者是取消约束,如果不降低约束,混凝土的降温会产生非均匀温差,这时就会受到来自地基者其他外部结构上的约束,在混凝土内部产生超过混凝土承受能力的拉应力,经过一段时间后降温收缩就会产生裂缝。结构温差引起的裂缝多会分段出现,但是裂缝贯穿较深,会对混凝土的抗冻、抗疲劳等性质产生严重影响。

3、预制的混凝土结构裂缝。对预制构件进行蒸汽养护时,混凝土的热胀冷缩十分显著,如果降温控制设计不好,降温速度过快,混凝土就会受到构件约束,在表面产生较大的拉应力,引起构件在表面或肋部产生裂缝。

二、施工中的控制与预防

混凝土温度裂缝的产生主要由两个来源。进行混凝土施工设计和具体实施时没有明确的方法可以避免,但是经过大量实践经验的总结,我们还是发现在混凝土施工时采取一些相应的技术手段和维护措施,能对常见的温度裂缝起到控制和预防作用。

1、混凝土温度的控制

第一,混凝土升温的热源是水泥的水化热,在进行混凝土配比时尽量选择煤灰水泥、矿渣水泥、火山灰水泥或复合水泥等的水化热低的水泥,尤其对于大体积结构施工时,更要优先考虑低度水化热的水泥,这是控制混凝土温度最直接、有效的方法。此外,在满足设计强度的前提下要尽量减少水泥的用量,也可以在混凝土当中掺入粉煤灰来减少混凝土的水化热。

第二,合理选择浇筑方案。在选择浇筑方案时要结合工程的实际情况,可以采用分层、分段的浇筑方案,也可以在混凝土中掺入缓凝剂,减缓浇筑速度。这一方法的核心是加速散热,可以减小浇筑层的厚度,在混凝土中埋设水管来加速散热,只要可以加剧水化热的散热速度,就可以减小温差,避免拉应力产生裂缝。

第三,尽量不要在炎热的天气下进行混凝土施工,在气温较高时要采取适当的降温措施,在混凝土的搅拌水里掺入冰屑;对混凝土原料喷水、冷却、降温;运输时加盖防日晒。

第四,拆模时间要严格控制,尽量维持温度的恒定,如果气温急剧下降,要对浇筑表面采取保温措施,防止各种温差过大导致拉应力较大而产生裂缝。

2、改善约束条件

第一,基础不宜过大,对工程建设中的混凝土结构要进行合理分块,这样约束条件就降低了,当温差出现时,混凝土所受的拉应力不致过大引致起伏。工程建设的施工工序要经过严格的安排,合理的施工工序可以避免部分混凝土冷却后出现高差过大或者侧面长期暴露的问题。

第二,严格控制凝土拆模的时间。施工过程中为了提高模版的周转率可能会让混凝土尽早拆模,但是拆模时间必须老虑到气温变化。新浇筑的的混凝土表面在水泥水化热的作用下产生很强的拉应力,混凝土的表面温度高于气温,早期拆除模版会使表面温度骤降,这样表面就会有附加拉应力,加剧了裂缝产生,并且水化热不断散失,混凝土冷却后收缩会使得拉应力加剧。

3、掺入外加料

木质素磺酸钙相对水泥颗粒有更好的分散性,木质素磺酸钙还可以降低水的表面张力,配置混凝土时适量加入木质素磺酸钙,能明显改善混凝土的和易性,减少水凝的使用量,从而降低水化热,此外它还可以增加混凝土的强度,把28d的混凝土强度至少提高10%。

另外,粉煤灰也是很好的混凝土外加剂,在用水量不变的情况下,粉煤灰对混凝土的和易性具有显著的改善作用,所以配置时加入适量的粉煤灰可以节省水、水泥用量,减少水化热,提高混凝土结构强度,控制混凝土温差,防止裂缝产生。

三、结语

混凝土裂缝产生的原因相当复杂,本文着重探讨了温度与裂缝产生的联系,并且提出了一些控制混凝土温度与裂缝的措施。水泥的水化热在温度裂缝的产生中有重要作用,温度裂缝作为混凝土施工中最为普遍和典型的问题,对建筑等的影响巨大,轻则影响到美观,重则影响安全,温度裂缝的研究必须得到我们足够的重视,在混凝土施工时我们要采取科学有效的措施,控制和预防混凝土工程中的温度裂缝,保证工程的安全可靠。

参考文献:

[1]陈代渝.关于混凝土施工温度与裂缝问题的探讨.建材与装饰,2012(16).

[2]罗建刚,李亚.混凝土施工温度与裂缝预防措施.水科学和工程技术,2012(4).

篇(5)

2.水利施工中的混凝土裂缝控制措施

2.1根据当地的气温情况,调节混凝土的施工条件

在水利工程建设当中,混凝土的施工要积极根据当地的气温变化,调节混凝土的施工条件。与此同时,也要积极依据混凝土自身所存在的特性,充分考虑施工过程中的实际情况,制定合适的施工方案,控制混凝土的裂缝问题,提高混凝土的质量。在甘肃地区,由于地处我国西北,夏季气温炎热干燥,昼夜温差较大;而冬季由于受西北风的影响,气温特别低,这给当地的混凝土施工制作带来非常严重环境气候困扰。例如,在混凝土浇筑时,常常会发生混凝土模版变形等问题,水利施工建设单位要积极安排专门的混凝土施工看护人员对模版进行看护,及时了解和发现混凝土模板的情况,当混凝土出现变形和位移现象时,要立即停止缓凝土的浇筑,并对模板进行修理和恢复。在夏天高温的季节,混凝土施工的浇筑入模温度应控制在25℃以下;而在冬季,由于甘肃地区气温特别低,在混凝土施工的过程中,要充分注意混凝土施工过程中的保温。在混凝土浇筑时,入模的温度不能低于10℃。因此,在当地的混凝土施工制作过程中,要积极根据施工现场的环境气温,合理调节混凝土的施工条件,这样才能够有效控制混凝土的裂缝现象,保证水利施工当中的混凝土质量。

2.2混凝土材料的选择和配比

混凝土的质量与混凝土施工材料的选择有着非常重要的关系,其材料使用的正确与否,直接关系到整个水利工程的施工建设安全。所以,在水利工程混凝土的施工制作中,要加强对混凝土掺杂料以及水泥的管理,保证混凝土制作材料的质量。由于在混凝土制作过程中,水泥的水化反映,会释放出大量的热量,造成混凝土内外温差的增大,从而使得混凝土产生裂缝。所以,在混凝土制作中,要合理地选择水化热量较低的水泥。除此之外,还可以在混凝土的制作中,尽可能地减少单位水泥的使用量,水泥的强度等级要与混凝土强度的等级保持相同,不要选用强度过高或者硬性的水泥。在混凝土骨料的选择中,也要严格按照国家相关的骨料使用的相关标准,选择合适的骨料。与此同时,也要保证混凝土原材料的配比符合国家的混凝土制作的标准。另外,增强混凝土的抗压性能够有效减少混凝土裂缝的产生。因此,混凝土施工制作人员可以通过加强对混凝土的振捣,增加混凝土的密实度,从而控制混凝土裂缝的产生,提高混凝土的质量。

2.3积极开展混凝土养护工作

混凝土的后期养护工作,对控制混凝土裂缝的产生有着非常重大的意义[3]。所以,施工单位要在混凝土的养护工作中,使混凝土的内外温度保持平衡,以免因混凝土内外温差过大而导致裂缝产生。与此同时,也要对混凝土进行浇水,保持缓凝土表面的湿度,以免因混凝土表面水分蒸发过快导致的干缩变形。此外,由于混凝土水泥水化热会产生大量的热量。因此,在养护的过程中,也要让混凝土内部热量得到充分的散发,保证混凝土的耐久度。通过保湿和保温的有效养护措施,能够有效保证混凝土内外温度的稳定,从而使得水利施工中的混凝土裂缝能够得到有效控制。

篇(6)

0.引言

大体积混凝土与普通混凝土的区别表面上看是厚度不同,但其实质的区别是由于混凝土中水泥水化要产生热量,大体积混凝土内部的热量不如表面的热量散失得快,造成内外温差过大,其所产生的温度应力可能会使混凝土开裂。因此判断是否属于大体积混凝土既要考虑厚度这一因素,又要考虑水泥品种、强度等级、每立方米水泥用量等因素,比较准确的方法是通过计算水泥水化热所引起的混凝土的温升值与环境温度的差值大小来判别,一般来说,当其差值小于25℃时,其所产生的温度应力将会小于混凝土本身的抗拉强度,不会造成混凝土的开裂,当差值大于25℃时,其所产生的温度应力有可能大于混凝土本身的抗拉强度,造成混凝土的开裂,此时就可判定该混凝土属大体积混凝土。

大体积混凝土具有结构厚大、浇筑量大,工程条件复杂,且多为现浇超静定结构混凝土,施工技术和质量要求高等特点。因此,除了必须具有足够的强度、刚度、稳定性外,还应满足结构整体性和耐久性要求。[1]建筑工程中温度,作为一种变形作用,在混凝土结构中引起的裂缝有表面裂缝和贯穿裂缝两种。这两种裂缝在不同程度上都属于有害裂缝。一旦温度应力超过混凝土能承受的抗拉强度时,即会出现裂缝。以下本文从大体积混凝土的原材料控制、施工工艺方法控制、裂缝的处理措施三方面进行论述:

1. 大体积混凝土的原材料控制

混凝土内部的温度与混凝土厚度及水泥品种、用量有关。混凝土越厚,水泥用量越大,水化热越高的水泥,其内部温度越高,形成温度应力越大,产生裂缝的可能性越大。

1.1 应选用低水化热的水泥品种材料。如中热硅酸盐水泥、低热矿渣硅酸盐水泥、大坝水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰质硅酸盐水泥等。

1.2 再有,掺加掺合料。国内外大量试验研究和工程实践表明,混凝土中掺入一定数量优质的粉煤灰后,不但能代替部分水泥,而且由于粉煤灰颗粒呈球状具有滚珠效应,起到作用,可改善混凝土拌合物的流动性、粘聚性和保水性,从而改善了可泵性。 特别重要的效果是掺加原状或磨细粉煤灰之后,可以降低混凝土中水泥水化热,减少绝热条件下的温度升高。

1.3为控制混凝土的入模温度,使其浇筑温度不超过28℃(指混凝土入模振捣后,在50毫米――100毫米深处的温度),要求混凝土搅拌站采用低温井水拌制混凝土,骨科放置在遮阳篷中。避免阳光直晒。现场泵送时,管道用湿毛毯覆盖,常洒水降温。

2. 大体积混凝土施工工艺方法上的控制

2.1就混凝土入仓浇筑的工艺来说,有全面分层法,分层分段法,斜面分层法。全面分层法,强度小,平面尺寸小,入仓强度能满足要求的情况下,采用。 矩形平面尺寸,厚度大,常采用分层分段法,或斜面分层法。

2.2 振动工艺。严格控制振捣时间。混凝土施工中充分振捣可使骨科和水泥浆在模板中得到致密排列,有助于混凝土的密实性和抗裂性的提高。但过分振捣将使粗骨科沉落并使表层混凝土有较大收缩性,水分蒸发后易集聚形成凝缩缝。一般要求振捣手控制在20秒一30秒,或观察混凝土表面不冒气泡且已有部分泛浆即可。对已浇筑的混凝土,在终凝前进行二次振动,可排除混凝土因泌水,在石子、水平钢筋下部形成的空隙和水分,提高粘结力和抗拉强度,并减少内部裂缝与气孔,提高抗裂性。

2.3养护工艺。加强混凝土的养护,这是保证混凝土强度的一道重要工序。认真做好大体积混凝土的养护,采用覆盖一层塑料薄膜和一层麻袋片的方法,由专人负责覆盖及洒水养护,确保7天的养护期。可达到保温和保湿的目的,保证混凝土表面温度不至过快散失而产生表面裂缝,同时可使由混凝土的平均总温差所产生的拉应力小于其抗拉强度,避免产生贯穿裂缝。根据现场温度实测,将混凝土的内外温差控制在25℃以内,较好地防止了尚处在强度发展阶段的混凝土表面产生干缩裂缝。[2]

2.4混凝土表面是外观质量的关键工艺。采用两道木抹和一道铁抹的工艺。第一次采用长柄木抹,主要是将表面挤压平整,使表面的水泥乳浆均匀分布,浆液厚度为3毫米一5毫米。待表面收水时,进行第二道木抹抹面,其作用是赶出表面泌水。二次抹压表面处理,有利于减少混凝土早期塑性裂缝,闭合泌水收缩裂缝。最后一道铁抹需待泌水赶出后,方可进行。将表面砂粒压入浆面,至有青色呈出即可。过度的抹平压光也会使混凝土的细骨料过多地浮到表面,形成含水量很大的水泥浆层。水泥浆中的Ca(OH)2与空气中的CO2反应生成碳酸钙,放出结合水而混凝土表面碳化收缩,导致表面龟裂。

2.5分层测温。《混凝土结构工程施工及验收规范》中规定“对大体积混凝土的养护,应根据气候条件采取措施。并按需要测定浇筑后的混凝土表面温度和内部温度,将温差控制在设计要求的范围内,当设计无具体要求时,温差不宜超过25℃”。为保证工程质量,采取测温手段是必要的,测温孔均匀分布于基础平面,一组设三层,埋设深度自下而上为100毫米、900毫米、1700毫米。在混凝土的升温阶段每2小时测温一次,降温阶段每6小时测温一次。并同时测定环境温度,直至温度稳定为止。[3]

3.裂缝的处理措施 裂缝的出现不但会影响结构的整体性和刚度,还会引起钢筋的锈蚀、加速混凝土的碳化、降低混凝土的耐久性和抗疲劳、抗渗能力。因此根据裂缝的性质和具体情况,我们要区别对待、及时处理,以保证建筑物的安全使用。[4] 混凝土裂缝的修补措施主要有以下一些方法:

3.1表面修补法。表面修补法是一种简单、常见的修补方法,它主要适用于稳定和结构承载能力没有影响的表面裂缝以及深进裂缝的处理。通常的处理措施是在裂缝的表面涂抹水泥浆、环氧胶泥或在混凝土表面涂刷油漆、沥青等防腐材料,在防护的同时为了防止混凝土受各种作用的影响继续开裂,通常可以采用在裂缝的表面粘贴玻璃纤维布等措施。

3.2嵌缝法。嵌缝法是裂缝封堵中最常用的一种方法,它通常是沿裂缝凿槽,在槽中嵌填塑性或刚性止水材料,以达到封闭裂缝的目的。常用的塑性材料有聚氯乙烯胶泥、塑料油膏、丁基橡胶等等;常用的刚性防水材料为聚合物水泥砂浆。

3.3结构加固法。 当裂缝影响到混凝土结构的性能时,就要考虑采用加固法对混凝土结构进行处理。结构加固中常用的主要有以下几种方法:加大混凝土结构的截面面积,在构件的角部外包型钢、采用预应力法加固、粘贴钢板加固、增设支点加固以及喷射混凝土补强加固。

由于高层建筑、高耸结构物和大型设备基础的出现,大体积混凝土也被广泛采用,大体积混凝土结构的温度裂缝日益成为建筑工程技术人员面临的技术难题。因此广大工程技术人员和管理人员都应高度重视大体积混凝土温度裂缝的控制力争把裂缝降到最低水平。

参考文献:

[1] 江正荣.朱国梁《.简明施工计算手册》. [M].中国建筑工业出版社,1991.

篇(7)

(1)现浇钢筋混凝土楼板温度裂缝和结构裂缝

现浇钢筋混凝土楼板温度裂缝和结构裂缝是两种常见的裂缝形态。现浇钢筋混凝土楼板是指钻孔、模板制立安装、配胶、灌胶、插筋钢筋制作绑扎、浇灌混凝土。从这之中我们可以看到混凝土对于楼板的重要性,但是正是由于混凝土的存在,这种建筑结构也比较容易出现裂缝问题。在建筑结构施工的过程中,由于现浇钢筋混凝土都是在户外施工,所以它受到温差的影响比较大,于是就会出现温差裂缝,温差裂缝不仅出现在施工当中,当建筑物构建好以后也会显现出来。太阳直射东西方向,所以在建筑物的东西方向和楼层顶部由于早晚温差的关系,出现了混凝土人力不可抗拒的热胀冷缩物理变化,裂缝就自然而然的存在了。建筑结构选择现浇钢筋混凝土楼板的一个重要原因就是它的承载能力好,可以节约一些建筑资金,对于消费者来说也降低了购买建筑物的成本,但是由于现浇混凝土在预制的时候绝大多数为孔板,在它改为现浇板后,墙体刚性硬度则相对增大,与之相对应的就是楼板刚性硬度相对减弱,这样就很容易在一些地方出现截面处突变,产生了结构裂缝。

(2)现浇钢筋混凝土楼板的其它裂缝形态

现浇钢筋混凝土除了有温度裂缝和结构裂缝两种最常见的裂缝形态外,还有其他的裂缝形态,这些裂缝形态也颇让人感到头疼。构造裂缝是由氯乙烯在引发剂作用下聚合而成的热塑性树脂(以下简称PVC)管在混凝土厚度不一的情况下产生的。简而言之就是混凝土在形成构造作用力大小不一的情况下发生了变化导致墙体会出现构造裂缝。与构造裂缝相对应的就是收缩裂缝。风化、热胀、冷缩、压实、失水等因素作用下形成的裂缝叫非构造裂缝,即为收缩裂缝,现浇钢筋混凝土在塑性、硬化、碳水和失水收缩的过程中就很容易形成收缩裂缝。人们通常情况下不太理解构造裂缝和非构造裂缝的收缩裂缝,但是消费者在验收建筑物的时候会注意到一些特别形状的物理裂缝。在楼板的缝隙中间和东西方向的墙角会出现类似于四十五度角的倾斜裂缝。在楼道的中间和PVC的填埋处会出现纵横交错的裂缝。不仅这样,在建筑物中还会发现一些不规则的裂缝,这种裂缝类似于蜘蛛网的形状。

2控制裂缝的分措施

现浇钢筋混凝土之所以会出现以上的裂缝,是由于多种原因所造成的,这其中不仅有无法避免的自然物理现象,也有原材料的问题,当然和施工设计也有着重大的关联,我们要控制裂缝,就要从这些方面去入手分析,寻找解决措施,给予消费者一个良好的建筑物。

(1)控制现浇钢筋混凝土的温度裂缝和结构裂缝

正如前文所说,现浇钢筋混凝土之所以会出现温度裂缝和结构裂缝和热胀冷缩的物理现象有着密切的关联。但是我们依然可以控制温度裂缝和结构裂缝,热胀冷缩和物质的比热容以及质量和体积还有温度存在关系。解决现浇钢筋混凝土的比热容问题是非常简单的,只需要运用好的原材料加上合理的材料配制,调制出比热容比较小的混凝土。根据科学研究的钢筋混凝土比热容配方,接着再根据当地的温度差制造小比热容的钢筋混凝土,就可以缩小温度裂缝差。在进行建筑构造时,要充分认识到墙体和楼板之间的关联性,尽量减少结构裂缝带来的不利影响。在进行建筑时应该选用好的原材料,用电子计算机科学的计算墙体和楼板之间承受力的差值,在施工时,先在施工附近种植绿色植物,减少温差的影响,把裂缝的缝隙控制在一定的标准范围内。所以,通过以上的办法就可以解决大的温度裂缝的结构裂缝问题。

(2)控制现浇钢筋混凝土的其它裂缝问题

对于现浇钢筋混凝土所出现的其它裂缝问题,例如构造裂缝、收缩裂缝、倾斜裂缝、纵横裂缝和不规则裂缝。只有解决和减少这些裂缝,人们才能感觉到建筑物的安全。要解决构造裂缝和收缩裂缝首先要预留一定的后浇带,设置隔热保温措施。“后浇带”是在现浇钢筋混凝土形成物理裂缝时,进行第二次浇灌,达到补充的作用,但是有了隔热保温措施,他们在温差变化不大的情况下下不会产生大面积的收缩裂缝。建筑师和建筑工人在建造建筑物时应该有良好的职业道德,对于施工工艺还要有一个控制措施。在PVC的安装和短钢筋网的铺设过程中要小心翼翼,寻找楼道和墙体以及楼板的最合适处,加强施工技巧的使用,使他们的受力方向保持一个协调性和安全性,这样就可以很好的解决屋面出现的纵横裂缝、倾斜裂缝和不规则裂缝问题。

篇(8)

一、裂缝产生的原因

混凝土在现代工程建设中占有相当重要地位。尽管在施工中采取各种措施,小心谨慎,但裂缝仍时有出现。究其原因,我们对混凝土温度应力的变化注意不够是其中之一。在大体积混凝土中,温度应力及温度控制十分重要。主要原因是:

1、在施工中混凝土常常出现温度裂缝,从而影响到混凝土结构的整体性和耐久性;

2、在结构服役期间,温度应力的变化对结构的应力状况具有不容忽视的影响。

二、裂缝的原因分析

工程建设中混凝土裂缝的产生有多种原因,其中主要的原因有混凝土温度和湿度的变化、混凝土自身的脆性和不均匀性、混凝土结构的不合理、混凝土原材料不合格、模板变形以及基础的不均匀沉降等。

其中混凝土内部及表面温度变化是混凝土产生裂缝的主要原因。温度变化是在混凝土硬化期间水泥释放出大量水化热,内部温度不断上升,在混凝土表面引起拉应力。后期在降温过程中,由于受到其他部分的约束又会在混凝土内部出现拉应力。同时,气温的降低也会在混凝土表面引起很大的拉应力。当这些拉应力超出混凝土的抗拉强度时,即会出现裂缝。

三、温度应力的分析

1、温度应力的形成过程

温度应力的形成可分为三个阶段:

(1)早期。自浇筑混凝土开始至水泥放热基本结束,一般约30天。这个阶段的两个特征,一是水泥放出大量水化热,二是混凝土弹性模量的急剧变化。由于弹性模量的变化,这一时期在混凝土内形成残余应力。

(2)中期。自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个时期中,温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形成的残余应力相叠加,在此期间混凝土的弹性模量变化不大。

(3)晚期。是混凝土完全冷却以后的服役时期。在此期间,温度应力主要是外界气温变化所引起,这些应力与前两种的残余应力相叠加。

2、温度应力引起的原因

对于边界上没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。例如:桥梁墩身,结构尺寸相对较大,混凝土冷却时表面温度低,内部温度高,在表面出现拉应力,在中间过程出现压应力。这种应力成为自身应力。结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力。如箱梁顶板混凝土和护栏混凝土。此时的应力称为约束应力。这两种温度应力往往和混凝土的干缩所引起的应力共同作用。要想根据已知的温度准确分析出温度应力的分布、大小是一项比较复杂的工作。在大多数情况下,需要依靠模型试验或数值计算。

3、温度裂缝控制措施

针对上述原因分析,为了防止裂缝,减轻温度应力可以从控制温度和改善约束条件两个方面着手。

篇(9)

中图分类号:TU111.2+2文献标识码:A

砖砌体结构在我国目前普遍使用,在地处粤西山区的信宜,在普通的房屋建筑中,都是在使用砖砌体的围护结构,而裂缝是砌体结构质量中最主要也是最难处理的问题之一,我在平时的施工管理过程中,就曾经遇到过这样的情况,当温度变化幅度较大时,砌体便会产生裂缝。通过不断学习和实践积累,我明白到这是由于温度应力造形超过砌体的正常使用极限时,砌体便会产生裂缝。虽然由于砖砌体结构采用材料的抗拉强度和抵抗变形的能力一般情况下不会直接引起建筑物的破坏,但会影响建筑物的正常使用,例如:墙体风化腐蚀、渗漏、抹灰层脱落和耐久性能的降低等,从而导致建筑物承载能力的降低、整体刚度的减小、抗震性能的降低等,所以在施工过程中一定要注意控制这个问题。这里就这个问题我提出在日常施工管理过程中认识和积累的一些经验和看法。

一、要在施工过程中控制砌体结构的裂缝,首先要清楚出现这个问题的原因和裂缝种类,温度裂缝的种类、成因及特征有下面七点:

(1)、内外纵墙和根墙的“八”字形裂缝。

这种裂缝多出现在每片墙体的端部,而且集中出现在门窗洞口的角部,呈“八”字形。当温度升高时,屋面板伸长比相应砖墙伸长大,使顶层墙体因屋面板的推力作用受拉和受剪。拉应力和剪应力的分布情况大体是:房屋平面中间为零,两端最大,因此墙体的两端部位大多出现“八”字形裂缝,屋面保温隔热层的质量越差,屋面板和墙体的相对位移越大,裂缝越明显。

(2)、窗台出现水平裂缝、斜裂缝。

当房屋的长高比较大,而且室内空间比较宽敞高大的房屋,顶层外墙常在窗台部位出现水平裂缝,窗口出现对角斜裂缝。当温度升高后屋面板伸长对墙产生水平推力,使窗台部位的墙体内侧向外扩展,外墙在水平推力作用下发生侧向弯曲而导致开裂。

(3)、屋面板下面的外墙水平裂缝和外墙阳角的包角裂缝。

这种裂缝出现在屋面板底部,顶层QL底部墙体,门过梁上部墙体,裂缝有时贯通墙厚。当升温时,屋面板对顶层QL及墙体产生推力,降温时,屋面板对墙体产生拉力,墙体抗拉强度不能抵抗水平剪力而导致墙体开裂。

(4)、女儿墙裂缝。

不少房屋女儿墙建成后发生侧向弯曲,女儿墙的根部和平屋顶面交接处墙体外凸或女儿墙外倾,造成女儿墙开裂,房屋的短边裂缝比长边明显。形成这种现象的主要原因是:钢筋砼屋盖和屋面的水泥砂浆面层,在气温升高后的伸长比砖墙大,砖墙相对阻止屋盖结构和水泥砂浆面层伸长,因此屋盖结构和砂浆面层对墙体产生推力导致女儿墙开裂。温差越大房屋越长,面层砂浆越密越厚,这种推力越大,墙体开裂越严重。

(5)、温度裂缝大多分布在顶层,一般楼层分布不多,出现的方式有:墙体水平缝、墙体斜缝和窗角缝。

(6)、温度裂缝的发展特征。

大多数工程在主体竣工时即已出现温度裂缝,但由于未作粉刷与装修,一般不易被发现,大多数在工程竣工2~6个月内被发现,特别是经过夏、冬较大温差之后,但一个冬夏后又逐渐稳定。

(7)、温度裂缝对结构的安全耐久性的影响。

一般不影响安全,但裂缝引起的建筑物渗漏,可能导致钢筋锈蚀,结构承载能力下降,缩短结构的合理使用年限,使其耐久性降低。

二、根据砌体材料的特征和砌体结构的特点,墙体裂缝是不可避免的,但是可以在材料、设计、施工等方面采取综合措施,有效地加以控制。

我在施工实践中,总结出了“防、抗、防”的经验和看法以防止结构裂缝,有的体现在现行的各种规范之中。如《砌体结构设计规范)GB50003―2001的抗裂措施主要有二条:一是第6.3.1条,即防止房屋在正常使用条件下,由温差和墙体干缩引起的墙体竖向裂缝,应在墙体中设置伸缩缝;二是第6.3.2条,即为了防止或减轻房屋顶层墙体的裂缝,可采取设置保温层或隔热层;采用有檩屋盖或瓦材屋盖;增加构造措施等方法。《砌体规范》的其他抗裂措施,如在相关墙体及部位增加钢筋,采用粘结性好的砂浆,不仅针对干缩小、块体小的粘土砖砌体结构的,而且对干缩大、块体尺寸比粘土砖大得多的混凝土砌块和硅酸盐砌体房屋,也是适用的。

但不同地区的气候温度、湿度的巨大差异,所以应有不同的措施。对于温度裂缝的防治措施,一是在较长的墙上设置控制缝(变形缝),这种控制缝是在单墙上设置的缝。该缝的构造既能允许建筑物墙体的伸缩变形,又能通风隔声和防风雨,当需要承受平面外水平力时,可通过设置附加钢筋达到。

结合信宜的实际情况,在设计、施工、材料等方面采取综合措施控制墙体温度裂缝,并提出如下看法:

(1)、建筑物温度伸缩缝的间距除应满足《砌体结构设计规范》GB50003―2001第6.3.1条的规定外,宜在建筑物顶层墙体的适当部位设置控制缝,控制缝的间距宜控制在l0~15m.

(2)、屋盖上设置保温层或隔热层;以减少钢筋混凝土屋盖的温度,达到减少屋盖温度变形总量,减轻板(梁)、墙交接面变形裂缝灾害的目的。目前较多的做法是将屋面由平顶改成坡顶,并从建筑功能考虑,充分利用坡顶层,提高使用率,减少建设单位或开发商成本。

(3)、改进施工工艺与施工技术,组砌按规范接槎,错缝搭接满足施工工艺要求,工程的各种材料必须合格,施工人员的技术应经过培训,砌筑砂浆必须饱满,加强墙体的整体性。顶层砌体及女儿墙砌筑砂浆强度等级不低于M5.

(4)、顶层砌体门、窗洞口加小构造柱、小圈梁,与建筑物构造柱、圈梁连接为整体,以改善应力集中现象,以强度、变形性能优于砌体的钢筋混凝土构件抵抗温度应力,减轻顶层端部门窗洞口开裂现象。

三、温度裂缝治理措施

(1)、对温度裂缝,不要忙于及早治理,等观察一个热胀冷缩周期,裂缝不再产生新的变化时再采取治理措施。鉴定裂缝是否稳定方法:可在裂缝内嵌抹水泥浆或玻璃纸。形态完整无损,说明裂缝已基于稳定,不再有较大发展可能性。

篇(10)

1.混凝土施工建设中形成温度裂缝的主要成因

混凝土施工建设中,在发生硬化阶段中会令水泥释放出较多水化热,令其内部温度持续增加,位于表面形成拉应力。倘若环境温度下降会在表面形成拉应力,当大于混凝土抗拉系数时便会形成开裂。较多混凝土其温度在内部呈现出缓慢低水平变化,然而在表面的湿度范围则会显著激烈的波动。倘若不进行有效养护,令混凝土表面不时出现较干或较湿状况,则由于混凝土内部对各类干缩变形的制约,同样会形成混凝土裂缝。由固有特征来讲,混凝土属于一类脆性用料,即其具备的抗拉强度较低,仅仅为抗压强度的约十分之一,倘若在短时间内急剧施加荷载,则混凝土拉伸的极限变形很小。基于骨料具有波动的水灰比以及分布不均的骨料密度,加之其浇筑处理与运输阶段中会发生离析变化,位于同一混凝土之中具备的抗拉强度同样具有不均衡性,因此包含较多薄弱、易形成裂缝且较低抗拉能力的环节部位。施工建设中应用钢筋混凝土,其主要拉应力作用归功于钢筋,而混凝土材料则主要发挥压应力抵御。在结构基础设计环节中,虽然做出了控制产生较小拉应力或目标要求,然而在实际施工阶段中,由于混凝土会由温度最大值逐步冷却直至稳定的应用温度,因而位于其内部会形成较大拉应力。而浇筑混凝土完成后在逐步硬化阶段中,又会由于水泥水化作用形成较多水化热,并位于大体积混凝土中聚集,很难快速散发,进一步令混凝土内部产生快速上升的温度变化,进而令结构外部与内部形成了显著的温差效应、不同水平的热胀冷缩变化,进而在混凝土表面逐步形成了较大拉应力。一旦其高于混凝土抗拉极限标准,便会位于混凝土表面形成裂缝。工程建设混凝土施工实践中,一旦周围环境温度形成了显著波动,或由于发生寒潮气候令混凝土受到了不良影响,也会令其表面形成了快速的温度降低并引发收缩变化,由于受到混凝土内部的抑制作用,表面收缩在约束下便会产生较大拉应力进而引发了裂缝的形成。

2.混凝土施工中形成温度应力的过程分析

依据形成温度应力的具体过程,我们可进行三类阶段的分析。首先在早期阶段,也就是开始进行混凝土浇筑一直到水泥完成放热阶段,通常会持续三十天时间。该阶段具备两类显著特点,首先是水泥放热过程会产生较多水化热,同时混凝土会产生显著快速变化的弹性模量,并位于其内部产生残余应力。第二个时期为中期阶段,也就是完成水泥放热一直到混凝土逐步冷却并降低到稳定温度水平时期,该阶段形成的温度应力来自于冷却的混凝土变化以及环境温度的波动。第三个时期为晚期阶段,也就是待混凝土冷却至稳定温度以后逐步进入运转阶段,其温度应力来自于外界环境温度的波动。依据产生温度应力影响因素,可将其划分为两种,即自生应力与约束应力。前者在混凝土边界不产生约束,倘若混凝土内部呈现出非线性的温度布局,则会基于自身结构间的约束作用形成温度应力。比如,桥梁施工中具有较大尺寸结构及墩身,在混凝土逐步发生冷却阶段中其表面温度会持续降低,而内部则仍旧呈现出较高的温度水平,因而会在在中间形成一定压应力并在表面形成拉应力。混凝土受到来自于外界的制约无法自由变形时,便会引发约束应力,例如护栏或梁箱顶板施工阶段中,便会形成该应力。

3.有效预防控制混凝土温度裂缝

混凝土温度内部变化同其种类、应用体积以及总量密切相关,倘若体积越大、选择具有高级别水化热的水泥材料,应用总量越多,则会位于混凝土内部形成较高的温度,并引发显著温度应力,提升裂缝机率。就大体积施工混凝土,其产生温度应力则密切相关于尺寸结构,在一定标准中,尺寸结构越大,形成的温度应力便越高,进而提升了产生裂缝的可能性。为此我们可由温度控制与约束条件优化等层面入手实施有效的裂缝预防控制。

3.1?基于温度因素实施控制

通过上述分析,我们可改善优化混凝土级配,合理选择低热矿渣或中热硅酸盐材料水泥,干硬性混凝土,降低应用水泥总量。同时可应用二次搅拌预防混凝土水分位于石子与水泥砂浆界面不良积聚,进而提升硬化界面粘结性与致密度,令混凝土持续强化并降低水泥用量、裂缝及水化热的形成。还可合理加入塑化剂或引气剂等混合料控制水泥用量,提升混凝土粘结性、持水及流动力,并提升泵送效率,抑制水化热大量形成。在炎热天气进行混凝土浇筑施工阶段中可适应性降低浇筑总体厚度,采用埋设水管、实施浇筑面散热措施有效进行快速降温,避免大量温度裂缝产生。在寒冷冬季施工建设时,应采取必要的表面混凝土保温处理,预防寒潮冰冷的不良影响,尤其对于薄壁混凝土结构或板状结构更应采取必要的保温防护措施。

3.2?优化约束条件

对大面积混凝土平板结构,可通过分缝措施降低温度应力,避免裂缝形成。在施工阶段中应有效进行工序安排,通过分块实施分层浇筑降低不良约束,令混凝土快速散热。对于完成浇筑混凝土,应快速实施终凝阶段之前的二次振动,令水分与空隙有效排除,进而全面提升混凝土抗拉性与粘聚性,降低内部气孔与断裂并增强其综合抗裂性。另外对于早期的混凝土养护也不容忽视,应确保其始终处于适宜的湿度与温度环境,抑制干缩与冷缩变化,确保水泥顺利水化,符合设计抗裂与强度标准。为抑制表面的快速热扩散,可实施必要的保温措施,令其温差有效缩短,预防形成表面裂缝。浇筑混凝土施工后,应快速采用麻片、湿润草帘保护,定期养护浇水,提升养护时间,令混凝土缓慢完成表面冷却。

4.结语

总之,混凝土施工阶段中引发温度裂缝形成的因素复杂多样,我们只有深入分析、有效控制、科学养护、全面预防,才能抑制温度裂缝大范围产生,进而巩固施工质量,优化施工效果,全面提升施工建设水平。

免责声明以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。

上一篇: 地质硕士论文 下一篇: 工程造价管理论文
相关精选
相关期刊
期刊推荐 润色服务 范文咨询 杂志订阅