水库管理论文汇总十篇

时间:2023-03-22 17:32:19

水库管理论文

水库管理论文篇(1)

对水库实施加固担负着农业灌溉、居民饮用水、环境治理、农村消防等多重作用,是我国农民生活的基本条件。但是目前我国水库包含很多安全因素,而且缺乏资金投入,同时没有合理的管理制度,因此防汛抗旱工作是目前我国社会建设需要重点关注的。严格的采取管理手段可以给水库加固工作带来很大的帮助。

1.改善水库除险加固管理的必要性

由于水库对于存水灌溉、居民饮用水和防汛抗旱等方面都起着主要的作用,因此其在我国社会建设工作和开展水利工程建设工作时都是至关重要的。通过调查可以发现,小型水库坍塌事件占据了全部安全事件的96%,同时一大部分的事件是在其管理环节产生的,小部分事件是在其施工环节产生的,因此,由于操作不合理而导致的水库安全事件占据了其全部坍塌事件的30%,所以,实施水库加固工作迫在眉睫。能够有效的防止水库坍塌事件的产生,保障水库周边居民的安全。

2.加强水库除险加固施工管理的现状

2.1施工准备工作不充分

实际上,水库加固工作是根据通过很多小的施工项目组合完成的,所以其施工过程极其繁琐,不能实现统一管理,如果未做好相关的施工准备工作,肯定不能保证统一的施工进程,从而导致施工环节很多难题的出现,大大的提升了施工难度。而且,在工程开工之前,通常业主都需要和施工方进行技术交底工作,然后由监管机构按照设计原理图实施相应的审查工作,不过在实际工作中,施工方一般都会忽视这个问题,进而在施工过程中经常出现很多的难题,也在一定程度上延缓了施工进程。

2.2施工管理工作不到位

在开展水库加固工作时,其主要工作包含了施工材料的购买,工作人员的管理和主要施工过程的管理等方面,但是在施工过程中它们却不能得到严格的实施。例如,在购买施工材料时,所购买的材料,要么就是价格太高,要么就是质量不行,根本不能让施工方满意,尤其是购买的一些不合格材料,更是提升了水库坍塌事件的产生率;在人员管理方面,由于多个施工项目分别施工的因素,在施工过程中,就算是部分工作人员违反施工制度,监管机构也不能做到全部查出,进而降低了工程的质量。

3.加强水库加固施工管理的有效措施

3.1做好工程施工前期工作

在对危险水库加固之前需要对其地形和地址开展探查工作。一是需要开展水库大坝的安全审查工作。其审查工作必须要由相关单位实施测量、探查后,再开展讨论。再聘请专家开展场地审查,然后再根据调查报告确定水库产生的问题和安全类型。二是让具有专业性的设计单位对专家鉴定的报告实施研究,然后制定出加固计划、施工、操作管理和施工安全等过程的设计,确保水库加固后可以有效地防止安全事件的出现,让水库可以正常工作,实现其自身的重要作用。

3.2加强工程建设管理

在开展水库加固工作时需要严格实施项目法人制、招投标制和项目建设监管制度。项目法人责任制:水库加固项目建设处法人代表通过小组组长担任,技术负责人是由含有丰富水利项目施工经验的工作人员担任,同时严格根据项目等级、主要程度和技术要求分配工作人员,把项目的质量责任实施分解,让其落实到个人。采用项目招投标制度:为了保证实现项目工程施工建设,一定要采用招投标制,同时施工方资质的审查也是保障工程安全的主要工作。招投标制主要是为了保障社会经济效益和招投标相关人的合法收益,保证项目质量和项目进程。在开展招投标工作时,需要按照公平、公正、公开的原则,要充分体现专业人员评标的作用,拒绝行政干涉行为的出现。投标单位制定的施工方案可以有效的节约资金或者加快施工进程。实施项目建设监管制度:为了保证项目质量和资金的有效使用,一定要实施项目建设监管制度。项目法人可以使用招标等方法确定监管单位,监管单位就可以和施工方共同开展施工,并且一起驻入工地,监管单位需要制订健全的质量管理制度,对每一个施工环节实施严格的管理。

3.3加强完善质量管理的监督体系

根据《水利工程质量管理规定》要求,制定建设单位负责、施工方确保、监管单位管理、政府机构督查的质量管理体系,让质量管理工作真正的实现责任合理分工,而且层层有人抓,处处有人管。项目检验需要由质量督查部门提供相应的审查报告,对发生的质量事件一定要有质量督查部门参与处理,同时还需要核查项目法人单位和监管、设计、施工方的质量体系和实施情况,让质量监管的价值得到充分的体现。

3.4做到安全生产与文明施工

在开展水库加固工作时,一定要在满足安全的前提下施工,建设处需为项目安全监督单位、施工方建设相关的安全管理组织部门,制定有效的安全施工管理制度,分配专业的安全人员,采取有效的安全手段,定时研究项目施工状况,及时找出并解决安全因素。科学管理、文明施工是提升项目质量的主要手段,文明施工对保护环境、提升效率、增多产量、提升质量都起着很大的帮助。施工方要重视对工作人员的思想政治和文明施工教育,加强其法律意识,施工场地内要道路顺畅,场地干净,材料堆放整齐,根据规定开展施工,杜绝不正当操作,努力做到安全生产和文明施工,进而提升了工程质量。

4.结语

综上所述,在开展水库加固工作时,项目质量是项目建设的前提,更是施工方发展和进步的重点环节。项目质量的好坏,不但影响着我国经济的发展,更影响了周边居民的日常生活,所以,在实施项目建设时一定要注重提升其质量。

作者:马晓辉 王金玉 单位:内蒙古赤峰市宁城县发展和改革局

参考文献:

[1]邱集煦.小型水库除险加固工程施工监理浅议[J].海河水利,2010,05:29-30.

水库管理论文篇(2)

扩建工程要在原坝基础上进行加宽、培厚,所以要对基础进行扩宽开挖,对老坝原有砼进行拆除。

施工区岩石为细粒角闪石黑云母花岗闪长岩(T3j)和似斑状花岗岩(T3Q),坝基除微风化~未风化外,尚有部分为弱风化岩,还有(f1,f2)的断层破碎带及断层影响带。

2、开挖主要措施

溢流坝扩建基础开挖采用手风钻浅孔按保护层开挖施工,建基预留50cm保护层进行风镐或人工撬挖,与老坝结合部位采取防震措施,并小药量松动爆破。

下游挑流鼻坎部位大体积砼(桩号0+22-0+26)采取爆破法施工。

2.1.溢流坝扩建基础开挖

爆破施工采用火花起爆方式,毫秒微差导爆管联接,炸药采用乳化炸药。为了减轻爆破地震效应对老坝体的影响,在扩建基础开挖时,距老坝下游边界2米处布设垂直防震孔一排。(该2米范围采用人工撬挖);防震孔直径42mm,间距20cm。施工时先进行距老坝5m以外的下游石方开挖,然后用防震孔做预裂孔进行老坝下游边界25m范围的施工。与老坝体结合部位采取防震措施,并小药量松动爆破。爆破分层高度为1.0m。爆破分区见2-1-1溢流坝段开挖分区示意图。

爆破参数如下表所示:

(1)一般松动爆破参数

浅孔爆破施工采用手提式手风钻打垂直孔,分层高度1.0m,每一爆区沿坝横方向为1m,爆破参数如下:

表2-1-1

钻孔深度

(m)

底板抵抗线

(m)

炮孔间距

(m)

炮孔排距

(m)

单孔装药量

(kg)

总药量

(kg)

1.2

1.0

1.0

0.8

0.30

24

(2)浅孔预裂爆破参数

浅孔预裂爆破包括防震孔兼作预裂孔施工及建基面水平预裂施工。防震孔间距20cm,作预裂孔时装药孔间距为40cm,中间不装药孔作导向孔,按开挖分区每一预裂区预裂长度沿坝横方向为10m,为减轻爆破的地震效应,爆破时分两段进行。爆破参数如下:表2-1-2

孔径

(mm)

炮孔间距

(cm)

不偶合系数

线装药密度

(g/m)

孔口不装药长度

(m)

同段预裂爆破总药量

(kg)

42

40

2.63

225

0.4

3.69

水平建基面预裂施工时,设计水平预裂孔深为1.0m,为减轻爆破地震效应,爆破时分两段进行。爆破参数如下:

表2-1-3

孔径

(mm)

炮孔间距

(cm)

不偶合系数

线装药密度

(g/m)

同段预裂爆破总药量

(kg)

40

50

2.63

240

2.4

2.2.原溢流坝段挑流鼻坎大体积砼拆除

挑流鼻坎部位砼拆除施工时,先沿拆除轮廓线预留20cm处布设防震孔一排,孔距15cm,孔深2.5m,然后进行松动爆破区切断钢筋及钢筋砼的松动爆破,最后利用防震孔作为切割爆破孔进行切割爆破。拆除施工按两作业面分向两岸方向同时进行施工采用ф38气腿式手风钻钻孔,导爆管进行微差爆破控制,炸药采用乳化炸药。该爆破如2.2-1图所示,分为减弱松动爆破区,切割爆破区及凿除区。凿除区为20cm,切割爆破区厚50cm,与凿除区共同组成保留砼在松动爆破时的保护层。其爆破参数如下表:

表2-2-1:

孔号

抵抗线

(cm)

炮孔倾角

孔距

(cm)

孔深

(cm)

装药量

(g)

装药方式

Ⅰ号

50

70°

65

70

225

一节

Ⅱ号

50

70°

65

100

300

一节

Ⅲ号

50

70°

65

140

375

一节

Ⅳ号

50

60°

65

170

375

二节

Ⅴ号

50

60°

65

200

400

二节

切割孔Ⅵ

50

50°

15

250

150

三节

注:切割爆破时切割孔装药间距为30cm。

装药:Ⅳ、Ⅵ号孔采用导爆索下孔二节间隔装药方式。因钢筋处于上部,故上部适当多分配一些药量,由上至下按0.6g、0.4g,堵孔长度为40cm。

联线:导爆管联接分段起爆,控制最大一响药量不超过1.2kg。各排炮孔同段导爆管下孔,各排炮孔间分段微差,其中Ⅰ、Ⅱ、Ⅲ排孔每排3孔共9孔为一组,其中Ⅳ、Ⅴ排孔每排2孔共4孔为一组,Ⅵ排孔(切割孔)5孔为一组,组间分段微差。

起爆:爆破施工时,先进行第Ⅰ、Ⅱ、Ⅲ三排孔施工,然后进行Ⅳ、Ⅴ排孔施工,最后进行Ⅵ排孔(切割孔)施工。每一爆区长约30m。

3、安全监测

3.1.爆破实验

为了保证在新建结构的施工过程中不会对原建大坝产生破坏影响,特别是为了重点保护老坝体上游防渗墙不受破坏(防渗墙仅1m,高18m,桩号0+1.0)。爆破施工过程中委托大连理工大学振动与强度测试中心进行的砼拆除的监测工作,以施工期大坝安全,并根据监测结果调整爆破参数。

爆破实验分别在桩号0+119~0+124、0+124~0+130及0+130~0+135处进行。

3.2.爆破监测结果

在砼爆破拆除过程中进行爆破震动反映实测数据如下:

桩号0+119~0+124段挑流面爆破震动反映实测结果表3-2-1

测点位置

拾振方向

同组最大药量

(g)

爆心距

(m)

最大反映振速

(cm/s)

挑流面底

水平

2100

10

1.9

挑流面中间

水平

18

1.5

闸门底

水平

25

1.0

闸门底

垂直

25

0.8

桩号0+124~0+130段挑流面爆破震动反映实测结果表3-2-2

测点位置

拾振方向

同组最大药量

(g)

爆心距

(m)

最大反映振速

(cm/s)

挑流面底

水平

2700

10

2.4

挑流面中间

水平

18

1.4

闸门底

水平

25

0.8

闸门底

垂直

25

0.6

桩号0+130~0+135段挑流面爆破震动反映实测结果表3-2-3

测点位置

测振方向

爆心距

(m)

反映振速峰值

(cm/s)

同响最大药量

(kg)

备注

爆破点下排水孔

水平

5.5

0.94

1.125

共11响

爆破点侧下排水孔

水平

15

0.86

溢洪面顶

水平

18

0.31

溢洪面顶

垂直

18

0.84

3.3爆破监测结论

通过对英那河水库爆破施工时大坝振动影响的几次监测,大连理工大学振动与强度测试中心工程质量检测报告得出以下结论:

1)爆破影应速度2.0cm/s的指标只相当于Ⅴ度地震裂度,按照该振速指标控制大坝防渗墙的振动幅度,可以保证心墙结构的安全。

2)监测得到的大坝防渗心墙附近最大振动速度响应幅值均小于2.0cm/s的设计限制值。监测的几次爆破方案均为设计合理方案。

3)按照所提供并进行监测爆破方案进行施工不会威胁大坝防渗心墙结构的运行安全。

4、施工质量控制

爆破施工中严格进行施工质量控制,具体措施有:

1).覆盖层放样,平面位置点误差不大于200mm,高程点误差不大于100mm。

2).基岩放样,平面位置点误差不大于100mm,高程点不大于100mm。

3).测量交底,特别重视现场当面交底,将拆除范围、深度及要点交待清楚。

4).专人旁站监督,发现问题及时解决。

5).对于溢流坝挑流鼻坎大体积砼拆除,先进行砼拆除实验,取得成果后将详细方案交监理工程师审批后实施。各道质量层层把关。

6).孔位布置、钻孔角度、孔径、孔深都严格按爆破设计要求进行。

7).钻孔完毕后先清除孔内岩粉,并保护好孔口,检查合格后装药。

8).炮孔装药、堵塞、爆破网络联接严格按爆破设计早先,严格检查最磊一响药量。

5、结语

1).砼拆除及扩建基础开挖采用控制爆破工艺,有效地加快了施工进度,提高了工程施工质量。

2).在砼拆除实验中分别进行先预裂后松动法及先松动后切割法施工。从爆破监测及现场爆破效果看,先松动后切割法施工既有利于减轻爆破地震效应,且施工时易于操作控制。在以后类似工程中当优先选用。

3).在起爆方式上,同时起爆虽然爆破效果好,但是装药量大,爆破震动影响大;该工程采用毫秒微差导爆管联接,分段微差起爆,起爆时不断创造了辅助临空面,提高能量利用率,起到了减震作用,并且改善破碎块度,提高了清碴装车效率。

4).砼拆除施中用斜孔爆破,有效提高了能量的利用率。但在施工过程中一定要严格控制孔的斜度,及钻孔深度。

水库管理论文篇(3)

1三峡库区水环境状况

1.1库区江段污染源现状

1998年,库区各类污染源进入长江的CODCr81.9万t,BOD515.1万t,NH3-N1.6万t,TN13.9万t,TP0.9万t,Oil462t,Φ-OH(酚)112t,TCu3.5t,TCr3.8t。调查研究表明:影响三峡水库水质的主要因素依次为干支流入库污染负荷、三个重点城市(重庆主城区、涪陵区和万州区)排污负荷量。这些主要因素的控制,对库区水质改善起关键作用[6]。

多年污染情况调查资料显示,库区江段主要污染物为CODCr,NH3-H等。三峡库区污染源主要是城市生活污染源、工业污染源和农田径流[7]。由于库区江段的社会经济在空间上形成以重庆主城区、涪陵区、万州区以及沿江县城为中心的密集型发展态势,因而也形成了以沿江城镇为中心的污染源集中排放区域。1998年库区工业及城市污水CODCr的年排放量为16.69万t,其中重庆主城区排污量约占库区江段排污总量的65%,涪陵区和万州区分别占排污总量的10%和6.4%,只有18.6%的污染源来自库区江段的其余城镇。

1.2库区江段水质状况库区污染物排放总量,与长江径流量相比较而言较小,因而江段总体水质良好。多年常规水质监测资料统计结果显示,库区江段主要水质指标的断面平均浓度一般低于地表水Ⅱ类标准浓度,仅在排污集中的重庆主城区、涪陵区和万州区的个别断面水质综合评价出现Ⅲ类,在一些大的城市排污口附近,已经出现明显的岸边污染带,局部区域水质污染严重,出现了超Ⅳ类、甚至超Ⅴ类的水体,主要污染指标为CODMn、NH3-N等。

由此可见,尽管三峡库区总体水质良好,但是局部区域水质不容乐观。

1.3三峡库区水污染治理状况

1997~1999年国家计委主持编制了《长江上游水污染整治规划》,规划范围从重庆市巫山县到四川省宜宾市的长江干流以及嘉陵江、沱江、乌江等主要支流下游地区,规划总面积12.47万km2。规划的重点地区是重庆主城区、万州、涪陵、泸州、宜宾、自贡、内江等城市。2001年由国家环保总局主持编制了《三峡库区及其上游水污染防治规划(2001~2010年)》,规划范围包括三峡库区和重庆主城区20个区县市、影响区42个区县市、上游地区38个地市的214个区县。规划总面积79万km2。《三峡库区及其上游水污染防治规划(2001~2010年)》与《长江上游水污染整治规划》相比,规划范围扩大,三峡库区部分工程项目规划进度提前。规划存在的主要问题之一是污染物控制或消减方案与水质保护目标之间没有输入响应定量关系,缺乏总量控制的技术支撑。另外,即使从行政管理角度提出了污染物总量(如COD)控制指标,但没有把总量分配到江段或污染源上。因此,规划在水环境容量问题上科学依据不够充分,更没有考虑建库后水环境容量的变化问题[7]。

从2002年开始,国家和地方投入巨资,正在按照规划全面展开三峡库区及长江上游水污染的治理工

2三峡水库水环境容量计算条件确定

环境容量的定义,是指水体在一定的规划设计条件下的最大允许纳污量,其大小随规划设计目标的变化而变化,反映了特定水体水质保护目标与污染物排放量之间的动态输入响应关系。因此,为了计算水环境容量,首先必须确定规划设计条件,包括水功能区划和水质保护目标、设计水文条件、排污口位置、控制污染物指标和上游来水水质状况等条件。

作者提出:针对长江的水污染特点,水环境容量计算须分为总体环境容量和岸边环境容量。总体环境容量是以一维水质模型计算的断面平均浓度控制的水环境容量;岸边环境容量是二维水质模型计算的岸边排污混合区控制情况的水环境容量。

本文以1998年专题调查的库区污染源和水质状况代表三峡水库现状水质,2010年为水质规划设计年。用库区干流朱沱断面、嘉陵江北碚断面和乌江的武隆断面作为三峡水库上游入库控制断面。总体环境容量研究范围包括长江干流和两条重要支流嘉陵江和乌江(汇入流量占库区支流总流量93%的两条重要支流),其中,库区干流从重庆上游的朱沱到三斗坪,全长约730km;嘉陵江从北碚至长江汇流口,全长约60km;乌江从武隆至长江汇流口,全长约68km;库区内其他江段内的支流将以源汇方式考虑其对水库水流水质影响。在总体环境容量计算结果的基础上,岸边环境容量研究重庆主城区、涪陵城区和万州城区3个重点城市江段。

水环境容量计算的水质控制指标确定为COD/{Mn/}和NH3N。

2.1水环境容量的计算原则、设计水文条件及水质控制指标

2.1.1计算原则

(1)水库总体水质保持Ⅱ类。经国家批准的《长江三峡水利枢纽环境影响报告书》中明确指出:水库建成以后总体水质①应满足Ⅱ类水标准。考虑三峡水库的水质现状以及水体主要功能需求和社会经济发展程度,库区重点城市江段(如重庆主城区、涪陵城区和万州城区)允许局部水域存在Ⅲ类水体。

(2)建库后水质状况不能比现状差。据1998年以前的监测调查,三峡库区干流江段现状水质良好,主要污染物控制指标CODMn和NH3-N的断面平均浓度基本上都低于Ⅱ类水质标准浓度。为能继续保持水质良好,作者提出:三峡水库建成以后库区水质状况既要满足功能区确定的水质类别要求,又不能比现状水质差。现状水质以1998年断面平均浓度值为基准。三峡水库入库主要水质指标COD、NH3-N均优于Ⅱ类水质标准,因此,计算时上游入库水质按维持现状条件设计。

(3)库区江段CODCr排放总量不能超过38万t/年,NH3-N不能超过2.96万t/年。国务院对《长江上游水污染整治规划》的批复意见②为“到2010年,长江上游干流四川省与重庆市交界断面和三峡库区总体水质基本达到国家地表水环境质量Ⅱ类水质标准;长江干流城市江段和主要支流水质要符合国家地表水环境质量Ⅲ类水标准;规划区城市生活污水、工业废水的化学需氧量(COD)允许排放量,重庆市和四川省分别控制在38万t和23万t以内。”因此,三峡库区江段CODCr排放总量应控制在38万t/年以内,并以此作为库区水环境容量计算的依据。假定以1998年库区各江段现状排污量为基础进行库区总量分配,按照等比例分配原则分配2010年三峡库区沿江CODCr允许最大排放量。国务院文件中只提出了CODCr排放总量控制目标,没有NH3-N。三峡库区点源污染负荷主要来自城市生活污水,城市生活污水性质相对比较稳定,而且通常NH3-N与CODCr之间存在一定的比例关系。根据三峡库区1998年实测污染负荷中NH3-N与CODCr的比例以及沿程分布,按照CODCr排放总量控制目标对NH3-N进行同比例控制,折算出三峡库区沿江2010年NH3-N允许最大排放量为2.96万t,见表1。

2.1.2设计水文条件

水文条件是决定水环境容量的最重要因素之一,尤其是三峡库区水文条件年内和年际间变化很大。设计水文条件的确定,反映了水质保护目标的安全系数。根据国内、外水质规划计算规范、结合三峡库区江段水文水质特性,从偏于安全考虑,采用90%保证率连续7d最小流量作为水环境容量计算的设计水文条件,简称7Q10。同时,为了比较三峡水库建成前、后库区环境容量变化,三斗坪水位分别取为相应于7Q10设计流量下的天然河道水位为658m(代表天然河道状况)以及三峡水库建成以后的运行调度水位1686m和三峡水库正常蓄水位175m。

2.1.3水质控制指标

水环境容量计算的水质控制指标为CODMn和NH3-N。在三峡水库水功能区划的工作基础上,围绕三峡水库水环境容量计算所需的计算条件,对库区总体水质(①“总体水质”是一个正式文件使用、具有三峡特色但内涵模糊的概念,对三峡库区“总体水质”理解各不相同,缺乏公认、明确的定义。本文中的“总体水质”是指以断面水质平均浓度来评价的水质状况,“总体水质”对应“总体环境容量”。实际上“岸边水质”对工农业和人民生活更为有用。三峡库区沿岸有二十多个大、中、小城市,即使污水达标排放,也存在一定范围的污染混合区。在用“总体水质”概念来反映三峡水库宏观水质状况的同时,还需要有“岸边水质”的概念。对大江大河来说,“总体水质”不超标,并不意味着“岸边水质”不超标。“岸边水质”对应“岸边环境容量”。②中华人民共和国国务院9号文件“国务院关于长江上游水污染整治规划的批复”,1999年1月25日。)和城镇江段岸边水质,提出了更具体的水质保护目标。

(1)总体水质保护目标。按照三峡水库水域功能区划和容量方案拟定原则的要求,三峡水库总体水质按地表水水质标准Ⅱ类水控制,允许库区3个重点城区江段下游一定范围内岸边水域按水质标准Ⅲ类水控制,在满足功能区类别控制的同时,各断面的控制浓度以现状水质(1998年)为基准,作为总体环境容量的水质目标的控制条件。三峡水库水环境容量的水质保护目标与断面浓度控制见表2。

(2)岸边水域水质保护目标。岸边环境容量主要是针对岸边排污混合区的控制而言的。排污混合区在环境管理中定义为认可的污水排放口附近的允许超标区。

排污混合区允许范围的规定,涉及水环境的功能区划、水流条件及排污条件等诸多因素。从国内外的有关资料来看[8],一般都是采用平面面积及其最大长度和宽度来确定。有的也以相对比值来表示:例如面积为水域表面积或河流横断面的百分比;宽度为河宽的百分比;流量为河流流量的百分比等。另外还有一些采用定性或半定量的限定来确定排污混合区的范围。R.L.Doneker和G.H.Jirka[9]介绍了排污混合区的概念、定义及美国一些州对于混合区范围的限定,提出了混合区可用长度、横断面面积或水体体积来定义。对于河流,美国大部分州规定混合区范围不超过河流断面或体积的1/4,有的确定为1/5,在Virginia州仅定义了混合区的长度,在夏季与冬季混合区的长度分别小于平均河宽的1/10或1/5。我国对海域及河口地区的污染混合区允许范围也有规定,但对河流中污染混合区允许范围,目前还没有统一的规定和标准,缺乏可以广泛应用的定量数据,甚至还难以提供准确的定量计算方法。

按照收集的大量实测资料分析,长江干流上较大的污染混合区范围,其长度一般都在100~500m之间、宽度在40~200m以内。建库后的污染混合区的控制标准可以选择长度、宽度、面积3个参数以及3个参数的组合方案。具体组合方案,必须通过水质模型的反运算,将三峡库区一些主要排污口分别按混合区长度、宽度和面积控制,分别计算不同控制条件下污染物的最大允许排放量,来确定合理的污染混合区允许范围。

(3)排污口位置。三峡水库建成以后,大量城镇将要搬迁,排污口位置初步按照库区城镇1998年现状位置和规划设计位置两种分布方案考虑,以排污口现状排污量作为水环境容量计算的分配权重,按照污染负荷等比例分配原则将库区水环境容量分配到各排污口。

2.2水环境容量计算方案

综合以上多种影响因素,最后确定的三峡水库水环境容量计算方案见表3。通过对总体环境容量进行多方案计算分析,提出三峡库区在实际运用中的总体环境容量,在此基础上,计算库区岸边环境容量。

3三峡库区水环境容量计算

3.1总体环境容量计算

3.1.1计算模型

针对三峡水库总体水流水质运动特点,开发研制一维非恒定水流水质数学模型,模拟水库建成前、后的水流水质运动规律。模型充分考虑了三峡水库建成前、后水流条件巨大变化对库区水流水质运动特性的影响,水流水质主要模型参数通过实测资料建立了与水流条件相关的经验关系式,既提高了模型计算精度,又提高模型预测能力[14]。三峡库区丰水期和枯水期两个代表性时段长河段水流水质观测结果[10~13],验证了一维水流水质数学模型具有较高的模拟预测精度,可以作为三峡库区总体环境容量计算的工具。

3.1.2总体环境容量计算

将7Q10设计流量作为三峡入库流量,三斗坪水位分别取658m、1686m和175m,模拟计算库区水流状况,分别代表三峡水库建成前、后的3种代表性水流状况。将水库上游3个入库断面控制浓度作为水库背景水质,设计排污口位置和现状排污量所占比例作为水环境容量分配权重,利用一维水流水质数学模型计算三峡水库在设计水质保护目标下最大允许纳污量。计算得到不同方案下三峡水库总体环境容量和沿江段的分配见表4。

3.1.3计算结果分析

采用一维水流水质数学模型计算的三峡水库建库前、后的总体水环境容量,模拟结果表明:

(1)三峡水库建成前,在7Q10设计流量条件下和现状污染源位置不变情况下,模拟计算的库区江段CODCr指标的沿程浓度可满足水域功能区规定的水质目标要求,NH3-N指标在库区干流和乌江江段满足水质保护目标要求,但重庆主城区嘉陵江江段NH3N需削减30%负荷量后,才能达到功能区所规定的水质目标;(2)三峡水库建成以后,随着水位抬高,水流减缓,污染物在库区滞留时间的延长,污染物自净降解总量将比建库前增大,因而水库建成以后总体环境容量较建库前略有增大。从水质偏于安全和实际管理应用角度出发,可选择三峡库区运行水位1686m和规划排污口条件下计算得到的总体水环境容量,即在设计条件下三峡水库建成以后的总体水环境容量值为CODCr2220万t/年和NH3-N1。66万t/年。

3.2岸边环境容量计算

3.2.1计算模型

以重庆主城区、涪陵区和万州区江段为重点,针对三峡库区不同江段排污口和汇流口混合区特点,分别开发研制平面二维k-ε模型和水平分层的三维紊流模型。平面二维k-ε模型用于模拟计算水深比较浅的重庆江段排污口附近混合区范围,水平分层的三维紊流模型用于水库建成以后水深比较大的涪陵和万州段排污口附近混合区范围。模型在边界处理和参数选取上进行了深入研究,能够模拟复杂边界、自由水面、岸边排放等大范围的混合区发展变化。大量实测资料验证结果表明,建立的两类数学模型均具有较高的模拟精度,能够精细模拟预测排污口附近的复杂水流特点和污染混合区范围[15~25]。

3.2.2局部江段岸边环境容量计算

岸边环境容量是在单个排污口混合区计算的基础上进行的。通过选择三峡库区代表性排污口,计算单个排污口的混合区范围,根据混合区水质保护目标,反推单个排污口最大允许污染负荷排放量。并利用下式计算得到整个江段岸边污染物最大允许排放量,即局部江段岸边环境容量:江段岸边环境容量/江段控制长度=∑排污口最大允许负荷量/∑混合区长度。

3.2.3计算结果分析

(1)在拟定的水质控制目标下,随着库水位升高,除少数排污口外,多数排污口的最大允许排污负荷量减少,各江段的岸边环境容量也随之减少;(2)按现状生活污水排放的CODCr和NH3-N的负荷计算,控制三峡库区污染混合区的水质参数是NH3-N,进行污水处理时,应优先考虑对NH3-N的处理;(3)利用二维和水平三维模型,针对重庆主城区、涪陵城区和万州城区3个重点城市江段的污染混合区,考虑多种不同的污染混合区控制方案组合进行大量计算,长度按照100m、200m、300m,宽度按照河宽1/10以及面积相同等进行组合计算,最终结果表明:单个污染混合区按照长度100m控制较为恰当。在此基础上,江段污染混合区长度按照总长度1/10、1/15、1/30进行组合计算,结果表明江段混合区控制在总长度1/30较为恰当。因此,污染混合区的控制指标为混合区长度。推荐三峡水库污染混合区控制标准为:单个污染混合区控制长度采用100m,江段污染混合区控制长度采用江段总长度的1/30;(4)在同样混合区水质控制目标下,岸边环境容量随库区水位抬高而呈减小的趋势。因此从水质偏于安全考虑,建议将175m水位下用长度控制的岸边水环境容量作为3个重点城区江段的水环境控制容量。见表5。

3.3水环境容量综合方案

从以上总体和岸边环境容量计算结果来看,对于总体环境容量,和建库前相比,长寿江段以下的总体管理环境容量是增加的,而且坝前水位168.6m和175m的环境容量基本相同。对于3个重点城区岸边环境容量,在限定的排污混合区控制标准下,污染负荷的最大允许排放量,必须进行削减。从水质偏于安全考虑,建议建库后三峡水库的3个重点城区城镇江段水环境容量按照175m水位岸边环境容量控制,其他江段则按175m水位总体环境容量控制,得出三峡水库水环境容量综合方案(见表6)。由表6可见,三峡水库建库后水环境容量综合方案为CODCr16.08万t/年、NH3-N0.90万t/年。

4结语

通过本文工作,有以下主要结论:(1)分析了三峡库区的污染状况,提出了三峡水库环境容量的计算原则、设计水文条件和水质保护目标。(2)以CODCr、NH3-N为污染物控制指标,计算了三峡水库建库前后的总体环境容量和岸边环境容量,推荐了三峡水库水环境容量综合方案。结果表明:三峡工程建成后,库区总体环境容量增加,岸边环境容量减少。(3)三峡水库建成以后,为了保护好库区水质,建议对三峡库区污染负荷按照总体环境容量进行控制的基础上,对重点城市江段采用岸边环境容量进行控制。(4)污染混合区的控制指标为混合区长度。推荐三峡水库污染混合区控制标准为:单个污染混合区控制长度采用100m,江段污染混合区控制长度采用江段总长度的1/30。

在水环境容量研究方面还有一些工作需要进一步开展,如重庆主城区嘉陵江段和涪陵城区乌江段岸边环境容量的计算;水环境容量分配原则的完善;允许排污负荷从河段再分配到每个污染源或排污口等。近几年的监测表明,库区江段的TP(总磷)已逐渐成为主要污染物质。三峡水库是否出现富营养化,也引起有关部门和公众的关注。泥沙对污染物的吸附和解吸的影响较大,汛期清浑水样的监测指标差别显著。因此,在今后的水环境研究中还应考虑TP和泥沙的影响等问题。

参考文献:

[1]张永良.水环境容量基本概念的发展[J].环境科学研究,1992,5(3).

[2]夏征农主编.辞海[M].上海:上海辞书出版社,1989.

[3]张永良,等.水环境容量综合手册[M].北京:清华大学出版社,1991.

[4]中国科学院环境评价部,长江流域水资源保护科研所.长江三峡水利枢纽环境影响报告书[R].1992.

[5]长江水利委员会.三峡工程生态环境影响研究[M].武汉:湖北科学技术出版社,1997.

[6]重庆市环境科学研究所.三峡水库水污染控制研究专题报告——长江干流入库断面背景浓度及库区污染源排污负荷现状与预测研究报告[R].重庆:重庆市环境科学研究所,1998.

[7]张玉清.河流功能区水污染物总量控制的原理和方法[M].北京:中国环境科学出版社,2001.

[8]张永良,李玉梁.排污混合区分析计算指南[M].北京:海洋出版社,1993.

[9]RobertLDoneker,GerhardHJirka.TheExpertSystemForhydraulicsMixingzoneAnalysisofConventionalandToxicSubmergedSinglePortDischarges[M].In:USEPA/600/390/012,1990.

[10]李锦秀,黄金池,廖文根,等.三峡库区污染物沿程变化规律模拟研究[A].刘树坤等主编.中国水力学2000[C].成都:四川大学出版社,2000.

[11]李锦秀,黄真理,吕平毓.三峡库区江段纵向离散系数研究[J].水利学报,2000,(8):84-87.

[12]李锦秀,黄真理,等.三峡水库纵向离散系数变化趋势预测[A].刘树坤等主编.中国水力学2000[C].成都:四川大学出版社,2000.490-493.

[13]李锦秀,廖文根.水流条件巨大变化对有机污染物降解速率影响[J].环境科学研究,2001,(6).

[14]黄真理,吕平毓,李锦秀.三峡水库长河段水文水质同步观测研究[A].刘树坤等主编.中国水力学2000[C].成都:四川大学出版社,2000.459-466.

[15]陈永灿,刘昭伟,李闯.三峡库区岸边污染混合区数值模拟与分析[A].刘树坤等主编.中国水力学2000[C].成都:四川大学出版社,2000.501-508.

[16]洪益平,周雪漪,陈永灿,余常昭.重庆交汇江段污染混合特性的数值模拟[A].刘树坤等主编.中国水力学2000[C].成都:四川大学出版社,2000.

[17]江春波,周雪漪,程志强,陈立秋.三峡库区涪陵江段水流及水污染预测[A].刘树坤等主编.中国水力学2000[C].成都:四川大学出版社,2000.

[18]ChenYongcan,LiuZhaowei,LiChuang.TheInvestigationandNumericalSimulationofPollutionZonefortheWastewaterDischargeformFuling[C].PhosphateFertilizerFactoryinThreeGorgeReservoir.2000ChinaJapanJointSymposiumonGreenScienceandTechnology,2000.HongYiping,ZhouXueyi,Chenyongcan,putingDepthAveragedNonlineark-εmodelandforItsProgramDevelopment[J].TsinghuaScienceandTechnology,1999,41(1):1371-1374.

[19]HongYiping,ZhouXueyi,Chenyongcan,putingDepthAveragedNonlineark-εmodelandTechniqueforItsProgramDevelopment[J].TsinghuaScienceandTechnology,1999,41(1):1371-1374.

[20]HongYiping,ZhouXueyi,ChenYongcan,putingDepthAveragedFlowUsingBoundaryfittedCoordinatesandStaggeredGrid[J].TsinghuaScienceandTechnology,2000,5(2).

[21]HongYiping,ZhouXueyi,ChenYongcan,YuChangzhao.NumericalModellingandVerificationofFlowandPollutantMixingCharacteristicsatARiverConfluence[C].2000ChinaJapanJointSymposiumonGreenScienceandTechnology,2000.

[22]李崇明,黄真理.三峡库区典型污染带观测研究(Ⅰ)[A].刘树坤等主编.中国水力学2000[C].成都:四川大学出版社,2000.467-474.

[23]李崇明,黄真理.三峡库区典型污染带观测研究(Ⅱ)[A].刘树坤等主编.中国水力学2000[C].成都:四川大学出版社,2000.474-482.

[24]黄真理,吕平毓,李克峰,李嘉.三峡库区典型污染带观测研究(Ⅲ)[A].刘树坤等主编.中国水力学2000[C].成都:四川大学出版社,2000.483-489.

[25]三峡水库水污染控制研究技术领导小组.三峡水库水污染控制研究总报告[R].2003.

WaterenvironmentalcapacityforthereservoirofThreeGorgesProject

水库管理论文篇(4)

论文摘要:以沈家河水库灌区配套工程为例阐述了中小型水库灌区在配套项目建设中,全面实行项目法人责任制、招标投标制和建设监理制,才能确保工程按计划实施,从而促进了灌区良性发展。

沈家河水库灌区配套工程设计灌溉面积5万亩,是一座以灌溉、防洪、排涝为主的中型灌区工程。为当地社会经济可持续发展提供了重要支撑和保障。但由于灌区配套不完善,已配套渠道年久老化失修,大部分渠道破坏严重,变为土渠,甚至丧失输水能力,致使灌区1.80万亩土地重新成为旱田,其余1.50万亩土地也由于灌区水利用系数低(40%左右),水资源浪费严重,农作物产量低下,灌区效益甚微,极大地制约着当地农业生产和农村经济的可持续发展。

为了认真贯彻落实党中央关于解决“三农”问题重要精神,减轻农民负担,节约用水,理顺农村供水体制和价格机制,确保灌区持续良性发展,根据国家水利部关于发展节水改造库灌区的有关通知。经国家计委与水利部有关负责人来宁夏调研考察,认为该灌区急需改造。灌区改造结合自治区有关指导思想和“以水定产,以调增效,以节保供、以联补缺”的新的治水思路,通过优化调整种植结构和灌区布局,完善水资源合理配置和管理工程设施技术体系,提高水资源利用效率和效益,提高节水型社会生产力为建设目标。灌区改造以发展节水灌溉为中心,依靠科技进步为动力,重点对年久失修干支渠和支渠以下斗农渠道进行改造砌护,提高水资源利用率,扩大灌区面积,减少农民水费支出和增加收入,减轻农民负担,为推进全区节水型社会建设进程提供示范带动和指导。

1项目前期工作

按照“水利工程建设管理办法”及《节水灌溉增效示范项目建设管理办法》的要求,并从沈家河水库灌区的实际情况出发,本着总体规划、分期实施的原则,并结合工程实施进展情况,委托有资质的设计单位先后编制完成了项目可行性研究报告、项目实施方案,经有关上级部门审查批复后,项目建设进入实施阶段。

2项目资金筹措与管理

沈家河水库灌区项目投资来源为中央国债资金、省级配套以及地方自筹。为了确保自筹资金到位,灌区建设项目部要求在工程开工前各县(市、区)项目管理单位必须将自筹资金全部汇入项目部专项帐户存储,集中管理,否则不得办理开工手续。

在资金使用上,为确保工程资金的专款专用,作为项目建设的法人,灌区建设项目部从一开始就实行单独开立帐户,独立核算,专款专用,从而杜绝了截留、挤占和挪用现象。总经费基本上按照上级批复的工程总投资进行控制,单项工程经费在实施过程中根据实际情况有所调整。

3项目的建设与质量管理

3.1实行项目法人责任制

“三制”是规范建设管理行为的根本措施,而实行项目法人责任制则是水利工程建设管理最为关键的一步。为此,项目的主管单位成立了灌区建设项目部为项目法人,全面负责项目的建设与质量管理。

3.2采取招标投标制

按照《中华人民共和国招标投标法》和国家发展计划委等八部委第30号令《工程建设项目施工招标投标办法》规定的程序和要求进行运作。初设批复及完成施工图设计后,灌区建设项目部即进行公开招标。开标、决标均公开进行,整个招标过程邀请纪检监察等部门的领导和专家参加,符合招标工作的程序和要求,保证了招投标工作的“公开、公正、公平”。

3.3实行建设监理制

为了加强国债项目建设管理,提高管理水平,充分发挥投资效益,灌区在落实工程施工单位的同时,也落实了工程监理单位。使得工程的建设与监理同步进行,并要求监理人员素质要高,技术要全面。特别是对工程施工方案及质量要求应有高度的认识,能严格按照监理大纲要求切实履行“三控制,二管理、一协调”。

3.4政府监督、项目部负责与监理控制同步

建设项目接受质量监督站的质量监督,质量监督站对本工程采取巡检抽查等办法进行质监。

灌区建设项目部全面负责工程的质量管理。根据工程点多、线长、面广的特点,为了保证措施有力,工作到位,专门设立了质量管理小组,配备一定技术人员配合监理部进行工程建设监督管理,不定期组织人员对各个工程进行不定期的抽查,并严格把好验收关。

3.5严格合同管理

灌区建设项目部制定了职责分明而严格的合同,合同主要条款均在招标文件中体现,并避免模糊产生歧义。在招标投标的基础上,按规定签订了施工合同和监理合同。合同一经签订均严格执行,使工程造价、质量、工期、付款等有据可查,避免相互推委和扯皮现象发生。

4加强工程建后管理

灌区工程建管统一,项目实施后,要发挥出应有的效益,良好的建后管理必不可少。为此,管理单位除为项目配备了具有事业心和责任感又懂技术善管理的人员负责管理外,在管理手段上积极采用或引进先进技术和设备,提高科技含量。

水库管理论文篇(5)

1.1用马尔可夫过程描述径流

为了计算和应用的方便,将时间序列离散化(即分为若干时段:月),相邻时段存在着依赖关系,以水库来水的3个相邻时段t1、t2、t3间径流关系进行分析。用X1、X2、X3表示3个时段的径流,三者之间的相关情况可分为2种情况:(1)直接相关。即不管X2取值怎样(或不计X2取值的影响)的条件下,X1与X3相关,称为偏相关,其相关程度用相关系数表征,可用数量表示为γ13。(2)间接相关。即因存在着X1和X2、X2和X3之间的相邻时段相关关系,故X1的大小影响着X2的大小,从而又影响着X3的大小。这种相关是由中间量X2传递的,不是直接的,因此叫间接相关。

1.2计算相应条件概率

当一年分成K个时段(月),每个时段的径流以平均值来表示,记作QK(K=1,2,3,……,K)。

应用相关理论分析,可以确定相邻时段径流QK,QK-1(如图1所示)的条件概率分布函QK,QK-1的条件概率分布函数示意数F(QK/QK-1)。其条件概率分布是一个二维分布,用概率理论及水文统计原理来推求径流的条件概率计算式。

图1相邻时段径流

研究相邻时段的径流相关联系时,应用相关系数R及回归方程式求得

(1)

隔时段相关系数则为:

(2)

式中:Q1i,Q2i,Q3i为第i年相邻时段的实测径流值;为平均值;n为径流实测系列年数。本时段径流的相关关系,应用相关中的直线相关,以自回归线性公式来表示:

(3)

式中:σK,σK-1分别为时段tk,tk-1的径流均方差;R1为相邻时段径流之间的相关系数。

相邻时段径流之间应用自回归线性相关时,其间隔时段的径流对回归线的偏离值即误差的分布,经刚性和弹性相关比较后,采用了弹性相关处理方法即偏态分布,按皮尔逊Ⅲ型曲线分布。相应于条件概率的流量QPK可由下式求得:

(4)

式中:条件变差系数,其中Cvk为变差系数。一年划分为K个时段,每个时段的径流划分为M级(即M个状态),则相邻时段的转移概率:Pkij(k=1,2,3,……,k;i,j=1,2,3,……,M)表示的含义是tk-1时段径流为状态i时,tk时段径流为状态j时的概率

而矩阵

(5)

则表示tk-1时段到tk时段状态的转移概率矩阵,显然,这个矩阵的每行各非负元素之和为1,即:

(6)

为了计算Pkij转移概率的方便,取等分的10个概率5%,15%,……95%,这样转移概率的值都为0.1,则相应的条件概率的流量Qpi由式(4)即可求得。

2动态规划

动态规划法是美国数学家贝尔曼提出的,是一种研究多阶段决策过程的数学方法。近年来广泛应用于水资源规划管理领域中

2.1动态规划数学模型

把径流当作随机过程的水库优化调度图的计算是一个多阶段的随机决策过程。它的计算模型如下。

(1)阶段:将水库调度图按月(或者旬)划分成12个相互关连的阶段(时段),以便求解

(2)状态:因相邻两个阶段的入库平均流量Qt和Qt+1之间有相关关系,以面临时段初的库水位和本时段预报径流量Qt为状态变量St(Zt-1,Qt)

(3)决策:在时段状态确定后,作一个相应的决定,即面临时段的供水量qt,同时确定了时段末水位,进行状态转移。水库水位分M级,故有M个状态转移,按0.618法在决策域内优选,对每一个状态变量St要选择一最优供水量qt,St~qt关系曲线为时段t的调度线,决策域为(QDmin,t;Qxmax,t)

对决策变量供水量qt进行所有状态优选计算时,还要进行库水位限制的检查判别,若时段末蓄水量V2大于允许的最高蓄水位或限制水位,则在水库蓄满前供水量仍按qt放水计算,当水库蓄满后则按入库水量供水。当入库水量大于电厂最大过水能力时,超过部分作为弃水

(4)状态转移:水库状态和调度图形式有关,因考虑当时入库径流和短期径流因素,水库调度中将一年划分为K个时段,每个时段由时段初库水位Z初和时段流量Qt组成水库的运行状态,而每一种状态有一个相应的决策变量供水流量qt,用函数关系表示为:

qt=q(Z初,Qt,tk)

(7)

tk为时段数,每一个决策就有一个相应的时段末库水位,水库进行了状态转移,若将水库的水位划分为Z级,径流划分为M级。一个时段的水库面临状态有Z×M种,全年水库运行状态有K×Z×M种,水库优化调度图就是对全年各种运行状态作出相应决策变量的关系图。

由式(7)可知,当时段tk的初始库水位和径流量已定时,时段的最优决策供水量是一个定值,因而下一时段tK+1的初始库水位(即时段tk末的水位)也就是一个确定值。由于下一时段tK+1的径流不是一个确定值,而是依时段tK的径流Qt变化的随机值,其值由条件概率分布函数(弹性相关)决策。因此,水库在时段tK处于状态i,而时段tK+1处于状态j的状态转移概率为Pkij,则有,而矩阵Pk=(Pkij)则表示从时段tK到时段tK+1的水库状态转移概率矩阵,Pk完全由时段tK的调度方式和径流状态转移矩阵决定。经过多年运行后,水库的运行状态达到一个稳定的概率分布

(5)效益函数:水库进行状态转移,伴随着产生了效益函数(包括了工业用水、生活用水、灌溉用水、发电用水及三个保证率)

其中灌溉用水:因灌溉需水量每年、每月、每天都不相同,因此是随机变量,极难编制计算机程序计算,故首次引入《农田水利学》的“有效雨量”概念,使整个优化计算大大简化,完全解决了水量平衡问题,整个优化计算,水量平衡达到100%

有效雨量的计算:从水库灌区试验站获取资料Mij即从1952~1999年历年(i=1952~1999,j为第i年各月(或旬))的灌溉定额(是由历年灌溉试验站实测作物需水量采用通用电算程序计算出的),而Mmax是48年中最枯水年的灌溉定额。Mmax-Mij=P0ij,i=1952,…,1999,j=1,…,12,逐一列表进行计算。把每年每月的有效雨量加到每年每月的来水量Qt中,因Mmax是常数,所以仅有随机变量Mij。其数学表达式如下:Cixj=Aixj-Bixj,即:

(8)

式中Cij为i年系列j时段(月)的有效雨量,aij为i年系列j时段农作物需水量(j可按日计算后归纳成各农作物生长期所需水量,再换算成月)。bij为i年系列j时段各类农作物综合灌溉水量。

(6)目标函数:根据水库水资源不足的具体情况,拟定在满足生活用水和工业用水保证率的条件下,尽量满足农业用水。目标函数可表示为:满足用水量保证率条件下供水量最大。目标函数计算可用下列分段线性函数求得:

f(st,qt)=qt

Qxmax≥qt≥Qxmin

(9)

f(st,qt)=qt+CA(qt-Qxmin)

Qxmin≥qt≥QDmin

f(st,qt)=Qxmax+CE(qt-Qxmax)

QDmax≥qt≥Qxmax

式中:qt为水库供水量,QDmin为系统供水下限,即保证城市生活用水和工业用水的下限;Qxmin为农业保证供水量与QDmin之和;QDmax为电厂的最大过水能力;Qxmax为农业供水量上限与QDmin之和;CE为发电专用水量小于Qxmin时的折算系数,CA为供水量小于Qxmin时的折算系数,在计算中,可先任意假设CA、CE,CA、CE与Qxmin的保证率成正比。给定一个CA、CE就可递推得出一张优化调度图,用水库多年入库流量资料按调度图进行历时操作计算,若计算结果所得保证率低于要求的保证率,则修改CA、CE重新递推计算(一般递推2~3次即可),求得另一优化调度图,再进行历时操作,直至所得保证率符合要求为止。即经过试算选择满足保证率要求的CA、CE值。

2.2动态规划递推方程以qt为t阶段的决策变量,St(Zt-1,Qt)为t阶段的状态变量,则其逆时序动态规划最优递推方程为:

Ft(St,qt)=max{ft(St,qt)+Ft+1(St+1)}qt∈Qtt=1,2,…,N

(10)

式中:Ft(St,qt)代表水库从时刻t处于状态St出发至水库运行终了时刻N(计算周期末)的目标函数值;ft(St,qt)代表时刻t水库处于状态St取供水量qt时面临时段效益期望值;Ft+1(St+1)代表水库从时刻t+1处于St+1(j状态)出发至时刻期间各时段均采用最优决策时所得的效益期望值;Qt表示计算中t时段所用的入库径流序列;pi,j为t时刻采取qt决策,系统由第t阶段的第i种状态St转移为第t+1阶段的第j种状态St+1时的条件概率,Ft+1相应St+1状态最优决策的效益。

递推方程的约束条件如下:①库水位约束Vmin,t≤Vt≤Vmax,t,即各时段的库水位不低于死水位Vmin,t,也不能超过该时段允许的最高蓄水位Vmax,t。②水量平衡约束Vt+1=Vt+(Qt-qt)·Δt-yt-Et,式中Vt+1、Vt代表时段t末、初的蓄水量;Qt、qt代表t时段平均入库径流量和供水量;yt为弃水量,Et为水库蒸发渗漏损失。③供水约束和输水能力约束QDmax,t≥qt≥QDmin,t。t时段内供水量不能超过水轮机的最大过水能力QDmax,t,也不能小于下限QDmin,t

2.3动态规划递推计算采取逆时序逐时段动态规划递推计算,即每时段对所有状态逐一地优选对应的最优决策。对时段的多个入库流量代表值所产生的效益期望值。优选方法采用0.618法,规定搜索点为20个

2.4优化调度图Howard用Z变换方法证明式(10)随年数t增加计算是收敛的,进行递推计算采取逆时序递推,即从N时段开始递推到1时段,只要知道FN(SN)即可按式(10)递推计算。开始可取库水位(库容)~蓄水量关系曲线作为初始递推线FN(SN)。当对第一个时段的所有状态优选出最优决策后,即可往前递推一个时段。当第一年逐个时段全部递推计算完毕后,还要进行第二年周期的递推计算,是因为初始递推FN(SN)是任意假设的,故第一年周期递推所得的策略并非稳定的最优策略,必需继续递推至各时段的递推线均收敛为止,这时所得的策略才是稳定的最优策略。递推线收敛的准则是:前后两年周期中同一时段的递推线相差小于规定的相对误差ε即:

|Ft(Si)n-Ft(Si)(n+1)|/Ft(Si)(n+1)≤ε

(11)

式中:Ft(Si)n代表第n年时段t递推线上相应于状态Si的未来效益值;Ft(Si)(n+1)则是第n+1年时段t递推线上同一状态Si相应的未来效益值,ε取0.001。一般最多递推两年就可以收敛,即可得出12时段或36个时段(旬)的最优调度线。这时各时段的最优决策构成一个最优策略,即为优化调度图。显然,因考虑月(或旬)、相隔月(旬)的相关,即多用了一项概率预报,则相应增加了经济效益。由于采用了马尔可夫单链弹性相关理论对径流进行处理,使水库调度图从二维坐标变成三维坐标,形成空间水库优化调度图,再由调度图换成一组以Qt为参数的方程,递推线也由一条变成一组,即优化调度线由一条线变成一组,形成一族调度曲线图,为便于实际调度时使用。

2.5动态规划计算程序动态规划的计算是一个非常复杂的过程,不同的规划问题,要用不同的计算程序。我们根据最优化(opt)问题的数学模型[2],用VISULC编制了计算程序,用递推方程找出最优解。该程序在PⅡ微机上调试成功,经实践证明其具有功能强大,使用方便,运行速度快等特点,并能自动绘出三维空间水库优化调度图及带有一组参数的调度曲线图。

3应用示例

本方法已应用于山东沐浴、跋山和黄前等几个大中型水库,都取得理想效果。仅以沐浴水库多目标优化调度的应用情况来说明。

沐浴水库位于山东省烟台地区莱阳市,控制流域面积455km2,总库容1.87亿m3。兴利库容1.07亿m3,年平均来水量6900万m3。水库每年向莱阳市供水180.0多万m3,灌溉面积0.93万hm2,水电站分东西电厂,装机容量共为1800kW,是一座具有灌溉、防洪、城市工业、生活供水、发电、养殖等综合利用的大型水利工程。如图2所示。

在沐浴水库优化调度过程中,我们用马尔可夫单链弹性相关理论对径流进行处理,将供水流量作为决策条件,在引入有效雨量的基础上,采用优选迭代试算来满足3个保证率(生活用水保证率、工业用水保证率和灌溉用水保证率)的动态规划算法,协调了生活、工业、灌溉和发电之间的关系。

图2沐浴水库运用系统示意

应用满足用水保证率条件下供水量最大为目标函数合理地解决3个保证率的计算问题;建立了动态规划数学模型[5],利用其优化调度程序计算,计算结果理想,输出了大量的表格,(如表1所示,限于篇幅,仅列一小部分),并自动绘出了水库优化调度空间图及多族调度曲线图(如图3、4所示)。利用优化调度图进行综合调节计算,在几乎不增加投资的情况下,增加了巨大的经济效益。

表1沐浴水库优化调度年序:1月份:8(单位:亿m3)

水位/m

来水量(Q)

0.6396

0.4368

0.3252

0.2591

0.2108

0.1671

0.1269

0.0938

0.0616

0.0295

最优决策水量(qt)

63.00

64.00

65.00

...

81.00

82.00

...

0.02950

0.04650

0.06650

...

0.12262

0.13155

...

0.02929

0.04617

0.06603

...

0.13063

0.05824

...

0.02909

0.04585

0.06557

...

0.12971

0.05784

...

0.02888

0.04553

0.06511

...

0.12880

0.05743

...

0.02868

0.04521

0.06466

...

0.12790

0.05703

...

0.02848

0.04490

0.06420

...

0.12701

0.05663

...

0.02828

0.04458

0.06376

...

0.12612

0.05663

...

0.02808

0.04427

0.06331

...

0.12523

0.05584

...

0.02789

0.04396

0.06287

...

0.12436

0.05546

...

0.02769

0.04365

0.06243

...

0.12349

0.05506

...

年序:48月份:12(单位:亿m3)

水位/m

来水量(Q)

0.0223

0.0170

0.0134

0.0116

0.0107

0.0089

0.0063

0.0054

0.0045

0.0027

最优决策水量(qt)

63.00

64.00

...

81.00

82.00

0.00270

0.01545

...

0.01441

0.01545

0.00268

0.01535

...

0.01535

0.01535

0.00266

0.01524

...

0.01524

0.01524

0.00264

0.0153

...

0.01553

0.01553

0.00263

0.01503

...

0.01503

0.01503

0.00261

0.01492

...

0.01492

0.01492

0.00259

0.01482

...

0.01482

0.01482

0.00257

0.01471

...

0.01471

0.01471

0.00255

0.01461

...

0.01461

0.01461

0.00253

0.01451

...

0.01451

0.01451

依据制定的水库优化调度图即马尔可夫调度图,对1952~1999年共48年水文年度的径流资料进行长系列操作计算,计算结果表明,综合利用水库优化调度后,工业用水保证率为95%,生活用水保证率为97%,灌溉保证率为80.5%;多年平均年发电量为384.7万kW·h。灌溉保证率较常规调节计算的保证率75%增加到80.5%。如维持常规计算的灌溉保证率75%,则灌溉面积可从0.97万hm2扩灌到1万hm2。原沐浴水电站设计书的多年平均年发电量为311.3万kW·h,优化调度后年发电量净增73万kW·h,增加发电量24%。常规水量平衡48年总弃水量为40102.27万m3,优化调度后弃水量大大减少,仅弃水2335.14万m3。

图3水库优化调度空间

图4水库优化调度曲线

4结语

对水库进行最优化调度过程中,须对径流过程进行正确描述,采用马尔可夫单链弹性相关理论对径流进行处理,将供水量作为决策的条件,用优选迭代试算来满足3个保证率的动态规划算法,大大加强了利用优化调度图进行综合调节计算的灵活性和针对性。本方法及计算程序也应用于山东雪野水库、黄前水库等几个大中型水库,都取得了理想效果,实践证明,本方法具有适用性和可靠性。

参考文献:

[1]张勇传.水电站优化调度[M].北京:水利电力出版社,1983.

[2]魏权,等.数学规划与优化调度[M].北京:水利电力出版社,1984.

水库管理论文篇(6)

1.1哈尔滨市磨盘山水库供水工程建设地点在黑龙江省拉林河干流上游,五常市沙河子乡沈家营村上游1.8km处,距河口343km,坝址距哈尔滨市180km;是一座以向哈尔滨市居民生活供水为主,兼向沿线城镇供水,并结合下游防洪、灌溉、环境用水等综合利用的水利枢纽工程。

1.2磨盘山水库为大(Ⅱ)型二等工程,主要建筑物为二级,水库防洪标准设计为100年,校核为5000年。水库设计总库容5.23亿立方米。

1.3磨盘山水库枢纽部分主要包括:拦河坝、溢洪道、导流灌溉洞、供水隧洞及取水塔、水库管理区等。

2、磨盘山水库工程监理检测范围

粘土心墙砂砾石坝、溢洪道、导流灌溉洞、供水遂洞、坝下交通桥、永久1、2、3号路、管理区房建、水文测报工程。

3、检测工作内容

3.1、严格按照有关规程规范检查各项项目的工程质量是否符合设计文件及施工技术规程规范质检测与评定标准的要求。

3.2、工程开工前监理机构监督承包人建立健全质量保证体系,并督促其贯彻执行;审批承包人提交的工艺参数试验方案,对现场试验实施监督,审核试验结果和结论,并监督承包人严格按照批准的工法进行施工。

3.3、检测监理工程师依据业主合同中授予的职责和权限,按照有关工程建设标准和强制性条文及施工合同约定,根据磨盘山水库工程的具体施工质量活动及质量活动的相关人员、材料、工程设备和施工设备、施工工法和施工环境进行监督控制,按照事前审批、事中监督和事后检验等监理工作环节控制工程质量,并制定了切合实际的质量检测和质量控制计划,充分运用科学检测技术和技能有效地开展检测工作。

3.4、抽检和复检施工单位在施工过程中的各项检测资料和成果。

3.5、检查施工单位的质检工作,审核施工单位提出的试验报告,检验报告和质检资料。

3.6、不定期检查施工单位的检测试验室,核查试验室仪器设备配置情况及其率定的计量检验证明。

3.7、参与所监理工程项目的阶段验收(单元及隐蔽工程)的竣工验收,并提供抽检和复检资料成果。

3.8、配合责任监理,作好工程质量的预控和监控工作,及时报告检测中发现的质量问题。

3.9、定期对检测试验资料进行统计分析,提出工程质量阶段检测分析报告。

4、监理检测工作程序

4.1承包人首先对工程施工质量进行自检。未经承包人自检或自检不合格、自检资料不完善的单元工程(或工序)监理机构有权拒绝检验。

4.2监理机构对承包人经自检合格后报验的单元工程(或工序)质量,应按有关技术标准和施工合同约定的要求进行检验,检验合格后方予签认。

4.3监理机构可采取跟踪检测、平行检测的方法对承包人的检验结果进行复合。平行检测的检测数量,混凝土试样不少于承包人检测数量的3%,重要部位每种标号的混凝土最少取样1组;土方试样不应少于承包人检测数量的5%;重要部位至少取样3组。跟踪检测的检测数量,混凝土试样不应少于承包人检测数量的7%;土方试样不应少于承包人检测数量的10%。

5、检测工作实施

5.1磨盘山水库监理检测工作重点是土坝填筑质量控制、溢洪道、引水洞、灌溉洞、土坝防渗墙混凝土质量控制。围绕以上重点,将严格按照有关规程、规范做检测试验工作,以检测各项目的工程质量是否符合设计文件、施工技术规范规程质量检测和评定标准的要求,做到以试验数据讲话,严格、认真、公正把好质量关;同时,依照国家档案管理技术要求作好质检资料的分析整理工作。

5.2对于土坝填筑部分,主要检测重要填筑工序,加强料场控制力度保证坝料质量,紧紧抓住设计指标这个尺度,每填筑一层(数个单元)或一个单元由施工单位质检部门自检,自检合格后,报到监理部,再由监理部人员通过试验手段抽样验证其指标是否达到要求,如合格,由监理部认定后进入下一道工序,如不合格,要求施工单位整改后再检测,直至合格为止;土坝防渗墙混凝土:控制原材料质量,和重要工序的检测。同时监理人员对于土坝填筑部分相关的技术指标按一定频率试验,为土坝提供数据技术资料的支持,以保证填筑质量。

5.3对于溢洪道、引水洞、灌溉洞的砼工程的砼工程质量控制,质量监控人员应本着“预防为主”“过程控制”的原则,由原材料入场着手,每进一批水泥、砂石等立刻进行抽检,及时提供数据技术资料,坚决杜绝不合格品入场;同时对混凝土施工过程进行控制,发现问题,立即制止,并提供技术资料,控制好混凝土质量;对于与混凝土质量相关的技术试验,按质量检测抽样和频率的要求定期试验,为混凝土工程质量控制提供数据技术资料的支持。

5.4在及时完成规程、规范要求的检测试验同时。监理对各工程施工质量进行巡回检查,及时收取各部监理人员的质量信息,做好预控和监理工作,严格审核施工承包单位提出的试验报告、检验报告和质检资料。

6、磨盘山质量检测工作体会

6.1、在水利工程建设监理制中的质量工作是采用科学可靠的跟踪检测手段与重点平行检测为主,防止了单凭主观经验来判断的做法,是监理质量控制的基础工作。保证工程质量的科学依据。

水库管理论文篇(7)

二、漏水水库的特点

修建漏水水库的总目标是尽可能把水土资源拦蓄在陆地上,减少入海的水沙总量,从而增加水资源的总供给量。与普通水库相比,漏水水库具有以下特点:

①充分利用地下空间蓄水,不需要永久性地占用土地;

②避免了普通水库因水面蒸发造成的水量损耗;

③既拦水,又拦土拦肥,可以淤造出优良的农田;

④减少水土流失对下游河道水库的淤塞;

⑤补充了地下水,减轻因地下水位下降引起的地面沉降和海水入侵灾害。

另外,漏水水库也可以像普通水库一样起到临时拦洪作用。当然,它所拦蓄的水不能直接用于发电、灌溉和城填供水等,而只能通过抽取间接利用。

要说明的是,漏水水库并不等于水土流失地区通常修建的淤地坝工程,因为后者往往只拦泥,不拦水,起不到滞洪作用。而且淤地坝总是修建在山沟中,而漏水水库也可以修建在平原低洼地。

总之,漏水水库的基本功能是将地表水转化为地下水,因此,可定义为“促进地表水向地下水转化以增加水土资源供给量的水利工程”。

三、漏水水库的规划设计

1.地形地质条件

漏水水库地层中应有埋藏不深的强透水层,以便尽快地把漏下的水量输送到远处。透水的砂卵石层埋藏过深,无疑将增加漏水井的造价。在石质山区,河床往往就由砂卵石层组成,若在其上筑坝,由坝基潜流很快就会汇入下游河道中,达不到转化为地下水的目标,因而不宜修建漏水水库。

适宜修建漏水水库的地形条件原则上与普通水库一样,即山谷漏水水库宜修建在口小肚大的山谷中,而平原漏水水库则宜修建在河道两侧洼地中。

2.水文气象条件

漏水水库适宜于修建夏季降雨比较集中的半干旱地区,特别是地下水位降低过多的地区。这些地区要满足以下4个条件:①总体上水资源不足;②季节性水资源过剩,不得不排入海中;③蒸发量较大;④地下有足够的贮水空间。具体来说就是华北地区,包括华东北部、东北西部和河南及陕西部分地区。

3.漏水水库的布置

在山区小支流上可以布置出口控制型漏水水库,对于水量比较大的支流,则可以修建梯级拦蓄型漏水水库。漏水水库应当与淤地坝和普通水库综合规划,当地条件适合于建哪种工程就建哪种。

在平原地区,漏水水库可按长藤结瓜型布置,即沿河道两侧的低洼地修建。与一般滞洪区不同的是,漏水水库应当用堤坝围起来以增加蓄水的深度,从而达到较小淹没面积内尽可能多蓄水的目的。当然,水库内还要布置漏水井。

4.库容设计和运行控制

笔者认为,以千年一遇的洪水为标准,即能把千年一遇的洪水全部拦蓄起来的漏水水库为全拦型,低于此标准的为半拦型。在条件允许时,应尽可能增大库容,按全拦型设计,否则只能按半拦型设计。在山区,半拦型漏水水库实际上介于淤地坝和漏水水库之间,仍需要布置泄洪设施以便把超过蓄水能力的多余水量下泄到下游河道。

平原漏水水库的库容则应根据地形条件和淹没损失的情况确定。原则上水库围堤的顶高应与河堤的顶高一致,以便尽可能增大库容。漏水水库的运行方式可分多年一次分水型和每年分水型两类。前一种是遇到较大洪水时就分洪,例如按5年一次的频率计;后一种则每年汛期都要分水入库,以达到减少入海水量的目标。显然,后一种运行方式是以增加淹没损失为代价的。因为以每年两季收获为准,5年分洪一次的损失率为10%,而每年分洪一次的损失率则达到50%。当然,这是粗略估算。实际是每年一次的汛期水位不会太高,淹没区的范围当然要小一些。

漏水水库也可以保留一部分库容作为永久蓄水之用,以满足库区及周边地区用水的需求。

5.主要建筑物

①堤坝

漏水水库以中小型工程为主,且一般修建在覆盖层上,故挡水建筑物应以土质堤坝为主,一般可设计为均质土坝。鉴于漏水水库的特点,其建筑标准可以降低。首先是没有防渗要求,即使是砂卵石,也可以用来筑坝。其次是挡水时间短,一般不超过3个月,黏性土均质坝内不易形成浸润线,上游也没有水位突降问题,坝体的填筑密度及坝坡坡比要求均可以降低。所以,坝体可以采用比较快速低廉的定向爆破法或水力冲填法填筑。采用后一种方法时,可辅以真空抽水让填土加速固结。但是,为了保证渗透稳定性,仍要求采取措施防止产生管涌。

②漏水井

漏水井是漏水水库的关键设施,必须保证其长期运行而不被淤堵。它与土坝中为降低浸润线而设置的排水井不同,必须保证单井有足够的排水能力。单井排水量和井数应以100天内排干库区积水为准,以保证农田的淹没损失只限于秋季作物。井底端应当深入到砂卵石层,但进水口应如何设置,其高程是随库水位而变,还是固定在某一高程上,它的设计和布置方法,均有待进一步研究。

③分水建筑

平原漏水水库与河道之间需要修建分水闸坝。但是,它与常规意义上用于分洪区的分水闸不同,流入漏水水库的水量自动渗入地下,不必等洪水退去时反流入河道,因此它只须按单向流动进行设计即可。最简单的方案是采用混凝土滚水坝,上面用橡胶坝接高,甚至采用自溃式土质子埝加高。对于多年分洪一次的漏水水库,自溃式子埝可能是最简便有效的。

④泄洪建筑

如果受地形地质条件的限制,山区漏水水库不能把来水全部拦蓄而必须以半拦蓄方式运行时,就需要布置泄洪设施,例如,坝顶溢洪道或坝基泄洪洞。小型工程可采用坝顶溢洪加土工布防护的办法。中型工程如在两岸没有条件修建溢洪道,应考虑坝基埋设泄洪洞。如坝基有松软土层,为避免沉降而发生断裂,可以在坝体填筑完成后采用顶管方式修建。

四、需要研究的问题

除了前面提到的漏水井的设计需要进一步研究以外,下面几个问题也值得探讨。

1.已有水库和滞洪区改造成漏水水库

淤积严重而基本失去蓄水功能的山区水库,如有条件可以加设漏水井,使之成为漏水水库,以利用被淹没的土地资源。平原滞洪区,如不加围堤任其泛滥,淹没损失将会很大。如果把比较贫脊的低洼地围起来改造成漏水水库,虽然投资大一些,但可以放心地多次使用,可能还是合算的。

2.减淤和恢复库容

漏水水库也会像普通水库一样逐渐淤塞,有的最终可能要淤废。为了减轻淤积,延长水库的使用期,可以考虑以下措施:①坝底用顶管法加设排沙洞。②用淤积土加高堤坝或堤坝采用边拦蓄边加高的办法。这样,可减少堤坝工程一次性投资的费用。③人工挖泥,挖出的淤泥用于周边地区农田的改良。

五、结语

水库管理论文篇(8)

水库优化调度是一典型的多维非线性函数优化问题,目前常用的方法有模拟法、动态规划及其系列算法、非线性规划等等。这些方法各具特色,但应用中也常有一些问题,模拟法不能对问题直接寻优,动态规划(DP)随着状态数目的增加会出现所谓“维数灾”问题,增量动态规划(IDP)可能收敛到非最优解,逐步优化算法(POA)需要一个好的初始轨迹才能收敛到最优解[1]。因此,这些方法还有待进一步的完善。

遗传算法(GA)作为一种借鉴生物界自然选择思想和自然基因机制的全局随机搜索算法,可模拟自然界中生物从低级向高级的进化过程,GA在优化计算时从多个初始点开始寻优,对所求问题没有太多的数学约束,而且优化求解过程与梯度信息无关[2],因此在多个不同领域得到了广泛应用。而GA在水库优化调度方面GA应用相对较少[3],马光文等[4]使用基于二进制编码的遗传算法对水库优化调度进行了研究。由于二进制编码存在的编码过长、效率低及需要反复的数据转换等问题,畅建霞、王大刚分别提出了基于整数编码的遗传算法[5-6],并将GA与动态规划的计算结果进行了比较。

自适应遗传算法(AdaptiveGA,AGA)使得交叉概率Pc和变异概率Pm能够随个体适应度的大小以及群体适应度的分散程度进行自适应的调整,因而AGA能够在保持群体多样性的同时,保证遗传算法的收敛性。本文根据黑河金盆水库的具体情况,建立了水库长期优化调度的自适应遗传算法模型,并将其与动态规划的计算结果进行了比较。

2.水库优化调度数学模型的建立

金盆水库为多功能水库,其优化调度应使其达到城市供水量最大、灌溉缺水量最小、年发电量最大和弃水量最小等目标要求。但此多目标优化模型如果直接采用多维多目标动态规划或其它方法求解,则可能因为目标、状态、和决策变量较多的占用计算机内存和时间,因而有必要先做适当处理,将多目标问题转化为单目标,再进行求解。考虑到城市供水和灌溉用水要求保证率高,因此将水库优化调度目标定为年发电量最大,而将城市与灌溉供水当作约束条件进行处理。

这样,金盆水库优化调度的目标函数就可以描述为:在满足水库城市供水、灌溉用水和蓄水要求条件下,使水库年发电量最大。

目标函数:F=max(1)

上式中,N(k)为各时段的发电量。

约束条件:

①水量平衡约束:(2)

②水库蓄水量约束:(3)

③电站水头约束:(4)

④水轮机最大过流量约束:(5)

⑤电站出力约束;(6)

⑥城市供水约束:(7)

⑦灌溉供水约束:(8)

⑧非负约束。

其中,Nmin与Nmax分别为电站允许的最小及最大机组出力,Hmin与Hmax分别为电站最小及最大工作水头,qmax为机组过水能力,WCt、WIt分别为第t时段城市和灌溉供水量。DIt为第t时段灌溉需水量,DCt,max与DCt,min分别为第t时段城市需水上下限。

3.自适应遗传算法的实现

在水库优化调度中,水库的运行策列一般用发电引用流量序列来表示,而该序列又可以转换为水库水位或库容变化序列。对于水库优化调度的遗传算法可以理解为:在水位的可行变化范围内,随机生成m组水位变化序列,,…,,其中,m为群体规模,n为时段数,再通过一定的编码形式分别将其表示为称作染色体(个体)的数字串,在满足一定的约束条件下,按预定的目标函数评价其优劣,通过一定的遗传操作(选择、交叉和变异),适应度低的个体将被淘汰,只有适应度高的个体才有机会被遗传至下一代,如此反复,直至满足一定的收敛准则。

3.1个体编码

为简化计算,本文采用实数编码。个体的每一向量(基因)即为水库水位的真值。表示

为:(9)

式中,分别为时段t水库水位的最大值和最小值。m为控制精度的整数,Nrand为小于m的随机数。

3.2适应度函数

在遗传算法中,用适应度函数来标识个体的优劣。通过实践,采用如下适应度函数,效果更好。

(10)

式中为目标函数值,c为目标函数界值的保守估计,并且≥0,≥0。水库优化调度为约束优化问题,关于约束条件的处理,本文采用罚函数法,

(11)

式中,为原优化问题的目标函数值,M为罚因子,Wi为与第i个约束有关的违约值,p为违约数目。

3.3遗传操作

交叉运算交叉的目的是寻找父代双亲已有的但未能合理利用的基因信息。设x和y是两父代个体,则交叉产生的后代为=ax+(1-a)y和=ay+(1-a)x,这里,a为[0,1]内均匀分布的一个随机数。

变异运算通过变异可引入新的基因以保持种群的多样性,它在一定程度上可以防成熟前收敛的发生。具体方法为:个体Z的每一个分量Zi,i=0,1…,n以概率1/n被选择进行变异。设对分量ZK进行变异,其定义区间为(ZK,min,ZK,max),则

=(12)

式中,Rand为0到1之间的随机数,rand(u)函数产生最大值为u的正整数。

3.3参数的自适应调整

遗传算法的参数中交叉概率Pc和变异概率Pm的选择是影响遗传算法行为和性能的关键所在,直接影响算法的收敛性,Pc越大,新个体产生的速度就越快。然而,Pc过大,遗传模式被破坏的可能性越大。对于变异概率Pm,如果Pm过小,不易形成新的个体;如果Pm过大,则遗传算法就成了纯粹的随机搜索算法。自适应遗传算法(AGA)使得Pc和Pm能够随适应度按如下公式自动调整:

Pc=(13)

Pm=(14)

式中,为群体中最大的适应度值;为每代群体的平均适应度值;为要交叉的两个个体中较大的适应度值;为要变异的的个体的适应度值。,,,为自适应控制参数,其变化区间为(0,1)。

综上所述,算法的运算步骤为:

(1)初始化,设置控制参数,产生初始群体;

(2)计算各个体的目标函数,应用(5)式进行适应度变换;

(3)按随机余数选择法对母体进行选择;

(4)对群体进行交叉和变异操作pc和pm分别按式(2)与(3)计算,得到新一代群体;

(5)检验新一代群体是否满足收敛准则,若满足,输出最优解,否则转向步骤2。

4.模型求解及成果分析

金盆水库坝高130米,总库容2亿方。该水库是以给西安供水为主(按照设计年均向西安供水3.05亿方),兼顾周至、户县共37万亩农田灌溉(年均灌溉供水1.23亿方),还有发电、防洪等多功能的大型综合利用水利工程。水库的特征参数为:正常蓄水位594m,死水位520m,电站出力系数8.0,装机容量2万KW,保证出力4611KW,水轮机过流能力32.6m3/s,汛限水位591米,汛期7-9月,以某中水年为例,入库径流已知,用上述算法按年发电量最大求解水库优化调度,结果见表一。

表一自适应遗传算法计算结果

Table1.Resultsbyadaptivegeneticalgorithm

月份

入库水量(108m3)

月末水位(m)

城市需水(108m3)

城市供水(108m3)

灌溉需水(108m3)

灌溉供水(108m3)

弃水(m3/s)

发电流量(m3/s)

水头(m)

出力

(KW)

7

1.5160

572.63

0.3050

0.3050

0.2301

0.2301

20.10

40.04

6437.88

8

1.3178

591.00

0.2898

0.2898

0.2196

0.2196

24.75

68.87

13637.35

9

0.6973

591.00

0.2593

0.2593

0.1342

0.1342

26.90

77.50

16679.24

10

0.8464

594.00

0.2410

0.2410

0.0000

0.0000

30.05

78.69

18918.95

11

0.2063

589.33

0.2349

0.2349

0.0879

0.0879

12.47

76.88

7667.76

12

0.1963

587.96

0.2257

0.2257

0.0440

0.0440

10.08

75.26

6069.95

1

0.1513

585.61

0.2257

0.2257

0.0000

0.0000

8.43

73.38

4947.77

2

0.1260

582.23

0.2349

0.2349

0.0000

0.0000

9.72

70.31

5467.50

3

0.3000

581.54

0.2410

0.2410

0.0810

0.0810

12.20

68.38

6673.10

4

0.3732

581.75

0.2440

0.2440

0.1206

0.1206

14.07

68.14

7671.54

5

0.2373

561.68

0.2593

0.2593

0.0226

0.0226

31.83

59.00

15023.79

6

0.1776

520.00

0.2898

0.2898

0.2900

0.2900

32.56

32.06

8350.21

注:年发电量E=8608.3万KW·h;POP=100;Gen=200;==0.85;==0.01。

作为比较,本文又使用了基本遗传算法(SGA)、动态规划法(DP)进行计算,其目标函数、约束条件完全相同。对应的计算结果见表二,其中,DP的离散点为300。

表二动态规划及基本遗传算法计算结果比较

parisonofResultsofDPandSGA

月份

动态规划(DP)计算结果

基本遗传算法(SGA)计算结果

月末水位(m)

弃水(m3/s)

发电流量(m3/s)

水头(m)

出力

(KW)

月末水位(m)

弃水(m3/s)

发电流量(m3/s)

水头

(m)

出力

(KW)

7

572.5

20.23

39.95

6466.38

572.65

20.08

40.05

6433.56

8

591

24.62

68.82

13553.20

591.00

24.77

68.88

13650.11

9

591

26.90

77.50

16679.20

591.00

26.90

77.50

16679.24

10

593.5

30.02

78.72

18905.40

594.00

30.05

78.69

18918.97

11

588.5

13.10

76.68

8037.72

589.33

12.46

76.88

7663.79

12

586.5

10.53

74.83

6303.83

587.96

10.09

75.26

6075.39

1

584.5

8.79

72.28

5084.92

585.21

8.85

73.20

5180.34

2

581.5

9.82

69.17

5434.83

581.83

9.88

69.90

5524.98

3

580.5

12.46

67.30

6706.82

581.04

12.39

67.93

6733.84

4

580.5

14.40

66.90

7705.63

580.87

14.66

67.46

7911.34

5

562

29.42

58.24

13706.00

561.62

30.56

58.38

14273.88

6

520

0.32

32.60

32.31

8426.54

520.00

32.50

32.02

8323.96

注:DP年发电量8568.9万KW·h;SGA年发电量8581.3万KW·h,POP=100,Gen=200。

比较表一和表二可见,动态规划在控制精度为0.5m时,优化结果为8568.9万KW·h,低于SGA的8581.3万KW·h和改进本文算法的8608.3万KW·h,主要是因为DP的离散点数较后两类算法少。为了说明本文算法的优越性,将其与SGA在不同的进化代数时分别进行10次计算,结果列于表三。

表三不同进化代数的两类算法年发电量比较比较

parisonofResultsoftheTwoAlgorithmsinDifferentGeneration

编号

本文算法(AGA)

基本遗传算法(SGA)

Gen=200

Gen=500

Gen=200

Gen=500

1

8607.1

8596.8

8374.1

8594.2

2

8597.5

8607.2

8581.6

8571.9

3

8604.7

8612.7

7957.2

8433.1

4

8601.2

8603.5

8593.4

8475.3

5

8596.6

8595.4

8599.1

8596.2

6

8606.8

8607.2

7837.2

8608.4

7

8608.3

8608.4

8365.9

7892.1

8

8525.4

8611.3

8521.5

8592.6

9

8605.9

8551.6

8575.3

8610.3

10

8603.4

8603.7

8121.6

8441.2

注:表中年发电量单位为万KW·h。

从上表可以看出,随着进化代数的增加,两算法计算结果都越接近最优解;无论是自适应遗传算法还是基本遗传算法,其计算结果明显优于动态规划;在进化代数相同时,AGA的计算结果优于SGA,并且未收敛次数也有明显减少,表明AGA能够有效加快收敛速度。

5.结论

本文建立了水库优化调度的自适应遗传算法模型,并将其用于黑河金盆水库优化调度。与动态规划相比,遗传算法能够从多个初始点开始寻优,能有效的探测整个解空间,通过个体间的优胜劣汰,因而能更有把握达到全局最优或准全局最优;自适应遗传算法通过参数的自适应调整,能更有效的反映群体的分散程度以及个体的优劣性,从而能够在保持群体多样性的同时,加快算法的收敛速度。

ApplicationofAdaptiveGeneticAlgorithmstotheoptimaldispatchingofJinpenreservoir

FuYongfeng1ShenBing1LiZhilu1ZhangXiqian1

(1Xi’anUniversityofTechnology,Xi’an710048,

2HeadquartersofHeiheWaterDiversionProject,Xi’an,710061)

AbstractBasedontheanalysisofthecharacteristicsituationofJinpenreservoir,acomprehensiveoptimaloperationmodelisdevelopedwithconsiderationofitsmulti-objectiveandnonlinearfeatures.Themodelissolvedbythethreemethodsofdynamicprogram,thesimplegeneticalgorithmandtheadaptivegeneticalgorithm.Itisshowedthattheadaptivegeneticalgorithm,withthecharacterofitsparametercanbeadjustedadaptivelyaccordingtothedispersiondegreeofpopulationandthefitnessvalueofindividuals,hasthefastestconvergencevelocityandthebestresultcomparedtoothertwoalgorithms.

Keywords:optimaloperation;geneticalgorithms;dynamicprogram

参考文献

[1]方红远,王浩,程吉林.初始轨迹对逐步优化算法收敛性的影响[J].水利学报,2002,11:27-30.

[2]潘正君,康立山,陈毓屏.演化计算[M].北京:清华大学出版社,1998.

[3]RobinWardlawandmohdSharif.Evaluationofgeneticalgorithmsforoptimalreservoirsystemoperation[J].WaterResour.Plng.andMgmt.,1999,125(1):25-33.

水库管理论文篇(9)

经过反复论证分析,决定采用高喷灌浆技术对该水库进行除险加固。

二、高喷灌浆防渗板墙施工设备及施工工艺

1.施工设备

主要施工设备为:造孔系统、高压水系统、压缩空气系统、制浆供浆系统、提升喷射系统和检测系统。

2.施工工艺

高压喷射灌浆施工工艺流程见图1。

根据设计防渗板墙施工轴线和孔距确定孔位,并作好地面桩标记。钻头φ150mm,泥浆护壁,泥浆材料为钙质膨润土、黏土、黄土、细砂等。搅拌浆液采用联合搅浆机制浆,泥浆泵供浆,要求浆液拌合均匀,比重稳定。浆液材料为纯水泥浆,水泥为普通硅酸盐水泥。

喷射灌浆,将高喷管下入到孔内,按造孔记录及设计板墙底线控制下入深度,然后启动高压水泵、空气压缩机,搅浆机供浆,同时全面检查各管路是否封闭,水、浆、气压力及流量是否符合设计参数要求,喷射管的喷射方向是否对正。启动设备3min后,待水泥浆从孔口返浆,再按设计提升速度开始提升。喷射灌浆结束后,进行静压回填灌浆,至液面不析水、不下沉为止。

三、用围井试验确定施工参数

1996年在坝后的地质条件与坝址相近的地段做了一个五边形试验围井,围井边长1.2m,孔深11.1~15.06m,其中土层厚3.7m,砂砾石层厚6.8m,基岩平均埋深10.5m。

试验中对不同地层的提升速度、摆动角度及水、气、浆等各项技术参数进行测试,凝固14d后,进行注水试验,然后全部挖开检查,发现板墙喷射均匀,连接牢固。其中土层高喷墙体厚度5~7cm,喷嘴双面有效长度6.55~7.4m;砂砾石层摆角形成墙体厚度30cm以上,双面有效喷嘴喷射长度为2.7~3.0m,全部满足设计要求。

经研究论证后确定:高喷板墙孔距为1.1m,灌浆轴线与喷射轴线夹角为30°,墙体采用折线连接,砂砾石层和土层全部采用摆喷,摆角为25°。钻孔孔斜率必须小于1%,墙体厚度大于20cm,墙体强度大于70MPa,墙体渗透系数小于A×10-6cm/s。

四、高喷防渗板墙的施工

二道河子水库除险加固的主体工程为高压喷射灌浆防渗板墙。1996年完成了37m试验段的施工,1997年又完成了另外37m及50m试验段。1998~2000年,防渗板墙的施工全面展开,3年间进行了564m设计轴线高喷防渗板墙的施工,共计完成钻孔626孔,钻孔总进尺为24777.14m,灌浆总延米为19532.58m,共使用水泥13441.5t。

该防渗板墙设计采用折线连接,分两序孔进行施工,第一序孔造孔及喷射灌浆完毕,等待14d后,再进行第二序孔的造孔及高喷灌浆的施工。具体墙体连接见图2、图3。

五、特殊情况处理

1.漏浆处理

在二道河子水库大坝高喷灌浆防渗板墙的施工中,有很多孔发生了漏浆现象,说明大坝基础存在严重的集中渗流区及流沙区,对水库大坝的稳定十分不利。因此发生漏浆时,视严重程度采取了停止提升或放慢提升速度的办法,让漏浆地层充分灌满水泥浆,从而达到灌浆的目的。在二序孔的钻孔中,取出了固结良好的类似混凝土的水泥芯,因而用此方法处理漏浆切实可行。

2.孤石处理

水库管理论文篇(10)

小型水库在当地国民经济发展中发挥了重要作用。但是由于陕西省大多数水库建于20世纪50年代后期至70年代初期,在此期间修建的小型水库达731座,占小型水库总数的73.62%,多属“三无”或“三边”工程,因此,小型水库存在很多问题,主要表现在六个方面:

一是病险率高,病害严重。据统计,现有小型病险库322座,占小型水库总数的34.5%,占病险水库总数376座的85.64%。防洪标准低、大坝渗漏、裂缝和坝坡滑塌等问题普遍存在。全省有114座小(1)型水库和208座小(2)型水库的防洪标准达不到部颁除险加固近期非常运用标准。

二是工程设施不配套或不健全。很多小型水库“三大件”(即大坝,泄、溢洪设施和输水设施)不全,不少水库无溢洪道,或溢洪道的标准与工程规模不相符,只有输水流量很小的放水洞。

三是由于没有正常经费来源,致使工程设施老化失修严重。

四是缺乏大坝安全观测、水情测报和防汛抢险设施,工程盲目运行,极易失事。五是淤积严重,抗洪能力降低,效益锐减。陕西省水土流失严重,多数水库未建排沙洞,造成库内大量淤积。据调查,全省小型水库已淤积库容约2.55亿m3,占小型水库总库容的27%,其中部分水库基本淤满。六是管理工作薄弱,特别是乡村管理的水库,日常管理和养护工作无人负责,安全管理责任无法落实。

二、小型水库安全管理存在的主要问题

1.小型水库安全管理的责任主体不明晰,当地政府行政首长负责制未落实,重建轻管思想依然很严重。尤其是乡镇和村组管理的水库,大都未落实安全管理责任人,部分水库甚至无人管理。这样一来,势必形成水库安全管理的责任无法落实,安全问题仍然无人负责。

2.水库管理的体制不合理、机制不灵活。国有水库管理单位虽属事业单位,但无经费来源。少数与财政挂钩的实行差额或定额补贴,而绝大多数实行自收自支;集体管理的水库,随着农村改革的不断推进,加之产权不明确,责、权、利未能有机地联系起来,导致管理变成了一句空话。

3.管理经费没有着落,管理单位亏损经营,难以为继。由于地方财政困难,很多国有水库得不到财政支持,加之水价不到位、计收环节多、计收率低及无其他收入来源,绝大多数水库管理单位入不敷出,甚至连职工工资都发不出来。

4.病险水库多,管理负担重。水库病险的存在,既影响水库效益的发挥,也降低了水库的防洪能力,而且威胁下游人民群众的安全,成为水库安全管理的巨大隐患。为此,省政府决定从2001~2005年投资3亿元用于全省病险水库除险加固。从1988~1998年,陕西省从水利基金、防汛经费和以工代赈资金中安排了1.5亿元开展了病险水库应急加固工作。1999年后,利用国债资金和省级水利基金5.98亿元(其中国债2.796亿元)开展了19座(其中小型2座)病险水库的除险加固。且全省已有61座重点小(1)型病险水库列入了国家病险水库除险加固规划,有望得到中央的补助。但是,这些成绩与全省376座病险水库加固任务相比,仍存在很大差距,尤其是大量小型病险水库除险加固的资金缺口很大,除险加固和安全管理的任务非常艰巨。

5.大坝安全鉴定工作进展十分缓慢,影响安全管理。由于没有经费,除了极少数效益较好的(1)型水库为争取国家投资,完成了大坝安全鉴定工作外,很多水库一直未开展大坝安全鉴定工作,给管理带来了严重隐患。

6.管理工作不规范,主要表现在:一是安全检查制度执行不认真,检查仅局限于重点小(1)型水库。各县水利部门未能组织技术人员对辖区内所有的小型水库逐库进行安全检查,检查结束也无文字材料,无反馈信息和回访检查。因此,安全管理的漏洞仍然存在。二是工程设施出现小问题后,不能及时维护修理,导致小病拖成大灾的不利局面。

7.管理队伍整体素质差,管理技术含量低。管理队伍中专业技术人员很少,管理人员的业务知识严重不足,安全责任心不强,管理的手段和设施也很落后,无法满足规范化、科学化管理的需要。

8.基础设施不配套。绝大多数水库缺少必要的监测和通信设施,加之交通极为不便,工程基本处于盲目运行状态。

三、对策

1.明确管理主体,落实管理责任

国家所有的小型水库,其管理单位(或主管机关)是水库安全管理的责任主体;其他小型水库(包括农村集体和其他经济组织所有的小型水库)的所有者是水库安全管淼脑鹑沃魈濉?/p>

小型水库安全管理实行政府行政首长责任制、管理单位(或主管机关)及其他所有者责任制、水行政主管部门责任制。每座小型水库都要确定一名政府行政领导为包库责任人。包库责任人对水库安全负总责,管理单位(或主管机关)及其他所有者负责小型水库安全管理的日常工作。县级以上水行政主管部门负责对本辖区内的所有小型水库安全管理实施监督。

2.健全管理机构,落实管理经费

影响城镇、交通干线、重要军事设施、工矿校区及人民生命财产安全的小(1)型水库(以下简称重点小型水库)必须设置专门的管理机构,并配备不少于3名专职管理人员,小(2)型水库不少于1名专管人员。

3.多方筹措水库管理经费

首先要合理开发和利用水资源,以水费收入作为管理经费的主要来源。水费收入不足时,国有水库的不足部分由财政地方补贴;其他水库要创造条件,积极开展多种经营,弥补管理经费。二要加大水价改革力度,减少水费计收环节,杜绝收费过程中不合理的搭车收费现象,尽快使水价到位。

4.加大安全检查力度,推进规范化管理

首先,小型水库管理单位或所有者必须定期对工程设施进行现场巡查,同时县级水行政主管部门每年汛前和汛后应组织有关专业技术人员对本辖区内的所有小型水库逐库进行安全检查,并通知有安全隐患的小型水库所有者限期处理。检查结束后,省、地水行政主管部门应根据检查情况进行抽查,奖优惩劣。

其次,坚持大坝安全鉴定和注册登记制度。县级水行政主管部门必须按照《水库大坝安全鉴定办法》(水利部水管〔1995〕86号)、《水库大坝注册登记管理办法》(水利部水管〔1995〕290号)的要求,组织小型水库所有者完成大坝安全鉴定和注册登记工作。通过安全鉴定和注册登记,县级水行政主管部门和水库所有者应建立健全小型水库的工程技术档案。

第三,强化安全意识,严格运行管理。重点小型水库的所有者每年汛前应对工程进行日常维护,根据《防洪预案编制要点(试行)》编制防洪预案,并按管理权属分级报批和实施。工程存在安全隐患的小型水库,在未除险前,必须降低水位或空库运行,确保安全。

第四,加强培训,不断提高管理人员素质。小型水库管理人员必须取得“全国小型水库岗位培训合格证书”后才能上岗承担管理工作。

5.严把大坝安全鉴定质量关,加快除险加固工作步伐

各级水行政主管部门要严格按照《水库大坝安全鉴定办法》和《水库大坝安全评价导则》(SL258-2000)开展大坝安全鉴定工作。参加鉴定的专家和承担分析评价工作的单位应具备省级以上水行政主管部门的资格认证。凡申请中央和省级补助的水库,其鉴定成果应报省大坝安全管理中心审核。

加大病险水库除险加固前期工作的投入力度,建立前期工作专项经费,滚动运转。各市要按照“突出重点,确保安全,兼顾效益”的原则,对本地区小型病险水库分类排队,分期分批进行加固。一要采取“以奖代补”等形式加大市、县水利基金对小型病险水库除险加固的投入。二要通过集资、拍卖、租赁等产权制度改革形式多方筹资加快小型病险库的加固步伐。

6.积极推行水库降等运行与报废制度

上一篇: 方案设计论文 下一篇: 会计基础理论论文
相关精选
相关期刊