大跨度桥梁工程论文汇总十篇

时间:2023-03-21 16:59:36

大跨度桥梁工程论文

大跨度桥梁工程论文篇(1)

中图分类号:U445文献标识码: A

1.工程背景

重庆某长江大桥(以下均简称为大桥)全长1008m,为64+2×68+608+2×68+64m的7跨连续半漂浮体系的双塔双索面混合梁斜拉桥,边跨设置2个辅助墩和1个过渡墩(台),桥梁荷载等级为公路I级,主梁采用混合梁,边跨为混凝土梁,采用PK断面,整幅箱梁由两个倒梯形的边箱及连接两个边箱的横隔板构成,材料为C55 混凝土。箱梁总宽37.6m(含风嘴装饰板),中心梁高3.501m,标准断面顶、底板厚35cm,腹板厚50cm;中跨为钢箱梁,采用与混凝土断面相适应的边箱封闭式流线型扁平钢箱梁,材料为Q345-D。宽37.6m(含风嘴),高3.5m,标准节段长15.5m。每隔3.1m 设一道横隔板。中跨主梁采用等高度的封闭式流线型扁平钢箱梁,桥面设置双向2%的横坡,采用正交异性钢桥面板。大桥桥型布置见图1。

图1 大桥总体布置图

2.国内外发展概况

混合梁斜拉桥是指主梁沿梁的长度方向由钢和混凝土两种材料构成,主跨采用钢梁,边跨(部分连结或全部连结或伸入主跨一部分)采用混凝土梁。混合梁合理使用两种材料,充分发挥钢梁自重较轻、跨越能力强以及混凝土梁自重大、造价低的特点,改善结构的受力性能,在中长跨径桥梁中有着极强的竞争力。近年来,伴随着我国交通基础设施大规模的建设,混合梁斜拉桥建设得到快速发展。2012年建成的主跨达926m的鄂东长江大桥,2009年建成主跨达1018的香港Stone-cutters桥,均采用混合梁斜拉桥方案。目前世界前10座最大跨度斜拉桥中混合梁斜拉桥占了7座。可以预见,混合梁在超大跨径斜拉桥建设中,将得到更为广泛的应用。

3.线形控制方法

大桥采用无应力状态法进行施工控制。无应力状态法的基本理论原理:

1,结构构件单元的内力和节点位移随着结构的加载,体系转换和斜拉索的张拉而变化,而单元的无应力长度和无应力曲率不会发生改变。斜拉索单元的无应力长度只有在调整自身索力时才会发生变化,而且索力和索长存在一一对应的关系;

2,一定的外荷载、结构体系、支承边界条件、单元的无应力长度和曲率组成的结构,必然唯一地对应一个结构的内力和位移。

4.边跨混凝土梁线形控制思路

大桥边跨混凝土梁采用满堂支架法,由索塔中心向边跨逐跨浇筑施工。对于满堂支架施工的斜拉桥混凝土梁而言,在拉索过程中,受到主梁纵向压缩变形的影响,混凝土梁将发生纵向位移。故在边跨混凝土梁线形控制时除了施加竖向预拱度(不考虑主梁横向预拱度)外,还应施加主梁预伸长和支座预偏量。按照无应力状态法,边跨的无应力线形就是在设计线形的基础上施加竖向预拱度以及主梁的预伸长量。在实际施工过程中,边跨混凝土梁的竖向预拱度考虑进主梁的立模标高中的,而主梁的纵向预伸长和支座预偏量是通过边跨主梁浇筑过程逐跨分配。在计算分析过程中,采用MIDAS Civil建立了该桥全桥整体模型,用以复核和指导现场施工监控工作。

图2 大桥全桥整体模型示意图

4.1边跨竖向预拱度的设置

边跨成桥状态的设计线形是其无应力线形的基础上施加上成桥结构状态位移,即

-成桥设计线形

-无应力线形迭代初值

-成桥状态结构位移

-结构刚度矩阵

-结构内力状态的荷载向量

其中即为边跨立模时所设竖向预拱度,但由于斜拉桥的非线性结构的特点,一次迭代计算所得的成桥结构位移无法作为施工过程中的竖向预拱度,必须经过多次迭代,最终得出立模所需的竖向预拱度。结合实际工程中所遇到的各种外荷载工况,现得出边跨混凝土梁立模标高计算公式如下:

-i位置立模标高

-i位置设计标高

-i位置预拱度

-梁段自重在i位置产生的挠度总和

-张拉预应力在i位置产生的挠度总和

-张拉斜拉索在i位置产生的挠度总和

-施工过程中收缩徐变在i位置产生的挠度

-二期恒载在i位置产生的挠度

-支架变形值

-成桥十年收缩徐变在i位置产生的挠度

其中支架变形值的应通过现场支架预压取得,在预压过程中,通过分级加载以及卸载,消除支架和地基的非弹性变形。永江大桥边跨预拱度采用Midas civil模型计算成桥结构位移(不含支架变形值)加上实测支架变形值。

边跨混凝土主梁的线形监测点布置如下:在每一跨的横隔板(拉索锚固位置处横隔板、辅助墩和索塔位置处横隔板)中心线位置处设置线形观测断面,观测断面在桥轴线和两侧各布置1个测点,共布置3个测点,测点采用Φ16 钢筋在垂直方向与顶板的上下层钢筋点焊牢固,测点(钢筋)露出箱梁混凝土顶面2cm,测头磨平并用红油漆标记。

图3 边跨混凝土主梁线形观测点布置位置示意图(单位:cm)

二期调索后,对全桥线形进行测量,并将理论线形和实测线形进行比对,结果如下

图4 上游实测高程与理论高程对比

图5 上游实测高程与理论高程对比

图6 上游实测高程与理论高程对比

如上图所示,上游侧理论高程与实际高层最大误差43mm,中间理论高程与实际高程最大误差52mm,下游理论高程与实际高程最大误差49mm,在实际施工过程中,由于存在测点钢筋头露出长度误差,测量误差及环境变化等影响因素,使得桥面上游、中间、下游的高程误差增大,可采用三者的平均误差来进行监控成果误差分析,可得出北岸边跨混凝土梁理论高程与实际高层最大平均误差为32mm,满足大桥施工监控细则及相关规范要求。

4.2边跨预伸长和支座预偏量的设置

在纵向位移上,由于斜拉桥主梁在斜拉索水平分力以及后期的收缩徐变影响,会发生压缩变形。按照无应力状态法的理念,为保证梁单元的无应力长度不变,需设置主梁的预伸长和边跨各支座预偏量。通过力学模型计算,得出各工况下支座偏移量,见图7。

图7 永川侧边跨支座偏移量

考虑成桥十年收缩徐变影响后,永川侧29#墩支座最大位移63mm,30#墩支座最大位移57mm,31#墩支座最大位移28mm。将以上支座最大位移反响施加,即为边跨各墩支座预偏量。相应的主梁预伸长则可在逐跨浇筑过程通过调节一至两个横隔板的间距来逐跨施加实现。

5.总结

目前,大桥已顺利合龙,该桥基于无应力状态控制法进行边跨线形的控制,取得了良好的施工精度,可为同类型桥梁的建设提供借鉴与参考。

6.参考文献

[1] 现代大型斜拉桥塔梁施工测控技术 岳东杰、郑德华

大跨度桥梁工程论文篇(2)

中图分类号:TL372+.2 文献标识号:A 文章编号:2306-1499(2013)08-(页码)-页数

多跨连续刚构桥在施工与后期运营过程中,由于结构自量、施工荷载以及混凝土材料的收缩、 徐变等各种因素的影响,桥梁结构各个施工阶段的变形不断发生变化。为了使成桥后桥梁的线形符合设计的目标线形,保证施工质量和桥梁精确合拢,必须对其施工过程中的变形进行控制。同时,为了弥补设计计算中参数选择不合理或某些因素无法考虑的不足,为桥梁施工的各个阶段提供准确可靠的应力数据,使桥梁的施工和运行更加安全,必须进行施工阶段的应力监测。对于多跨连续刚构桥,由于跨径大、连续孔数多及高次超静定等因素,合拢方案的选择对合拢过程中结构的应力和监控提供的预抛高会产生明显影响[2]。基于以上原因,本文结合嘉绍大桥南岸引桥工程,开展7×70m单桩独柱墩连续刚构桥施工控制的研究。

1.工程概况

嘉绍大桥是嘉兴至绍兴高速公路跨越天然屏障——钱塘江河口段的一座特大型桥梁。其南岸水中区引桥为 7×70+(70+120+70) +4×70m 单桩独柱墩连续刚构桥,左右幅分幅设置。第一联7×70m为等截面预应力混凝土连续刚构,单箱双室截面,箱梁梁高 4.0m,顶板宽 19.8m,底板宽 10.9m。下部结构采用单桩独柱的结构形式,桩基础采用3.8m的大直径钻孔灌注桩,单桩最长为111m,桥墩为圆端型花瓶墩,墩高约40m。截止目前,7×70m连续刚构已完成各T构施工。

2.有限元分析模型

悬臂施工单个T构每侧分为7个节段,节段长度4m。按照有限单元法对结构进行离散,共离散为207个单元,214个节段,模拟为短主的桩基、桥墩和主梁均为梁单元。计算弹性长桩的受弯嵌固点在墩底下12m。采用MIDAS/CIVIL建立有限元分析模型。全桥共分为43个施工阶段。

图1 全桥有限元模型

3.施工监控

7×70m等截面预应力混凝土连续刚构桥,主跨跨度大,预应力体系复杂,具有较大的技术难度。

该桥施工监控的具体目标为:

(1)通过对悬臂节段的变形观测,使每个节段的高程满足设计要求,且使合龙段两端的高差控制在允许范围以内。

(2)通过对悬臂过程主梁主要截面的应力观测,确保主要截面的应力满足设计要求。

3.1变形控制

变形控制主要是指主梁的整体标高和局部平顺性要求,成桥后(通常是长期变形稳定后)主梁的标高要满足上述两方面的设计标高要求。在连续刚构桥梁施工过程中,立模标高是主要控制手段。

施工中立模标高按下列公式计算:

其中:

Hi立模-立模标高;

Hi设计-设计标高;

f1i-挂篮变形;

f2i-由以后各施工阶段(包括箱梁自重、张拉、挂篮行走)产生的变形;

f3i-桥梁在运营阶段产生的变形;

f4i-由混凝土收缩徐变产生的变形;

f5i-调整值(由于各种因素造成实测值与理论值的不符)。

箱梁每一控制截面设置底板控制点用于控制立模标高和测量混凝土浇筑完成底板标高,顶板测点用于测量预应力张拉前后顶板标高。

按各节段施工次序,每一节段按两种工况(即:混凝土浇筑后、预应力索张拉后)来进行箱梁挠度的测量。以N1号墩右幅为例,7#块施工过程中各节段变形结果如表1所示。

(1)同一个T构的南侧和北侧,悬臂节段各工况下的挠度基本对称。且与理论值吻合较好。

(2)6个T构在各工况下的挠度规律相同。

(3)同一截面上的各测点,在各工况下的挠度基本相同,说明在各工况下箱梁没有出现横向扭转。

3.2应力监测

对于本桥,应力控制的关键截面为悬臂根部截面。对这些关键截面进行应力监测,不仅可以控制结构倾覆弯矩,保证施工安全,还可以通过观测施工荷载作用下的应力变化,判断悬臂体系是否平衡。

在应变数据处理中,根据混凝土的收缩、徐变理论,并结合施工现场的实际情况,选择出适合于本次应力监测的理论分析方法,分别计算出混凝土的收缩、徐变对结构应变变化的影响,并根据实际温度场进行温度影响分析,然后从实测应变中扣除温度影响和混凝土收缩、徐变的影响,最后获得结构中因外荷载变化而产生的实际应变值。关于温度、收缩、徐变影响的剔除方法,文献[5,6]进行了研究。

通过对现场测试应变数据进行分析,结合试验室实测弹性模量,计算测试应力值,与理论计算值进行对比。图4、图5为N1#墩右幅,各节段张拉完实测顶、底板应力平均值与理论值对比结果。

通过悬臂施工实测应力与理论应力对比可知,测试截面顶、底板实测应力值与理论值基本吻合,表明在施工过程中主梁的应力处于安全范围。

4.合拢方案

7×70m连续刚构为多次超静定结构,由于上部结构混凝土的收缩、徐变,尤其是温度变化作用下,梁体会纵向伸长或缩短,这样不仅使主墩产生偏位,而且在梁、墩中产生较大的应力。

根据该连续刚构桥的特点,本文对四种合拢方案进行对比分析。

方案一:合拢顺序为,边跨次边跨次中跨中跨。

方案二:合拢顺序与方案一相同,次边跨,次中跨,中跨合拢前分别施加100kN顶推力。

方案三:合拢顺序为:边跨中跨次中跨次边跨。

方案四:合拢顺序与方案三相同,在中跨,次中跨,次边跨合拢前分别施加100kN顶推力。

各合拢方案下结构应力及各墩顶10a收缩徐变后水平位移如表2、表3所示。

由上述表格可看出,四种方案下各墩顶10a收缩徐变后水平位移接近。边跨次边跨次中跨中跨的合拢顺序更有利于桥墩受力。

由于桩基计算嵌固点处有钢护筒作为受力安全储备,且主梁简支墩处设置D320型伸缩缝,能够满足墩顶水平位移要求,同时考虑到顶推线性不易控制,7×70m连续刚构更适合采用方案一的方式进行合拢。

5.结语

本文针对单桩独柱墩多跨连续刚构桥的特点,结合嘉绍大桥南岸引桥7×70m连续刚构,进行了施工阶段变形控制、应力监测、合龙方案等分析。从变形控制和应力监测结果来看,本桥各项指标处于合理范围。本文的合拢方案分析对施工具有一定的指导作用,鉴于本桥结构体系的特殊性,后续将根据现场施工状况展开合拢方案研究,以确保该工程的安全和质量。

参考文献

【1】赵丽丽,陈思甜,王静.大跨度连续刚构桥施工中的变形控制研究[J].现代交通技术,2006( 2)

【2】朱世峰,徐勇,宰国军等.重庆朝阳寺多跨连续刚构桥合拢顺序探讨[J].施工技术,2009(38)

【3】夏培华,杜松.单桩独柱墩多跨连续刚构桥合龙方案与水平顶推力研究[J].中国港湾建设,2011(1)

【4】杨洪军,黄辉,刘成龙.海沧大桥140m连续刚构桥施工挠度变形监测的理论与方法[J].黑龙江工程学院学报,2002(16)

【5】陈树礼,苏木标,张文学.混凝土连续梁桥施工阶段应力监测研究[J].石家庄铁道学院学报,2004(17)

大跨度桥梁工程论文篇(3)

中图分类号:U446.1 文献标识码:A

Loading Test and Analysis of a Variable-width Continuous Box Girder Bridge Based on Grillage Method

Lin Baicheng.etc

(Department of Civil Engineering, Guangzhou University, Guangzhou 510006,China)

Abstract: Based on beam grillage theory, The paper established a finite element model of continous box girder bridge, calculated and analysed the static and dynamic response of the bridge. Based on the comparison and analysis of test data and inspecting indicator, the load-bearing capacity was processed by comprehensive evaluation and appraisal.

Keywords:beam grillage theory ; continuous box girder; test load; load-bearing capacity

0引言

在公路互通和城市立交中,为适应复杂线形及宽度变化,变宽箱梁桥得到广泛的应用,这种结构常采用现浇预应力混凝土箱梁,箱室逐渐变宽的形式,由于内力分布不均匀,其结构受力分析比一般直线箱梁桥复杂很多。本文利用MIDAS/Civil软件和汉勃利(hambly)梁格理论[1]对一座变宽连续箱梁桥进行结构分析并评价其承载能力。

1工况概况

全桥总长248.14m,为4×30.5m+4×30.5m的两联八跨预应力混凝土等高度连续箱梁,箱梁采用单箱双室截面形式,梁高1.7m。桥面横向布置为0.5m(防撞栏)+12.25~15.75m(车行道)+0.5m(防撞栏)。下部结构为双柱式或独柱式圆形桥墩,框架桥台,钻孔灌注桩基础。该桥设计活载等级为城—A级汽车荷载,平面布置见图1。

图1桥梁平面布置图(单位:cm)

2有限元模型分析

汉勃利(hambly)梁格理论其于中性轴一致和刚度等效原则,将桥梁的上部结构用一个等效的梁格来模拟,把每一区域的抗弯和抗扭刚度集中在最邻近的梁格内,纵向刚度集中到纵向构件内,横向刚度集中到横向构件内[2]。由于梁格法容易在有限元软件中实现,且具有足够的精度,因此可以应用于工程计算分析。

基于梁格法划分原则,采用MIDAS/Civil软件建立主桥第二联4跨连续梁的空间杆系有限元计算模型,模型共划分为660个节点,1088个空间梁单元,梁格划分形式及有限元模型见图2。本文在模型建立过程中主要考虑了以下几点:

(1)纵梁划分

在进行箱梁结构的纵梁划分时,纵梁的中性轴应与原结构腹板重合,对于斜腹板的梁格布置,应设置在水平投影长度的中心。基于刚度等效原则,变宽箱梁在梁格划分后,各梁格截面特性总和应与箱梁整体截面的截面特性相吻合,使得等效梁格抗弯、抗扭刚度一致。此外,为了加载方便和准确计算桥型的自振频率,在悬臂端部设置虚拟纵梁,虚拟纵梁没有质量且刚度设置为一个很小的值,仅起到传递荷载的作用。

(2)横梁布置

横梁包括刚性梁与虚拟梁[3]。虚拟梁可采用工字形,顶底板各取箱梁上下板厚度,腹板取一很小值。虽然工字形的虚梁能很好地吻合实际结构,但仍需根据桥型结构,计算虚拟梁的刚度和抗扭系数,然后对各虚拟横梁的截面特性值进行调整,以达到对横向联系梁的模拟。对于跨中及墩顶部位的横隔板,采用刚性横梁进行模拟。

(3)边界条件

边界条件采用与实桥的支座形式一致,支座的模拟采用弹性连接法。在梁底支座实际支承的位置建立节点,并将支座节点向下复制一个支座高度生成支座底部节点,在新建立的梁底节点和支座底部节点间用一般弹性连接模拟(本文盆式支座刚度取1×108kN/m),最后将支座底部节点完全固结[4]。

(a)梁格划分

(b)梁格有限元模型

图2梁格划分形式与有限元模型

3 荷载试验与结果分析

3.1加载效率

本次试验根据《公路桥梁承载能力检测评定规程》[5](下文简称《评定规程》)的要求,由荷载效率η来确定试验的最大荷载,η取值在0.95~1.05之间。根据《评定规程》的建议,结合桥型特点、内力计算结果及现场实际情况,选取Z6#~Z8#轴两跨作为加载试验对象。加载方式采用逐级递增加载,共需要5辆重约360kN的重车,在Z6#~Z7#轴跨内,通过工况1~3使A-A截面正弯矩达到加载效率;在Z7#支点,通过工况4~6使B-B截面负弯矩达到加载效率;在Z7#~Z8#轴跨内,通过工况7~9使C-C截面正弯矩达到加载效率,加载载位见图3。

(a)工况1~3

(b)工况4~6

(c)工况7~9

图3试验加载车辆布置图(单位:cm)

3.2量测方案

试验内容包括:梁体控制截面的挠度、应变、固有频率及阻尼比。

(1)挠度测试截面选择在试验桥跨的支点、四分点及跨中位置等关键截面,共布置13个挠度变形测点,挠度测量采用二等水准测量,测试精度为0.1mm。

(2)应变测试截面选择在Z6#~Z7#跨中处的A-A截面、Z7#支点处的B-B截面及Z7#~Z8#跨中处的C-C截面,各测试截面布置5个应变测点,共计20个应变测点。应变测试采用钢弦应变计。

(3)动载测试的测点布置在试验桥跨的四分点及跨中位置处,采用DASP动态测试与分析系统进行。

3.3试验结果与分析

(1)挠度测试结果

在最大试验工况下,试测桥跨各挠度测点实测值与理论值对比见表1。可见,各加载阶段满载阶段下,Z6#~Z7#桥跨主要测点挠度校验系数在0.58~0.74之间,Z7#~Z8#桥跨主要测点挠度校验系数在0.67~0.77之间,均能满足《评定规程》的要求。

表1最大试验工况下挠度实测值与理论值

(2)应变测试结果

在最大试验工况下,试测桥跨各应变测点实测值与理论值对比见表2。可见,各加载阶段满载阶段下,各截面主要测点应变校验系数在0.57~0.60之间,均能满足《评定规程》的要求。

表2最大试验工况下挠度实测值与理论值

(3)动载试验结果

测试桥跨动力特性试验结果见表3。

表2试验桥跨动力特性试验结果

可见,该桥的实测一阶自振频率在4.29~4.49之间,阻尼比在1.48%~2.16%之间,而对应的理论一阶频率为3.88Hz,实测频率大于理论计算值,说明该桥振动响应较小,行车性能良好。

4 结论

(1)结合上述试验结果,该桥各项试验检测指标均能满足《评定规程》的要求,表明其行车及静力工作性能良好,并具有一定的承载能力储备。

(2)通过对实测数据与理论计算数据变化趋势的比较,说明本文所采用的基于梁格法的有限元模型能较好的反映单箱双室变截面箱梁桥的受力特点。

(3)由于梁格法对刚度等效的要求,给变宽箱梁的截面划分及刚度调整带来一些麻烦,但与板壳、实体单元相比,梁格法更加简便、实用,且精确也能满足工程要求,因此可以很好地用于变宽箱梁桥的计算分析。

参考文献

[1] E. C. 汉勃利[英]. 敦文辉,译. 桥梁上部构造性能[M]. 人民交通出版社. 1982

[2] 尹树桃,许福友. 基于梁格法的变宽异型箱梁结构分析[J]. 山东交通学院学报. 2010,03:52-56

[3] 勾风山,胡朝辉. 基于梁格法的某斜交变宽连续箱梁桥荷载试验分析[J]. 铁道观察. 2011,05:90-92

大跨度桥梁工程论文篇(4)

中图分类号:U231文献标识码: A

前言:伴随我国社会经济的不断进步,交通事业的发展可谓日新月异,而城市的进步也给交通发展提出了越来越严苛的要求,使得道路交通开始向着越来越多元化的方向发展。客运专线在近十年间就发生了翻天覆地的变化。无砟轨道高速铁路桥梁的线形控制就是这一发展过程中非常重要的一部分,它在我国高速铁路桥梁的建筑史上具有重要的意义,将高速铁路桥梁的发展推向了一个全新的高度。因此,本文针对无砟轨道桥梁的特点对无砟轨道高速铁路桥梁的施工控制方法及措施进行研究.

1、无砟轨道桥梁施工控制特点

对于一般的有砟轨道桥梁,桥梁施工控制仅给出箱梁底板立模高程即可,梁顶板立模高程根据箱梁底板立模高程和该段梁高确定,由于现有施工技术水平限制,一般有砟轨道桥梁混凝土浇筑后的梁面不平顺,高程起伏较大.但对于无砟轨道客运专线(高速铁路)桥梁,列车运行速度较快,轨道的平顺度要求较高,如京津城际客运专线采用Ⅱ型板式无砟轨道系统,Ⅱ型板式无砟轨道桥梁桥面系统主要构造为箱梁、底座板、轨道板,箱梁和底座板整体结构分离,为保证底座板在温度等因素的作用下可以自由伸缩,梁面的平整度精度要求较高.

另外,Ⅱ型板的铺设对于梁面高程及徐变上拱值要求也较高,为使梁顶高程满足浇筑底座板和铺设Ⅱ型无砟轨道板的需要,需要对梁顶面高程进行严格控制.由于无砟轨道桥梁对梁体的平顺度要求较高,这样对桥梁的施工控制提出了更高的要求,不仅合拢前合拢段两端的合拢误差不能过大,在桥面系施工完成后梁面的绝对标高也要满足要求。故在施工过程中需要准确估计后续工序对本阶段梁的位移影响.

2、无砟轨道桥梁顶面线形控制

在箱梁混凝土浇筑后,若顶板高程与设计高程有偏差,则需要在铺设底座板之前对梁面高程进行修整,若超出较多,不但修整的工作量很大,且会影响顶板钢筋的保护层厚度,对结构的耐久性等产生影响.为减小箱梁顶板混凝土面的后期修整量,提出了将箱梁顶面及底面高程同时控制的施工控制措施,另外还提出了箱梁顶面在混凝土浇筑即将完成时的梁面高程,如下所示:

式中: h1 为混凝土浇筑即将完成时的箱梁顶面高程;

htop为浇筑混凝土前的箱梁底面立模高程;

hlI为本段前端梁高;

fcon为浇筑本段混凝土时本段前端预测挠度;

fgl为预测本段挂篮变形.

根据式(1)计算的梁顶面立模高程,在混凝土即将浇筑完成时控制完成梁顶面的浇筑工作,可以消除本阶段预测挂篮变形及预测浇筑混凝土产生的梁端挠度误差对梁顶面高程的影响,减小后期梁面的修整工作,保证结构顶板钢筋的保护层厚度.

3、施工控制方法

为达到良好的线形控制效果,需要对后续工序对已浇筑混凝土梁段的挠度影响进行准确预测,在无砟轨道高速铁路大跨度桥的施工控制过程中引入灰色理论及自适应控制方法进行线形控制,并采用最小二乘法对参数进行调整[3_6].

3.1 灰色控制理论

灰色理论的特点是以现有信息为基础来进行数据加工和处理,建立灰模型来预测系统未来发展变化,灰色系统模型的主要模型是GM(1,N)模型.GM(1,N)模型适合于各变量动态关联分析,适合于为高阶系统建模提供基础,但不适合预测用.适合预测的模型只能是单变量模型即GM(1,1)模型[3_6].利用灰色理论建立的模型其形式为:

(2)

式中:a为发展系数;

B为灰作用量;

X(1)为原始数列

X(0)的一次累加生成数列.

解方程(2)可得:

式(3)也称为GM(1,1)的预测响应式,其还原值为

对于悬臂施工桥梁,一般将各阶段梁体的变形量和各阶段预拱度调整量作为灰色系统模型原始数据列.

3.2 自适应控制方法

对于预应力混凝土桥梁,施工中每个工况的受力状态达不到设计所确定的理想目标的重要原因是有限元计算模型中的计算参数取值,主要是混凝土的弹性模量、材料的比重、徐变系数等与施工中的实际情况有一定的差距.要得到比较准确的控制凋整量,必须根据施工中实测到的结构反应修正计算模型中的这些参数值,以使计算模型在与实际结构磨合一段时间后,自动适应结构的物理力学规律,图1为自适应控制的原理图(8).

对于悬臂浇筑的桥梁,主梁在墩顶附近的相对线刚度较大,变形较小,因此,在控制初期,参数不准确带来的误差对全桥线形的影响较小,这对于上述自适应控制思路的应用是非常有利的.经过几个节段的施工后,计算参数已得到修正,为跨中变形较大的节段的施工控制创造了良好的条件.

4、施工控制实例

4.1 工程概况

哈齐客运专线起自哈尔滨站止于齐齐哈尔站。本段为哈齐客专一标段(里木店特大桥部分),线路设计时速250km/m。(本桥桥面铺设无缝线路,钢轨为60kg/m,轨高0.176m)地处哈尔滨市与肇东市交界处,线路基本呈东南---西北走向,地势平坦。线路大致与既有滨州线并行。里程为DK36+161.99至DK41+197.92里木店特大桥(桥长5041m),共有155个墩含2个桥台。本桥桥梁为预制混凝土箱梁跨度为32.7米共154跨。

4.2 本桥特点

对于大跨度梁式桥,一般采用悬臂施工,不同的结构形式,不同的施工顺序(合拢顺序、预应力张拉顺序)对桥梁的累计位移和预拱度设置均有较大影响.为此本文以哈齐客运专线里木店特大桥部分比较无砟轨道桥梁的累积位移.跨四环桥与其他悬臂浇筑连续梁桥的不同在于该桥为不对称桥梁,梁体竖向刚度较小,中跨悬臂长度较大,且有张拉吊杆的横隔板,施工顺序为悬臂施工到14 块一边跨支架浇筑现浇段一拆除边跨现浇支架(边跨未安装支座,为悬臂结构)一中跨施工15#、16 块一合拢一拆除临时支撑,安装边跨支座一施工拱一张拉吊杆一桥面系施工.为说明本桥与一般连续梁结构的不同,以哈齐客运专线里木店特大桥部分作为对比,跨五环桥原设计方案为全部悬臂施工,悬臂4#块后改为支架施工,故列出五环桥的两种不同施工方法的计算结果.对于预应力混凝土连续梁桥,若已施工梁段上出现误差,除张拉预备预应力束外,基本没有调整的余地,且这一调整量也是非常有限的,而且对梁体受力不利.因此,一旦出现线形误差,误差将永远存在,对未施工梁段可以通过立模高程调整已施工梁段的残余误差,如果残余误差较大,则调整需经过几个梁段才能完成.对于无砟轨道高速铁路桥梁,若施工过程中梁体线形出现较大的施工误差,将给后续工序带来较大的困难,需在施工过程中严格控制梁体线形.

4.3 灰色理论与自适应控制方法的结合应用,

连续梁拱组合桥的施工过程随着时间的推移,其影响因素诸如温度、湿度和其它的一些因素是逐步变化的,且这种变化是一种随机的灰色过程.为计人这些影响因素的变化,确保所建立模型的有效性,必须进行反馈校正.在利用灰色理论施工控制时,对理论值与实测值建立误差序列,以此为原始序列,建立GM(1,1)模型,并及时采用新陈代谢模型进行模型的反馈校正,即每补充一个新值,便去掉一个最老的数据,以维持数据序列的维数,采用这种处理方法可使预测模型得到有效的修正,提高预测精度.对于跨四环桥,将各阶段梁体的变形量和各阶段预拱度调整量作为灰色系统模型原始数据列.在第i节段施工完成后,测得前 节段挠度变化、实际拱度实测值,考虑到温度对梁体挠度的影响,挠度观测均在日出前进行.理论挠度、拱度由桥梁专业软件BSAS建立模型求得.

对于悬臂施工桥梁,预拱度设置的准确与否主要在于结构各阶段的位移预测是否准确9,在无砟轨道高速铁路桥梁的施工控制中可以引入灰色理论和自适应控制方法两种预测方法进行预测结构的变形,从而确定结构的预拱度.在进行实测结果和理论结果的误差分析时,为消除测量误差带来的影响对实测结果进行了曲线拟合,采用拟合后的数据进行预测;自适应控制方法的关键在于参数估计,对于无砟轨道桥梁可采用最小二乘法进行参数估计6.

预测完成后对两种方法的预测挠度结果进行比较,确定下一阶段结构的预拱度.跨四环桥159#墩II#一14 块浇筑混凝土时的梁端部竖向挠度如表1所示.

两种方法预测的各阶段梁体挠度与实测挠度值较为接近,灰色理论预测的挠度相对与实测值较为接近,在位移较大的中跨侧,灰色理论预测的预拱度值较自适应控制方法稍大,但相差不大,两种方法均可用于大跨度无砟轨道高速铁路桥梁的施工监控,实际监控中可采用两种方法结合预测.

4.4 线形控制结果

以159 墩为例,14 块施工阶段梁体竖向挠度与理论挠度对比.16 块施工阶段梁体竖向挠度与理论挠度对比.由于灰色理论预测仅对梁端部竖向位移进行了预测,故仅列出自适应控制方法的理论位移结果10.

在本桥的施工监控工作中,相对于普通桥梁,在混凝土即将浇筑完成时增加了一次测量工序,应用式(1)控制梁顶面标高,跨四环桥成桥后梁体实际线形与理想线形的对比如图7所示,理想线形为倒退分析所得的理想状态计算结果.施工阶段实测位移与预测位移较为接近,说明在本桥监控中预测方法较为准确的反映了实际情况;成桥后梁体实际线形与理论线形较为接近,误差均在1 C1TI以内,四环后期桥面修整工作不大即可满足铺设桥面板的平整度要求,节省了工期时间,保证了铺设桥面板等工序的顺利进行.由哈齐客运专线里木店特大桥动态检测报文提出的梁面标商控制方法适合于无砟轨道高速铁桥的施工控制中,高程的测量需要精密测量仪器来测量.

结语:综上所述,在无砟轨道高速铁路桥梁的线形控制技术方面,我们还有很多值得探究之处,要在已有基础上进一步的完善无砟轨道交通的设计理论,不断地加强无砟轨道桥梁的技术标准与技术要求,以更好的为我国高速铁路事业推波助澜,将我国的高速铁路事业推向一个全新的阶段。

大跨度桥梁工程论文篇(5)

1 大跨度连续刚构桥的施工控制目的及内容

1.1 施工控制目的

施工控制是桥梁建设中不可或缺的一部分,是随着桥梁向大跨度方向发展而逐步发展起来的。在施工控制实施之前,首先必须结合设计图纸和相关实际情况对桥梁进行建模和计算分析,确定结构特别是主梁在施工过程以及成桥后的受力、变形等情况,在现场施工控制的过程中以此计算结果为依据,在最大程度上使成桥后的线形和受力状态满足设计和规范要求。

大跨度连续刚构桥施工过程较为复杂,施工过程中各种参数,如梁重、结构刚度、有效预应力、相对湿度等参数以及外界各种环境因素对结构的变形和内力有很大的影响,施工控制过程中可以对其密切关注,以防桥梁受力状况和结构的变形与理论计算值相差太远,从而导致成桥后主梁的线形和受力状况无法达到设计和规范要求。在大跨度连续刚构桥施工过程中进行施工控制,并预留长期观测点,将会给桥梁创造终用提供可靠保证。

1.2 施工控制内容

桥梁施工控制的项目主要包括桥墩垂直度监控、基础沉降变形监控以及主梁线型监控。在桥梁的施工工程中必须认真复核理论计算数据,同时在现场对其进行严密的监控,在最大程度上把误差控制在容许范围之内,保证桥梁施工安全、顺利。

提供箱梁悬浇过程中各节段的预拱度,并对主梁应力进行监控。在悬臂浇筑过程中,分别在张拉前、张拉后、挂篮前移前、挂篮前移后、浇筑前、浇筑后六个工况对梁段位移进行测量,将测量数据与理论计算值对比,根据比较结果对以后施工段预拱度进行纠偏修正并确定立模标高。结构应力的控制通常是通过预埋应变计,现场测试应变情况,并把实测数据反馈到计算机中,对应分析其受力状态是否满足要求。

2 大跨度连续刚构桥的施工控制关键问题探讨

2.1 基础沉降变形与桥墩垂直度控制

桥墩的主要作用是承受上部结构传来的荷载,并将荷载传递到地基上。在施工过程中为了能准确测量基础沉降变形和桥墩垂直度,需通过相关计算软件的多次复核并得出相应理论值,再结合实际情况确定桥墩模板的准确位置,且在主墩和已浇节段的适当位置布设标高观测点,对桥墩的变形进行严密监测。

在施工阶段,墩身垂直度和日照温差对墩的稳定性影响很大,实际桥梁处于偏心受压状态,尤其当垂直度控制不好时,对稳定性影响更大,在大桥的设计、施工和运营过程中,存在着各种的不确定性,主要包括物理的不确定性、模型的不确定性、统计的不确定性、人为因素的不确定性和自然因素的不确定性,所以在施工过程中要严格控制结构的各种变化。

现场施工控制过程中,需在主墩各施工节段分段处布置观测点,对每个施工阶段做出准确的测量,施工完主墩后,再在主墩的墩顶位置处沿上下游布置二个测点,测点布置在0号块的腹板位置处,并通过适时观测及时发现误差并做出适当调整。主墩基础沉降变形测点选在主墩承台上。主墩墩身垂直度测点选在墩身的不同高度位置处,测点根据所建立的平面和高程控制网布置,保证网内视野通透,桥墩沉降观测采用全站仪结合棱镜或反光片进行测量,

2.2 箱梁立模标高和箱梁应力控制

跟踪施工过程中主梁各梁段标高、桥墩的变位以及各断面(主梁及墩柱)的应力应变。在悬臂箱梁梁顶位置分别设立标高观测点。在测点位置处预埋置短钢筋并用油漆依次标号,通过对梁底标高的测量,并参照相应梁项位置处对应两个测点的标高,相互比对,最大程度上减小误差,以保证桥梁线形。线形的控制主要观测混凝土浇筑前、浇筑过程中、浇筑后以及预应力张拉后各节段挂篮的定位标高和主梁标高等,并通过与理论数据的对比,求出偏差,再通过迭代计算求出修正后的理论值,最后反馈到施工现场。

施工过程中,预应力钢束的孔道位置、钢绞线是否发生缠绞现象是质量控制的关键。如果孔道位置不准确,将改变结构的受力状态,因此孔道位置准确与否直接关系到施工的预应力度能否达到设计值,对结构安全和工程使用阶段是否会产生裂缝有着直接联系。

预应力钢束两侧和上下游应对称张拉,从而减少不对称张拉引起的预应力损失。张拉控制应力对桥梁线形和内力的影响都很大,其大小能否达到理论计算值直接影响着预应力的效果,张拉时必须控制到位,既不能小于理论计算值同时也不能超过设计规定的最大张拉控制应力。预应力钢束张拉后出现主梁应力不足和主梁应力不对称是很常见的问题,因为施工过程中影响预应力张拉的因素很多,如千斤顶压力不准确、锚具安装误差、操作失误等,有时会发生断丝和滑丝的情况,当断丝或滑丝数不超过规范值时,可采用超张拉方式补足应力,若超过规范值必须卸锚,更换钢束。

温度对预应力钢束张拉效果将产生一定影响,预应力钢束的张拉应选择主梁温度比较均匀的状态下进行。若张拉时外界温度较高或主梁上下表面温差较大,则易造成主梁沿纵向伸长且上下表面伸长量不同,给主梁预应力带来很大的影响。预应力张拉完后,由于预应力钢束表面与混凝土之间存在温差,且两者的温度梯度不同,由于温度变化产生的位移和受力状况也会不同,钢束预应力会因此而受到损失。因此,在预应力张拉过程中,必须严格控制温度和张拉时机。

2.3 主梁线形、桥面铺装标高控制

测定主梁挠度、主梁轴线偏差和桥墩位移的变化情况,主要观测混凝土浇筑前、浇筑过程中、浇筑后以及预应力张拉后挂篮各控制点的高程、主梁高程等。该预应力混凝土连续刚构桥的施工方法为挂篮悬臂现浇法,在浇筑过程中,应严格按照理论计算和设计要求控制梁段立模标高,保证施工过程和成桥后的线形平顺,符合受力要求。悬臂箱梁位移实测值与理论计算值不可能完全一致,在施工控制过程中,需要不断和理论值对比并做出相应的调整。桥面铺装标高的控制也很重要,它关系到桥面行车的平顺性,控制过程中需根据箱梁顶面的标高做出对应的修正。

箱梁合拢方案对成桥受力状态影响很大,是桥梁施工和体系转换的重要环节,不同的合拢方案会使结构的受力情况发生相应的改变,在合拢过程中应调整两悬臂端的施工荷载,使其变形相等。同时,合拢方案的调整也为施工误差的调整提供了机会。

3 结语

本文阐述了大跨度连续刚构桥施工控制的主要内容,着重介绍了线形控制、应力控制、温度控制和稳定性控制的相关内容与方法,分析了大跨度连续刚构桥施工误差等内容,论文的内容,为今后桥梁工程的施工控制提供了基本的理论基础与可参考性资料。

【参考文献】

大跨度桥梁工程论文篇(6)

中图分类号:K928 文献标识码:A 文章编号

Abstract: in this paper, the large span bridge main construction method is discussed, and the bridge construction with the risk in the factor, put forward the large span bridge risk response measures.

Keywords: bridge; The construction; Safety risk

0.前言

由于桥梁工程特别是大型复杂桥梁工程的建设往往是在复杂多变的自然和社会环境中运作的,其本身具有规模大,施工期长,内部结构复杂、外部联系广泛等特点,这些特点决定了桥梁工程建设阶段必然存在很多不确定因素,所以风险也始终存在于桥梁建设的全过程。近年来,一些研究调查表明,桥梁施工期的风险远远高于使用期。桥梁在任何施工阶段都有可能发生坍塌、变形等事故,而且事故发生的可能性贯穿桥梁施工的整个过程,同时也会造成极大的损失。桥梁施工损失类型包括结构损坏、人员伤亡、施工延误、经济损失等多种形式,而且往往多种损失同时发生,影响范围甚广。造成事故的原因多种多样,经常会同时发生,因此必须系统的了解桥梁在施工中存在的风险因素,提高桥梁施工安全,应对桥梁施工风险。对确保大跨度桥梁安全施工有着重大的意义。

1. 大跨度桥梁施工方法

改革开放以来,我国桥梁工程的发展进入了一个高速的发展时期,主要体现在桥梁总体数量大幅度增加,桥梁的结构体系多样化,桥梁的跨度也越来越大,而桥梁的施工环境却越来越复杂,所以对大跨度桥梁的施工方法有了更高的要求。在桥梁工程中,施工是非常重要的一个环节,合理的施工方法,能有效的提高施工组织和管理的水平。施工方法的选择要根据工程结构的跨度、孔数、桥梁总长、截面形式和尺寸、地形条件、设备能力、气候条件、运输条件、设备的周转使用等多方面条件。常见的施工方法主要有以下几种:

(l)就地浇筑施工法,是一种现场浇注的传统施工方法,在支架上安装模板,绑扎及安装钢筋骨架,现浇混凝土的一种施工方法。施工特点:整体性好,施工平稳、可靠,不需要大型起重设备;施工中无体系转换;预应力混凝土连续梁桥可以采用强大预应力体系,使结构构造简单,方便施工;需要大量施工支架,跨河桥梁搭设支架影响河道的通航与排洪,施工期间支架可能受到洪水和漂流物的威胁;施工工期长,费用高,需要较大的施工场地,管理复杂,不太适合大跨度桥梁。

(2)悬臂施工法,是在建成桥墩上沿桥梁跨径方向逐段施工的方法。在施工过程中,要保证墩梁固结,能够充分利用材料的力学性能,提高桥梁的跨越能力。悬臂施工通常分为悬臂浇筑和悬臂拼装两种。悬臂浇筑法:在桥墩两侧依次对称安装节段,张拉预应力筋,使悬臂不断接长,直至合拢。施工特点:无须建立落地支架,无须大型起重与运输机具,主要设备是一对能行走的挂篮。挂篮可在己经张拉锚固并与墩身连成整体的梁段上移动,绑扎钢筋、立模、浇筑混凝土、预施应力都在挂篮上进行。完成本段施工后,挂篮对称向前各移动一节段,进行下一节段施工,如此循序前进,直至悬臂梁段浇筑完成。悬浇施工方法特别适合于宽深河流和山谷,施工期水位变化频繁不宜水上作业的河流,以及通航频繁且施工时需留有较大净空等河流上桥梁的施工。但悬臂浇筑法在施工中也有不足:梁体部分不能与墩柱平行施工,施工周期较长,而且悬臂浇筑的混凝土加载龄期短,混凝土收缩和徐变影响较大。

(3)逐孔施工方法,是在城市高架桥广泛应用的方法,该方法从桥梁一端开始,采用一套施工设备或一、二孔施工支架逐孔施工,周期循环,直到完成。施工特点:移动模架不需要设置地面支架,不影响通航,施工安全性大,可靠;有良好的施工环境,保证施工质量,一套支架可多次周转使用,具有可在类似预制场生产的优点;机械化、自动化程度高,节省劳力,降低劳动强度,缩短工期;通常每一施工梁段的长度取用一跨的跨长,接头的位置一般选在桥梁受力较小的地方;移动模架设备投资大,施工准备和操作都比较复杂。此法宜在桥梁跨径小于50m的桥上使用。

(4)顶推施工法,是沿桥纵轴方向的台后设置预制场地,分节段预制梁,并用纵向预应力筋将预制节段与施工完成的梁体连成整体,然后通过水平千斤顶施工,将梁体向前顶推出预制场地,然后继续在预制场进行下一节梁段的预制,直至施工完成。施工特点:顶推法可以使用简单的设备建造长、大桥梁,施工费用较低,施工平稳、无噪声,可在深水、山谷和高桥墩上采用。大跨度桥梁施工方法还有很多。全面的了解大跨度桥梁的施工方法,有助于全面的认识桥梁施工过程,更能有效地识别大跨度桥梁施工过程中潜在的风险因素,从根本上了解桥梁的施工风险,发现桥梁施工风险发生的原因。

2. 大跨度桥梁施工中存在不确定性

随着桥梁的发展和跨径的不断增大,桥梁的结构刚度、结构的几何非线性效应越来越高,影响桥梁安全的因素越来越多。目前,国内外学者己对结构中的确定性问题进行了大量的研究,但是,对于影响结构安全的各种不确定性问题研究依然较少。而事实上,和其它结构物一样,大跨度桥梁结构中也存在着大量的不确定性。同时,由于大跨度桥梁结构体系复杂,施工难度大,施工工序多,施工工艺复杂,施工周期又短,各种不利因素进一步增加了大跨度桥梁在施工中的不确定性。

(l)材料性能的不确定性

桥梁结构构件的材料性能,包括材料的强度、材料的弹性模量、泊松比、膨胀系数等,在不同的材料质量、制作工艺、外形尺寸及环境条件下,会产生不同的性能,这就是材料性能的不确定性。

(2)几何参数的不确定性

结构构件的尺寸,如构件的高度、宽度、面积及间距等,受制作和安装工艺等因素的影响,会产生一定的变异性,从而导致实际构件尺寸与标准设计尺寸之间存在一定的差异,这是结构构件几何参数的不确定性。

(3)荷载的不确定性

大跨度桥梁结构在施工过程中,会承受各种施工荷载的作用,而无论是桥梁结构的恒载,还是施工中存在的活载或其它的施工荷载,都或大或小与设计值有偏差,是很难控制的,所以说施工荷载具有一定的不确定性。

(4)非线性带来的不确定性

大跨度桥梁结构复杂,非线性对桥梁也有较明显的影响。主要体现在材料非线性、几何非线性和时变非线性三个方面。材料非线性主要是指混凝土构件开裂等弹塑性变形行为,而由于在施工阶段计算中一般不研究结构的极限承载力,没有考虑进入弹塑性或构件开裂后的情形,所以由此会引起结构的不确定性;大跨度桥梁的几何非线性如在斜拉桥中,斜拉索的垂度效应、大位移效应以及塔梁的梁一柱效应,每一施工阶段都可能伴随结构构形的变化,几何非线性影响尤为突出;时变非线性主要是指混凝土收缩和徐变所引起的随时间变化的非线性变形,在混凝土桥梁的主梁施工中,如果结构为超静定,收缩和徐变不但引起结构变形,还可能产生次内力,因此对其合理的考虑是十分必要的。

(5)人为因素的不确定性

在桥梁工程的设计、施工、使用等各个阶段都是有人的参与,人是建设活动的主体,因此,在工程建设过程中,不能不考虑人为因素的影响。在大跨度桥梁施工过程中,人为失误的种类很多,主要包括:①施工操作失误,如施工方法选择不当、施工顺序失误及机械操作行为失误等;②技术管理失误,如不按设计图纸施工、不按照施工规范施工、不按照施工方案施工与技术措施不当等;③组织管理方面的失误,如组织设计与措施混乱、现场指挥人员素质不够、不认真执行施工组织设计、现场指挥不明确、组织协调不力及检查督促不力等;④制度管理失误,如各类管理体制不健全、人员管理松懈、教育培训不到位等。施工期间的人为失误具有多维性、广泛性,涉及范围广、难以控制等特点,应当予以足够的重视。

3. 风险因子与应对措施

在大桥的施工过程中,主要存在四个主要风险因子,按风险重要性依次是管理风险,技术风险、经济风险和自然风险。

管理风险,主要包含材料供应、材料浪费、交通运输、供水供电、管理施工组织协调、材料管理、施工人员水平、技术人员水平、管理人员水平。在桥梁施工过程中,要合理的控制管理方面,在对材料的检查、运输和应用的过程严格监控,没有及时使用的材料要安全保管,防止老化和失效;在施工前需要对人员进行严格的培训,在施工中,要求人员严格按照施工规范进行施工,监理人员要对工程安全严格把关,施工指挥人员要有全局意识,各个单位严格紧密合作,要求人员对工程项目都有主人翁的精神。

技术风险,主要包含设计资料变更、设计资料的有效性、施工工序控制、设备操作、设计资料准确性、承载力不足、细部处理不当、工程项目计划准确性、场地排水、施工工艺、机械调配。在桥梁技术风险中,我们要重视施工前期的勘测工作,细致镇密的对地质的勘察,周围环境的勘察,可以减少施工中的投资,减少设计变更和设计结构的误差。同时,在施工过程中,对施工机械严格安全检查,防止施工时施工机械出现故障,导致事故发生。在施工技术方面,要按照施工规范安全施工,采取的新技术一定要进行试验。

经济风险,主要包含建设单位储备资金、国家利息调整、职工工资和福利、提高预算不足、工程清单的错误和遗漏。保证资金充足,是大型工程项目的基本要求。要个控制对资金的应用,对项目要有个合理的概预算。

自然风险,主要包含地质因素和气候因素。在大桥施工前,要对多年的气象和水文资料进行详细的统计分析,确保做好足够的准备。

4. 结论

通过上述的分析可知,在大跨度桥梁施工期间存在大量不确定性,桥梁施工期间存在着高风险,必须给予足够的重视,否则工程事故一旦发生,将会带来不可预估的损失,例如结构失效、人员伤亡等,同时给社会和自然环境带来不利的影响。因此,为了降低大跨度桥梁施工期间的风险,避免工程事故的发生,可以采取积极有效的措施,控制和降低风险发生概率,保障桥梁施工的安全。另外,开展大跨度桥梁施工风险分析研究,对于确保大跨度桥梁工程建设的安全性和科学性、提高桥梁工程施工的经济性和合理性以及推动桥梁设计理论及桥梁保险体系的发展,都有十分重要的理论价值和现实意义。

大跨度桥梁工程论文篇(7)

中图分类号:TU74 文献标识码:A 文章编号:

0序言

连续刚构桥是墩梁固接的桥梁形式。它是在连续梁桥和T型刚构桥的基础上发展起来的大跨径桥梁最常用的形式之一,具有跨越能力大,行车舒适,无需大型支座等特点。该类桥梁特别适合于跨越深谷、大河、急流的桥位。今年以来,在西部大开发的交通建设中,穿越山岭重丘区架设在陡坡深谷之间的高墩大跨度桥梁日益增多,给高墩、大跨度连续刚构桥的发展带来了新的机遇;同时,如何有效地提高该类桥梁的施工控制水平,确保结构的安全和稳定,保证结构的受力合理和线形平顺,为大桥安全、顺利地建成提供技术保障,是施工别需要关注的问题。

1工程概况

甘肃某大桥主桥上部结构:右幅采用32.8+2X60+32.8m、左幅采用32.2+2X58+32.2m的预应力混凝土连续刚构箱梁,箱梁根部高度为3.6m,跨中高度为1.8m,箱梁根部底板厚60cm,跨中底板厚28cm,箱梁高度以及箱梁底板厚度按1.8次抛物线变化。箱梁跨中腹板厚50cm,支点腹板厚70cm,顶板厚度25cm。箱梁顶宽12.25m,底宽6.15m,顶板悬臂长度3.05m,悬臂板端部厚度18cm,根部厚60cm。箱梁顶设有2%的双向横坡,箱梁浇筑分段长度分别为:3.5m和4m,边、中跨合拢段长2m,边跨现浇段长右幅为3.72m,左幅为4.12m(到理论跨径线距离)。箱梁纵向采用预应力,钢束每股直径15.24mm,大吨位群锚体系;0号段竖向预应力筋采用精轧螺纹钢筋。下部结构:桥墩采用双肢薄壁墩,壁厚1m,宽3m,横向与箱底同宽。桥墩承台厚2.75m,基础采用桩径1.5m的钻孔灌注桩。桩基按纵、横向各两排布置,每墩共4根桩。桥台采用桩柱式桥台,桩径1.5m。

2施工监控目的和意义

为了确保大桥在施工过程中结构内力和变形始终处于安全范围内,成桥线形符合设计要求,结构恒载受力状态接近设计期望,在施工过程中必须进行严格的施工监控。通过现场的监控量测,达到如下目的:

(1)通过对挂篮的现场静载试验,消除挂篮的永久变形,测试各部位的弹性变形,为立模高程提供依据。

(2)通过对桥梁实施线形控制,尽量减少结构尺寸与设计尺寸的偏差,最终误差应符合桥规的规定,把尺寸偏差控制在一定范围内,保证桥梁顺利合拢、成桥线形符合设计要求。

(3)通过对结构主要截面的应力监测,使实际应力状态与设计应力状态的误差在允许范围内变化,避免可能的工程事故。

3施工监控原则与方法

3.1控制原则

为了实现施工控制的目的,在施工过程中必须修正各种影响成桥目标实现的参数误差的影响,以确保成桥后结构内力和线形满足设计要求。根据预应力混凝土连续刚构桥的结构类型、受力特点而确定的施工监控原则是以主梁标高控制为主,主梁应力控制为辅。

具体来讲,在施工控制过程中,应坚持如下几条原则:

(1)状态线形要求

线形主要指主梁线形和桥面线形。在施工过程中,主梁线形满足施工状态理论期望值要求;成桥后(通常是长期变形稳定后)主梁线形(控制点的平面坐标和标高)和桥面标高的偏差要满足设计容许的偏差范围。

(2)受力要求

受力要求主要指要确保主梁控制截面的内力(或应力)在施工期间处于安全范围内;同时在成桥恒载状态下,主梁应力也应满足设计要求。

(3)调控手段

对于主梁线形的调整,最直接有效的手段是通过调整当前悬浇梁段立模标高,使主梁的实际线形与理论期望值相符合;对于桥面线形的调整,可以通过小幅调整铺装层厚度使线形达到目标状态。

3.2控制方法

预应力混凝土连续刚构桥悬浇施工过程复杂,影响控制精度的参数较多,如:主梁刚度与自重、挂篮刚度与自重、混凝土收缩徐变、结构温度、施工荷载等。在计算施工监控的理论值时,计算参数一般都取自《桥规》中的建议值。为了消除因设计参数取值不确切而引起的设计计算与实际施工的不一致性,在施工过程中必须对这些参数进行识别和预测。对于重大的设计参数误差,提请设计方进行理论设计值的修改,对于常规的参数误差,通过优化进行调整。

(1)设计参数识别

通过在施工状态下对状态变量(主梁标高和应力应变)实测值与理论值的比较,以及设计参数影响分析,识别出设计参数误差量。

(2)设计参数预测

根据已施工节段设计参数误差量,采用合适的预测方法(如灰色模型等)预测未来节段的设计参数可能误差量。

(3)优化调整

施工监控主要以主梁标高控制为主,主梁应力控制为辅,优化调整也就以这二方面的因素建立控制目标函数(和约束条件)。

4施工监控的主要内容

施工监控的主要内容有:(1)箱梁高程线形监控;(2)箱梁平面线形监控;(3)箱梁和薄壁墩控制断面应力监控;(4)箱梁温度监控。对于大型大桥一般采用线形监控为主和应力监控为辅的双控措施。本文主要介绍高程线形控制和应力控制的主要方法。

4.1高程线形控制

对于高程线形监控,目前一般有卡尔曼滤波法、自适应控制法和人工网络神经(BP网络)等方法。由于自适应控制方法易于被广大工程技术人员理解和掌握,已在多座桥梁建设中成功应用,因此,该大桥在高程线形监控方面采用自适应控制方法。自适应控制方法进行箱梁高程监控,其关键技术有三点:箱梁理论标高的计算;箱梁挠度测试方法;实测数据处理,参数识别,预测立模标高。

4.2应力控制

施工控制中应对结构分析所确定的关键截面的受力情况进行应力监控,适时发出安全预警以采取处置措施和保证结构安全。应力控制是将现场实测值和理论计算值相比较,通过二者偏差调整设计参数修正计算模型,以达应力控制的目的。目前应力检测是通过检测应变来反映,而应变检测常用钢弦式应力计和钢筋式应力计。钢弦式应力计由于具有性能稳定、使用简便、受温度影响小且适于长期观测而得到广泛应用。为了减小温度的影响,观测宜安排在早晨进行,这样能将温度引起的误差降到最低。

5结语

(1)施工监控工作应向桥梁运营阶段延伸

桥梁运营期间的应力和挠度监测能进一步检验施工控制效果,能完善和提高设计和施工控制技术水平,同时能预测和预报桥梁运营期间可能出现的病害。

(2)施工控制技术有待进一步研究和完善

施工控制分析专用程序的完善有助于减少工作量及避免人为出错。在影响箱梁挠度的众多因素中,对温度因素应特别重视,徐变及温度因素影响需深入研究和进一步完善。

(3)充分重视施工过程的管理

施工中应认真做好监控所需的试验数据,如挂蓝变形、混凝土重度、混凝土弹模等,这些数据对准确计算、预测起到重要作用,不可忽视。同时应认真控制好箱梁截面特征参数、荷载。

参考文献:

[1]向中富.桥梁施工控制技术. 北京:人民交通出版社,2001.

[2]范立础.桥梁工程.北京:人民交通出版社.2001 .

大跨度桥梁工程论文篇(8)

桥梁工程中的有效施工控制将直接关系到整个桥梁工程的安全。在桥梁的施工过程中,因为工艺复杂,工程环节多,很难兼顾到工程施工的方方面面,也就无法得到每个环节桥梁的应变力信息,但是对于一些关键部位的结构信息还是可以通过先进的监测手段进行获取的。如果所监测到的数值与预期的应变力有较大出入,为了能够避免工程事故的发生就需要在即刻停工并进行安全分析。工程监测作为工程管理的重要组成部分,在桥梁工程的施工控制中有非常重要的体现。

一、大跨径桥梁施工控制中温度应力分析

温度应力指的是施工构件及结构在受到温度变动因素影响下会产生一种伸缩现象,加之伸缩受到边界条件的限制,施工构件或者是结构的内部便会产生一定的应力。温度应力一般可以分为温度自约束力以及温度次约束力,温度自约束力主要是指受到温度不同影响下的构件之间的作用力便会存在差异,进而使之间的相互作用力表现出来。温度次约束力则是指在受到不同温度影响下的构件的内部组织所表现的一种不同的变形位移。由于不同部件之间约束力会随着外界的不同有所改变,所以温度应力便会具有较为显著的时间性以及非线性的特点。

某特定空间的区域内,空间位置的变化对区域内温度的改变便是所谓的温度分布。在热量传递研究中,温度分布的解决是非常重要的。由于混凝土结构的导热系数小,这就使得在受到外界温度急剧变化的影响下,混凝土的内部温度无法做出灵敏的反映,进而导致不同的深度,结构温度的差异。

(一)混凝土结构的温度载荷

由于受到混凝土的影响,混凝土结构表面以及内部的温度都不是一成不变的。通常情况下混凝土的温度载荷可被分为日照温度载荷、温度骤降引起的温度差载荷以及温度整年缓慢变化引起的温度载荷。第一种日照温度载荷主要是因为受到太阳光的照射所引起的,此种温度载荷具有周期性短、影响范围小、局部应力大、温度分布非常不均匀以及气流结构复杂多变的特点。第二种温度骤降所引起的温度差载荷主要是因为受到冷空气的影响导致,此种温度载荷的周期性较短、影响的范围较广、温度的应力强度大、温度分布较为均匀以及气流结构较为复杂的特点。第三种温度载荷主要是受缓慢温度的影响导致,此种温度载荷的周期性长、影响范围也广、温度分布较为均匀同时气流结构也相对简单。

(二)桥梁施工控制温度应力分析

桥梁施工结构在自重下的实际应力与设计之间相差应该控制正负5%之间;施工结构在施工载荷下的实际应力与设计之间的差值应该控制在正负5%之间;大跨径桥梁的斜拉桥拉锁的张力,所允许存在的误差也应该在正负5%之间;桥梁施工中中下承式拱桥的吊杆拉力与悬索桥主缆吊杆的拉力,所允许存在的差异控制为正负5%;也需要充分的考虑桥梁施工结构的预加应力,处理考虑桥梁施工结构预加应力对张拉实施的双控(双控指的是伸长量控制以及油表控制,对于伸长量所允许的误差值为正负6%)之外,还需要对管道的摩擦影响力也就是指对后张结构的影响力进行充分的考虑。

二、大跨桥梁施工控制中的灰色系统理论应用

通常情况下,系统理论只能是建立差分模型,无法实现对微分模型的建立,而灰色理论所建立的是微分方程型模型。作为一种递推模型,差分模型只能按照不同的阶段来进行系统发展的分析,无法做长期的分析,只能对系统所显露的变化进行了解。

系统的行为数据通常是没有规律可言的,是具有随机变化性的。随机变量及过程而言,灰色系统理论将一切的随机变量都当做是在一定范围内的变化的灰色量,而随机过程则被认为是在一定范围内变化着的与时间有关的灰色过程。对于灰色量并不是从统计方面进行规律的找寻,而是通过研究样本,以及数据处理方法将一些杂乱无章的数据进行整理,并使之生成规律较强的数列进行研究。

为了能够进一步提高模型的精确度,灰色理论需要通过模型值与实际值之间的差距来建立GM(1,1)模型。GM(1,1)模型一般只是注重最新的数据以及实际的规律的修正,也就是说GM(1,1)与主模型的实践是不同步的,因此灰色预测模型才通常会是差分微分模型。

三、大跨桥梁施工控制方法研究

(一)稳定控制方法

在桥梁施工过程中,桥梁的稳定性直接关系到整个桥梁结构的安全,桥梁的稳定性与桥梁的强度都是整个施工中的重中之重。就目前的施工技术来说,还无法对施工中可能出现的桥梁失稳现象进行可靠的监测。尤其还没有相应的快速反应系统来应对桥梁跨径不断增加、受动载荷以及突发状况所带来的影响,因此,桥梁的施工安全很难得到保证。综上所述不难看出一套稳定的监控系统的建立是非常有必要的。在检验桥梁结构安全的指标中,桥梁的稳定安全系数是其中较为重要的组成部分,但是在现行的规范中还未详细的对不同材料的不同结构在不同工况下的最小稳定系数做出规定,这就需要日后的不断完善。

(二)几何控制法

桥梁工程质量的优劣需要用一些质量评判的标准来进行检验,那么施工控制的结果也不例外,同样需要相应的标准来进行判定,这就是通常所说的误差容忍值。桥梁工程的施工控制中所包含的几何控制目标便是指桥梁施工所需要达到的设计几何状态的要求。因为施工控制中的误差容忍值需要受到桥梁的整体规模、桥梁跨径的大小以及桥梁施工技术难度等的影响,所以现在并未有统一具体的标准,也就是说误差容忍值需要根据桥梁施工控制的具体情况来确认。在施工过程中,为了能够保证实现几何控制的总目标,也是需要事先对每道工序的几何控制误差容忍值进行研究并确定出来。

结语:

为了能够更好的对大跨径桥梁施工控制中的不确定因素进行研究,就需要在分类了解温度应力的基础上,需要对大跨径桥梁施工控制中的灰色理论系统进行相应的分析,除此之外更应该优化大跨径桥梁的施工控制方法,如稳定控制法、几何控制法以安全控制阀进行有效的研究分析,只有这样才能够得出大跨桥梁施工控制中的不确定因素,从而为大跨径桥梁施工中所需要的注意事项进行相应的指导,才能够保证整个桥梁施工的安全顺利,才能够推动我国桥梁事业的进一步发展。

参考文献

[1]杨明广.浅谈大跨径桥梁施工控制中的不确定因素[J].黑龙江交通科技,2011,10:189.

大跨度桥梁工程论文篇(9)

中图分类号:C33文献标识码:A 文章编号:

随着国民经济的发展,作为命脉的交通运输凸显越来越重要的作用,而交通运输网的安全状况也是一个不能忽视的难题。石拱桥在我国桥梁建筑史上有举足轻重的作用,直至今天仍有一部分处于服役状态。石拱桥坚固耐用、造型美观,但是在后期运营中常常会因拱肋的变形、腹拱圈的开裂等原因对拱桥的受力性能和承载能力产生影响。本文基于一在役石砌肋板拱桥的现场荷载试验,详细介绍了本次荷载试验的过程和方法,并对试验结果进行了相应的分析。

1 工程概况

观音大桥为四跨石砌肋板拱桥,主桥跨径组合为54.5+2×55.5+53.5=219m,桥面宽:净12+2×3+2×1.5 m。主拱轴线采用悬索线,净矢跨比1/8。桥台为重力式空心桥台,桥墩基础为无承台大直径人工挖孔桩。原设计荷载等级为:汽-20,挂-100。

图1观音大桥立面图(单位:cm)

在2007年例行检查中发现本桥出现如下问题:主拱圈局部砂浆空洞;腹拱圈顶部普遍存在横向裂缝和渗水现象,拱上立墙存在竖向贯通裂缝;桥面局部破损、伸缩缝杂物堵塞等现象。于是在2008-2009年针对本桥主墩、主拱圈、腹拱圈和桥面等部位进行了相应的维修加固处理。本次检测的目的是依据相关规范[1-2]通过静载和动载试验检查加固前后桥梁工作性能的提升情况,评估本次加固工作的效果。

2 静载试验

桥梁静载试验主要是通过在桥梁结构上施加与设计荷载或使用荷载基本相当的外载,利用专业仪器测试桥梁结构控制截面在试验静荷载作用下的裂缝、变形和应力,并与有限元仿真软件计算的理论值进行对比分析,从而评定桥梁结构的承载能力和实际工作状态。

2.1 试验加载原则

试验荷载的大小,通过荷载效率系数控制。荷载效率系数计算公式为:

其中:为试验荷载作用下检测部位变位或力的计算值;为设计标准活载作用下变位或力的计算值;为设计取用的动力系数。

参考文献[3]规定,的取值范围为0.8-1.05。

2.2 工况设置

本次荷载试验,选择主结构外观质量较差以及腹拱圈开裂较严重的第4跨进行静载试验,通过4台3轴标准重车实施加载。通过专业桥梁设计软件Midas-Civil建立三维有限元模型,分析各工况控制截面内力最不利状态时车载的布置位置、轴重以及各测点的变形和内力理论值。本次静载试验工况的设置如下表所示。

表1各级工况及具体效应

2.3 试验结果

试验测试内容包括加载和卸载过程桥面的变形和主拱圈拱肋的应力,主要控制截面为跨中(L/2)、1/4跨、3/4跨和两侧拱脚5个截面。

桥面变形通过电子水准仪进行量测,拱肋的应力通过在测试截面表面安置的电阻式应变片结合东华DH3815应变测试系统进行测试。

表2各级工况控制截面挠度值

由上表各级工况控制截面的挠度值结果可以看到各工况的控制截面挠度值均在理论允许范围之内,并有一定的强度储备;相对残余值均在20%范围之内,桥梁处于弹性工作状态。本桥经过加固修复之后,主桥的工作性能达到原设计水平。

各测点应变结果如下表所示,表中“-”代表受压,“+”代表受拉。

表3各级工况下控制截面的应变值(单位:με)

表4各级荷载作用下控制截面的应变值(单位:με)

从表3实测应变值可以看出,主拱圈下缘纵向应变值与拱圈变形情况吻合;从表4各级荷载用下,实测应变值没有发生突变等情况,说明在试验荷载作用下,测试截面未发生开裂,主拱肋截面强度基本满足要求。

3 动载试验

桥梁结构的动力荷载试验主要考察桥梁结构的自振特性和车辆动力荷载与桥梁结构的联合振动特性。桥梁结构在移动荷载作用下的动力反应不仅反映桥梁与车辆本身的动力特性,也与桥面的平整度、行车速度有关,因此,其测试结果是判断桥梁结构承载特性和运营状况的重要指标。用汽车变速行驶以及汽车制动,获得桥梁的各项动力特性参数(如振动频率等)、动荷载本身动力特性、结构在动荷载作用下的强迫振动的响应(如动应力、冲击系数等),从而判断桥梁结构在动力荷载下受冲击和振动影响程度,并间接反应桥梁的整体工作性能。

3.1 动载试验内容

动态应变增量测量方法是利用加载车的1号车,分别以不同的速度进行跑车、刹车及原地跳车试验,测试桥梁的动应变;桥梁固有频率采用脉动法测试。试验采用DH5935/DH5936动态采集系统采集试验跨动态响应,试验跨动应变测点布置如下图所示。

图2试验跨动应变测点布置

动载试验包括以下三个工况:

(1)跑车试验:用加载车的1号车,分别以10km/h、20km/h、30km/h、40km/h的速度在行车道上行驶,主要用于测定在车辆荷载以不同速度作用下桥跨结构的动力反应。

(2)刹车试验:用加载车的1号车,分别以10km/h、20km/h的速度在行车道上行至试验跨测试截面时刹车,主要用于测定车辆荷载以不同速度紧急刹车时桥跨结构的动力反应。

(3)跨中跳车试验:在跨中设置2个高度为10cm的钢垫板,使重车后轴轮胎压在垫板端部,然后突然落下,测试竖向激励引起桥梁振动的强迫效应,反映了结构抵抗瞬间强迫振动的性能。

3.2 试验结果

汽车以不同的车速行驶在测试桥跨以及刹车、原地跳车时,测试跨跨中截面测点产生的动态挠度及冲击系数,见表5。从表5中可知,以不同的速度匀速行驶时,动态挠度冲击系数为0.132,理论计算值为0.136,满足要求。

表5测试跨跨中截面在各工况下的动挠度测试结果

利用脉动试验测量桥梁一阶竖向振动固有频率见表6。

表6观音大桥固有频率测试结果

从表6可知,桥梁一阶竖向振动固有频率实测值大于理论值,说明桥梁实际刚度大于理论计算时的取值,桥梁刚度满足设计要求。

4 结论与建议

静载试验结果表明,在等效设计荷载作用下,测试截面仍基本处于弹性工作状态,加固后桥梁满足原设计水平。

动载试验结果显示测试跨主要受力结构各项动力性能指标正常;测试跨实测一阶频率实测值大于理论值,说明实际结构刚度大于理论计算采用值,结构刚度仍满足要求。

因石拱桥主拱圈为坞工结构,在试验及运营过程中要注意防止超载对结构产生的不可修复性损伤。

参考文献

[1] 《城市桥梁养护技术规范》(CJJ99-2003);

[2] 《公路桥涵设计通用规范》(JTG D60-2004);

[3] 交通部规划研究院. 公路旧桥承载能力鉴定方法[M]. 北京:人们交通出版社,1998

[4] 刘亮,伍金华,张保俊. 连续刚构桥荷载试验分析[J]. 湖南交通科技,2010,36(3):59-62

[5] 周海俊,吴永昌,谭也平,庄焰. 桥梁荷载试验研究综述[J]. 中外公路,2008,28(4):164-166

[6] 席广恒,陈啸,刘斌. 体外预应力桥梁现场荷载试验研究[J]. 中外公路,2008,28(4):167-169

大跨度桥梁工程论文篇(10)

一、前言

桥梁工程历来在交通事业中占有重要地位,桥梁不仅是一个具有特定功能的结构物,也是一座立体的造型艺术工程。随着我国公路交通运输事业的迅速发展,特别是改革开放以来高等级公路建设的迅速发展,我国城市桥梁日益增多。预应力连续钢构桥在近四十年间得到了较快发展,他既保持了连续无伸缩缝、行车平顺的特点,又有T型钢构桥不设支座、施工方便的优点,其中一个突出的特点是顺桥向墩的抗推刚度小,能有效地减小上部结构的内力,减小温度、混凝土收缩、徐变和地震的影响,同时在一定条件下具有用料省、施工简便、养护费用低等优点。因此,成为了目前各地广泛修建的桥型之一[1]。

随着国民经济及现代化交通事业的快速发展,大跨径预应力混凝土连续刚构桥顺应了桥梁建设的发展需要,在桥梁的不断发展和进步中,为了使桥梁更好的用于生产建设中,要解决的两个大问题是1、减少温度内力。2、防止船只碰撞 [2]。此外,桥梁在施工过程中受到内外因素的影响,施工过程复杂难于控制,易发生安全事故;另外一方面,在运营过程中,桥梁结构受到外界环境的影响,使梁体出现裂缝和过大下挠。因此,为了保证桥梁在施工过程和运营过程中的安全,必须对桥梁结构变形及受力进行计算和监测,全面掌握桥梁的真实状态,保证桥梁正常使用。

二、项目历史

随着高速交通的迅速发展,要求行车平顺舒适,多伸缩缝的T型钢构桥也不能很好的满足要求,因此连续梁桥得到了迅速的发展。预示连续刚构桥应运而生,

连续钢构桥在体系上属于连续梁桥。连续梁桥是一种古老的结构体系,悬臂施工时,墩梁临时固结,合拢后梁墩处改设支座,转换体系而成连续梁。连续梁除两端外其他无伸缩缝,有利于行车,但需梁墩临时固结转换体系,同时需设大吨位盆式支座,费用高,养护工作量大 [4]。但由于施工方法的限制,20世纪60年代以前的连续梁跨径都在100m以下,随着悬浇、悬拼施工方法的出现,产生了T型钢构,但由于这种结构对混凝土续编、收缩变形估计不足,又因温度等影响使结构在铰接处出现明显的折线变形,对行车不利,因此连续钢构桥便应运而生,20世纪60年代修建的联邦德国本道夫桥已初步体现出T型钢构与连续梁体系相结合的布置,而且T型钢构的粗大桥墩已被薄型柔性墩所代替,之后一些著名的桥梁也采用了类似的结构形式。这样便逐步形成了采用柔性薄墩、墩梁固结形式的连续钢构桥[6]。80年代后期广东省的洛溪大桥成为连续钢构桥在中国的先声,并在90年代得到迅速推广[7]。

三、研究现状

连续钢构体系跨径的增加,结构的轻巧、纤细,无疑会推动桥梁结构设计理论和施工技术的发展。随着桥梁跨径的增大,要通过牺牲截面材料来客服自重引起的弯矩。连续钢构桥的墩梁固结及高墩的柔度可适应结构由于预应力、混凝土收缩、徐变和温度变化所引起的位移能够更好地满足特大跨径桥梁的受力要求,所以在桥性选择中有竞争力。但是在长期的设计实践中,由于结构分析的复杂,计算冗长,虽然设计者主管上希望结构设计尽可能优化,力图使结构轻巧、纤细、美观以达到经济适用的目的,但缺乏高速的计算工具来进行桥梁结构的分析,同时也缺乏系统的方法指导桥梁结构设计和改进结构设计,使得结构的优化主要依靠人们积累起来的经验,以进化的方式缓慢进行。这种设计过程必然带有主观性和盲目性,且工作量大,浪费时间,甚至导致方案的失误,所以在大跨径连续钢构桥设计中,对主要参数进行优化研究是必要的[2]。

近几十年来的桥梁结构逐步向轻巧、纤细方面发展,但桥的载重、跨长却不断增加。连续钢构桥的优点,使得其投资比同等跨径的斜拉桥、悬索桥要低,其高墩结构的投资业比一直以来最便宜的简支梁桥在同等条件下偏低或是相同。随着桥梁施工技术水平的提高,对混凝土收缩、徐变和温度变化等因素引起的附加内力研究的深入和问题的不断解决,大跨径预应力混凝土连续刚构桥已成为目前主要采用的桥梁结构体系之一。其发展趋势如下:1、跨径可进一步增大,珠海跨伶仃洋大桥已提出318m跨横门东航到的连续刚构方案。2、上部结构不断轻型化。3、取消边跨合拢段落地支架,既能带来一定的经济效益还可方便施工。4、上部结构连续长度增加,以适应高速行车的需要。综上分析,大跨度连续钢构桥在今后的桥梁设计建造中将会有更大的发展[2]。

四、项目特点及构造特点

尽管连续钢构桥在我国的应用起步较晚,但是在近一二十年却得到了较大发展,连续钢构桥的使用越来越广泛,它所具有的优点如下:1、墩无支座;2、施工体系转换方便;3、伸缩缝下,行车舒适;4、顺桥向康弯矩刚度和横桥向抗扭刚度大,受力性能好;5、顺桥向抗推钢塑小,对温度、收缩续编及地震影响有利。而其也具有一定的缺点,例如其上部结构连续长度有一定限制,长度再增加时应改为连续钢构与连续梁组合体系,以及其抗撞击能力较弱。但是连续钢构桥仍在发展和进步中,要进一步的提高其实用性和经济性,同时也为了保证桥梁在施工过程和运营过程中的安全,必须对桥梁结构变形及受力进行计算和监测,全面掌握桥梁的真实状态,保证桥梁正常使用[3]。

连续刚构桥在构造上分为主跨跨中连续、主跨跨中铰接以及钢构-连续组合梁桥三种类型。主跨跨中连续的连续刚构桥是目前连续刚构桥中应用最广泛的结构形式,其主要优点是1、把墩梁固结布置在大跨、高墩上,以利用高墩的柔性来适应结构由预应力、混凝土收缩徐变和温度变化所引起的位移。2、在两桥端的伸缩装置满足纵向位移的要求。3、可以减小大型桥梁支座的数量和养护上的麻烦。4、有利于悬臂施工,省去了复杂的体系转换。主跨跨中铰接的连续刚构桥在主跨跨中设置剪力铰,边跨采用连续梁,具有连续梁和铰接T型钢构桥的受力特点,同时,利用边跨连续梁的结构自重使T构做成不等长悬臂,从而加大主跨的跨径。钢构-连续组合梁桥是连续梁桥与连续刚构桥的组合,通常在一联连续梁的中部数孔采用墩梁固结的钢构,两边孔数孔则为设置支座的连续梁结构[4]。

五、参考文献

[1].范立础,桥梁工程,(第二版)人民交通出版社。

[2].叶见曙,结构设计原理,人民交通出版社,2011。

[3].绍旭东,程祥云,李立峰.桥梁设计与计算,人民交通出版社。

[4].周水兴,桥梁工程,重庆大学出版社,2011。

[5].《公路桥涵设计通用规范》(JTG D60-2004)。

[6].李廉锟,结构力学(上册),2010。

上一篇: 法律实践论文 下一篇: 校园食品安全论文
相关精选
相关期刊