碳纤维复合材料汇总十篇

时间:2022-03-10 03:51:48

碳纤维复合材料

碳纤维复合材料篇(1)

1.高温热解法热解法是当今唯一已经实现商业化运营的碳纤维增强复合材料的回收方法,这种工艺是在高温下使复合材料进行降解,以得到表面干净的碳纤维,同时还可以回收部分有机液体燃料。日本在福冈县兴建的中试厂,每年可处理碳纤维复合材料废弃物60t。意大利的Karborek等开发了一种在加热过程中碳纤维不会被碳化的工艺技术,可得到的比原始纤维长度较短的碳纤维[4]。从2003年,英国的MilledCarbonFiberLtd.开始回收加工碳纤维复合材料,是全球首家商业运营的专业回收公司。他们利用一套长达37m的热分解设备,每年大约可处理2000t的废弃碳纤维复合材料,所生产的再生碳纤维的产量为1200t。其处理方法是在无氧状态下加热碳纤维复合材料废弃物,保持温度在400~500℃之间,得到的清洁碳纤维可具有90%~95%原始纤维的力学性能,同时分解出的热解气或热解油也可用作热分解的加热能量[5]。美国AdherentTechnologiesInc(ATI)发明了一种低温、低压的碳纤维复合材料热分解工艺,检测表明,用这种方法回收并处理后碳纤维的表面基本上没有受到损伤,碳纤维强度比原始纤维降低约为9%左右[6]。丹麦的ReFiber公司通过在无氧环境条件下,在温度为500℃的旋转炉中将碳纤维复合材料气化,成功地用高温热解法回收了复合材料风机叶片。德国的KarlMeyer再生材料公司开发的一种在加热炉中通入保护气体用以隔绝氧气的新工艺,可使碳纤维复合材料分解后碳纤维基本没有受到损伤。在这项工艺的研究中,该公司得到了陶氏化学公司和众多研究所的技术支持和帮助,目前研制成功的试验装置已经正式投入了营运[7]。值得注意的是,采用高温热解法虽然可以得到比较干净、长度较短的碳纤维,同时分解的复合材料的产物还可用作燃料或其他用途,但是碳纤维由于受到高温和表面氧化等作用,碳纤维的力学性能降低的幅度比较大,这将使碳纤维的再利用受到一定的影响。

2.流化床热分解法流化床热分解法是一种采用高温的空气热流对碳纤维复合材料进行高温热分解的碳纤维回收方法,通常这种工艺还采用旋风分离器来获得填料颗粒和表面干净的碳纤维。英国诺丁汉大学对于流化床热分解工艺方法进行了系统研究,结果表明这种方法特别适用于那些含有其他混合物及污染物碳纤维复合材料报废零部件的回收和利用[8]。Jiang等研究了在流化温度500℃、流化速率1m/s、流化时间10min试验条件下得到回收纤维的表面特征,表面分析表明,碳纤维原始表面上的羟基(-OH)转变为氧化程度更高些的羰基(-C=O)和羧基(-COOH),但其表面的氧/碳不变,而且碳纤维表面这种变化不影响回收纤维和环氧树脂之间的界面剪切强度[9]。Yip等用温度450℃的流化热流,其速率为lm/s、流化床上砂粒的平均粒度为0.85mm的条件下,对碳纤维复合材料进行热分解试验,回收得到的碳纤维长度为5.9~9.5mm。试验表明,回收纤维的拉伸强度约为原纤维的75%,而弹性模量基本上没有变化,因而回收得到的碳纤维可部分或全部取代原始短切碳纤维;并且原始碳纤维长度越长,回收得到的碳纤维的长度也越长[10]。大量的试验研究结果表明,流化床热分解造成碳纤维拉伸强度降低的主要影响因素是砂粒对纤维表面由于摩擦作用造成了一定的损伤,而且碳纤维与旋风分离器壁的摩擦也造成了碳纤维表面的破坏。因此,虽然用流化床分解法回收可得到比较干净的碳纤维,但由于这种工艺受高温、砂粒磨损等影响,导致了碳纤维长度变短和碳纤维力学性能下降,因而也将影响所回收碳纤维的实际应用范围。

3.超/亚临界流体法当液体的温度及压力处于临界点或临界点的附近时,液体的相对密度、溶解度、热容量、介电常数及化学活性等各种性质都将会发生急剧的变化,从而使液体具有很高的活性、极强的溶解性、特异的流动性、渗透性、扩散性等性质,人们正是利用超/亚临界液体的这些特性,利用它们具有对于高分子材料的独特溶解性能来分解碳纤维复合材料,在期待能最大限度地保留碳纤维的原始性能的前提下,获得到干净的碳纤维。PineroHemanzR等研究了在超临界水中碳纤维增强环氧树脂复合材料的分解过程。试验表明,在673K、28MPa下经30min反应,环氧树脂的分解率为79.3%,当加入氢氧化钾(KOH)催化剂,环氧树脂的分解率达到95.3%,而且所得到的碳纤维的拉伸强度能够保持为原始纤维的90%~98%[11]。XiuFR等在在固体与液体比例为1∶10~1∶30g/mL的条件下,经过在温度300~420℃时分别反应30~120min后,研究了废弃印刷电路板在超临界甲醇中的分解机理。试验结果分析表明,上述条件下分解的主要产物为含苯酚和甲基苯酚衍生物,并且发现当反应的温度提高时,甲基苯酚衍生物的含量有所增加[12]。Liu等系统地研究了温度、压力、时间、催化剂及树脂与水的比例这些因素对于复合材料分解的影响,表明原材料与水的比例对环氧树脂的分解影响不大,而对于分解影响比较大的因素是分解反应的温度、时间和压力。同时,试验结果还表明,当原料比为1g复合材料∶5mL水时,在温度为290℃、经过75min反应后,环氧树脂的分解率可高达到100%[13]。Bai等研究了在30±1MPa和440±10℃条件下,氧化的超临界水对碳纤维增强环氧树脂的分解过程,结果表明在树脂的分解率为85%时,碳纤维的表面上仍然有少量的环氧树脂存在;而当树脂的分解率达到96%时,在碳纤维的表面上已经基本上没有树脂的残留。所获得的碳纤维力学性能测试表明,随着树脂分解率增加,碳纤维的拉伸强度也进一步下降,分析认为这是由于回收的碳纤维的表面发生了过度氧化所致[14]。日本的Okajima等在400℃、20MPa、45min的试验条件下,用2.5%碳酸钾(KCO3)作催化剂,在超临界状态下环氧树脂的分解率为70.9%,而且得到的碳纤维的拉伸强度比原始纤维下降了15%[15]。英国诺丁汉大学的Pickering研究团队在超临界状态下研究了水、二氧化碳,甲醇、乙醇、丙醇和丙酮等多种溶剂对于碳纤维复合材料的分解作用,结果表明丙醇的溶解作用最好。试验结果表明,用超临界丙醇回收的碳纤维的拉伸强度和刚度的是原始纤维99%;同时,研究还表明,甲醇和乙醇对聚酯类树脂的溶解效果比较好,而对环氧树脂的溶解效果比较差,而丙醇可很好地分解环氧树脂复合材料[16]。我国哈尔滨工业大学的白永平等在超临界水中通过添加氧气,使分解速度大大提高,而且回收得到的碳纤维的强度几乎没有下降[17]。

二、CFRP的回收存在的主要问题

由于热固性塑料经过固化处理后,其内部交联成一种网状结构的稳定状态,因而具有了不溶于各种溶剂,在加热过程中也不会熔化的特性,长期放置或掩埋也不会分解。因此,热固性复合材料废弃物的回收早在20世纪90年代初就已经受到学术界和工业界的高度关注,然而到目前为止,虽然有一些工艺和设备已经投入生产应用,但大部分的研究还处于试验阶段。从国内外目前碳纤维回收技术来看,碳纤维复合材料的回收原料主要以生产废料和损坏或淘汰的复合材料零部件等,因而对于不同种类的碳纤维复合材料废料分类回收还没有系统化;当前大量采用的热融化树脂制取碳纤维丝束,导致碳纤维性能大大降低,其性能和价格在市场上没有竞争力;其他一些方法虽然可将碳纤维从复合材料中分离出来,但由于纤维变短和性能下降,同时还会产生环境污染,因而还有待进一步研究与完善[18]。近年来,各工业大国都在进行碳纤维复合材料废弃物的回收与再利用研究,以开发出高效、经济和可行的碳纤维回收利用技术,主要研究集中在粉碎碳纤维增强塑料、热分解碳纤维复合材料、催化分解碳纤维复合材料、流化床回收碳纤维复合材料等回收工艺技术和再利用技术。如康隆(Cannon)公司参与了欧洲一个碳纤维回收再循环利用的项目,用回收的碳纤维绒毛或碳纤维毡加工复合材料部件,由于这些回收再利用碳纤维大约是原生材料价格的一半左右,而且其力学性能可达到全用新碳纤维制造部件的85%,因而经济效益非常可观。

最近,德国的KarlMeyer再生材料公司在特殊的加热炉中采用保护气体的装置回收碳纤维,所得到的碳纤维在外观上与新碳纤维差别不很大,但纤维的长度比较短,而且强度也有所下降,由于其价格比新碳纤维低廉,因而可以用机内饰或其他的复合材料部件。另据报道,波音787梦想飞机将用50%碳纤维材料制造,宝马2款新车型的客舱用碳纤维制成,为此2公司签订了碳纤维复合材料回收利用研究的技术协议。再如,美国诺丁汉大学和波音公司计划每年投资100万美元,共同研究所有复合材料回收利用技术,主要进行碳纤维回收工艺研究过程、回收碳纤维重新应用等[19]。但到目前为止,这些开发工作还没有进入实质性的研制阶段,因而真正实现产业化回收和利用还尚需时日。碳纤维复合材料的回收和再利用具有多方面的经济效益,碳纤维回收和再利用不仅可以实现高价值材料的再利用,而且碳纤维复合材料部件回收和再利用可大大减少能源消耗和环境污染。但是,目前碳纤维复合材料回收和再利用仍面临着许多问题,如碳纤维复合材料废弃物的收集和分类比较困难;废弃物回收和再利用的工艺技术还不十分成熟,大多数新研制的工艺技术仍停留在实验室阶段,最终实现商业化生产还需要做很多工作;目前虽然已建有回收碳纤维复合材料的公司并可生产再生碳纤维,但再生碳纤维的利用还受到各种因素的限制,如其力学性能不稳定就难以为用户接受,也难以在要求性能较高的零部件上应用。

碳纤维复合材料篇(2)

本文以碳纤维增强热塑性树脂基复合材料为研究对象,对相关的概念和内容进行了梳理和总结。其中概括了碳纤维的性质性能,对复合材料的概念进行了阐述,最后对碳纤维增强热塑性树脂基复合材料的力学性能作了详尽的分析说明。

1.关于碳纤维增强热塑性树脂基复合材料的概述

⑴复合材料的概念:面对传统、单一组分的材料已经难以满足现在应用需要的现实状况,开发研制新材料,是解决这个问题的根本途径。运用对材料改性的方法,来改善材料的性能是可取的。而材料改性的方法中,复合是最为常见的一种。国际标准化组织对于复合材料的概念有明确的界定:复合材料是指由两种或两种以上不同化学性质和物理性质的物质组成的混合固体材料。它的突出之处在于此复合材料的特定性能优于任一单独组分的性能。⑵复合材料的分类简介:复合材料的有几种分类,这里不作一一介绍。只介绍两种与本论文相关的类别划分。如果以基体材料分类,复合材料有金属基复合材料;陶瓷基复合材料;碳基复合材料;高分子基复合材料。本文讨论的是最后一种高分子基复合材料,它是以有机化合物包括热塑性树脂、热固性树脂、橡胶为基体制备的复合材料。第二,如果按增强纤维的类别划分,就存在有机纤维复合材料、无机纤维复合材料、其他纤维复合材料。其中本文讨论的对象属于无机纤维复合材料这一类别,因为碳纤维就是无机纤维复合材料的其中一种。特别值得注意的是,当两种或两种以上的纤维同时增强一个基体,制备成的复合材料叫做混杂纤维复合材料。实质上是两种或两种以上的单一纤维材料的互相复合,就成了复合材料的“复合材料”。

2.纤维增强树脂基复合材料的性能特点

纤维增强树脂基复合材料是指以高分子聚合物为基体材料,用纤维作增强材料复合制备而成的。基体材料和增强材料必然各自发挥自己的优势作用。之所以用纤维作增强材料是因为纤维具有高强度和高模量的优点,所以是承载体的“不二人选”。而采用高分子聚合物作基体材料,是考虑其良好的粘接性能,可以将纤维和基体牢固的粘连起来。不仅仅如此,基体还需发挥均匀分散载荷的作用,通过界面层,将载荷传递到纤维,从而使纤维承受剪切和压缩的载荷。当两者存在良好的复合状态,并且使结构设计趋于最佳化,就能最大程度上发挥复合材料的综合性能。⑴抗疲劳性能好:所谓疲劳破坏指的是材料在承受交变负荷时,形成裂缝继续扩大而引起的低应力破坏。纤维增强树脂基复合材料的疲劳破坏的发生过程是,首先出现裂缝,继而裂纹向进一步扩大的趋势发展,直到被基体和纤维的界面拦阻。在此过程中,纤维的薄弱部位最先被破坏,随之逐渐扩延到结合面。因此,纤维增强树脂基复合材料在疲劳破坏前存在明显的征兆,这与金属材料的疲劳发生截然不同。这也是它的抗疲劳性能好的具体表现。⑵高温性能好:纤维增强树脂基复合材料具有很好的耐热性能。将材料置于高温中,表面分解、气化,在吸热的同时又冷却下来。材料在高温下逐渐消失的同时,表面又有很高的吸热效率。这些都是材料高温性能卓越的物理特征。⑶高比强度和比模量:纤维增强树脂基复合材料具有高比强度和高比模量的特征。甚至在和钢、铝、钛等金属材料相比,它的力学性能也十分出色。这种材料在宇航工业中,受到极大的应用。⑷安全性能好:纤维增强树脂基复合材料中分布的纤维数量巨大,并且密度强,用数据来说明的话,每平方厘米的复合材料上的纤维数量少则几千根,多则达到上万根。即便材料超负荷,发生少量纤维的断裂情况,载荷也会进行重新分配,着力在尚未断裂的纤维部分。因此,短时间内,不会影响到整个构件的承载能力。⑸设计的可操作性强:当复合材料需要符合性能和结构的设计需求时,可以通过很多方法来实现。包括改变基体和纤维的品种,调整它们的含量比例,也可以通过调整纤维的层铺结构和排列方式来实现。因此,可以说,纤维增强树脂基复合材料有很强的设计可操作性。⑹成型工艺简单易成:成型工艺过程十分简单易成,因其制品大多都是整体成型,无需使用到焊接、切割等二次加工,工艺流程简单好操作。一次性成型不仅可以减少加工的时间,同时减少了零部件、紧固件、接头的损耗,使结构更趋于轻量化。⑺减震性能好:高的自振频率可以对工作状态下的早期破坏起到规避和防范的作用。自振频率和材料比模量的平方根成正比,和材料结构也息息相关。纤维增强树脂基复合材料的基体界面和纤维因为具有吸振能力,所以能够起到很好的减震效果。

3.碳纤维增强热塑料树脂基复合材料中碳纤维的性质

⑴对纤维的分类:纤维存在有机纤维和无机纤维之分。增强纤维共有五大类别,分别是:硼纤维、碳纤维、碳化硅纤维、氧化铝纤维以及芳纶纤维。除最后一种芳纶纤维以外,其他四种都属于无机纤维。碳纤维是五大纤维之冠,是增强纤维中最有活力的一种。碳纤维复合材料种类很多,但是应用最广泛的还要属碳纤维增强树脂基复合材料。⑵碳纤维的性质和性能:碳纤维是纤维状的碳素材料,它的性质包括导热、导电、耐温、耐磨、比重小且耐腐蚀性等。除此之外,它的性能也相当突出,具有热膨胀系数小、抗震动衰减、自性以及防原子辐射等。因为碳纤维的纤维属性,因此可以对其编制加工,缠绕成型。利用纤维状直径细的特点,是制成复合材料杂曲面构件部件的绝佳材料。碳纤维能够成为最有活力的增强纤维,它密度低,抗拉伸强度可以和玻璃纤维比肩,而碳纤维的弹性模量却是后者的4到5倍。在惰性气氛中,碳纤维的抗拉强度随温度的升高而攀升,表现出极佳的性能。因此,不得不说碳纤维是复合材料增强纤维的首选。⑶碳纤维的力学性质:碳纤维的力学性质主要通过轴向抗拉模量来体现。当热处理温度上升,碳纤维的模量随之攀升。细直径纤维在预氧化过程中,发生碳化,产生很多排列整齐的饿表皮结构。这些结构对碳纤维模量的增加又起到推波助澜的作用,促使它的模量进一步提高。碳纤维模量的变化趋势以施加负荷的方式作为判别标准,不是随应变的增加而增加,就是随应变的增加而下降,无非是这两种情况。

碳纤维复合材料篇(3)

1、引言

碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,主要作为增强材料与树脂、金属、陶瓷等基体复合制成结构材料,其比强度、比模量综合指标在现有材料中是最高的,力学性能颇具优势,所以被广泛应用于各个领域。

2、碳纤维材料的特性

碳纤维主要是由碳元素组成的一种特殊纤维,由含碳量较高、在热处理过程中不熔融的人造化学纤维经热稳定氧化处理、碳化处理及石墨化等工艺制成的,其含碳量随种类不同而异,一般90%以上,不仅具有一般碳素材料的特性,又兼具纺织纤维的柔软可加工性,但仅依靠碳纤维片本身并不能充分发挥其强大的力学特性及优越的耐久性能,只有通过环氧树脂将碳纤维片粘附于钢筋混凝土结构表面并与之紧密结合才能达到补强的目的,具体具有以下特性:

(1)沿纤维轴方向有很高的强度,碳纤维的拉伸强度为2~7GPa,约为钢材的10倍,其树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为230~430Gpa亦高于钢,经应力疲劳数百万次的循环试验,其强度保留率仍有60%,而钢材为40%,铝材为30%,玻璃只有20%~25%,所以所取安全系数为最低,但碳纤维的径向强度不如轴向强度,剪断强度弱,耐冲击性差;

(2)非氧化环境下具有突出的耐热性能,可以耐受2000℃以上的高温,碳纤维要温度高于1500℃时强度才开始下降,而且温度越高,纤维强度越大;

(3)外形有显著的各向异性、柔软,可加工成各种织物、毡、席、带、纸及其他材料;

(4)热膨胀系数小,变形量小,结构尺寸稳定性好;

(5)具有极好的纤度,一般仅约19g,密度约为1.5~2g/cm3,比重比铝还要轻,重量约为钢材的1/5,比强度却是铁的20倍;

(6)耐腐蚀性好,碳纤维的成分几乎是纯碳,而碳又是最稳定的元素之一,除强氧化酸以外,能在各种有机溶剂、酸、碱中不溶不胀,不存在生锈问题;

(7)耐磨性好,与金属对磨时,损耗很少,可制成高级的摩擦材料。

3、碳纤维在各领域的应用

据报道航天飞行器的重量每减少1Kg,就可使运载火箭减轻500Kg,所以在航空航天工业中争相采用先进复合材料,由碳纤维和环氧树脂结合而成的复合材料,因其比重小、刚性好和强度高而成为火箭、卫星、导弹、战斗机和舰船等尖端武器装备中必不可少一种先进材料。将碳纤维复合材料应用在战略导弹的弹体和发动机壳体上,可大大减轻重量,提高导弹的射程和冲击能力;碳纤维应用在舰艇上可减轻结构重量,增加舰艇有效负载,从而提高运送作战物资的能力;在飞机上大量应用碳纤维环氧复合材料能够减轻重量、节省燃油、降低排放、减少温室气体的排放;用碳纤维制作的耳机重量轻、强度好,既能减轻头部压力,又提高了人员佩戴的舒适性。

在土木建筑领域,碳纤维也应用在工业与民用建筑物、铁路、公路、桥梁、隧道、烟囱、塔结构等的加固补强,具有密度小、强度高、耐久性好、应变能力强、抗腐蚀能力强的特点,可耐酸、碱等化学品腐蚀, 柔韧性佳。用碳纤维管制作的桁梁构架屋顶, 比钢材轻50%左右, 使大型结构物达到了实用化的水平,而且施工效率和抗震性能得到了大幅度提高, 碳纤维做补强混凝土结构时, 不需要增加螺栓和铆钉固定, 对原混凝土结构扰动较小, 施工工艺简便。

在运动休闲领域中,像球杆、钓鱼竿、网球拍、羽毛球拍、自行车、滑雪杖、滑雪板、帆板桅杆、航海船体等运动用品都是碳纤维的主要用户之一。体育应用中的重要应用为球棒和球拍框架,全世界40%的球棒都是由碳纤维制成的,全世界碳纤维钓鱼杆的产量约为每年2000万副,网球拍框架的市场容量约为每年600万副,碳纤维还应用在划船、赛艇等其它海洋运动中。

日常用品中音响、浴霸、取暖器,远红外理疗产品等家用电器以及手机、笔记本电脑等电子产品都会应用到碳纤维。

4、结束语

由于碳纤维复合材料具有轻而强、轻而刚、耐高温、耐腐蚀、耐疲劳、结构尺寸稳定性好、设计性好以及可大面积整体成型等诸多优点,已在航空航天、国防军工和民用工业领域得到广泛应用。据《2013-2017年中国碳纤维行业深度调研与投资战略规划分析报告》数据显示我国是碳纤维需求大国,2011年碳纤维市场规模达到6811.22吨,然而受供应不足的影响,国内碳纤维市场发展相对较为缓慢,预计未来几年,随着供应量的提升以及宏观经济的整体性好,我国碳纤维行业的需求量也将保持着较快速度的增长,不过国产碳纤维落后的技术却成为制约着我国碳纤维行业健康稳健发展的“拦路虎”,这直接导致我国碳纤维产品质量与进口产品之间的明显差距,也极大地限制了国产碳纤维产品在高端领域的应用,目前我国碳纤维产品在应用上集中于低端领域,在碳纤维质量要求较高的航空航天领域的应用比例仅为3%,远远没达到国际上碳纤维行业在航空航天领域应用占比的平均水平,而在质量要求相对较低的运动休闲用品领域,碳纤维的应用比例却高达80%左右,四倍于国际上碳纤维在运动休闲用品领域应用的平均水平,随着尖端技术对新材料技术性能的要求日益苛刻,促使科技工作者不断努力提高碳纤维的生产工艺技术水平。

参考文献

碳纤维复合材料篇(4)

2 风电叶片碳纤维复合材料的应用 

2.1 主梁帽 

现阶段,对于风机叶片来说,主梁帽是碳纤维最主要的应用部位,通过运用GFRP主梁帽,能够有效提升叶片钢度,与此同时,能够实现叶片重量的明显降低。根据国外有关专利及研究的相关报道,在叶片主梁帽的局部位置中,部分企业能够对碳纤维进行运用。2004年,在GEC设计的50m的风电叶片中,50%总长度的叶片主梁帽是由CFRP组成的,与全GFRP的风电叶片相比较,关于叶片主梁帽的厚度方面,减少了将近一半,关于叶片的重量方面,由9790kg下降到8236kg,减少了16%的重量,在叶根部位处,重力诱导弯矩缩减了26%。在这样的结构内,从全玻璃纤维过渡到全碳纤维复合材料的过程中则需要注意做好应变和刚度的优化,过渡区材料匹配问题。 

2.2 蒙皮表面 

在整个蒙皮表面都可以运用的碳纤维,能够将内支撑梁上的受力与扭矩作用进行减少,利用相关的设计工作,“材料诱导式”的叶片受灾扭曲耦合就能够完成。根据NEG麦康公司的有关专利报道,在对叶片蒙皮横截面外部圆周的薄层进行加固时,60%~85%的叶片总长度都是用CFRP条来进行加固的,利用这个薄层,能够将蒙皮抵抗拉力和压力性能进行显著提升。此外,根据其他相关专利报道,在对叶片迎风面锰铁进行制作时,全部采用GFRP来完成,在对主要承受压缩荷载的背风面蒙皮进行制作时,则是通过运用碳纤维或玻璃纤维复合材料来完成。 

2.3 叶片根部 

在对叶片根部位置进行制作时,通过运用碳纤维材料能够起到两方面作用,一方面关于根部材料的锻炼强度和承载强度方面,能够明显提升根部材料的锻炼强度和承载强度,明显降低施加在螺栓上的动态载荷性能,另一方面能够使叶跟法蘭处的螺栓数量增多,有利于巩固叶片与轮毂连接处的性能,能够将该连接处静态强度和疲劳强度进行提升。 

2.4 叶片前后缘防雷系统 

根据国外有关专利的相关报道,在叶片前缘及后缘位置处,利用碳纤维来进行制作,通过碳纤维会对叶片刚度和叶片质量产生一定影响,能够将叶片高度进行明显提升,与此同时,也能够将叶片质量进行降低,除此之外,经过特殊的设计工作,还具备一些特殊性能,能够对叶片起到很好保护作用,通过特殊设计工作的开展,能够使叶片高效避免雷击损伤,避免雷击对叶片性能进行破坏,能够使叶片的相关性能得到很好保障。 

2.5 靠近叶尖部分 

根据LM公司有关专利的相关报道,在25%至50%的整体叶片长度,也就是靠近叶尖的部分中,在对这个部分进行制作时,通过利用CFRP来完成,在叶根部位的临近处,则是通过利用GFRP来制作完成,在中间过渡区域中,通过GFRP来逐步取代CFRP。利用CFRP来对临近叶尖位置处进行制作,其具有较少重量,可以利用比较少的材料,对叶根临近部位进行制作,这样能够将轮毂上的负载性能进行降低。除此之外,在具有较大高度的叶尖位置处,可以对其采取相关减小方法与措施,这样可以使叶片振动方向和强度得到保证,当叶片出现偏振状况时,特别是偏振情况比较强烈时,在很大程度上,能够导致叶片尖部对杆塔位置进行击打,一旦出现这种情况,就会对机械设备和人员安全问题产生威胁。在相对较低刚度的叶根位置上以及相对比较硬的叶尖部位处,就会促进偏斜形状形成,这样就能够提升气动阻尼,通过气动阻尼的不断增加,能够将气动载荷性能进行降低。此外,利用中间过渡区域,能够使CFRP与GFRP中间刚度突发变化,而造成的应力集中情况得到很好避免。 

3 结语 

风力发电机已经日渐成为电力行业发展的重点研究项目,通过风能进行发电则可以对能源予以利用,并到达更好的电能发电效果。将碳纤维复合材料应用到风电叶片设计之中,不仅能够增加风机的功率,而且能够增加减小叶片碰撞塔架的概率,对于发电效果的优化和提升具有重要影响。相关人员还要就此方面予以深入研究,让碳纤维复合材料的应用成为风电叶片设计常态,让我国的风力发电事业得以长足发展。 

碳纤维复合材料篇(5)

中图分类号V2 文献标识码A 文章编号 1674-6708(2013)102-0097-03

0引言

飞机的防雷击设计包括全机防雷击系统和部件级防雷击系统两部分。而防雷击设计的首要环节是进行雷电区域的正确划分,从而根据不同的雷电区域采取不同的防护措施。本文主要提供一种全碳纤维复合材料飞机的全机防雷击系统设计,部件级防雷击系统的设计本文不做分析。

1 飞机雷击环境定义

1.1飞机的雷击环境

直接雷击——指开始接触到飞机表面的雷击。

扫掠雷击——指一旦飞机接触到直接雷击后,雷击持续放电的接触点不断出现顺气流方向沿飞机表面跳跃移动。

1.2飞机的雷电效应

雷电直接效应是由雷电电弧的附着及伴随着雷电流的高压冲击波和磁力所造成的燃烧、熔蚀、爆炸和结构畸形。

雷电间接效应是指在电子、电气设备和布线中雷电引起的过电压和过电流造成的设备损坏或干扰。

3 飞机雷电区域划分

3.1区域划分

按照不同的雷电附着特性或传递特性可把飞机表面划分成三个区域:

区域1:初始电击附着其上面(进口或出口)可能性很大的飞机表面。亦称初始附着区域。

区域2:电击放电被气流从区域1的初始附着点吹过来在其上面扫掠的可能性很大的飞机表面,亦称扫掠冲击区域。

区域3:除了区域1和区域2以外的所有飞机表面为区域3。在区域3,放电电弧直接附着的可能性很小,但它可能在某对初始雷电附着点或扫掠冲击附着之间传导很大的雷电流。

按照放电长时间悬停在飞机表面的可能性大小,区域1又进一步分为A区、B区和C区,区域2划分为A区和B区。A区是电弧在它上面长时间悬停可能性较小的区域。B区是电弧在它上面长时间悬停可能性较大的区域。

3.2区域的确定

飞机雷击区域的划分按照SAE ARP5414A-2005进行,采用推荐的或标准的经典规则确定。

3.2.1区域1的确定

首先,要确定可能的初始雷电附着点区域。一般传统布局的飞机,根据飞机的雷击经验,典型的雷电先导初始附着点位置为一些末端,如机头、机翼/尾翼翼尖、推进器和螺旋桨桨叶的末端、发动机舱以及其他明显的突出物。

其次,确定区域1A、1B、1C的位置,根据SAE ARP5414A-2005,在正常情况下,飞机将会往前飞行,当冲击和闪电从前端的附着点开始从头到尾的扫过,开始形成第一个回流冲击。这一时间飞机飞行距离决定了区域1A表面相对于初始附着点的延展部分,这个距离由飞行速度、飞机离地面的海拔高度(对于从云端到地面的冲击)以及先导速度决定。区域1A延展部分的起点应该是飞机初始附着区域的端点。

3.2.2区域2的确定

区域2:

1)从区域1的直接雷击接触点向后有扫掠雷击可能性的表面为区域2,在区域1的前、后边界侧向内大约0.5m范围内的表面;

2)区域1C之后机身表面为区域2A;

3)垂尾、平尾区域1以外的为区域2A;方向舵、升降舵为区域2B。

3.2.3区域1、2的横向扩张位置的确定

对于机翼和尾翼处,确定区域1的办法是确定突出的弧形部分的水平切线,然后沿着切线往里延伸大约0.5m,区域1往里延伸大约0.5m的表面区域应该放在区域2中考虑。

3.2.4区域3的确定

不属于区域1和2的表面,并且不可能有闪电附着的地方划分为区域3。

3.3飞机雷击区域划分示意图

飞机的雷击区域的位置都是由飞机的几何特性和飞机的飞行特性来确定的。飞机雷击区域的最终确定将由飞机雷击附着点试验得到。图1为某型号单发涡桨轻型公务机雷击区域的初步理论划分示意图。

4雷电防护设计

飞机结构的设计应该是在飞机遭遇雷击时能为雷电流提供低阻抗的通路。对于容易受到雷击放电损坏的飞机结构、系统和部件如飞机的机头、翼尖、螺旋桨、发动机、燃油箱、活动翼面、风挡、天线等部件,必须根据其自身重要性以及所在区域的要求采取必要的雷电防护措施,以尽可能避免或减小雷电对飞机及设备自身的损害。

4.1 全碳纤维复合材料机体的雷击防护

资料显示,对复合材料机体进行模拟雷击试验,在没有雷击防护层的情况下,在经受60~100kA峰值电流和1.9C电荷量放电后就产生严重损伤,说明应用复合材料的飞机必须进行雷击防护。

据了解,目前国内外多数复合材料的飞机均使用金属丝网作为雷击防护层,可用标准纺织工艺将金属丝织成布或针织品。全碳纤维复合材料飞机使用铜网作为雷击防护层。根据模拟雷击试验结果,具体防雷击方案为:

1)对机雷击区域1,可用铜丝网做复合材料的表面防护层。铜丝网的网眼数不小于20×40孔/in2,铜丝直径至少为0.14mm;

2)对机雷击区域2,可用铜丝网做复合材料的表面防护层。铜丝网的网眼数不小于20×40孔/in2,铜丝直径至少为0.1mm。

4.1.1位于雷击区域1的全碳纤维复合材料机体的雷击防护

用于雷击区域1的复合材料雷击防护层必须能经受200kA的高电流冲击和500C电荷量的传输。处于雷击区域1的全碳纤维复合材料结构的防雷击设计可在复合材料制件的外表面上铺一层铜丝网,一次固化成制件,或将铜丝网用胶粘剂粘到复合材料制件的外表面上。铜丝网规格为:网孔数不小于20×40孔/ in2,铜丝直径至少为0.14mm。

4.1.2位于雷击区域2的全碳纤维复合材料机体的雷击防护

用于雷击区域2的复合材料雷击防护层必须能经受100kA的高电流冲击和传输200C的电荷量。处于扫掠雷击的复合材料结构雷击防护设计可采用在复合材料制件表面上粘一层铜丝网。铜丝网的规格为:网孔数不小于20×40孔/ in2,铜丝直径至少为0.1mm,若有天线安装的部位,为防止趋肤效应,铜丝直径至少为0.14mm。

4.2全碳纤维复合材料整体油箱的雷击防护

对于复合材料整体油箱,雷电防护设计是复合材料整体油箱设计中的关键技术之一。雷击过程中的高电压、大电流、大电量(持续高电流)对复合材料整体油箱危害极大。因此,在复合材料整体油箱设计之初,就应选择雷电防护系统。

4.2.1全碳纤维复合材料整体油箱防雷击设计的主要原则

1)复合材料整体油箱应布置在飞机遭受雷击概率较小的区域,如雷击区域2或3,尽量布置在3区。对机翼整体油箱来说,应布置在机翼的根部或中部;

2)在复合材料整体油箱的外表面应该为雷击电流构建通道,这些通道应与飞机的雷击电流传输通路有良好的电连接;

3)在油箱区,凡存在燃油、燃油蒸汽和空气混合气体的空间,不得因雷击产生放电火花。

4.2.2全碳纤维复合材料整体油箱外部的雷电防护设计

由于复合材料整体油箱的上、下壁板是飞机机体结构表面的一部分,因此其雷电防护的设计思路及外表面雷电防护方法与复合材料机体的雷电防护相同。

4.2.3全碳纤维复合材料整体油箱内部的雷电防护设计

1)金属紧固件尾部及连接细节雷电防护设计:当结构材料允许雷击电流通过结构骨架传导时,容易在紧固件尾部或紧固件与骨架连接处产生放电火花,为此需用密封胶覆盖、用专用防护帽的方法或其他可靠的方法保证不产生放电火花;

2)复合材料紧固件:在满足强度要求并能提供充足的紧固件品种规格和工艺保证的前提下使用。可避免将雷击电流导入油箱内部,从而避免火花的出现;

3)油箱内的金属构件:复合材料整体油箱内部应尽量避免有金属构件。对于不可避免的金属构件应通过搭接线与飞机金属结构保证良好搭接,并要防止内部导体电晕和流光。

4)油箱内部的部件和结构设计应做到:当雷击电流通过油箱时,不会在油箱内部产生任何可能点燃燃油蒸汽的火花。

4.3设备的雷电防护

对于设备,根据设备所执行的功能,要求设备厂商必须参照符合设备预期用途以及在飞机上安装要求的试验电平和波形对设备进行试验,具体要求根据RTCA /DO 160F 第22章进行。

对于安装在飞机外部的设备,还需要设备厂商进行雷电直接效应试验,用于确定外部安装设备耐受雷击直接效应的能力,施加于外部安装设备的试验类型和严酷等级取决于设备指定的类别。指定的设备试验类别应与设备安装位置所在的雷电放电区域相符合,具体要求根据RTCA /DO 160F 第23章进行。

4.4雷电间接效应防护

飞机内电子电气系统和部件(全机用电设备,包括发动机电气、操纵系统等),可能会因为雷击引起过电压和过电流造成损坏或干扰的,要进行雷电间接效应防护。由于全碳纤维复合材料飞机的屏蔽能力比金属飞机差,所以雷电间接效应的防护更加重要。

雷电间接效应通常以两种形式出现:

1)雷电通过天线、空速管加温线、航行灯导线、金属操纵线系及各种金属管路等,将雷电电流直接引入飞机,可能出现浪涌电压;

2)沿着机体流动的雷电电流在飞机线路中、金属操纵线系、各种金属管路中产生的感应电压和电流。

4.4.1明确设备防护的要求

关于电子电气设备的雷电间接效应防护要求:

1)不得造成物理损坏;

2)不得产生立即危及飞机及其机组人员安全的干扰,或产生严重妨碍飞机任务完成的干扰。

系统和部件的雷电关键类别取决于其自身对飞机的重要性、所在的雷电分区以及雷电的敏感性。根据飞机的机体结构、蒙皮材料、电磁“窗口”大小(如外部非金属区)设备的安装部位、导线的布置、设备接口进行分析,确定瞬态控制等级(TCL)和设备瞬态设计等级(ETDL)。关键设备、分系统根据RTCA /DO 160F 第22章进行试验。RTCA /DO 160F 第22章试验波形等同SAE ARP5412A-2005的相关试验波形。

4.4.2选择设备的最佳安装位置

设计过程中,尽量将电子设备布置在雷电产生的电磁场最弱的区域,采取的主要措施有:

1)电子设备尽量远离门、窗、口盖等开口处。对于安装在驾驶舱、起落架舱、机翼前后缘、尾段等相对敞开区域的设备,采用金属机箱屏蔽,对于含有数字电路和模拟电路的设备如靠近挡风板或窗口的,最好用壁厚大于1mm的铝合金做成电磁屏蔽盒;

2)尽可能将电子设备布置为朝向飞机结构的中心,而不布置在飞机外蒙皮;

3)设备安装的设备架上能为电子设备提供接地面且与飞机接地网有良好的搭接;

4)金属线系和管路应有良好的搭接。

4.4.3选择线路的最佳位置

电线、电缆应进行分类布设。

电缆敷设远离门、窗、口盖等开口处和曲率较小的结构或蒙皮。

线束尽可能靠近接地平面或结构件敷设,可利用成形的结构件作电缆槽,提供屏蔽。

尽可能使导于磁场强度较弱的结构角落,如避开突出的结构件顶部,尽可能敷设在“U”型件的内部。

当有机外未屏蔽或屏蔽效能不高区域的电线和电缆进入机身内部时,将机外所有电缆进行屏蔽保护,屏蔽层接地线应尽量短,并良好搭接,以避免遭受雷击或外部强电磁辐射时电线和电缆上的感应电压和电流损坏电线和电缆以及与电线和电缆连接的机内设备。

不要使燃油传感器导线的走向与通气管、导油管导向走向一致或平行。导线可以贴着蒙皮走,但应避免与雷击电流流向一致。

在非金属机翼蒙皮下的电缆,应根据导线的布设方向,用铝箔材料或良导体金属导线管,保护电缆导线。铝箔材料或金属导线管应和全机的接地网搭接,形成良好的电气通路。

雷电流通过低导电率材料的蒙皮(如钛、碳纤维)区域会产生电磁干扰,应远离这些区域布设电缆。由于空间有限,可采用电气隔离的方法:

1)可采用扭绞线作为电源线;

2)采用屏蔽电缆或屏蔽扭绞线,并将它们的两端均搭接到全机的接地网上;

3)用瞬态抑制器,以保护电网的安全;

4)电气设备和线束的安装应满足要求。

4.4.4选择良好的接地

设备应根据要求选择良好的搭接,并进行搭接电阻的检查。

对全碳纤维复合材料飞机,全机设备进行良好的搭接显得尤为重要,为方便设备的搭接,全机应构建统一的搭接网络。

5结论

雷电对飞机的飞行安全影响较大,全碳纤维材料飞机的雷击防护在飞机的研制过程中是非常重要的,对机体结构采用敷设铜网作为雷击防护层是可行的。

参考文献

[1]RTCA/DO-160F 机载设备环境条件和试验程序.

[2]SAE ARP 5414A-2005 飞机雷电区域划分.

碳纤维复合材料篇(6)

在建筑工程中,使用碳纤维材料的主要作用在于加固结构,该材料的使用可以促使工程承载能力大大提升,或者促进工程承载功能的改善,目前在建筑施工中的有所应用。在施工中常应用到的碳纤维材料包括碳纤维网格、碳纤维板、碳纤维条带、碳纤维布等。在加固过程中,要以加固方法、加固部位、加固能力等因素为依据,对材料进行选择。若加固构件比较复杂,则需选择强度较高的碳纤维布,如果加固方法为嵌入式加固,则需选择碳纤维条带或者碳纤维板[1]。在柱加固、平板加固中,需选用柔性挪摹=ㄖ工程结构不同,对碳纤维增强复合材料的选择也不同,在材料使用过程中,要充分考虑到施工性能、耐久性能、力学性能等因素,确保碳纤维增强复合材料复合施工要求。

一、碳纤维增强复合材料的特征

目前,在建筑工程施工中,碳纤维增强复合材料的使用逐渐增多,该材料的主要特征为纤维增强,产品形式较多,包括网格材、模压型材、拉挤型材、筋材、片材、格栅,其中片材包括纤维板、纤维布两种,应用最多的是纤维布,在结构工程加固中非常受用,在使用之前,无需浸润树脂,加固过程中,经树脂浸润后,可于结构表面进行粘贴。

(一)具备耐腐蚀性

碳纤维增强复合材料具备耐腐蚀性的特征,在潮湿、氯盐、碱、酸性环境中均可被使用,该材料在海洋工程、化工建筑等工程中适用,其腐蚀性已经被得到验证。针对近海地区、寒冷地区的建筑,可将碳纤维增强复合材料应用于其中,能够对空气内盐分腐蚀起到抵抗作用,促使结构维修费用减少,可将结构使用寿命延长[2]。

(二)拥有良好的比强度

所谓比强度较高,也就是指轻质高强,碳纤维增强复合材料可将结构自重减轻,在建筑工程施工中,若采用传统材料施工,则会降低大跨度空间结构体系理论极限跨度,另外,该材料还能够被应用于抗震结构内,因其可将结构自重减轻,从而促使地震作用减小,提升建筑结构的安全性与耐疲劳功能[3]。

(三)弹较好 可应用于特殊场合

碳纤维增强复合材料的弹较好,应力应变曲线与线弹性接近,即便因偶然超载出现变形,也可自行恢复。另外,该材料还拥有良好的隔热、绝缘等功能,在特殊场合中受用,包括医疗核磁共振设备、地磁观测站、雷达站等。

(四)设计性强

在建筑施工中,以工程所需的纤维含量、材料性质、铺设方式等为依据,需选取不同设计的材料,碳纤维增强复合材料属于人工材料,其设计性比较强,针对建筑功能的特殊要求,可采用不同的设计方法,设计比较灵活。

与传统结构材料相比,碳纤维增强复合材料主要是各向异性材料,材料的弹性模量、纤维方向强度非常高,垂直纤维弹性模量、方向强度低,会导致碳纤维增强复合材料设计难度、结构分析难度增加。该材料在弹性模量上与木材、混凝土的数量级基本一致,其设计主要为变形控制,与钢材相比,该材料的弹性模量要低,可将混凝土与碳纤维增强复合材料相组合,对结构变形进行控制,可弥补刚度不足的缺陷[4]。

碳纤维材料的层间拉伸强度、剪切强度低于抗拉强度,在结构设计过程中,需将连接减少,同时还需注重对连接进行设计。通常而言,碳纤维增强复合材料并不具备良好的防火性能,在高温情况下,树脂会渐渐软化,可降低树脂的力学性能。现阶段,可将阻燃剂加入材料中,使材料的抗火性能大大提升,除此之外,工作环境、初始缺陷会对该材料的抗疲劳性能产生较大影响。从经济的角度上而言,碳纤维材料的价格比较昂贵,不过该材料具备耐腐蚀、自重轻、可减少维修次数等特征,应用价值更高[5]。

二、碳纤维增强复合材料在建筑工程中的具体应用

本文以某建筑施工情况为例,分析碳纤维增强复合材料在建筑工程中的具体应用。在该施工工程中,碳纤维增强复合材料的主要作用为加固,在混凝土结构加固、钢结构加固修复中发挥了重要作用。

(一)材料在加固混凝土结构中的应用

①混凝土缠绕。利用碳纤维布,对加固混凝土进行缠绕,可达到混凝土加固的目的。对混凝土进行约束,能够促使其变形能力、强度的提升,还可将混凝土柱的抗剪能力提升。截面形状与碳纤维增强复合材料对混凝土柱的约束效应两者间存在较大关联,针对矩形截面柱,其承压能力非常有限,提高幅度不大,不过可提高其抗剪能力、变形能力。在加固过程中,通过处理截面形状,使其有一定弧度,能够促使结构受压能力提升[6]。碳纤维增强复合材料将混凝土柱缠绕起来,能够改善结构延性。

②将碳纤维增强复合材料粘贴于受拉面。将该材料粘贴于板、梁的受拉面,有利于促进受拉承载力的提升,不过值得注意的是,当受拉钢筋屈服后,该材料才能够充分发挥受拉作用,然而在这一阶段,板、梁挠度已经非常大,因此,碳纤维片材只可作为安全储备。碳纤维增强复合材料片材受到受弯加固作用的影响后,可能会发生剥离破坏现象,为此,可将碳纤维条带粘贴于梁侧面,便于对梁腹配筋不足从而引起的缝隙进行控制,在板、梁加固中均可被应用。目前,碳纤维增强复合材料在混凝土结构中的应用较多,不过其中也存在一些问题尚未解决,例如疲劳性能、环境影响、粘接性能、防火问题等。

(二)材料在钢结构加固修复中的应用

在钢结构加固修复过程中,可利用碳纤维增强复合材料,取得较好的加固修复效果。选取钢结构损伤部位,将纤维板粘贴于该部位,对钢结构受力性能具有改善作用,把纤维板粘贴于梁受拉面,可促使结构的抗弯刚度、承载力大大提升,这种方法非常有效。将片材粘贴于梁腹板部位,可使抗剪承载力提升,若钢结构发生疲劳损伤,利用碳纤维材料进行加固,可使剩余疲劳寿命提升,可将纤维布于钢管柱上缠绕,有利于防止局部失稳的现象发生,对抗压承载能力的提升非常有利。

①加固受拉构件

利用碳纤维增强复合材料对受拉构件进行加固,可促使钢构件极限荷载能力提升,脱胶程度、脱胶位置不同,极限承载力也存在差异,在受拉构件中,需充分发挥粘胶剂的作用,在粘贴过程中,沿着柱子环向粘贴,可取得较好的粘贴效果,能够提高极限承载力,提高幅度在15%至18%间,且不会出现剥离现象,材料也不会发生断裂。碳纤维增强复合材料的使用能够延长钢结构剩余疲劳寿命,加固效果非常显著。经材料加固后,钢结构原来的受力状态会产生一定变化。钢结构、碳纤维材料间胶层存在正应力或者剪应力,针对不连续区域,可能会出现漏胶、损伤裂纹等情况,胶层正应力、剪应力均有应力集中,可破坏胶层。要想防止胶层出现剥离破坏的情况,则需将碳纤维板材料两端做成45度角,可将胶层应力减少。

②加固受弯构件

针对不存在初始损伤的钢梁而言,采用碳纤维增强复合材料给予加固,不会对其刚度造成太大影响,不过可提高承载能力。利用碳纤维材料采取加固措施,钢梁、材料受损部位出现剥离破坏后,会导致损伤变得更加严重,剥离破坏现象会加重,因此,要对材料合理使用,充分利用与发挥该材料的高强性能,提高极限承载力,预防剥离破坏的发生。

(三)碳纤维增强复合材料的空间结构

碳纤维增强复合材料具备耐腐蚀、轻质等特征,在大跨度空间结构中可被应用,可将该材料制作为杆件,在网壳、网架结构中应用,不过碳纤维材料在应用过程中,节点处理难度较大、弹性模量低,为此,其优势难以发挥。现阶段,带有铝合金结构的碳纤维材料被开发,在空间网架结构中的应用效果较好,该材料的使用可将施工周期缩短,具有良好的耐腐蚀性,不会增加维护费用,在环境恶劣、超大跨度的工程中受用。

碳纤维增强复合材料可制作为夹芯板、波纹板、空心板,组成不同形状的空间结构,在娱乐设施、雷达天线罩、厂房等建筑结构中可被应用,建筑施工难度不大,易成形,具备良好的保温效果。

三、建筑施工对碳纤维增强复合材料性能的要求

针对建筑施工的特征而言,在碳纤维增强复合材料的选择中,要注重材料性质符合施工特征,碳纤维增强复合材料必须具备三个特征,分别为施工性能、耐久性能、力学性能。就材料的力学性能而言,碳纤维材料必须要有足够强度,不易受到外界作用的影响,因碳纤维材料具备高强性能的特征,一般而言,能够满足建筑施工的要求。另外,从耐久性能上看,碳纤维复合材料对自然界因素可起到良好的抵抗作用,且在使用期间,结构设计也不会产生变化。使其设计能力得以保持。从施工性能上看,在现代建筑施工中,将碳纤维复合材料应用于其中,可使结构材料的耦合效应、适配效应相结合,确保施工工艺的提升。

碳纤维复合材料在提高建筑结构承载能力、建筑结构加固中均可充分发挥作用,能够促使承载性能得以改善,值得注意的是,加固方法、加固位置不同,其加固效果也存在差异,若建筑承载力需提升,则需选择强度较高的材料(碳纤维布),若建筑刚性需提升,则选用碳纤维板。新的建筑工程会根据施工要求选择材料。针对面临腐蚀风险的建筑,可选用碳纤维筋,达到控制钢筋结构损害的目的,提升钢结构的可靠性、稳定性,促使结构使用寿命延长。碳纤维增强复合材料的使用能够使钢筋使用数量减少,将操作流程简化,提升结构抗拉力功能。

碳纤维材料的抗疲劳、耐腐蚀、低松弛特征显著,选取预先制作的碳纤维管,将混凝土浇筑于该构建中,能够促使混凝土变形能力、强度提升,预防碳纤维材料管发生屈曲破坏的现象,增强结构的受力性,在建筑工程中非常受用。

结束语:

碳纤维增强复合材料具有较多的优势,例如抗腐蚀、施工性能良好、力学性能稳定,不过从目前总体使用情况上看,该材料在建筑工程中的使用并不多,究其原因,主要在于价格昂贵,购买需要较多的资金。伴随科学技术的不断进步与发展,复合材料技术会逐渐提升,碳纤维材料价格也会有所降低,该材料在建筑工程中有着较高的应用价值,在未来还将出现更多相关的应用,例如复合材料棒、碳纤维增强混凝土等,上述材料的使用能够大大提高建筑工程的稳定性与安全性,充分发挥建筑材料的作用,提高建筑质量。

参考文献:

[1]朱显巨,钱国芬,茹建中.浅析碳纤维增强复合材料在建筑工程中的应用[J].中华民居(下旬刊),2014(05):148.

[2]彭惠芬,王程,王鹏.温度对碳纤维增强复合材料力学性能的影响[J].承德石油高等专科学校学报,2014(03):12-15.

[3]杨勇新,岳清瑞.建筑工程应用的碳纤维增强复合材料[J].新材料产业,2012(02):30-32.

碳纤维复合材料篇(7)

碳纤维复合材料具有重量轻,强度高,模量高,耐腐蚀等优点,被广泛应用于航空航天、体育休闲、汽车、建筑及桥梁加固等领域。2014年全球碳纤维产量约为10万吨,我国碳纤维产量约3200吨,2015年国内碳纤维需求量将达到1.5万吨[1]。未来中国四大产业――大飞机项目、海上风力发电、汽车轻量化发展及高速铁路,无疑还将带动碳纤维需求的强势增长,然而飞机制件一般寿命为25-28年,风机叶片为20-25年,汽车制件为10-15年,这些产品寿命终结后,其回收再利用将成为非常重要的问题。目前我国碳纤维复合材料仍以热固性树脂基为主,市场占有量90%以上,而热固性树脂基复合材料在自然条件下不可以降解,随着应用量的增加,其污染问题也会日趋严重,当务之急是要开发出大规模、连续化、低成本、低能耗的回收和再利用技术,同时开发可降解的生物基复合材料以及热塑性复合材料,以实现产业的可持续、绿色、低碳发展。

1、碳纤维复合材料回收与再利用的必要性

碳纤维增强热固性复合材料其树脂基体固化后形成三维交联网状结构,常规条件下不溶于溶剂,也无法自然降解,如果不进行回收处理,将会造成环境污染,并且随着碳纤维用量增加,污染将会越来越严重。欧盟成员国2003年11月通过的废弃车辆(EEEV)指令要求,2015年1月之后生产的每辆汽车的95%必须被再利用或回收。空客公司计划到2020-2025年,制造过程中95%的废弃物能够进入回收渠道,5%的废弃产品能够回收再利用于航空部件[2]。

碳纤维生产过程中需要消耗很多能源,因此价格比较昂贵,对其进行回收再利用,一方面可以减少生产新碳纤维所需要的能源消耗,另一方面回收之后的碳纤维仍有很好的力学性能和利用价值,可以利用于要求相对较低的部件。据日本报道生产制造再生短CF能耗仅为新CF的17%,而CO2排放量仅为新CF的14%[3]。回收处理的碳纤维与新碳纤维相比,生产成本相对较低,可以以相对地的价格推向市场,扩大碳纤维的应用领域。因此,碳纤维的回收与再利用有着非常重要的现实意义。

2、碳纤维复合材料废弃物回收再利用技术及应用现状

碳纤维复合材料废弃物主要来源有两类,一类为生产及成型加工过程中的废弃物,如预浸料不合格品、过期料、边角料、部件不合格品、飞边、测试报废品等,另一类为寿命结束类制品。一些发达国家如德国、英国、美国、日本等等,非常重视碳纤维复合材料回收技术的开发,纷纷组建了专门的研究机构解决这一问题,并进行了一些工业化尝试,取得了不少的成果。例如,如英国Milled Carbon Ltd厂已和波音、空客等建立合作关系,帮他们处理废料。欧洲已组建复合材料回收服务公司(UCRU),解决欧洲复合材料回收和可持续发展问题。英国的回收碳纤维公司(RCF)有2000吨/年的处理能力,已和英国GKN航空公司签订合同回收其废品,近期100吨/年,以后会有30%的年增长率[4]。

波音公司与宝马集团近日签署一项合作协议,旨在联合开展关于碳纤维回收的研究,并共享碳纤维材料和制造知识。波音和宝马都是在各自产品上应用碳纤维的先锋。波音787梦想飞机机体的50%由碳纤维材料制成,而宝马则将于2013年在两款车型上采用碳纤维制造乘客舱。对于两家公司而言,复合材料在使用过程中和产品寿命结束后的回收至关重要。

碳纤维复合材料回收方法可分为填埋、焚烧、粉碎、分离四种,目前虽然填埋是最便宜的处理选择,但由于碳纤维复合材料不能生物降解,填埋会对环境产生负面影响,因此最终将会被禁止使用。欧盟多数成员国2004年都颁布了法律,禁止复合材料的填埋处理。焚烧作为过去常用的处理方法,其回收方法及设备简单,投入成本少,通过焚烧可以获得能量,但焚烧过程中会释放有毒气体,造成二次污染。为了避免填埋和焚烧等处理方法的缺点,目前开发了一些新的技术,其中通过热分解、溶剂分解以及超临界流体分解等技术进行CF与树脂分离的材料回收方法最具有吸引力。

2.1高温热解

热裂解是利用高温将复合材料中的树脂分解成有机小分子从而回收碳纤维的方法。该方法易于进行工业化放大,是目前成功实现商业化运营的方法。英国的Milled Carbon公司在无氧环境下加热碳纤维复合材料至400-500℃,使得树脂分解,其于2003年开始利用热裂解装置回收碳纤维,并形成了年处理2000t碳纤维复合材料的能力,可再生在1200吨/年[5]。

2.2微波热分解

美国、英国以及德国的一些公司及大学正在开发微波热分解技术,通过碳纤维吸收微波能量从内部加热树脂。这样能够更快地分解树脂以复原碳纤维,缩短整体的处理时间,并且相比于其他热分解技术设备要求更少。位于美国北卡罗来纳州罗利的火鸟先进材料公司(Firebird Advanced Materials Inc)在过去的几年里建造了一个小型的装置以测试其微波回收工艺,已经开始实现其商用计划。火鸟公司得到了美国空军和国家科学基金的资助以及北卡罗来纳州大学的协作,已经利用其装置演示了世界首条碳纤维复合材料连续微波回收处理工艺[6]。

2.3亚超临界流体

美国ATI公司开发了一种回收技术,结合了低温湿法工艺和真空高温分解工艺,首先低温化学处理去除树脂以及一些污染物,然后通过真空高温分解剩余的树脂,获得99%纯度的纤维。这种处理工艺可以处理碳纤维复合材料的混合物,无需耗时和用昂贵的人工挑选。ATI公司利用这种工艺处理了波音787飞机的测试碎片,这种碎片由碳纤维、环氧树脂以及热塑性增韧剂组成。ATI公司首先利用低温湿法工艺完全溶解了环氧树脂,然后在525℃温度下真空热分解增韧剂及其他物质。

西班牙巴利亚多利德大学和英国诺丁汉大学的一个研究小组研究了甲醇、乙醇、丙醇、丙酮作为超临界流体对碳纤维复合材料的化学回收能力。并研究了温度、压力、流速、碱性催化剂等对树脂分解的影响。研究表明,流体体系及碱性催化剂促进了降解过程,提高了整体反应速率。通过改变流体速率和碱性催化剂比例可以在15分钟内降解95%以上的树脂,所回收纤维可以达到原纤维85-99%的强度[7]。

英国利兹大学Eyup Yildirir, Jude A. Onwudili等人研究了乙二醇以及乙二醇水溶液对于树脂的分解能力,研究表明,纯的乙二醇溶液在400℃条件下最高可以分解92.1%的树脂;将水加入乙二醇可以提高树脂分解比例,当乙二醇与水比例达到5时,400℃温度下树脂分解率达到97.6%,而其强度与初始纤维仅有细微差别。剩下的树脂降解溶液,分别采用NaOH和Ru/Al2O3作为催化剂在500℃和24MPa条件下超临界水气化,NaOH作为催化剂时可以产出60mol.%的H2,Ru/Al2O3作为催化剂时可以产出53.7.mol%的CH4[8]。

2.4电化学方法

我国深圳大学孙红芳等人采用电化学方法成功回收了碳纤维复合材料,研究了不同溶液浓度和电流对碳纤维回收效率及强度的影响。研究表明,回收碳纤维的强度随着溶液浓度和电流的增加而降低,3%NaCl溶液,25mA条件下,所回收碳纤维强度为原碳纤维的80%,接近热解方法,但低于化学方法。考虑回收碳纤维的质量,3%溶液浓度和4mA电流为最佳参数[9]。

3、展望

随着碳纤维的大量使用,碳纤维复合材料的回收再利用已成为一个迫切需要解决的问题。欧美及日本等发达国家和地区早就开始重视碳纤维复合材料的回收问题,并进行了相关研究,采取了一系列措施并初步取得成效。目前我国虽然有部分科研院所开始了相关研究,但整体水平与国外仍有不小差距,且尚未实现商业化运作。对此,本文作者提出几点建议,以下:

(1)我国政府应加大碳纤维复合材料回收与再利用的政策及资金扶持,引导并鼓励科研院所及相关企业进行研究并产业化,促进行业的良性发展。(2)建立碳纤维复合材料废弃物分级、分类方法及回收后碳纤维相关测试标准,并监督碳纤维及制品相关企业严格执行。(3)热塑性复合材料相对于热固性复合材料更易于回收再利用,我国应大力发展碳纤维增强热塑性复合材料,提高热塑性复合材料的使用比例,以减少热固性复合材料废弃物来源,降低碳纤维复合材料回收成本。

参考文献

[1]智研咨询集团.2015-2020年中国碳纤维行业市场竞争趋势及投资战略分析报告.

[2]Amanda Jacob. Airbus sets out carbon fibre waste recycling plans http://materialstoday. com/ carbon-fiber/news/airbus-sets-out-carbon-fibre-waste-recycling-plans/. 13 May 2014.

[3]杨斌.日本东邦等三家公司成立碳纤维回收技术联合研发小组http:/// news/show.php?itemid=39068.2013-05-20.

[4]陈绍杰.我国先进复合材料技术领域的问题与差距[J].高科技纤维与应用,2015,40(3).

[5]Heil J P. Study and Analysis of Carbon Fiber Recycling [D]. North Carolina State University,2011.

[6] Vicki P. McConnell. Launching the carbon fibre recycling industry. Reinforced Plastics,29 March 2010.

[7]Ra ? ul Pi ? nero-Hernanz, et al. Chemical recycling of carbon ?bre composites using alcohols under subcritical and supercritical conditions[J]. Supercritical Fluids,2008(46)83-92.

[8]Eyup Yildirir, et al. Recovery of carbon ?bres and production of high quality fuel gas from the chemical recycling of carbon ?bre reinforced plastic wastes [J]. Supercritical Fluids 92(2014) 107C114.

碳纤维复合材料篇(8)

中图分类号:TB33 文献标志码:A

Current Situations of Carbon Fiber Reinforced Composites Used for Lightweighting of Automobile at Home and Abroad

Abstract: To meet the requirements of energy-saving, emission reduction and developing new energy vehicles, lightweighting of automotive materials is one of the most important targets for technological R&D in global auto industry. In this article, recent progress on using carbon fiber reinforced composites for automobile lightweighting has been systematically reviewed based on case study of leading auto manufacturers from home and abroad. Finally, the choke points for the development of automobile lightweihting in China are summarized.

Key words: automobile lightweighting; CFRP; high performance fiber

目前,全球生产石油的70% ~ 80%被用作汽车燃油,减少汽车燃油用量是改善全球气候问题的重要组成部分。世界多个国家和地区已经对汽车二氧化碳排放量进行了严格限制,我国也已颁布《节能与新能源汽车产业发展规划(2012 ― 2020年)》,要求到2020年乘用车平均燃料消耗量降至5.0 L/百公里,节能型乘用车燃料消耗量降至4.5 L/百公里以下。

轻量化技术是汽车降低油耗、减少排放、提高新能源汽车续航里程最有效工程途径之一。采用高性能纤维增强复合材料部分代替传统金属材料是目前汽车实现轻量化最有效的途径。德国宝马率先在i3、i8电动车、7系、5系等量产车中大量使用碳纤维复合材料(CFRP),轻量化效果显著,掀起了一场汽车产业材料革新的浪潮。目前全球几乎所有的汽车企业都制定了CFRP轻量化发展计划。CFRP用于汽车轻量化的优势主要在于:密度小,比强度、比模量高,轻量化效果明显;集成度高,减少零部件数量;可设计、造型自由,实现流线型曲面的成本低;吸收冲击性能是金属的 5倍,提高碰撞过程人员安全性;减震性能好;颠覆汽车生产流程,采用模压和粘结工艺代替冲压和焊接。目前CFRP作为汽车轻量化结构材料替代金属材料,其在性能上完全可以满足要求,关键是批量生产技术和成本。基于最新的行业报告数据及实践调研,本文将对国内外汽车轻量化用CFRP的发展现状进行概述。

1 国外汽车轻量化用碳纤维复合材料发展现状

自1953年世界第 1 台纤维增强复合材料汽车 ――GM Corvette制造成功以后,复合材料正式在汽车工业生产中登上历史舞台。发展至今,CFRP成为目前公认的汽车用复合材料未来发展趋势。欧美日等发达国家汽车生产巨头们一直是汽车轻量化用CFRP的引领者和推动者,下文将针对国外主要汽车生产商在CFRP应用技术方面的进展进行介绍。

德国宝马公司是CFRP在汽车领域应用的先驱,其在2008年宣布把CFRP带入汽车主流材料;2011年,法兰克福车展首次i3电动概念车和i8混动概念跑车;2014年,批量化生产i3和i8系列纯电动车在全球正式上市,为碳纤维产品在通用汽车领域的商业化普及应用迈出了重要的一步。i3和i8创新的车体架构由 2 部分构成:一部分是由铝合金材料制成、驱动车辆的Drive模块,集成了驱动系统、底盘、蓄电池、结构功能组件和防碰撞功能组件,另一部分是由CFRP制成、构成车厢主体的Life模块(图 1)。2015年7月1日,全新第六代BMW 7系汽车在丁格芬工厂正式投产,该车型所有创新都始终贯穿着车辆整体轻量化的概念,是宝马核心产品中第一款实现将工业制造的碳纤维材料、高强度钢材和铝材完美组合应用到车身的车型。这种独树一帜的车身结构被称为“Carbon Core高强度碳纤维内核”,不仅优化了车身重量,增强了车身的强度和抗扭刚度,还具有舒适的驾驶体检。

宝马公司还率先开启了CFRP在汽车领域的全方位应用模式,包括:车身、底盘、车顶、车门、头盖、引擎盖、尾翼、压尾翼、中控台、装饰条、仪表盘、传动轴、特殊动力传动系统、座椅、座椅套垫、前扩散器、尾扰流板、后扩散器、后视镜外壳、悬挂臂、前唇、侧裙、侧格栅、车用箱包、导流罩、A柱、遮阳罩、散热器面罩、侧护板、低位踏板、副保险杠等外部和车身、内饰和外饰配件等系统。宝马公司或将在未来 1 ~ 2 年内为旗下车型配备大量的碳纤维部件,特别是碳纤维轮毂,这将大幅度降低汽车的重量。宝马公司的CFRP轮毂是与i系列汽车同时开发的,包括全碳纤维轮毂和碳纤维轮辋+合金轮辐的轮毂。全碳纤维轮毂的重量比锻造合金轮毂轻35%,而合金+碳纤维轮毂比锻造合金轮毂轻25%,这将显著降低整车的重量,宝马公司有望在 2 年内把这种轮毂推向市场。此外,全碳纤维制造的传动轴还将作为单独配件配备新宝马M3和M4系汽车。宝马还在大力宣扬他们的碳纤维材料二次利用,例如i3和i8汽车的边角料可以用来取代传统铝镁合金材料制作仪表板支撑结构、座架以及备用车轮。

在生产工艺方面,为降低CFRP零部件的生产成本以及提高生产效率,宝马采用针对热固性CFRP快速制造开发了高压树脂转移模塑(HP-RTM)工艺(图 2)。该工艺首先将碳纤维织物进行初步的预成型,然后将碳纤维预制件放入到模具当中,在高压状态下将环氧树脂注入模具当中,通过精准的温度、压力和时间控制,使碳纤维和环氧树脂结合,并进行固化,最终形成具备优秀刚性的碳纤维板材。这个加工过程可以全程自动化进行,而高压、高温的处理过程仅需大约 5 min,传统制造工艺则往往需要几个小时。车身的组装工艺采取模块化连接,碳纤维部件的结合像堆砌模型一样采用胶水连接(图 3)。为了缩短固化时间,宝马专门研发了特种粘合剂,在涂敷到车身部件之后仅90 s就可以接受加工,然后产生粘性,在经过1.5 h后就已经固化。这使得车身组件具有完全的刚性,制造速度比普通工艺提升10倍。整个过程全部为自动化操作,包括粘合剂的涂抹、部件的对接等,除了节约人力之外,也减少了粘合剂中的化学成分对工人健康的危害。

纵观宝马几款碳纤维车身的生产过程,有几个明显的特点可谓贯穿始终。首先是颠覆传统汽车生产流程,如果说福特创建流水线生产是汽车行业的第一次革命,那么“碳纤维+新能源”可能是第二次汽车革命,碳纤维生产的车身不需要传统的冲压、焊接、涂装,变成了模压成型、粘结、涂装或塑料外壳;其次是高度的机械化,在整个生产过程当中,机器人的大量使用已经让生产过程基本实现自动化,人工操作仅局限在最低程度,不仅明显提高生产效率,减小制造误差,人力成本也得以大幅降低;最后是环保与可持续发展的理念,宝马大量使用可回收材料制造汽车部件,同时全面采用水电和风电等可再生能源。

除了宝马,丰田、大众、奔驰、现代等多家汽车制造商也都在开发汽车轻量化用CFRP,并应用于车身、轮毂、座椅、氢气瓶、前舱盖、底盘结构件、传动轴等部件。美国Morison公司为Dcna公司生产的CFRP汽车传动轴(图 4(左)),供通用汽车公司载重汽车用。福特1999 ― 2004野马载重车汽车也采用了CFRP传动轴(图 4(右))。采用CFRP可使原来 2 件简化合并成 1个传动轴,且与钢材料相比,可减重60% ~ 70%。英国GKN技术公司也开发了CFRP传动轴,重量减轻50% ~60%,抗扭性比钢大10倍,弯曲刚度大15倍。

2008年,日本Weds Sports公司在推出的概念车上第一次使用了碳纤维轮毂,但当时还是停留在概念阶段。2009年,澳大利亚Carbon Revolution公司开发出了CR9“一体式”全CFRP轮毂,相比铝合金轮毂,其重量减轻了40% ~ 50%,并且首次应用在Shelby Ultimate Aero跑车上。2012年该公司生产的CFRP轮毂成功地在保时捷911上使用。目前Carbon Revolution公司在筹备为兰博基尼、奥迪R8推出碳纤维轮毂。2015年初,美国福特了全新一代野马Shelby GT350R汽车,其采用的碳纤维轮毂再一次引起了关注。以福特Shelby GT350R Mustang所装备的碳纤维轮圈为例,将原本每个轮毂重14.98 kg的铝合金材质换为8.17 kg的碳纤维轮圈后,全车减重27.24 kg,这将显著地改善车辆的操控性能。另外,由于轮圈减重45%,轮圈+轮胎的转动角动量能约降低40%,也改善了加速和刹车的效能。

2011年4月,比利时Solvay公司开发了一种全新轻巧的CFRP Polimotor四缸发动机缸体(图 5)。被浇注的复合材料缸体是最终净形状,消除了二次加工的麻烦,且振动噪声显着减少,耐腐蚀。此外,和压铸工艺相比,模具工具成本减少50%。CFRP缸体比合金缸体重量轻20磅。第二代Polimotor全碳纤维发动机缸体项目在2015年有了新的进展,预计该发动机将于2016年预先应用于赛车、OEM汽车和卡车。该项目有望推动未来汽车领域的重大革新,使碳纤维发动机缸体有可能广泛地应用于商用车。

日产汽车株式会社旗下的2014款GT-R跑车采用了三菱丽阳生产的碳纤维后备箱车盖,该量产化车盖以碳纤维和固化时间为 2 ~ 5 min的热固性环氧树脂为原料,利用三菱丽阳开发的预浸料模压成型工艺生产。三菱丽阳称该工艺将单个部件的生产时间缩短了10 min,更适合汽车部件的规模化量产,而且模压成型的部件表面平滑,易于涂漆装饰。

日本东丽与丰田合作开发的碳纤维增强热塑性聚合物复合材料,可用作制造燃料电池反应堆框架(图6),目前已应用于丰田燃料电池汽车Mirai中,这是世界上第一次将热塑性碳纤维复合材料用于量产汽车结构部件。碳纤维增强热塑性聚合物具有成型时间短的优点,与热固性聚合物相比,生产效率更高,更适合大规模生产。

2015年东京车展上,雅马哈展出了仅重750 kg的全新概念跑车SportsRideConcept(图 7),该车身长3 900 mm,宽1 720 mm,高1 170 mm,超轻的车身得益于其iStream CFRP底盘。iStream碳纤维底盘由英国Gordon Murray Design公司开发,历经 2 年时间,材质由最初的玻璃纤维转变为碳纤维。iSteam采用了创新的“三明治”结构,蜂窝状的内核被 2 片碳纤维板夹在中间。相比超跑所采用的碳纤维单体壳结构,iStream碳纤维底盘的生产周期更短,生产过程可实现全自动化,周转时间仅为100 s,年产量可达1 000 ~ 350 000件。iStream碳纤维底盘同样具有轻量化、高刚性的特点,相比宝马7系仅关键部件为碳纤维材质,iStream碳纤维底盘的减重效果更加明显。这项技术的出现,或将成为入门级跑车爱好者的福音。

韩国现代最新推出的Intrado燃料电池概念车同样秉承了轻量化的设计理念,该车全车架、引擎盖以及侧板均采用CFRP制造,质量比传统钢板制造的汽车轻60%,大大提高了燃油效率,一次补充燃料可行驶644 km,百公里加速时间低于12 s。

2 国内汽车轻量化用碳纤维复合材料发展现状

得益于国家“十五”和“十一五”863计划碳纤维专项支持,我国碳纤维的产业化取得重大进展,通用型高强T300级碳纤维实现了产业化,T700级碳纤维实现了工程化,T800级碳纤维突破了关键技术,开始批量生产,高模型(M40)碳纤维也实现了关键制备技术的突破。国内相关碳纤维生产企业的大规模建设为汽车用CFRP的国产化和低成本化奠定了坚实的基础,一大批企业开展了碳纤维在汽车轻量化方面的应用研究。

江苏奥新新能源汽车有限公司于2015年1月成功研发了我国首辆碳纤维新能源汽车(图 8),并于2016年3月获得中国汽车生产许可证。奥新e25紧凑型A级车,具有核心技术自主知识产权,采用CFRP车身(图 9),轻量化效果明显:百公里耗能低于10 kW・h,续航能力强,充一次电最长可行驶440 km,0 ~ 50 km/h加速仅需4.7 s。目前奥新建立了完整的CFRP车身及其零部件结构设计、制造与评价体系,创造了第一个 2 万辆碳纤维纯电动汽车制造工厂、第一条电动汽车铝合金底盘机器人焊接线、第一条高温高压真空辅助碳纤维成型生产线 3 项中国第一。奥新正与东华大学等国内高校紧密合作,进一步优化零部件结构以及提高制造效率,研发自动化量产技术与装备。

北京汽车在推动汽车轻量化用CFRP方面,成功研发了用于碳纤维发动机盖覆盖件及车身功能件的一系列CFRP部件。在2016年其新型SUV车型上,将会搭载碳纤维发动机罩盖(图 10),相比钢质前机舱盖可减重17 kg(50%)。BJ40车型使用了玻纤、碳纤混杂复合材料车顶盖,较钢制顶盖减重48%。绅宝D60则采用了CFRP前格栅和尾翼,彰显运动和时尚特性。

奇瑞汽车开发了一款CFRP电动汽车(图11),该电动车是奇瑞首款采用PHEV(插电进行充电的混合动力汽车)的车型。其优势在于采用CFRP部件后的车身仅重218 kg,相比金属车身418 kg,车身减重48%。另外,CFRP部件的应用也显著提高了汽车的抗冲撞性能和操控性。奇瑞汽车目前正努力解决该车型实现低成本、批量化生产所面临着的诸多技术难题。

北京长城华冠汽车技术开发有限公司开发了一款名为前途(EVENT)的纯电动跑车概念车。该电动跑车以节能、环保为设计出发点,产品集成了众多汽车行业的前沿科技。长城华冠EVENT车体内外覆盖件整体采用CFRP,在大幅度减轻车体重量的同时,产品的力学及安全性能也优于传统金属钣金部件。该款车型目前已经在苏州建设生产车间,预计2017年开始生产。

上海汽车公司自2008年起,先后承担了多项部级、上海市和地方的汽车轻量化项目,包括上海市科委科技创新计划项目“新能源汽车CFRP典型部件的开发与应用”、上海市科委重点攻关项目“新能源汽车轻量化技术开发”、上汽 ― 科委专项创新项目“轻量化技术在荣威E50纯电动轿车上的应用研究”,为汽车轻量化技术方面的研究与开发积累了良好的基础。

长安汽车开展了大量CFRP在汽车轻量化应用的探索工作,研发了准备在量产车应用的碳纤维传动轴和后举门。中国第一汽车集团公司开展了复合材料板簧、传动轴和CFRP前后盖的研究。复合材料传动轴采用碳纤维增强环氧树脂预浸料,经由卷搓/热压罐成型工艺制造,相比传统金属传动轴,碳纤维传动轴可减重40%,采用CFRP还可使原来由 2 件合并成 1 个单件传动轴。CFRP前后盖,采用T300碳纤维和环氧树脂,经由RTM工艺制造,相比金属材料可减重64%。

碳纤维复合材料篇(9)

1、材料的基本特性

碳纤维增强复合材料补强加固所采用的基本材料是高强度或高弹性模量的连续碳纤维,单向排列成束,用环氧树脂浸渍固化的碳纤维板或未经树脂浸渍固化的碳纤维布,统称碳纤维片材。将片材用专门配制的粘贴树脂或浸渍树脂粘贴在桥梁混凝土构件需补强加固部位表面,树脂固化后与原构件形成新的受力复合体,共同工作。

碳纤维片材:

片材碳纤维材料的拉伸强度在(2400~3400)MPa之间,与普通碳素钢板拉伸强度为240MPa相比,片材的拉伸强度很高。片材碳纤维材料的弹性模量依片材力学性能不同,碳纤维片材依力学性能分成高模量、高强度和中等模量三类。高模量碳纤维片材的弹性模量较高,但其伸长率较低。

相比之下,碳纤维片材的单位重比钢材低许多,说明碳纤维片材较轻。碳纤维的化学结构稳定,本身不会受酸碱盐及各类化学介质的腐蚀,有良好的耐寒和耐热性。

配套树脂类粘结材料;

混凝土结构加固修补配套树脂系统包括底层涂料,用于渗透过混凝土表面,促进粘结并形成长期持久界面的基础;油灰,用于填充整个表面空隙并形成平整表面以便使用碳纤维片材;浸渍树脂或粘结树脂,前者用于碳纤维布粘贴,后者用于碳纤维板粘贴。

浸渍树脂或粘贴树脂是将碳纤维片粘附于混凝土构件表面并与之紧密地结合在一起形成整体共同工作的关键,因此,树脂同混凝土的粘贴强度大于混凝土的拉伸强度和剪切强度。

就混凝土结构用碳纤维片材加固技术而言,环氧树脂在不同施工环境温度下固化性能有十分重要的意义,因为这涉及到粘贴工作质量与如何尽量减少构件正常使用中断时间紧密相关。采用专配的环氧树脂材料,在混凝土施工表面温度(10~40)摄氏度时,粘贴环氧树脂固化时间约15小时以上,但粘贴后就可以使用的时间为45分钟以上,专配的环氧树脂材料的这一性能是完全适合混凝土构件的加固工作。

2、碳纤维片材加固混凝土构件的形式

碳纤维片材主要用于混凝土的基本构件和节点的加固补强,其加固的效果主要是提高构件的抗弯承载力、抗剪承载力以及受压构件的轴向抗压承载力;提高构件的刚度以及延性。除此之外,许多室内及现场试验证明,碳纤维片材加固的混凝土构件裂缝宽度发展可以得到控制。

由于碳纤维片材,特别是碳纤维布质量轻且厚度薄,具有一定柔度,在混凝土构件的有关部位加固较灵活。碳纤维片材因碳纤维排列方向不同而使各方向拉伸强度不相同,碳纤维片材的纤维向与受力向相同时,其拉伸强度最高,反之,纤维方向与受力方向垂直时,其强度最低。因此,在采用碳纤维片材进行加固设计中,必须正确掌握纤维的布置方向。根据混凝土构件加固计算,可以采用连续式粘贴或条带间隔粘贴碳纤维片材的方式。研究表明,分条加固的效果要优于整条布的加固效果。

3、粘贴碳纤维片材加固施工技术

面层处理;

混凝土表面的劣化层(例如风化、游离石灰、脱模剂、剥离的砂浆、粉刷层、污物等)必须用砂轮机去除并研磨。用空气喷嘴、砂轮机与毛刷将待补强区的粉尘及松动物质会除,用水洗净后,必须使其充分干燥。

断面修复;

将混凝土面层的不良部分(例如剥落、孔隙、蜂窝、腐蚀等)清除。若有钢筋外露情形,必须先做好防蚀处理,再以强度相等或大于混凝土的环氧树脂砂浆材料修补。裂缝以环氧树脂灌注。裂缝或打除部分若有漏水情形时,应先做好止水、导水处理。

表面修正;

表面平整度凸出部分(小突起等)以切割机或砂轮机将其铲除并使其平滑。凹陷部分(打除部分)以环氧树脂或树脂砂浆填补。转角处需研磨至凸角R=20毫米(R一曲率半径)以上,凹角则以树脂砂浆填补。

底层涂料;

气温在5摄氏度以下,雨天或RH>95%时,不可施工。施工范围的温度、湿度确认后,选用适当的底层涂料。施工现场空气应十分流通,严禁烟火。施工时必须要穿带保护装备(口罩、护目镜及橡皮手套)。

碳纤维片材的粘贴;

纤维贴片预先以剪刀、刀子依所设计的尺寸大小裁好。依使用量剪裁尺寸、长度在2米以内最适当。为防止保管期间的破损,裁剪数量只裁所需使用的数量。施工面底漆的干燥程度可以指触确认。底漆施工超过1星期以上时,应以砂轮机磨平。

将环氧树脂的主剂(A剂)和硬化剂(B剂)依所规定的配比放置于拌合桶中,使用电动搅拌机,使其均匀的混合(约2分钟)。一次的拌合量为在可使用时间的施工量,超过可使用时间的材料,不可使用。

环氧树脂用毛刷滚轮平均涂布(涂布底漆上)。涂布量随施工面的表面粗糙程度会有所变化,转角部分要多涂。强化纤维粘贴于树脂涂布面后,以毛刷滚轮和橡皮刮刀顺着纤维方向用力推平,使树脂浸透并去除气泡,纤维(长向)方向的搭接长度至少要留10厘米,短向则不用留。粘贴后放置30分钟,若纤维有浮出或脱线情形发生时,以滚轮或橡皮刮刀压平修正。

两层以上的强化纤维相叠贴时,重复步骤。施工现场空气应十分流通,严禁烟火。施工时必须要穿戴保护装备(口罩、护目镜及橡皮手套)。

4、有关混凝土桥梁技术应用问题

粘贴碳纤维片材加固混凝土结构技术在欧洲、美国、加拿大和日本已经广泛应用,并且进行了深入的研究。我国在这方面的工程实践也是在二十世纪九十年代中期才开始,就我国公路混凝土桥梁有关粘贴碳纤维片材加固新技术应用推广的问题做如下讨论。

粘贴碳纤维片材加固混凝土桥梁是一项新技术,使得粘贴加固法成为公路桥梁快速加固方法,适合公路桥梁加固期间尽量不影响桥梁正常营运的要求。碳纤维片材轻、现场粘贴无需重型设备、施工便利,便于桥下的高空作业,可在公路桥梁上推广应用。

对于公路旧混凝土桥梁的加固方法,在工程上应用效果较好的是综合法,即以某种加固方法为主,辅以其它方法,这必须依照桥梁现场的外观检查和技术状况评定,加固设计要求而定。目前,粘贴碳纤维片材加固方法往往辅以裂缝灌浆、裂缝封闭等方法。

我国目前在工程中采用的碳纤维片材材料及配套树脂类粘结材料,是以国外进口材料为主,国产产品较少,且产品的匀质性及低树脂含量等技术指标上还有差距。这样,进口的材料单价就显高,这往往影响技术的经济决策。因此,除了应尽快采取先进技术及措施使国产产品提高质量外,在碳纤维片材加固技术应用中,应当更多从加固效果,耐久方面来考虑桥梁加固后正常运营效益与经济性。

在国外先进国家的科学研究工程实践基础上,结合我国公路旧桥的加固维修特点与经验,尽快编制碳纤维片材加固技术的指南,以指导工程应用。?碳纤维片材加固补强公路混凝土桥梁是粘贴加固新技术,需要结合我国的工程特点进行深入研究和不断提高,使我国公路旧桥加固维修技术达到新的水平。

碳纤维复合材料篇(10)

1 前言

随着碳纤维复合材料在高压容器,航空航天等领域应用的逐渐深入,复合材料损伤机理分析及整体完整性检测也在大量开展[1-3]。层合复合材料的层间结合较弱,分层敏感性成为许多先进复合材料的主要弱点[4-9]。因此,评价复合材料抵抗分层的能力问题倍受人们关注。本文研究了典型的碳/环氧复合材料的Ⅰ/ Ⅱ混合模式分层行为和层间断裂韧性,同时采用美国PAC公司的声发射设备进行全过程采集声发射信号,并对如计数,能量等参量及波形进行了分析,结合材料的力学性能讨论了复合材料损伤行为与AE信号特征的对应关系,为AE技术在复合材料损伤机理研究和安全性能评估方面提供参考。

图1?试验装置

2 试验部分

2.1 混合模式弯曲试样

试验采用浙江大学提供的碳纤维[0/90]4s复合材料,编号为5-1-1、5-1-2,试样尺寸150×20×3,试件一端切除长25mm的缺口,可以形成张开和剪切两种分层形式,同时几何中面埋入长50mm、厚0.02mm 的聚四氟乙烯薄膜,形成预制分层。

2.2 试验设备及方法

采用MTS 810型材料试验机对试样进行加载,速率为1mm/min。声发射仪为PAC的 samos-48,AE参数设置为峰值定义时间50μs,撞击定义时间200μs,撞击闭锁时间300μs,门槛值40dB。耦合剂为真空脂,将R15I型传感器缠绕固定在试样一端,试验装置如图1所示:

3 分析讨论

3.1 力学性能分析

试样在加载过程中,缺口侧预制分层逐渐张开,铺层间存在分层张力,同时由于上下铺层间弯曲变形的不协调性,层间存在剪切应力。

研究表明此碳纤维复合材料的分层扩展行为属于脆性的分层断裂,如图2所示。加载开始,随着位移的增加载荷直线增长,呈现一个很好的线性加载阶段a(0-95s);它反映了分层层间的基体和界面中微损伤的累积,分层力为层间剪切力; 当载荷超过到层间剪切的临界值,层间发生微观错动; 有一个微弱的非线性过程b(95-160s),期间分层间纤维,粘结面不断受张开拉力,剪切力陆续断裂,此刻宏观观测到层间已发生相对错动,预制薄膜分层逐渐张开,载荷略有下降。此后发展着一个可控制的稳定的分层扩展过程c,即位移继续增加,分层平稳地张开,位移停止,分层张开随即中止,可看到分层沿着试样弯曲切线方向逐渐张开,分层为张开拉力所致。

图2?位移-载荷曲

3.2 声学特性分析

图3为试样5-1-2的时间-能量曲线图,可以看出0-95s(a阶段)为低能量持续性信号,说明此阶段层间的基体和界面中微损伤的不断积累,释放微弱信号。95-160s(b阶段)持续产生中等能量的撞击,可解释为达到层间剪切的临界值后分层界面开始错动,可观测到上下铺层沿着预制薄膜分层逐渐张开,部分短纤维束,粘结剂受剪切力,张开拉力等因素陆续断裂,释放一定能量的信号。随着试件的进一步弯曲(c阶段),分层前沿不断前移开裂,更多的短纤维被拉断,

上下铺层沿着预制薄膜处逐渐分层,张开,更多的长纤维束被拉断,258s时分层开裂至加载点,下铺层与弯曲曲线相切,这个阶段集中释放了大量高能量信号。

从两个试件的时间-计数、时间-能量关系图4中也能看出曲线存在(95s、160s)2个拐点,三个阶段与图2、3中a、b、c阶段相对应,通过拐点可判断试样的受力状态及分层内部的活动状态。

图4?时间-计数-能量曲线

复合材料混合模式分层的声发射源可简化为纤维拉伸断裂、层间剪切错动摩擦,界面脱胶三种形式。图5为试样的持续时间-能量-幅值的散点分布图,可以看出撞击信号分为两个典型的区域。Ⅰ区为小于50dB的低幅值、低能量,能量与持续时间不成比例的撞击信号,是因为层间微弱剪切错动,相互摩擦,界面脱胶所释放的声波在高频区域能量较小,幅值很低,信号单一。Ⅱ区为能量与持续时间成正比的,幅值较高且分布广泛的信号,可解释为纤维断裂所释放的高频断裂信号,信号特征较集中。

图5?持续时间--能量―幅值曲线

4 结论

(1)通过力学性能测试发现碳纤维复合材料混合模式分层阶段为剪切分层,混合分层,张力分层过程;

(2)通过对分层信号分析可有效的监测其内部活跃情况,剪切分层信号能量,幅值很低,混合分层信号幅值较大,能量与持续时间成正比,张力分层时期为典型的纤维断裂信号,信号特征教集中;

(3)声发射信号曲线与力学性能曲线有一致的对应关系和吻合,通过对撞击信号深入分析可有效的判断材料内部分层的转换拐点,内部活跃程度,分层模式,为材料性能研究提供有力的理论支持。

参考文献

[1] 贺福,孙微.碳纤维复合材料在大飞机上的应用[J].高科技纤维与应用.2007,6:5-17

[2] 林德春,等. 纤维复合材料在航空航天领域的应用[J]. 玻璃钢,2007,(1):18-28

[3] Sato N,Kuraychi T,Kamigaito O. Fracture mechanisms of unidirectional carbon reinforced epoxy resin composite[J]. J. Mater. Sci. 1986,21(3):1005-1010

[4] Benevolenski O I,Karger-Kocsis J,Czigdny T.Mode I fracture resistance of glass fiber matrenforced poly propylene composites at various degree of consolidation [J]. Composites Part A,2003,34(3):267-273

[5] De Groot P J,Wijnen P A M,Janssen R B F. Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites[J]. Compos. Sci. Technol.1995,55(4):105-412

[6] Giordano M,Calabro A,Esposito C. An acoustic emission characterization fo the failure modes in polymer composite materials [J]. compos. Sci. Technol.,1990,37(3):411-428

上一篇: 企业网站策划方案 下一篇: 中学体育论文
相关精选
相关期刊