信号通信论文汇总十篇

时间:2022-10-30 09:59:04

信号通信论文

信号通信论文篇(1)

在众多的通信技术中,扩频通信技术由于具有独特的抗干扰能力以及宽的使用频带而在军事通信领域倍受青睐。根据扩频通信调制方式的不同,它可以分为直接序列扩频方式(DS)、跳频方式(FH)、跳时方式(FT)及兼有以上方式中二种以上的混合方式。其中跳频通信具有保密性好、不易受远近干扰和多径干扰的影响等优点,是一种很有前景的通信方式。跳频系统的频率跳变,受到伪随机码的控制。不同的时间、不同的伪码相位,频率合成器产生的相应频率也不同。把跳频系统的频率跳变规律称为跳频图案。跳频图案是时间和频率的函数,故又称为时间-频率矩阵,简称时频矩阵。时频矩阵可直观描述出频率跳变规律,如图1所示。

跳频图案的设计是跳频通信系统的一个关键问题,直接影响到跳频系统的保密、抗干扰、多址等性能。一般要求跳频图案的周期要长,这就要求控制跳频图案的伪随机码周期要长,即移位寄存器的级数要大。

1基于FPGA和DDS技术的跳频信号源设计

跳频信号源即为载波频率按照一定跳频图案跳变的信号发生器。设计一个性能优异的跳频信号源,困难在于其优良的频谱性能。笔者提出了一种基于FPGA12和DDS技术的跳频图案的设计方案。指标如下:600跳/秒跳速;20个跳频点;3.4MHz跳频基带;68MHz跳频带宽;106.78MHz~172.14MHz跳频频率中20个频点。DDS采用AD公司的最新频率合成器件AD9852,写频率控制字采用ALTARA公司的可编程逻辑器件APEX20K系列中的EP20K100,其逻辑资源为10万门,两者通过40针总线接口相连3。其中,FPGA完成存储频率控制字、定时写入频率控制字的功能,AD9852则实现频率合成输出。频率合成器DDS是跳频信号源中的一个关键部件,其原理如图2所示。这种频率合成器工作频率高,可达GHz数量级;分辨率高,可达1Hz以下,稳定度高;体积小,重量轻,集成度高,这些都是其他频率合成器件难以比拟的。AD9852是近年推出的高速芯片,具有小型的80管脚表贴封装形式,其时钟频率为300MHz,并带有两个12位高速正交D/A转换器、两个48位可编程频率寄存器、两个14位可编程相位移位寄存器、12位幅度调制器和可编程的波形开关键功能,并有单路FSK和BPSK数据接口,易产生单路线性或非线性调频信号。当采用标准时钟源时,AD9852可产生高稳定的频率、相位、幅度可编程的正、余弦输出,可用作捷变频本地振荡器和各种波形产生器。AD9852提供了48位的频率分辨率,相位量化到14位,保证了极高频率分辨率和相位分辩率,极好的动态性能。其频率转换速度可达每秒100×106个频率点。在高速时钟产生器应用中,可采用外接300MHz时钟或外接低频时钟倍频两种方式,给电路板带来了极大的方便,同时也避免了采用高频时钟带来的问题。在AD9852芯片内部时钟输入端有4~20倍可编程参考时钟锁相倍频电路,外部只需输入一低频参考时钟60MHz,通过AD9852芯片内部的倍频即可获得300MHz内部时钟。300MHz的外部时钟也可以采用单端或差分输入方式直接作为时钟源。AD9852采用+3.3V供电,降低了器件的功耗。工作温度范围在-40°C~+85°C。

本文采用AD9852所设计的频率合成器结构如图3所示。DDS模块分成二路输出:(1)第一路输出

100MHz~150MHz信号;(2)第二路输出150MHz~200MHz信号。其中DDS输出12.5MHz~25MHz的信号,经SWCON开关分成两路输出,一路输出12.5MHz~18.75MHz信号,经放大倍频、滤波,输出100MHz~150MHz信号;另一路输出18.75MHz~25MHz的信号经放大倍频、滤波输出150MHz~200MHz信号。

2FPGA与DDS接口设计

FPGA主要完成从外部向DDS写入频率控制字功能,其中频率控制字存储在FPGA内部RAM单元中。双方通过40针总线连接,其中信号线为:8位数据线、6位地址线、复位信号、updateclk(频率跳变信号)、swcon(开关:高频段和低频段转换信号,当swcon为低时输出高频段,当swcon为高时,输出低频段)、wr(写信号)。

信号通信论文篇(2)

随着铁路建设的高速发展,作为铁路运输生产基础之一的铁路信号设备也发生了很大变化,主要体现在设备组成部件及器材产品中的科技含量逐年增加,表现为技术条件复杂、标准要求高、试验项目多、测试技术指标精确的特点。铁路经过6次大提速之后,对既有线铁路信号设备的维修和施工质量要求越来越严格,对信号设备更新、改造和大修及新旧设备更替时间的要求也越来越短。信号设备更新、改造与运输需求之间的矛盾越来越突出,因此优化施工组织,缩短信停时间已成为铁路信号工程中的当务之急。

1信停期间的铁路信号工程施工组织

信号工程的核心工作就是信、联、闭、停、用期间的施工组织,是一个系统工程,直接关系到信号工程安全、质量和工程指标的实现。

1.1制定严密的施工方案

项目经理组织有关工程技术人员进行现场调查,征求车务、电务、工务及上级主管部门意见,了解既有设备的使用情况,确认好信停影响范围,明确信停前及信停中施工内容,确认具体的工作项目、工程数量、相互关系和工作顺序,使每项工作都围绕关键项目来进行。

同时,要对每个作业项目提出具体的作业时间和安全措施、质量标准及所用材料和工具等,并以作业单形式进行细化分解,提前两天发到作业小组,使每个人都明确自己所负责的工作。主管工程的技术人员要通过新、旧图纸核对,了解施工中的每一细节及新设电路与已有电路的不同。落实好需要电务、车务、工务、房产、铁通和供电等部门配合的项目,综合各方面因素,编制出详细、准确、具有可操作性,与实际工作相符的施工方案。

项目指挥长、项目经理、主管项目安全的负责人及项目总工程师中的每一个人必须明确信停期间的作业项目和主要工程数量及影响范围,掌握关键路线,运用好网络计划技术,组织好流水作业和平行作业。

信停期间参加施工的所有管理干部必须实行分工负责和逐级负责制,分片包干,明确自己的责任、任务,完成项目的时间和应达到的标准。这样才能确保信停施工安全稳定、质量达标、施工进度有序可控,使工程能够按期或提前完成,因此,编制切实可行的施工方案是实现工程施工的前提。

l.2信停期间的配合工作

信号设备停用期间的施工配合工作是缩短信停时间的重要条件。在此期间的施工是以工程单位为主体,电务、车务、工务、机务、通信和供电部门密切配合,互相支持,团结协作。

1)首先,铁路局所属的施工所在地或车站在信停前根据施工等级不同,由专人负责主持召开施工协调会,对工程与运输、通信、工务、电务、供电之间的相互配合提出明确要求,对关键问题抓好检查落实工作,防治不必要的推诱,为施工顺利进行提供可靠的保证。

2)其次,信停期间的运输组织必须为施工部门创造条件,落实施工单位的合理要求。运输部门必须正确认识施工与运输的关系,只有为施工中的测试、试验项目创造条件,施工部门才能按期或提前开通,缩短无联锁状态时间,从而确保行车安全。

3)电务段在施工过程中的全面参与及密切配合也发挥着重要作用。电务段从施工开始到工程竣工要给予全方位的配合,如电缆敷设、箱盒配线、设备安装、电气特性测试、更换转辙设备等应派专人参加,这样可以做到有问题及时协调、协商解决,主动参与工程质量监督和验收,将问题解决在信停之前,使出现问题的概率降到最小。信停前请电务段进行初验,尽量减少信停期间可能出现的问题,为信号工程的开通创造良好的条件。

4)信停期间的工务、通信、机务、供电部门的配合也是重要的组成部分。信停前施工单位必须及时把涉及到上述单位的配合工作以书面形式写明,进行沟通,听取意见,配合单位也要指定专人落实好配合工作,确保行车设备正常投人运营。

2铁路信号电路导通施工

铁路信号导通质量的好坏关系到联锁关系是否正确及信号设备的正常使用。铁路信号的导通丁一作可分为3个部分进行,即:导通前的准备工作、导通中的故障处理及模拟联锁试验。结合工程实践,本文重点阐述铁路信号在电路导通中的故障处理。

2.1导通前的准备工作

导通前准备工作主要包括:①核对配线,此项工作分室内、室外两个部分同时进行,也可以根据施工的规模情况分别进行;②对电源屏做空载试验,电源屏空载试验是电路导通前必不可少的一项试验工作,要符合标准和《铁路信号施工规范》要求;③检查组合架的架间零层电源环线、侧面电源环线、控制台电源环线等相互间有无短路及混线等错接现象,各条配线对地绝缘及线间绝缘电阻是否达到《铁路信号施工规范》要求,确定无误后方可与电源屏连接;④通电检查电源屏及组合是否有熔断器熔断;⑤在完成上述任务后,就可插装继电器,最好是在带电状态下进行,这样可以同时观察到各部分熔断器是否保持完好;⑥最后对室外设备做检查;⑦在做好前6项工作的同时,还要按轨道电路的站场布局,做好轨道电路模拟盘,大站可做信号机模拟及道岔模拟操纵盘。

2.2导通中的故障处理

在完成前期准备工作后,此时进路还不能排列,还不能进行联锁试验。要使所有单元电路恢复到定位状态后,才能进行联锁试验。

1)使各个单元电路恢复到定位状态。此项工作要使室外信号机的定位灯光都能点亮,室内相应的灯丝继电器(DJ>吸起:电动转辙机能正常转动并有定、反位显示,且与室内相应的道岔组合中的1DQJ,2DQJ,DBJ,F13,相对应,所有轨道继电器(GJ)能可靠吸起,这些单元电路都比较简单,可分组同时进行。处理故障时应本着先内后外、先近后远、先易后难的原则,即先处理室内故障、再处理室外故障;先处理距信号楼近的故障,再处理距信号楼远的故障;先进行简单容易处理的故障、再处理复杂的故障。对于较复杂的电路故障,要尽可能缩小故障范围。

2)当上述工作完成后,即可对控制台盘面上的按钮、表示灯进行对照。要使盘面上的表示灯与此时的电路相一致、显示正确、光带熄灭,按钮按下后,对应的按钮继电器有所反应。

3)排列进路。依照联锁表中给出的进路类型,按先短后长、先易后难的次序进行排列进路,先办理短调车进路,逐个办理,逐个核对,做到操作、电路动作及表示完全符合联锁图表的要求,不放过任何一个细小的故障及隐患。短调车进路全部排出后才可进行长调列车进路的排列,再进行调车进路的正常解锁、故障解锁、中途返回解锁等联锁试验内容,最后进行列车进路,列车进路的办理程序与调车进路的办理程序相同。

4)接口电路的导通,接口电路往往不定型,因此,对接口电路一定要试验彻底。如64D继电半自动闭塞电路、区间自闭结合电路、场间联系电路、与机务段联系电路等。

5)轨道电路送电端要接在箱盒引接线上,受电端反送电,使室内轨道继电器吸起。

2.3模拟连锁试验

信号通信论文篇(3)

近年来,网络信息技术发展迅猛,但从来没有哪一款网络软件像腾迅QQ一样,在短短几年时间内全方位地冲击着青少年的生活。人们的阅读、交流、娱乐乃至部分商业活动越来越多地在QQ上进行。可是,在我们惊叹QQ创造的一个又一个奇迹时,QQ又为网络犯罪埋下了隐患。 今年1月16日,广东省深圳市南山区法院对备受网民关注的国内首宗盗卖QQ号案作出一审判决,以侵犯通信自由罪分别判处两名被告人曾智峰、杨医男拘役各6个月。我认为这一判决是合理的。有关盗窃QQ号的犯罪,我将从以下几方面论述: 一、如何认识QQ号 随着网络技术的发展应用,通信领域发生了重大变革。计算机数据通信日益成为现代通信主要形式,网络电话、电子邮件、实时短信等现代数据通信方式在现代社会生活中得到广泛使用。腾讯QQ作为一款即时通信软件,支持在线聊天、视频电话、点对点断点续传文件、共享文件、网络硬盘、QQ邮箱等多种功能,并可与移动通讯终端等多种通讯方式相连。我们可以使用QQ方便、实用、高效的和朋友联系,加之它具有极为广泛的应用范围、极快的传输速度,短时间内它就被数百万人接受、使用。而QQ号不幸被盗则面临着网络好友失散、客户流失等严重后果,给我们生活、工作带来不可估量的损失。但是QQ是否属于财产呢?众所周知,QQ通常情况下是一种免费服务,申请、使用均是无偿的。所以它不具备价值,不属于法律意义上的“财物”,甚至也不同于用金钱买来的一些网络游戏帐号。所以QQ号码只是一种通信代码,本质上是无偿的用于数据通信的网络通信服务,所以法院对盗窃QQ号的行为定侵犯通信自由罪是合理的。 二、确认盗QQ号为侵犯公民通信自由罪的法律依据和犯罪构成 依照《刑法》第252条规定,侵犯通信自由罪,是指隐匿、毁弃或者非法开拆他人信件,情节严重的行为。只有符合此罪构成要件,才能认定为此罪。而对于此类涉及网络犯罪案件,全国人大《关于维护互联网安全的决定》中规定,非法截获、篡改、删除他人电子邮件或者其他数据资料,侵犯公民通信自由和通信秘密的按此罪追究刑事责任。QQ中存有大量的涉及个人隐私的个人资料和聊天记录,这些应当属于上述《决定》中的数据资料,所以盗QQ号是此类案件的一种特殊类型,其构成要件是: (一)犯罪主体。本罪的主体是一般主体,即年满16周岁具有刑事责任能力的自然人。 (二)主观方面。本罪在主观方面只能是直接故意,间接故意和过失不能构成本罪。如上所述,盗QQ号属于截获数据资料,直接侵犯了公民通信自由。所以不论出于何种动机,都不影响本罪的定罪,但可能会影响量刑的轻重。 (三)客观方面。本罪客观方面表现为截获、篡改、删除他人QQ中所保存的个人信息、聊天记录等数据资料。截获,是在与他人聊天的过程中通过某种网络工具或不正当手段盗取QQ号码及密码;篡改,指盗取QQ号后篡改他人QQ中的个人信息,意图达成某种目的;删除,指擅自删除他人QQ中的相关资料、聊天记录,使他人将无法看到本来聊天记录的内容。在这三种行为中,截获为篡改和删除的必要前提条件。从司法实践来看,行为人只要实施三种行为之一,就应当可以构成此罪。 (四)犯罪客体。本罪侵犯的直接客体是指公民的通信自由权利,包括与他人正常通过QQ通信交流的自由和为自己的数据资料保守秘密的自由。犯罪对象是他人 QQ中的数据资料。公民的聊天记录等数据资料存放在QQ中,都有个人密码进行保护。采取任何方法盗取密码侵犯他人的通信秘密,都构成侵犯通信自由行为。 此外,成立本罪除了必备以上四个方面的构成要件外,还必须具有严重情节行为。所谓情节严重,指盗取他人QQ号多次,并造成严重后果。 三、盗取QQ号犯罪的特点 盗取QQ号的犯罪是当今信息社会出现的新问题,与一般侵犯通信自由罪不同,它具有以下特点: 1、严重危害公民隐私权利。QQ作为实时短信服务,它比普通话音通信和邮件更能反映通信者个人信息,包括个人的行为方式特点、个人喜好、具体资料、性格特征等。例如在聊天记录中涉及到的有关个人生活、工作和经济状况的一些信息,以及曾向他人发送过的个人、家庭和居所的照片等。基于这些原因,盗取QQ号的犯罪更为严重地危害了公民的隐私权利。 2、隐蔽性强。QQ信息的收发是通过互联网来完成,行为人除了可以偷看被害人操作,记下登录密码,也可以用密码破解软件或通过多次尝试非法获取他人登 录密码,然后就可以在世界各地登录、使用他人的QQ号码并获取其中信息,而行为人的身份、作案地点很难被发觉。 3、反复作案可能性大。行为人一旦获取了他人QQ号的密码,而未被人发觉,行为人就会肆无忌惮,轻易地多次作案。而且行为人窃取到密码后立即更改,被害人再也无法取回QQ号码。如此一来,必然会危害到更多人的通信自由权利。 4、犯罪危害后果严重。盗取QQ号侵犯了公民的通信自由权和个人数据隐私权,对公民的人身、民主权利构成严重侵害。而且这种犯罪往往与其它犯罪有密切联系,很可能被进一步利用来实施其它犯罪行为,如诈骗、敲诈勒索等犯罪,给正常社会秩序造成巨大隐患和严重危害。 四、完善该项立法的必要性及立法建议 在现代社会,电子信息传输与社会各领域活动正常进行息息相关。盗取QQ号的犯罪可能影响到多种社会法益。例如盗取他人QQ号并与他人通信时,这种犯罪侵犯的是公民通信自由、通信秘密权利和公民隐私权利;盗取QQ号后侵用他人购买的Q币、网络硬盘等侵犯的是财产权或相关财产性利益;利用他人身份与他人通信或一些控制信息,更有可能进一步实施诈骗、敲诈等犯罪,严重危害社会秩序。可见,像QQ这类的信息传输安全对信息社会具有重要意义,应当受到刑法保护。同时,由于它涉及多种法益,不能为一种法益所包括,对这类侵犯数据传输安全的犯罪单独立法要比依照其它刑法处理更有利于对这类犯罪的惩治。 欧洲理事会《关于网络犯罪的公约》第3条规定:“各缔约方应在国内法律中建立这样的立法,或采取其他必要措施,把利用技术手段、故意实施的非授权拦截计算机数据的非公开传输的行为规定为犯罪。”我认为这一犯罪立法对解决各国刑法对拦截、盗用网络数据信息犯罪(以盗QQ号犯罪为代表)的立法有重要意义,能为网络数据传输和网络信息交流提供重要法律保护。而且这一公约是第一个反网络犯罪的国际法律文件,对协调一致立法产生了重要作用。我国在立法中应当借鉴该公约的规定,在刑法中增设“非法危害网络信息安全罪”(不知该罪名是否恰当)。这不仅是我国法规与国际接轨的需要,而且对于保护信息安全,保障社会信息化和维护社会正常秩序都有重要意义。

信号通信论文篇(4)

对于一些较为复杂的矢量信息的调制,光通信系统当中则一般都是用IQ调制器进行;光纤模型是为了将通信相干系统内处理数字信号进行提高,因此必须要具体研究整个系统内信号进行光纤传输的现象,而该现象则需要从物理以及数学的模型当中入手,对对应的补偿或均衡技术进行研究过程中将数字信号处理技术的作用发挥出来,使得光信号变换成为电磁波的形式,具体的解是在麦克斯韦方程组导出的波动方程中进行的,表达式是:其中X是信号偏振方向的单位向量,是初始振幅的傅立叶表示,是常数,最终将光信号基态模式分布成F(x,y)看成是近似高斯函数。另外在研究接收端过程中,一般都是将光相干接收机作为主要组成进行研究,其能够对接收机进行直接测探,让所检测的信号强度信息得以增强,同时还能够将强度调制信号进行光电转换前对其进行除匹配滤波之外的处理。

2信号处理

研究相干光通信系统内处理数字信号的技术主要是:光纤信道是信号进行传输的通道,而其中所出现的不同形式的失真或者损伤就会在结合过程中出现线性或者非线性的失真。而线性失真的补偿是不存在因果关系,即无需顾虑其顺序问题,不过需要在具体算法当中遵循以下原则:分离所需估计的线性失真为单独形式的变量,并补偿态应该优先估计,对于算法较为简单的变量,然后再补偿随机变量,最后才是对所有变量进行完整补偿。算法流程:每个方框所代表的都是相干接收机内的数字信号处理系统的子系统,且子系统之间所可能出现的反馈线路的具体图表也要进行表示,在预处理算法的研究中,它是指在进行实质的信道均衡、载波恢复之前,对采样后的信号进行一定程度的预先处理,为形成数字信号处理算法做出充分的准备。

3信号补偿

使用数字信号处理算法之后,相干光通信系统对信号补偿是在接收端,具体使用过程当中则会根据情况的不同来使用不同形式的数字信号处理子系统。去偏移系统可以针对偏振之间的采样时刻偏移进行补偿。正交化系统可以补偿因调制器和混频器缺陷造成的欠正交状况。归一化系统能够将信号具备单位的能力和幅度,进而使得信号发生色度色散后可利用静态信道的均衡系统对其进行补偿。即使出现不当采样而导致误差出现时,也能够使用采样时钟来对系统进行相关补偿。即自适应的信道均衡系统能够对于偏振所出现的相关损伤进行补偿,载波相位回复系统是估计载波相位的噪声,进而对所出现的失真进行补偿。载波频率恢复系统则是对发送端和接收端之间载波所出现的频率偏移进行补偿和估计。对于光线非线性造成的信号损伤可以借助非线性补偿系统进行补偿。

4相关耦合

在应用数字信号处理算法过程当中,先在接收端破和所输入的光信号和本振光,进而根据上述的数字信号处理技术子系统来对所耦合的光信号进行模数转化、去偏移以及正交化恢复等处理,然后根据实际的应用环境来选择具体形式的反馈和补偿。即相干光通信系统中有了数字信号处理算法的应用将会对其色散、偏振等造成的信号失真有了非常有效的补偿,进而更好的促进了相干光通信系统的发展。

信号通信论文篇(5)

2城市轨道交通信号系统方案

通常情况下在城市交通疏解任务中城市轨道交通线路承担着十分重要的任务,为确保人们出行的安全性,应采用完整的、先进的、高效的列车控制系统作为地铁信号系统。正线信号系统采用完整的列车自动控制(ATC)系统,由ATS、ATP、ATO、联锁设备组成。车辆段/停车场由联锁设备、微机监测设备、ATS分机等主要设备组成。目前城市轨道交通的信号系统主要有准移动闭塞和移动闭塞系统选择。

2.1基于目标距离模式的准移动闭塞ATC系统通常选用音频数字无绝缘轨道电路作为目标距离模式,这种模式的主要特点为信息传输量较大及抗干扰能力很强。列车车载设备依据由钢轨传输而接收到的联锁、轨道电路编码、线路参数、控制管理等报文信息,连续对列车追踪运行及折返作业进行速度监督,最大限度对其进行超速防护,控制列车运行间隔,以满足规定的通过能力。由于音频数字轨道电路具有极大的传输信息量,可以将目标速度、目标距离、线路状态等信息提供给车载设备,为计算出列车相适应的运行模式速度曲线,将ATP车载设备与固定的车辆性能数据进行充分地结合。

2.2基于通信的移动闭塞系统(CBTC)基于通信的移动闭塞列车控制系统具有极为先进的发展技术,是列车控制技术的发展趋势,是国际ATC先进水平的代表。是独立于轨道电路的高精度列车定位。CBTC系统为实现车与地、地与车间之间的双向数据通信,可以选用自由空间无线天线、交叉感应电缆环线、漏泄电缆以及裂缝波导管等方式进行有效通信。依据列车的位置信息及进路情况轨旁ATP设备可以有效对每一列车的移动权限进行准确计算,同时根据列车位置速度的变化不断更新数据,利用连续车地通信设备向列车进行信息的发送。依据接收到的移动授权及本身的运行状态车载设备可以对列车运行速度曲线及防护曲线进行有效计算,在ATP子系统的保护防御过程中,在该速度曲线下ATO子系统或人工驾驶控制列车可以正常运行。可以最大限度地实现后续列与前行列车尾部的紧密性,并始终处于安全距离范围内。在确保安全的基础上,CBTC系统可以实现区间通过能力的有效提高,同时不受轨道电路区段分割的限制。虽然CBTC系统在调试时因对现场环境要求高、调试周期较长等一些不尽如人意的地方,但是CBTC系统在具有自身优越性的同时已经成为城市轨道交通信号系统的首选方案。其相对于准移动闭塞系统的优越性是不可取代的。

3城市轨道交通信号系统通信设备的传送方式

3.1通过轨道电路进行传送轨道电路不仅可以检测列车占用情况,也可以传递报文信息给车载设备。在轨道电路不忙的情况下,将轨道电路信息传送给联锁系统,当列车对轨道进行占用时,利用装置切换,并将发送轨道电路信息的作业进行停止,开始采用轨旁设备将ATP报文信息连续向钢轨进行发送,将接收和发送设备装置在列车底部,可将接收到的信息向车载设备进行传递,同时也可以向地面发送列车信息。

3.2通过轨间电缆传送单独沿着钢轨铺设一条线路,专门用于传送ATP报文信息,此方法安全可靠,但费用较高。

3.3通过点式应答器传送在轨道电路的部分地方进行应答器的设置,应答器的设置主要有两种形式:固定数据应答器与可变数据应答器。用于存储固定数据的应答器为固定数据应答器,可变应答器通过对中心进行控制来取得数据,将接收和发送天线安装在列车底部,当列车运行在应答器位置经过时可以感应到应答器的信息,然后进行双向数据交换,因为这种信息的传送不具有连续性,只能在一定位置才能进行接收,因此这些位置被叫做点式ATC。

3.4通过无线方式进行传送无线车地通信主要采用无线方式,由控制中心来实现车载ATP/ATO的功能,利用无线交换器和轨旁无线单元AP与车载无线通信设备进行时时数据的交换。一般情况下一个控制中心可以实现对一条线路上所有车站的控制,当控制中心设备发生故障时,为了确保整条线路不出现瘫痪现象,可以将车站现地工作站和车站ATS远程控制单元设置在车站。这样当控制中心出现故障之后,车站工作人员可通过车站现地工作站进行操作来实现联锁计算机的功能,ATS远程控制单元可代替中央ATS系统向联锁系统和轨旁设备发送相关信息,此时ATS远程控制单元所具有的信息不全面,但能够保证列车在本站的正常运行。

信号通信论文篇(6)

中图分类号:TN911.7 文献标识码:A 文章编号:2095-1302(2013)02-0055-04

0 引 言

传统的数字信号处理以奈奎斯特采样定理作为基础,在模拟/数字信号的转换过程中,采样频率大于信号最高频率的2倍,才能从采样得到的数字信号中无失真地恢复原始信号。在实际应用中,为保证信号处理效果一般采样频率为信号最高频率的3倍以上,采集到的冗余数据在后续处理阶段再滤除。然而,随着当前日益增加的信息需求量,信号频率越来越高,带宽越来越宽,在信息获取中对采样速率、处理速度和信息存储空间等提出越来越高的要求。这将造成对ADC和处理器的性能要求更高以及数据存储和传输的压力。但是,在许多情况下,信号是稀疏和冗余的,在某些变换域是可压缩的,在处理过程中冗余信息将被丢弃,多余的数据就造成了资源的浪费。针对这个问题,在过去的几年,一种新的理论压缩感知被提出来,它的核心思想是通过很少的非适应性,凸优化的线性测量来恢复稀疏信号。压缩感知的理论基础是建立在以下领域并发展而来,例如应用谐波分析、框架理论、拓扑几何、优化理论和矩阵分析等[1]。在该理论下,信号的采样速率不再取决于信号的带宽,而是取决于信息在信号中的结构与内容,因此在满足信号的可压缩性以及表示系统与观测系统的不相关性两大条件下,从低分辨观测中恢复高分辨信号就成为可能[2]。

压缩感知理论主要涉及三个核心问题:一是信号的稀疏表示;二是非相干测量矩阵设计;三是信号重建算法优化设计。在应用研究方面,其影响已经涉及很多应用科学,如无线电通信的认知无线电方向和信道编码、阵列信号处理、雷达成像、图形图像处理、生物传感、模拟信息转换等。利用压缩感知理论,模拟信息转换器被设计用来在较低速率下获取样本,然后在后端DSP成功恢复感兴趣的压缩信号。模拟信息转换器可以代替传统的ADC,以较低的速率对高速模拟信号进行实时采样,获取所关心的信息,有效解决了传统采样理论遇到的瓶颈。压缩感知理论最初是针对离散信号提出来的,把它应用到模拟信号的研究目前处于起步阶段,存在很多困难。模拟信息转换需要能够实时采样连续信号,而不能直接使用离散信号的测量矩阵,同时要求数字处理器有较强的运算能力,能够及时对高速信号进行感知,硬件实现困难。因此,该算法的复杂度优化和硬件可实现性成为压缩感知应用的关键点之一。

本文首先对压缩感知的基本理论进行了研究,对比分析了三种模拟信息转换器,介绍了常用重建算法,并通过仿真验证了模拟信息转换-信号重建结构的可行性,分析了实现结构的性能。最后,进行了总结并对压缩感知的研究趋势进行了展望。

1 压缩感知原理

4 结 论

由于现实环境中的大部分信号具有稀疏性或可压缩性,压缩感知理论利用信号稀疏性突破了奈奎斯特采样定理。事实上,把从对数据的采集直接转化为对信息的采集,就能以随机采样的方式,并用更少的数据采样点来完美地恢复原始信号。

本文介绍了压缩感知的基本理论,分析了压缩感知在模拟信息转换中的应用,并通过仿真验证了压缩感知理论的实际应用可行性。在射频和宽带无线通信信号的采样和信号检测分析中,基于压缩感知理论的欠采样系统的设计,能降低对高速ADC器件的依赖,可在有效减少数据量的同时,保证近乎完美地重建信号,降低系统资源消耗,提高系统性能。压缩感知理论在无线通信的频谱感知、信道编码、阵列信号处理等方面都得到了广泛的研究,从而推动了无线通信技术的进一步发展。可见,压缩感知具有十分重要的应用价值。

参 考 文 献

[1] ELDAR Yonina C, KUTYNIOK Gitta. Compressed sensing: theory and applications [M]. Cambridge: Cambridge University Press, 2012.

[2] 焦李成,杨淑媛,刘芳,等. 压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662.

[3] CAND?S E, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans. on Information Theory, 2006, 52(2): 489-509.

[4] DONOHO D. Compressed sensing [R]. Stanford: Stanford University, 2004.

[5] DONOHO D, TSAIG Y. Extensions of compressed sensing [J]. Signal Processing, 2006, 86(3): 549-571.

信号通信论文篇(7)

本届年会将以“互联网+时代的管理会计信息化”为主题,同时兼顾其他热点内容,将重点研讨如下议题:

1.企业管理会计信息化研究与应用

2.政府会计信息化研究与应用

3.内部控制与IT风险管理研究及应用

4.审计信息化研究与应用

5.XBRL企业内部运用案例研究

6.“互联网+大会计”时代的会计信息化新发展

7.财政部会计信息化新法规实施与应用

8. 会计信息化技能认证及人才培养与教学改革研究

以上仅为参考性议题,在会计信息化理论研究和应用范畴内,作者可根据研究成果自行拟题,欢迎会计信息化理论和实务工作者提交相关论文。中国会计学会会计信息化专业委员会将组织评选年会优秀论文。

二、征文事项

1.征文截止日期

2016年6月10日(以论文发出日期为限)。组委会遴选后在2016年7月10日前发出正式的会议论文录用通知和参会邀请函。参会回执请务必于2016年7月20日前发至会务组。

2.征文注意事项

(1)应征论文应当是未公开发表的论文。

(2)应征论文被会议录用后将在中国会计学会网站、中国会计视野论坛――中国会计学会会计信息化专业委员会学术讨论版 网站上登载,同时将被中国学术期刊(光盘版)电子杂志社的“中国重要会议论文全文数据库”收录,并向《会计研究》《中国管理信息化》《财务与会计》《会计之友》等杂志推荐发表。

3.提交论文的内容与格式要求

(1)页面设置A4纸;(2)文章标题(居中,三号黑体,上下各空1行);(3)文章作者(小四号宋体,居中,作者之间用空格);(4)单位、邮政编码(小五号宋体,居中,后面空1行);(5)“摘要”(五号黑体,顶格),摘要内容(小五号宋体);(6)“关键词”(五号黑体,顶格),关键词(小五号宋体,下空1行);(7)以上项目的英文内容,使用Times New Roman字体,字号与中文部分相同,文题、“Abstract”、“Key Words”加粗;(8)正文(五号宋体,单倍行距),标题(黑体),图表分别按顺序编号;(9)“参考文献”(五号黑体);(10)作者个人信息单独一页(作者姓名、性别、职称、工作单位、通信方式(联系地址、邮编、电话、传真、E-mail地址))。

4.论文提交要求

通过电子邮件提交word格式论文。电子信箱:。邮件主题为“中国会计学会第十五届全国会计信息化年会征文”。

5.联系人:陈丹妮老师:0577-86596211;15067851757

应里孟老师:0577-86595931;15158550788

孙玉甫老师:0577-86599345;15258683890

6. 通信地址:浙江省温州市茶山高教园区温州大学城市学院会计分院

邮编:325035。

信号通信论文篇(8)

压缩感知是一种新型的采样方法,通过信号记录每个观测过程中投影的数据,如果感知信号资源小,则可以将这些信号资源进行压缩处理,以保证在观测值数量少的情况下信号结构的准确性和完整性。相对于重构结构复杂的感知信号,信号和图像的重构步骤复杂,且重构效果很差,面对这些不能被正确重构的感知信号,应采用采样的方法将特征量从样本数据中采集出来,通过检测目标信号,完成检测流程。综上所述,通过正交匹配追踪研究压缩感知信号的检测算法,其综合应用性能很好,检测范围和效果很好。

一、感知信号检测

1. 感知信号理论概述

信息获取是压缩感知信号理论的核心内容,其理论基础建立在信号系数、样本数据处于非相关性的状态下的数据测算,通过数据重构和特征量数据采集,以局部分析整体的方式,完成检测流程。压缩感知理论的内容主要包括:①将感知信号的投影在观测向量上,利用重构思想对样本数据进行重构测算,并建立检测集合,如果信号程度为M,则其重构集合稀疏度为K(K

2. 感知信号检测原理

二、基于正交匹配追踪的压缩感知信号检测算法

1.检测算法。正交匹配追踪是一种新型改进算法,其检测方法的理论依据是正交匹配理论,和其他感知信号检测算法相比,正交匹配追踪算法的检测流程更为简单,检测结果的准确度很高。其检测特点是在每次迭代中将选出的列用Gram-Schmidt正交化方法进行正交化处理,将采集到的样本数据选列在空间投影中,通过直观的数据变化曲线,选择精确的检测算法,这种检测方式不仅可以简化检测过程,还能提高样本数据各特征量的收敛速度。在数据迭代次数相同的情况下,空间投影出的采样信息的更新速度很快,检测人员可以通过采样值选出最优投影,并随时更新系数,以确保空间投影的真实性,检测结果的准确度。

2. 实验结果分析。实验结束后,通过检测结果进行分析可知,在每次迭代中,OPM检测算法的感知信号的波形都相对平稳,在一段时间内,其特征量不会随着加性高斯白噪声的变化而变化。当采集样本数据在规定资源数量时,OPM的检测结果和MP的检测结果大体相同,当检测阈值超过3时,OPM的检测结果的准确率明显由于MP检测算法。实验结果表明,与MP检测算法相比,本文提出的OMP检测算法其检测成功率很高,可以在提高检测成功率,所需采样点数、抑制噪声等方面有更好的性能,所以正交匹配追踪压缩感知信号检测算法是一种综合应用性能很好的信号检测方法。

结论:通过上文对正交匹配追踪压缩感知信号检测算法进行系统分析可知,通过匹配追踪定位感知信号,采集特征量,不仅可以方便于检测人员搜集信号样本,还能大大提高检测结果的准确性。通过对每次迭代的特征量进行及时、系统修正,可以延长采集样品的有效时间,以获得更科学、更真实的检测结果。

参 考 文 献

信号通信论文篇(9)

在通信以及其他现代化技术领域中,我们经常需要进行接收或者传送数据,但在这过程中总会有噪声进行干扰。特别是在接收或者发送一些幅度非常小的信号,有时原始信号会完全淹没在噪声中,使得对原本信号的提取与恢复增加了困难。

本文在前人研究的基础上,提出了一种互补的方法,解决了之前的一些问题,并更加快捷有效的提取出弱目标信号。

1.关于随机共振和混沌理论的研究

1.1 随机共振

随机共振的核心是由输入信号、随机噪声信号和一个输出信号组成的双稳态系统。对于线性系统来说,输出信号的信噪比通常应该正比于输入信号的信噪比,噪声信号幅值的增加将会导致输出信号的信噪比的减少。然而随机共振却大不相同,其特点是随着输入噪声信号幅值的增加,输出信号的信噪比也增加。

非线性朗之万方程(LE)通常被用来研究随机共振系统[1]:

图1为一个由两个势阱和一个势垒组成的双稳态系统[2]。

随机共振方法是通过调节非线性随机共振系统的参数,使信号、噪声和非线性系统三者之间达到某种匹配,即所谓的随机共振,此时噪声的能量将向信号转移,从而增大信噪比,且此时的非线性系统在两个势阱间按信号的变化频率进行翻转。但由于奇倍频现象的存在,其仅适合于对单频弱信号的检测,对强噪声背景下未知或复合信号的检测不再适用。本文将会介绍一种与混沌理论相结合的方法来解决随机共振的奇倍频现象从而使其能检测出多频信号。

1.2 混沌理论

混沌理论(Chaos theory)是关于非线性系统在一定参数条件下展现分岔(bifurcation)、周期运动与非周期运动相互纠缠,以至于通向某种非周期有序运动的理论[3]。它被广泛应用于生物学、化学、物理学、地质学等领域。混沌的最大特点就在于系统的对初始条件十分敏感。杜芬振子时被研究较多的混沌振子之一。数学模型如下:

当没有输入信号,即s(t)=0,使逐渐增大,通过观察可得系统将依次经历小周期运动、混沌运动和大周期运动等状态,其混沌运动和大周期运动相图分别如图2、图3所示:

由于混沌系统对规律性的微小扰动异常敏感、对大于扰动的噪声不敏感的突出特点,使得混沌理论在微弱信号检测领域大有用武之地。

但是,目前对于混沌理论检测弱目标信号的方法还不够完善,相关的参考文献也较少。其缺点比如检测时需要设置多个振子(通常需要至少72个振子),还要采用二次采样法,使得误差较大,且计算量大等。本文利用混沌理论的优点,避开其劣势,从而比传统的混沌信号检测方法更加有效。

2.弱小信号的提取过程

2.1 奇倍频现象(频率检测与幅度测量)

设实际中采集到的信号为:

A为弱正弦信号的幅度,f为频率,表示均值为0,方差为1的高斯白噪声。当信号很小并且淹没在强噪声之中时,将该信号带入郎之万方程,用四阶龙格库塔法求解上述非线性微分方程,可得出输出信号。图4为一输入频率为0.2HZ的正弦信号,输出信号的频域图:

可以发现,在0.2HZ处有一个明显的波峰,这正是我们需要的弱周期信号的频率。这就是非线性系统有的信号调制噪声的随即共振现象,在此过程中噪声的能量通过非线性系统转移给了弱信号。

然而,通过实验发现,对于多频率复合信号而言,输出信号的频域图中会出现虚假的多余的频率(如图5所示):

因此在复合弱信号的情况下,随机共振方法不再适用[4]。

为了解决该问题,本文提出了一种与混沌理论相结合的方法来过滤不必要的虚假频率。

由之前的分析可以知道,如果待测信号中含有与混沌振子的参考频率同频的信号,则一定能使混沌振子的相轨迹处于大周期状态。而由于混沌系统对随机噪声的免疫性,因此即使是强噪声也不能使系统发生相变,只能使混沌在其轨迹附近做较小的波动,通过对特定状态下的Duffing振子施加周期摄动力,使系统由混沌状态突变到大尺度周期状态,从而根据系统相平面轨迹的变化,来滤除虚假频率。

通过随机共振系统后,提取出输出信号频谱图中的各个波峰处的频率,用来作为混沌振子的参考频率,即可得到一组混沌检测子,调节各个混沌振子的参数,使之处于由混沌状态向大周期状态过渡的临界状态,得到此时的策动力,再让弱复合周期信号分别作用于这组检测子,由于只有参考频率为真实信号频率的检测子才相变为大周期运动,而其余虚假频率仍将处于混沌状态,这样就可以得到弱复合信号的各个真实频率。同时,当系统进入大尺度周期状态时,继续调节策动力,使得系统再次处于混沌到大周期的混沌临界状态,此时得到的,则可求得待测信号的幅值为。

经多次试验得出结论,该方法不仅能克服以往混沌理论在信号检测中的缺点,即极大减小所需设置的混沌振子数、从而减少工作量,同时,相对于其他方法,本方法又结合了随机共振理论,从而相对更加准确的取出真实信号的频率,并且通过调整策动力来求得目标弱信号的幅度。由于在整个检测与提取过程中,只涉及到噪声的能量,与噪声的统计特性无关,因此该方法也适合于其他非高斯白噪声或色噪声等复杂噪声背景下的弱信号检测。

2.2 自适应算法

在获得弱复合信号的频率和幅度后,接下来要做的就是从高噪声背景下提取出弱目标信号。本文提供了一种自适应弱信号提取的系统,该系统可以根据不同频率的目标信号自动改变系统参数,使输出信号的波形和目标信号波形达到最大程度的一致性。主要思想就是以获取到的频率和幅度作为参考信号,将系统输出信号与该参考信号进行互相关分析,将互相关系数作为随机共振的测度指标。

通过大量的实验和分析可知,双稳态系统的参数对随机共振效应起着重要的影响,仿真分析发现,通过调节系统参数可以使系统产生随机共振。

本文采用了较为简单快速的、现行、固定步长的迭代算法。通过逐步增加系统参数的大小,使信号通过改变参数的系统,利用四阶龙格库塔算法进行数值迭代,得到系统输出。之后将每个参数点对应的输出信号与参考信号作互相关分析,求出互相关系数最大时对应的系统参数点。最后,利用分析出的最优参数来设置双稳态系统,使其达到随机共振状态。这时,输出的信号就可以最大程度的反映出可能存在的多频周期信号。

最后,噪声增益的调节虽然不能导致系统发生随机共振,但是它可以更好的提高信号提取的精度,笔者也设计了基于信号增益调节的自适应算法,对调节系统参数的自适应算法进行补充,由于方法和调节系统参数的方法相同,这里就不多加赘述了。

3.结论

本文提出了一种随机共振和混沌理论相结合的方法来检测提取出高噪声环境下弱目标信号的幅度和频率,并以该幅度和频率作为参考信号,通过自适应系统,求解互相关系数来调整随机共振系统参数,从而得到较优输出多频信号,且在色噪声等复杂噪声背景下同样适用。

参考文献

[1]胡岗.随机力与非线性系统[M].上海科技教育出版社,1994:17-34.

[2]L.Huafeng,B.Rongtao,X.Bohou.Intrawell stochastic resonance of bistable system[J].Journal of Sound and Vibration,2004:155-167.

[3]宁爱平.混沌背景下弱信号检测方法的研究[J].太原理工大学,2006.

[4]冷永刚,王太勇.二次采样用于随机共振从强噪声中提取弱信号的数值研究[J].物理学报,2003,52(10):2432-2437.

[5]温熙森.微弱特征信号检测的随机共振方法与应用研究[D].长沙:国防科技大学,2004.

信号通信论文篇(10)

中图分类号:G4 文献标识码:A 文章编号:1674-098X(2016)07(a)-0153-02

目前,几乎所有的工程技术领域都会涉及到信号处理问题,而数字信号处理由于具有精度高、可靠性强以及便于大规模集成等特点,已成为发展最快、应用最广泛的学科之一[1]。《数字信号处理》作为通信、电子类专业的一门重要专业课程,目前已广泛应用于语音、图像、雷达、通信、控制、声纳、航空航天、故障检测、遥感遥测、生物医学、地质勘探、自动化仪表等领域[2]。但是,《数字信号处理》课程目前的教学模式仍侧重于理论讲授,不能充分体现工程应用性,不利于应用型人才的培养。因此,《数字信号处理》课程的改革与实践势在必行。

《数字信号处理》课程以《高等数学》《线性代数》《信号与系统》等课程为基础,同时又作为《随机信号处理》《图像处理》《自适应信号处理》等后续课程的基础,具有承上启下的作用[3]。该课程具有较强的理论性,涉及到的公式推导繁多,对学生的数学基础有一定要求[4]。因此,应结合应用型地方本科院校的特点和需求,对《数字信号处理》课程进行教学改革与实践。

1 数字信号处理课程传统教学存在的问题

1.1 传统课堂缺乏师生间的有效互动,不利于学生自主学习

传统课堂以教师讲、学生听为主,这种满堂灌的教学过程缺乏师生间的有效交流和沟通,无法持续激发学生的自主学习动机,亦不能将学生学习过程中存在的问题及时反馈给教师,从而导致教师无法掌握学生对授课知识的理解和应用程度,学生的学习积极性也不高,缺乏自主学习的动力。

1.2 授课偏重理论,缺乏应用性

《数字信号处理》课程的理论性较强,公式推导多,需要具备一定的数学基础和《信号与系统》课程基础。目前的教学体系偏重理论知识的讲解,而忽视了理论结果的物理意义以及在工程实践中的应用,导致学生感到抽象和枯燥。部分同学由于前期基础课程学得不够好,缺乏自信心,对《数字信号处理》课程产生畏难情绪,从而缺乏学习热情和学习动力,学习积极性不高。

1.3 目前的教学模式多为自底向上,学生对课程的整体把握不足

当前的教学模式主要采用自底向上的方法授课,即将整门课程的知识点分解细化,分块讲述各部分知识点,此教学模式容易使学生只见树木、不见森林,即只掌握单独的知识点,却不能从整体上把握课程的核心思想。

1.4 授课方式单一,学生理解困难

目前的授课方式要不采用传统的黑板板书的形式,要不完全采用多媒体课件讲授,板书授课方式容易使学生陷入仅重视理论推导而不重视应用的误区,完全采用多媒体课件授课的方式则忽略了重要结论的理论推导,不利于基础知识的掌握[5]。

2 基于微信公众平台的数字信号处理智慧课堂建设

针对传统课堂师生间缺乏有效互动的问题,通过开发微信公众号,以微信公众平台为载体,微信用户可以利用微社区进行互动,并设定固定时间进行教师在线答疑。针对学生反馈的共性问题和重点难点知识点录制微课视频,并将录制好的微课视频上传至腾讯视频,在微信公众平台制作关键词回复,通过回复关键词就可以观看相应的微课视频,从而使学生随时随地打开微信公众号,即可实现在线答疑解惑。一方面可以增加学生的参与性,从而激发学生的学习热情,提高学生的学习积极性和自主学习的能力;另一方面教师可以通过后台数据,掌握学生反馈的问题和学习情况,从而以问题为导向开展课堂教学,实现智慧课堂平台建设。

针对《数字信号处理》课程理论性较强、不易理解的问题,通过开发MATLAB图形用户界面,将典型的数字信号处理算法和实际案例通过MATLAB图形用户界面演示给学生,使学生通过工程案例加深对数学概念和物理概念的理解和掌握;并将开发好的MATLAB图形用户界面加载到微信平台,使学生亲自参与到数字信号处理算法的验证和实际工程案例的应用中,从而将理论与工程应用联系起来,真正做到物理概念、数学概念和工程概念的有机统一。

针对自底向上的教学模式导致学生对课程整体把握不足的问题,在课堂上,结合学科发展的最前沿,以具体工程实例导入,引出所涉及的理论知识,让学生从整体上把握理论知识。在课后,布置结合前沿科技的思考题,让学生了解最新研究成果,追踪学科前沿动态,并对整体内容进行归纳总结,帮助学生对所学知识进行整体把握。在制作配套教材的多媒体课件时,采用自顶向下的设计思路,从实际应用问题出发梳理课程的整体构架和知识体系,将涉及到的知识点以“知识链”或“知识树”的形式进行层层分解演示,将知识点串接起来,使学生对课程有一个整体把握,并将制作好的多媒体课件,加载到微信公众平台,供学生参考学习,从而使学生对课程整体构架和知识体系有更好把握。

单一的授课方式要么过于重视理论知识的讲解,要么缺乏对重要结论的理论推导,容易陷入极端,不利于学生综合素质的提高。因此,有必要研究能提升教学效果的多元化授课方式。对于重要公式的推导,采用板书,板书能够帮助学生跟随教师的思路领悟具体的推导过程,从而加深对公式的理解和掌握。对于不易理解的内容和具体案例的讲解,采用多媒体,通过图像、动画的演示,将抽象的概念形象化、具体化,以加深对理论的理解,并启发学生的思维。同时,将MATLAB软件应用于教学,淡化理论教学与工程实践的界限,通过编写程序可以简化繁琐的计算过程,并直观观察各种参数对结果的影响,进一步理解工程算法的应用,达到事半功倍的教学效果。

通过搭建微信公众平台,将在线辅导答疑、MATLAB图形用户界面演示、微课视频、多媒体课件整合起来,实现数字信号处理移动智慧课堂的建设。基于微信公众平台可以实现师生间的实时反馈,不仅有利于教师及时修正完善教学方式和教学内容,而且增加了学生的参与性,提高了学习的积极性,实现了师生教与学的双赢。

3 结语

通过将现代教育资源整合到微信公众平台,实现《数字信号处理》课程的智慧课堂建设,是“互联网+教育”的一个重要应用。该文的研究成果扩展性强,可以根据教学需要,灵活添加教学资源,使传统的封闭课堂走向开放,利用开放的互联网平台,可以将该文的研究成果更便捷推广到其他专业的教学中。

参考文献

[1] 高西全,丁玉美.数字信号处理[M].西安:西安电子科技大学出版社,2008.

[2] 王恩亮,张丽华.应用型高校“数字信号处理”课程教学改革与实践[J].科技经济市场,2012(12):98-99.

上一篇: 四年级班主任工作计划 下一篇: 乡镇公共文化工作计划
相关精选
相关期刊