信号与通信论文汇总十篇

时间:2022-06-30 20:12:22

信号与通信论文

信号与通信论文篇(1)

 

0 引言

城市轨道交通是城市中的公益性交通基础设施,是城市百年大计的建设运营项目,也是目前正在蓬勃发展的行业。轨道交通项目一旦投入运营,就必须保持整个系统日以继夜的正常运行。而整个系统的正常运营,必须要以设备安全运行为前提和保障。

地铁设备主要有以下几个部分:车辆,供电系统,通信设备,信号设备,机电设备,工务设备等。为保证系统中所有设备安全、良好运行,必须有一套能协调各专业、行之有效的检修方案。

1 设备检修分类及内容

设备检修计划,按检修的目的,可以分为设备预防性检修计划、改善性计划检修、故障检修计划;按检修的深入程度,可分为大、中、小修、二级保养等;按编制的时间点,可分为年度检修计划、月度检修计划、日检修计划、临时检修计划。

在南京地铁运营分公司,在每日坚持对设备状态进行巡查的基础上,把信号设备的保养检修分为月检查、二级保养、小修、中修等几种等级,检修的时间间隔分别为月、季、半年(年)、10年。

1.1 月检查

月检查的检修间隔为每个月,针对对重要的(损坏后果很严重)、使用频率高、易损坏的零件进行例行检查,比如处于关键位置的道岔。月检查主要包括以下几个检修内容:⑴检查基本状态、检查紧固零件;⑵检查调整零件;⑶检查润滑及冷却系统;⑷检查启动和传动装置;⑸修理或更换易损件;⑹处理检查出来的缺陷,排除故障;⑺做好检修数据记录。

1.2 二级保养

二级保养的检修间隔为一个季度,检修内容与月检查几乎相同,检修的对象更全面。

1.3 小修

小修通常以半年(一年)为检修间隔,是对易损元件或者设备的一般缺陷进行维护性的检查和修理,以保证设备的正常运行。通常检修的项目比较多,检修的时间比较长,主要包括以下几个检修内容:⑴检查基本状态、检查紧固零件;⑵检查调整零件;⑶检查润滑及冷却系统;⑷检查启动和传动装置;⑸修理或更换易损件;⑹更换阀门;⑺更换填料和垫片;⑻处理检查出来的缺陷,排除故障等;⑼基本功能测试;⑽做好检修数据记录。以地铁信号系统的转辙机为例的检修内容如表1所示。

表1 室外的转辙机小修检修内容

 

序号

检修对象

转辙机的小修检修内容

1

检查基本状态、检查紧固零件

各部螺栓、锁轴检查、紧固;老伤裂纹检查

2

检查调整零件

道岔密贴(2mm/4mm试验)、锁闭、开程及表示缺口检查

3

检查润滑及冷却系统

锁闭框、锁闭钩、锁闭杆检查及油润

4

检查启动和传动装置

手摇转辙机交通论文,阻力检查;摩擦联结器、滚珠丝杠、动作杆检查;电机及速动开关组检查

5

修理或更换易损件

开口销、绑扎线检查

6

更换填料和垫片

转辙机盒子密封性检查

7

基本功能测试

手摇转辙机,阻力检查;转换力检查;道岔方正、磨卡别劲检查

8

处理检查出来的缺陷,排除故障等

排除检查出来的故障

信号与通信论文篇(2)

【中图分类号】TN911 【文献标识码】A 【文章编号】1006-9682(2012)10-0084-02

蒙特卡罗(Monte Carlo)方法是一种基于随机试验和统计计算的数值方法,其基本原理是当需要求解的问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,可以通过一种“实验”的方法,用这种事件出现的频率来估计该随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。如果需要求解的问题不是一个随机事件问题,还可以通过数学分析找出与之等价的随机事件模型,然后再利用蒙特卡罗方法去求解。[1]

误码率是评价一个通信系统性能优劣的重要指标,但由于误码率的计算公式复杂,甚至在很多情况下无法得到解析解。[2~3]因此通过蒙特卡罗方法模拟实际的通信过程,得到仿真的通信系统误码率就成为一种方便的手段,特别适用于难以对检测器的性能进行分析的情况。

一、多种二进制基带信号的传输与接收

1.正交信号的传输与接收

在数字通信系统中,0和1组成的二进制数据可以用两个正交波形s0(t)和s1(t)来传输,传输信号通过加性高斯白噪声

信道(AWGN)后叠加了功率谱密度为 (W/Hz)的噪声n(t)。

接收端的信号可表示为:

r(t)=si(t)+n(t),i=0,1;0≤t≤Tb (1)

接收端在接收到信号r(t)后,判断在区间0≤t≤Tb内发送

是0还是1。接收机的设计原则是使差错率最小,满足这个原则的接收机称为最佳接收机。AWGN信道的最佳接收机可以由信号相关器和检测器组成。图1所示:

图1 最佳接收机方框图

信号相关器将接收到的信号r(t)与两个可能的发送信号s0(t)和s1(t)做互相关,假设s0(t)是已发送信号,相关器计算在区间0≤t≤Tb内的两个输出,得:

(2)

式中,n0和n1为信号相关器输出端的噪声分量;Eb为脉冲信号s0(t)的能量。同理,当s1(t)是已发送信号,相关器计算得到两个输出为r1(t)=Eb+n1而r0(t)=n0。

在t=Tb时刻对这两个输出r0(t)和r1(t)采样后,判决器将比较r0(t)和r0(t)并按如下规则判决:当r0>r1时,传输的是0。当r0

因为s0(t)和s1(t)是正交的,所以理论误码率为[1、4]:

(3)

2.双极性信号的传输与接收

在s0(t)和s1(t)是双极性信号时,有s1(t)=-s0(t)。此时图1所示的最佳接收机只需要一个相关器即可。假设相关器与s0(t)做互相关,当发送的是s0(t)时,相关器的输出r=Eb+n,当发送的是s1(t)时,相关器的输出r=-Eb+n,噪声分

量n的方差 ,最佳判断器与阈值0相比较,若r>0则判

断s1(t)被发送,若r

因为s1(t)=-s0(t),所以理论误码率为[1、4]:

(4)

3.单极性信号的传输与接收

用单极性信号来传送二进制序列,若信息比特为0,则不传送任何信号;若信息比特是1,则发送信号波形s(t)。因此,接收到的信号波形可以表示为:

与双极性信号一样,单极性信号的最佳接收机也只需要一个相关器。理论误码率为[1、4]:

(5)

二、二进制基带通信系统的蒙特卡罗仿真

在通信系统仿真中经常采用蒙特卡罗方法来实现误码性能的估计。为了说明问题,以加性高斯白噪声(AWGN)信道下二进制基带信号的误码性能为例,说明如何使用蒙特卡罗方法进行通信系统的误码性能仿真。

1.正交信号数字通信系统的仿真模型

用Simulink建立一个正交信号数字通信系统的仿真模型如图2所示。[1]

图2 正交信号数字通信系统误码性能仿真框图

在该系统模型中,主要包含以下模块:

(1)Random Integer Generator随机整数产生器模块,用它来产生消息比特。

(2)Porduct乘法器模块,在发送端产生s0(t)和s1(t),在接收端则与s0(t)和s1(t)进行相关运算。

(3)AWGN信道模块,用来对发送信号叠加高斯白噪声。

(4)Cumulative Sum累加器模块与乘法器Product2、Product3一起完成相关运算。

(5)Relational Operator关系操作模块用来对相关器的输出进行判决。

(6)误比特率统计模块(BER Calculation),对发送比特和解调比特进行比较,计算误比特率。

设置模型发送nsymbol=100000个数据比特,SNR的范围[0~12]dB,Simulink模型运行结果见图3。

通过曲线分析可知,蒙特卡罗仿真差错率与理论差错率在低信噪比情况下完全一致,而在高信噪比发生了一定的偏差。产生这一结果是因为蒙特卡罗的仿真精度和仿真次数N有密切关系。一般情况下,蒙特卡罗估计是无偏的,N越小,估计的方差就越大;N越大,估计的方差就越小。当N∞时,则估计值收敛于真实值。为了保证仿真精度,蒙特卡罗仿真次数N与给定差错率pe的关系应满足[5]N>10/pe。

由上式可知,当信噪比Eb/N0=10dB时相应的误码率数量级N在10-3以下,根据公式N>10/pe可知为了保证仿真精度与理论值的吻合,N应该大于104次。而上图的仿真误码率曲线是在固定仿真次数为105次的情况下得到的,故仿真误码率曲线与理论曲线基本吻合。当Eb/N0=12dB时相应的误码率数量级在10-5以上。根据公式N>10/pe可知为了保证仿真精度与理论值的吻合,N应该大于106次。而上图的仿真误码率曲线是在固定仿真次数为105次的情况下等到的,故仿真误码率曲线与理论曲线出现偏离。

根据上述分析可知,如果想要使信噪比较大时仿真曲线与理论曲线也比较吻合,可以在信噪比较大时,根据式子N>10/pe采用适当的仿真次数即可解决此问题。

2.双极性和单极性信号数字通信系统的仿真模型

与图2相比,双极性仿真模型只需要一个相关器与s0(t)相关,最后的判决器与0进行比较。单极性与双极性的仿真模型基本相同,只是在二进制数据源的输出端有很小的变化,因此两个模型可以通用。

对3种信号数字通信系统,在不同信噪比下,发送N=100000个数据比特,理论误码率结果图4所示:

从图4可以看出,单极性信号的误比特率高于双极性信号,与双极性信号似乎相差6dB,与正交信号也相差3dB。但是,需要注意的是,使用单极性信号,其平均发送的能量比双极性信号和正交信号少3dB。因此,单极性信号与正交信号性能是相同的,与双极性信号相差3dB。

三、结 论

文中对3种二进制基带通信系统的信号传输和最佳接收进行了理论分析,在此基础上,讨论了以误码率为性能指标的蒙特卡罗仿真建模方法,对蒙特卡罗仿真方法的试验精度等方面进行了性能分析。蒙特卡罗方法在通信系统的仿真中有着广泛的应用,因此有必要对其仿真方法进行研究,更好的运用这种方法解决实际工程问题。

参考文献

1 邵玉斌.Matlab/Simulink通信系统建模与仿真实例分析[M].北京:清华大学出版社,2008

2 Shanmugan K S.通信系统仿真原理与无线应用(肖明波等译)[M].北京:机械工业出版社,2008

信号与通信论文篇(3)

中图分类号:G424 文献标识码:A

0 引言

信号与系统是电子信息专业必修的一门重要专业基础课程。也是一门难学难教的课程,一方面由于该课程具有不同于先修课程的思维方式,而且数学能力要求比较高,其内容涉及到例如线性微分方程、积分变换、复变函数、离散数学等多门数学课程的内容,所以学生感到难学;另一方面由于该课程对理论和实践两个体系都有很高的要求。而学生缺乏对实际系统的感性认识,抽象难于建立系统模型,课程中大量的繁杂而应用性较强的内容不能实际动手设计、调试、分析,严重制约了教学效果。为了使学生有更多的机会把所学到的基本理论与实际问题结合起来,提高学生分析、解决问题实际能力,为今后工程应用打下基础,我们迫切需要对现有的教学方法、教学手段进行改革。利用目前工程界流行的仿真软件LabVIEW进行信号与系统仿真分析与设计,对电子信息专业学生具有重要的意义。

1 信号的调制与解调基本概念

1.1 调制原理

带通通信系统都是以正弦波为载波,调制的一个重要目的就是将信号的频带搬至给定的信道中,以幅度调制为例。如图1。

1.2 解调原理

从调制信号中恢复出信号的过程称为解调,分相干和非相干两类。采用相干解调时,接受机将对接收信号进行相位估计,在理想情况下,从中得到一个与到达信号的载波同频同相的参考信号为本振信号,本振信号与到达接收机的信号混频后,再经一个低通滤波器就可把原始基带信号恢复出来。如图3。

可见,经过低通滤波器后,上式中的第二项被滤除,仅留下第一项,即为原始基带信号。

2 实现信号的调制与解调的仿真

2.1 LabVIEW介绍

利用LabVIEW提供的模板VI程序完成信号的调制与解调的仿真,LabVIEW是一种以数据流驱动的图形化编程语言代替文本编程语言创建应用程序的开发工具,可用于测量、过程控制和数据分析。其数学分析库中包含了数以百计的VI程序,能够进行各种时域与频域信号分析,是信号分析与仿真的理想工具。

2.2 LabVIEW编程设计

通过LabVIEW的VI程序框图,调用函数模板( Function Palette)中各功能模块构成仿真框图,在仿真过程中,可以双击各功能模块,随时改变参数,获得不同的仿真效果。本文使用10.1Hz低频正弦信号作为被调制的基带信号,信号幅度由可调的数字控件Am控制,并加上一固定直流偏置(+10),及一个可调的直流电平数字控件1。载波频率为101Hz的正弦信号,将得到的调制信号用相干载波相乘后经低通滤波器即恢复出原基带信号。我们取Am = 2,1 = -6可得到信号调制解调波形如图5。可见经过调制、解调、滤波后可恢复原基带信号。

3 结束语

LabVIEW的实际涵盖内容非常深和广,完全可以满足复杂的工程计算和分析的要求,对于电子信息专业的学生,这个非常有用的工具,将使我们从繁琐的底层编程中解放出来,使信号处理及实现的效率大大提高,把更多的时间花在解决问题上,无疑会提高工作效率。

我们用LabVIEW仿真软件对信号与系统课程相关理论结合工程实际进行仿真,无疑从另一方面为教学提供了一个很好的平台。它不仅帮助学生理解和掌握该课程相关理论,同时通过这种仿真实验提高了学生动手能力。我们力图通过信号与系统课程教学模式的改革,探索多维度学生能力培养的内容及途径。为学生今后进一步学习信号处理、网络理论、通信理论、控制理论等课程打下良好的基础。

参考文献

[1] 管致中.信号与线性系统[M].北京:高等教育出版,2004.

[2] 金波,凃玲英.信号与系统基础[M].武汉:华中科技大学出版社,2006.

信号与通信论文篇(4)

中图分类号:G642 文献标识码:A 文章编号:1673-9795(2013)06(a)-0126-01

随机信号分析是电子信息工程、信息与通信工程等专业的一门重要的专业基础课程,该课程主要讲授随机信号的基本理论和基本分析方法,内容上涉及随机信号的基础、随机过程、系统对随机信号的响应及窄带随机过程等。该课程的教学目的旨在使学生理解随机信号的特性,掌握随机信号分析及随机信号通过线性系统的基本理论及分析方法,进一步认识如何从实际问题出发,通过抽象建立信号与系统模型,经适当数学分析求解,对结果赋予物理意义的系统科学研究方法。培养学生思考问题的逻辑性、灵活性与广阔性,为进一步学习后续专业课程及从事电子信息技术相关的实际工作奠定理论基础。

随机信号分析是一门数学知识运用较多的专业课程,也是《信号与系统》的后续课程,《信号与系统》主要研究确定信号,而在该课程中主要研究随机信号。课程内容较抽象,涉及到大量的数学公式,因此,要求学生具有扎实的数学功底。为了使学生能较系统的掌握随机信号的概念及基本的分析方法,加深对概念的理解,培养独立分析问题和解决问题的能力,提高该课程的教学效果,需要在教学内容和教学方法上进行积极的探索和改革。

1 教学内容方面的设计

任何基础理论课的教学,首先,教材是基础,根据目前随机信号分析理论和技术的发展及各高校的教材使用情况,结合相关专业的培养目标,选择适合当前本科学生学习的教材。教材在内容编排上层次要清晰、不宜过深过难。比如哈尔滨工业大学出版社出版的《随机信号分析》、电子工业出版社出版的《随机信号分析》等优秀教材比较适合本科生的教学。

选定教材后,根据教材内容,反复研究和整理课程相关章节和知识点之间的联系,找出重点、难点,精心组织教学内容。本科生教学在内容上不亦过深,因此,可以将课程内容归纳成三个部分:随机信号的理论基础、随机过程的基础理论、随机过程的应用。第一部分主要是随机信号要点回顾、随机信号实用分布律、数字特征、函数变换。第二部分主要包括随机过程的基本概念、平稳随机过程和各态历经过程,平稳随机过程的自相关、互相关、功率谱和互功率谱、高斯过程与白噪声。第三部分包括随随机信号通过线性时不变系统、窄带随机信号。结合对白噪声通过线性时不变系统的分析掌握随机信号通过线性时不变系统的分析方法,随机信号通过非线性系统可作简要介绍;窄带随机信号中主要介绍窄带高斯随机信号、窄带高斯随机信号的包络和相位分布。授课时注重基础理论部分,打好基础,以便于进一步学习随机信号分析的新技术和新方法。

2 教学方法中应注意的几个问题

2.1 注意该课程与前续课程《信号与系统》的联系

信号与系统也是一门运用数学知识较多的专业课程,因此,学习随机信号分析在学习方法上与前者有相似性。而且在一些知识点,例如,随机信号的特征函数与概率密度的关系、平稳过程的功率谱与自相关函数的关系上,会用到傅立叶变换的知识,前者有类似傅立叶变换对的关系,后者就是一对傅立叶变换对。如果能事先对信号与系统中傅立叶变换的内容进行系统的复习,那么在讲授这一部分内容时,就可以直接利用傅立叶变换的性质和常用的傅立叶变换对等结论来分析问题,以便在学习时将重点放在相关知识点的理解和应用上,而不必进行大量的数学分析和推导。用这种方式介绍抽象的数学概念,学生易于接受,又不失数学上的严谨性。

2.2 适当组织讨论课

当前课堂教学强调“精讲多练”,不仅仅是学生课后独立练习,还包括在课堂上让学生参与到课堂教学中来,比如通过开展讨论课,让学生与老师之间、学生之间进行积极的交流和互动。这就要求课前做好充分准备、课堂上精心组织。具体实施时,可以将学生分组,每组就不同的相关内容查阅相关资料、深入学习,然后在课堂上让学生自己讲解。由于学生平时很少有这样的锻炼机会,只是被动接受知识,老师怎么讲,自己怎么听。通过学生自己讲解,一方面有了自我展示的机会,学习热情会较高;另一方面,老师可以根据讲解过程中出现的形形的问题,在讲解结束后给予点评和纠正,学生对这部分内容的印象会更深刻。在这个过程中,教师切勿喧宾夺主,只需要引导学生积极发言、积极思考。这个环节的主要目的是锻炼学生查阅资料的能力和独立思考问题的能力。

2.3 开展实践性教学

充分利用现有的信号分析辅助软件开展实践性教学,让学生迅速进入随机信号分析与处理的研究环境,亲身实践,培养其学习兴趣。实践性教学可以以仿真实验和小型的课题研究相结合,加深对随机信号概念的理解,提高学生结合工程实际进行理论分析的能力。其内容可以围绕随机信号的产生、随机信号的特征分析、随机信号通过线性系统等方面开展。在实践性教学环节中,不要以传统的灌输式的教学方式为主,要以学生为主体,充分发挥其主观能动性,学习方式从被动接受变为主动探索,教师则主要起引导作用。

3 结语

在随机信号分析课程的教学实践和教学改革过程中,为了适应随机信号理论的发展和对人才培养的要求,提高学生运用基本学科知识的能力和解决问题的能力,如何把传统的教师以教为主的教学模式逐渐转变为学生以学为主的教学模式,充分调动学生学习的积极性,是我们需要继续探讨的问题。

参考文献

[1] 赵淑清,郑薇.随机信号分析[M].哈尔滨工业大学出版社,1999.

信号与通信论文篇(5)

中图分类号:TN911.7 文献标识码:A 文章编号:2095-1302(2013)02-0055-04

0 引 言

传统的数字信号处理以奈奎斯特采样定理作为基础,在模拟/数字信号的转换过程中,采样频率大于信号最高频率的2倍,才能从采样得到的数字信号中无失真地恢复原始信号。在实际应用中,为保证信号处理效果一般采样频率为信号最高频率的3倍以上,采集到的冗余数据在后续处理阶段再滤除。然而,随着当前日益增加的信息需求量,信号频率越来越高,带宽越来越宽,在信息获取中对采样速率、处理速度和信息存储空间等提出越来越高的要求。这将造成对ADC和处理器的性能要求更高以及数据存储和传输的压力。但是,在许多情况下,信号是稀疏和冗余的,在某些变换域是可压缩的,在处理过程中冗余信息将被丢弃,多余的数据就造成了资源的浪费。针对这个问题,在过去的几年,一种新的理论压缩感知被提出来,它的核心思想是通过很少的非适应性,凸优化的线性测量来恢复稀疏信号。压缩感知的理论基础是建立在以下领域并发展而来,例如应用谐波分析、框架理论、拓扑几何、优化理论和矩阵分析等[1]。在该理论下,信号的采样速率不再取决于信号的带宽,而是取决于信息在信号中的结构与内容,因此在满足信号的可压缩性以及表示系统与观测系统的不相关性两大条件下,从低分辨观测中恢复高分辨信号就成为可能[2]。

压缩感知理论主要涉及三个核心问题:一是信号的稀疏表示;二是非相干测量矩阵设计;三是信号重建算法优化设计。在应用研究方面,其影响已经涉及很多应用科学,如无线电通信的认知无线电方向和信道编码、阵列信号处理、雷达成像、图形图像处理、生物传感、模拟信息转换等。利用压缩感知理论,模拟信息转换器被设计用来在较低速率下获取样本,然后在后端DSP成功恢复感兴趣的压缩信号。模拟信息转换器可以代替传统的ADC,以较低的速率对高速模拟信号进行实时采样,获取所关心的信息,有效解决了传统采样理论遇到的瓶颈。压缩感知理论最初是针对离散信号提出来的,把它应用到模拟信号的研究目前处于起步阶段,存在很多困难。模拟信息转换需要能够实时采样连续信号,而不能直接使用离散信号的测量矩阵,同时要求数字处理器有较强的运算能力,能够及时对高速信号进行感知,硬件实现困难。因此,该算法的复杂度优化和硬件可实现性成为压缩感知应用的关键点之一。

本文首先对压缩感知的基本理论进行了研究,对比分析了三种模拟信息转换器,介绍了常用重建算法,并通过仿真验证了模拟信息转换-信号重建结构的可行性,分析了实现结构的性能。最后,进行了总结并对压缩感知的研究趋势进行了展望。

1 压缩感知原理

4 结 论

由于现实环境中的大部分信号具有稀疏性或可压缩性,压缩感知理论利用信号稀疏性突破了奈奎斯特采样定理。事实上,把从对数据的采集直接转化为对信息的采集,就能以随机采样的方式,并用更少的数据采样点来完美地恢复原始信号。

本文介绍了压缩感知的基本理论,分析了压缩感知在模拟信息转换中的应用,并通过仿真验证了压缩感知理论的实际应用可行性。在射频和宽带无线通信信号的采样和信号检测分析中,基于压缩感知理论的欠采样系统的设计,能降低对高速ADC器件的依赖,可在有效减少数据量的同时,保证近乎完美地重建信号,降低系统资源消耗,提高系统性能。压缩感知理论在无线通信的频谱感知、信道编码、阵列信号处理等方面都得到了广泛的研究,从而推动了无线通信技术的进一步发展。可见,压缩感知具有十分重要的应用价值。

参 考 文 献

[1] ELDAR Yonina C, KUTYNIOK Gitta. Compressed sensing: theory and applications [M]. Cambridge: Cambridge University Press, 2012.

[2] 焦李成,杨淑媛,刘芳,等. 压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662.

[3] CAND?S E, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans. on Information Theory, 2006, 52(2): 489-509.

[4] DONOHO D. Compressed sensing [R]. Stanford: Stanford University, 2004.

[5] DONOHO D, TSAIG Y. Extensions of compressed sensing [J]. Signal Processing, 2006, 86(3): 549-571.

信号与通信论文篇(6)

作者简介:周磊(1980-),男,江苏邳州人,南通大学电子信息学院,副教授;肖小庆(1978-),女,江苏如东人,南通大学电子信息学院,副教授。(江苏 南通 226019)

基金项目:本文系南通大学教学研究课题(课题编号:2011B37)、南通大学教学研究课题(课题编号:2012B028)、江苏省青蓝工程项目的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)09-0094-02

“信号与系统”课程是南通大学(以下简称“我校”)电子信息学院电气信息类专业本科生的一门重要的专业基础课程。本文将在强化基本概念与理论知识的基础上,探讨“信号与系统”课程教学内容的优化以及教学方法的改革研究。

一、基于信号分析与处理类课程群的“信号与系统”教学内容优化

教学改革的重点是教学内容的改革。“信号与系统”以“电路”等课程为基础,讨论确定性信号和线性时不变系统的基本概念和基本分析方法,同时与“电路”、“数字信号处理”、“现代控制理论”等课程相互交叉,如何处理与这些课程的交叉内容是进行“信号与系统”教学内容优化的关键。

第一,“电路”课程中将电路作为具体的系统分析对象,研究其各点电压、电流的关系,其中涉及了“信号与系统”课程中的系统函数、复频域分析、系统零输入响应和零状态响应、冲激响应等重点教学内容。在处理交叉内容时应当注意到两门课程局部与全局、具体与抽象的关系。比如,在“信号与系统”课程中讲授由系统模型得到系统的动态响应,可结合具体的电路根据动态元件的储能情况说明各种响应的物理意义,加深学生对抽象概念的理解。同样,由于冲激信号的概念比较抽象,但它作为基本信号是信号和系统分析中必不可少的知识点。因此,冲激信号以及冲激响应的内容需要在“信号与系统”课程中讲授,如果在“电路”课程中讲授会使学生难以理解。[1]

第二,在“数字信号处理”课程中,离散信号与系统的时域以及Z域分析也是“信号与系统”中离散信号与系统分析必不可少的教学内容。在后续课程“数字信号处理”这部分重叠的教学内容该如何处理呢?应该注意到,离散信号与离散系统分析在先修课程“信号与系统”和后续课程“数字信号处理”之间起到了非常重要的承上启下作用,应该安排适当的学时进行这部分内容的复习,简要介绍离散时间信号时域和频域分析的基本理论、信号的时域抽样定理和频域抽样定理、离散时间系统Z域分析的基本理论和系统函数,以保证“数字信号处理”课程学习的顺利进行和知识体系的完整性。[2,3]

第三,“现代控制理论”课程主要以状态空间表示方法为基础,以线性系统为基本分析对象,研究其能控性、能观性、稳定性、极点配置和观测器等分析与设计问题。“信号与系统”课程主要以信号的时域和变换域分析为基础,以实现系统分析的目的。在“信号与系统”课程中删除系统状态空间方法描述不会影响课程知识体系的完整性,而该方法是“现代控制理论”课程必不可少的基础。此外,“信号与系统”中对于经典方法求解系统时域响应的内容也不需花费过多课时讲授,这部分内容可在“现代控制理论”课程中控制系统状态空间表达式的解部分进行补充。

二、理论与实验相结合的“信号与系统”教学方法

“信号与系统”课程理论性强,同时又是一门应用性极强的课程。因此,需要合理地安排理论教学,有效地加强实验教学环节,实现课程的理论教学与实验教学相结合。通过科学合理的设计基于MATLAB的“信号与系统”课程实验教学内容,不仅可以加深学生对课程基本理论、方法的理解,培养学生的学习兴趣,同时还能够提高学生工程实践能力和综合素质。[4]

1.多媒体课件与理论教学相结合的课堂教学方法

众所周知,采用多媒体课件教学与传统的教学方法相比,不仅可以减少教师的重复劳动,而且图文并茂,形象逼真,从而有效地激发学生的学习兴趣,提高教学效果。另一方面,MATLAB是美国MathWorks公司出品可用于数值计算、可视化及编程的高级语言和交互式环境,广泛应用于信号处理和通信、图像和视频处理、控制系统、测试和测量等众多应用领域。由于“信号与系统”中有许多概念比较抽象,如频谱、卷积、滤波等单靠口头讲解,学生很难理解,如果教师能够充分利用MATLAB软件制作多媒体课件在课堂上进行演示,实现抽象概念形象化,就会达到意想不到的效果。此外,利用多媒体的同时还应结合板书等传统教学方法,以达到更好的教学效果。

2.课程实验内容及要求

为了加强学生对“信号与系统”课程的基本概念和基本原理的理解和巩固,形成具体的认识,促使理论教学和实验教学成为有机的整体,应该以课程理论教学为主线,结合课程的理论教学内容设计适当的课程实验。为此,笔者将设计如下六个方面的验证性实验:信号的表示和运算、系统的时域分析、信号的频域分析、系统的频域分析、信号抽样与恢复以及系统的复频域分析。具体实验内容和要求如表1所示。

由以上的实验图形可以非常直观地看出当ωs=ωm时采样信号并不能很好的恢复原系统,而且两个信号之间的绝对误差也可以清楚地显示出来。通过完成上述设计的验证性实验,大部分学生都能熟练掌握课程的各个知识点。

3.课程实验教学方法与考核方式

尽管现在很多工科院校将MATLAB引入“信号与系统”课程的实验教学中,但由于学时受到很大的限制,实验课程学时相对较少,实验设计多为理论验证型实验,而综合性及设计性的实验内容安排很少。因此,在课程实验教学方法方面,笔者认为对于基础性的实验可以鼓励学生按照实验内容及要求课后在计算机上自主完成,实验课时教师进行简单演示,这样可以腾出一部分时间安排其他提高型的实验。比如让学生改变实验中的某个或某几个参数,看看这些参数对结果产生怎样的影响。这类研究型实验的目的是教给学生研究的方法,培养学生学习的兴趣。教师在选择研究型实验内容时要注意把握难易程度,尽量选择适合大部分学生的实验内容。此外,为了使学生对所学知识融会贯通达到整体把握,还应该适当设计综合性实验。同时考虑“信号与系统”基本理论和方法与实际系统或者信号相联系,增强学生将课程理论知识应用于工程实际的能力。比如,通过设计对语音信号的采样与频谱分析的综合实验,可以使学生深入了解傅里叶变换的物理意义,从而有效地提高学生的综合素质和知识的实际应用能力。[5]同时要求将这些实验结果总结到实验报告中,有助于加深学生对理论知识的全面理解,提高学习的积极性和主动性。在课程考核方式上,可以采用理论知识加实验环节的综合考核办法,适当提高实验环节所占的比重(20%~30%),有助于提高学生的动手能力和创新能力,在实践中理解和提高。

三、结束语

本文深入分析了“信号与系统”与其他信号分析与处理类课程的教学内容相互交叉关系,结合对课程的深刻认识和教学经验总结,探讨了课程教学内容筛选和组织优化的处理方法。同时提出将MATLAB软件应用于多媒体课堂教学,以及对基于MATLAB的课程实验教学内容进行合理地安排,给出了理论与实验教学相结合的课程教学方法改革措施,在“信号与系统”课程的教学实践中取得了较好的教学效果。在以后的教学过程中,笔者将继续注重学生综合素质、创新能力的培养,不断探索课程教学内容优化与教学方法改革的研究。

参考文献:

[1]赵立岭.从课程群的角度谈“信号与系统”课程内容的处理[J].赤峰学院学报(自然科学版),2012,7(4):220-222.

[2]刘洪盛,朱学勇,彭启琮.“数字信号处理”和“信号与系统”两课重叠内容的处理方法探讨[J].电气电子教学学报,2004,(6):40-42.

[3]陈后金,胡健, 薛健,等.信号处理系列课程的改革与探索[J].中国大学教学,2008,(9):36-39.

信号与通信论文篇(7)

中图分类号:TN911 文献标识码:A 文章编号:1671-7597(2014)20-0063-04

随着通信技术的发展,无线通信环境日益复杂。通信信号在很宽的频带上采用不同调制参数的各种调制方式。对未知信号的调制方式的识别可提供信号的结构、信号源特性等有用信息,并可以为信号的解调提供相应的参数,从而为有效识别和监视这些信号提供依据。这些技术的研究和开发不仅在现代信息对抗系统中,通信对抗中可以得到重要应用,也在无委会电磁频谱管理中可以得到非常大的应用。因此根据物业委员会的频谱管理要求和信号侦查等技术要求,结合无线通信的信道特性,进行系统平台的原理设计和验证,基于C语言进行系统的构建和实现。

该平台拟软件无线电架构进行设计,可以将中频数字通信信号进行数字化处理、分析和参数估计,通过这一系列的参数估计和分析达到将通信的调制方式识别的目的,并实现信号的参数估计(带宽、载波频率、符号率等)与均衡,最终将数字通信信号解码还原成相应的信号星座中的数据。

1 调制方式识别的模型

调制信号的识别问题的实质是模式识别,其核心是特征参数的选取与分类器的设计。特征参数的选取是基于对信号的认识和分析,信号的时域频域分析是信号理论的基础,其时域频域特征也是调制识别的基本特征。基于判决树的分类方法逻辑简单,易于实现。一个基于判决理论方法的调制自动识别器一般由三个部分组成:预处理、特征提取和调制自动识别。原理框图如图1所示。

图1 调制方式识别的模型

预处理的主要功能是对信号进行中频处理得到用于识别的基带信号。预处理主要包括了载波估计,符号速率估计,下变频,符号同步等基本的解调模块。预处理之后的信号能够更好的用于信号调制方式的识别。

特征的提取是识别的主要部分。不同的调制方式在时域频域上有着不同的特征参数,利用这些参数可以识别出不同的调制方式。本文征的提取是基于不同调制方式的频域特征和高阶统计量的联合特征。判决识别模块的功能是通过提取到的特征与设置的阈值进行比较,从而判断出调制类型。

2 信号模型

对于该项技术的研究中,主要涉及到各种调制方式的识别和相应的参数估计,如用于识别的不同调制信号参数的估计、用于解调的参数估计,如带宽、载波和符号率等估计。下面以MPSK和16QAM调制方式的识别为例进行方法的阐述相应的信号模型。发射端的MPSK及16QAM信号可以用统一的信号模型来

表示:

(1)

其中,分别为信号的I路和Q路基带信号。是成型滤波器,一般情况下选用根升余弦滤波器,为符号持续时间,为信号的初始相位,为载波频率,是不同调制方式下的I,Q路符号集,且信号的功率,符号集对应的取值如表1所示。经过高斯白噪声信道之后的信号可以表示成为:

(2)

其中是信道中均值为0方差为的高斯白噪声。

在接收端,信号的载波频率以及符号速率都是未知的,需要对信号的载波频率和符号速率进行估计。本文中符号速率的估计是基于对信号包络的检测,载波频率的估计采用的是频率中心法,具体的过程在下文介绍。

在符号速率估计过程中,设引入的符号偏差为,则得到的存在符号偏差的离散数字信号为

(3)

其中,,是采样时间。

高阶统计量是指高阶矩,高阶累积量以及它们的谱,即高阶矩谱和高阶累积量谱这四种主要的统计量。对于复平稳信号,其高阶矩表示为:

(4)

高阶累量表示为:

(5)

其中表示求累量。设接收端的信号简记为:,其中为信号,为高斯噪声,由高阶累量不变性可以得到:

(6)

现代通信理论有零均值高斯白噪声的M(M>2)阶累量为零,所以

(7)

可以看出如果一非高斯信号是在与之独立的加性高斯噪声中被观测的话,那么观测过程的高阶累积量将与非高斯信号过程的高阶累积量相等。因而,使用高阶累积量作为分析工具,理论上可以完全抑制高斯噪声的影响。信号的各阶高阶累量取决于信号的调制类型,因此通过计算信号高阶累量理论上可以识别出不同的调制方式,这是本文调制方式自动识别的理论出发点。常用的高阶累量与高阶矩之间的关系表示如下:

(8)

(9)

(10)

(11)

(12)

(13)

(14)

文献[2]给出了MPSK信号以及16QAM信号在载波同步,符号同步的情况下常用的高阶累量的理论值如表1所示,表中的表示信号的功率。

表1 符号载波同步下的MPSK及16QAM信号的常用高阶累量值

高阶累

积量 C20 C21 C40 C41 C42 C60 C63

BPSK P P 2P2 2P2 2P2 16P3 13P3

QPSK 0 P P2 0 P2 0 4P3

8PSK 0 P 0 0 P2 0 4P3

16QAM 0 P 0.68P2 0 0.68P2 0 2.08P3

3 载波偏差对调制方式识别的影响

从表2的数据我们可以看到,不同的调制方式其各阶累量是不完全相同的,这就给我们提供了对这些调制方式识别的理论依据。但是这些值的计算是在载波,以及符号完全同步的情况下的到的,而工程应用中不可能完全做到载波和符号完全同步。载波估计模块也只是对信号的中心频率做了一个大概的估计,因此总是存在一定的频率和相位偏差。在有频率以及相位偏差的情况下表1中的值将会发生较大的变化,图2可以说明这一点:

图2 载波偏差为0.01时不同调制方式的值

从图2中可以看到当存在载波偏差的时候,的值与理论值相差较大,由于高阶统计量都与M20,M21有关,因此我们对这两个统计值做推导来说明载波偏差对高阶统计量的值的影响。引用式(11)得到存在载波偏差的基带信号为: (15)

取信号的二次方得:

(16)

对信号进行化简处理:

BPSK: (17)

QPSK: (18)

8PSK: (19)

16QAM:

(20)

计算得:

BPSK: (21)

QPSK:

(22)

同理,8PSK,16QAM信号M20=0。

工程中,一般用平均值作为统计平均值的估计即:当存在载波偏差的时候,= 0。因此,载波偏差会使BPSK信号的M20接近0,而由于QPSK,8PSK,16QAM信号的统计平均值本质上就为0,因此载波偏差不会对其M20造成影响。同理,M40理也会受到类似的影响,所以这类高阶统计量将不适合用来作存在载波偏差信号的特征值。

若对信号的二次方模值求均值可以得到:

(23)

从上式可见,对于任意的载波偏差,信号的模值与载波频差没有关系,因此,将不受载波偏差的影响。同理,类似M42等高阶统计量也不受载波偏差的影响,因此存在载波偏差的时候我们可以选择这一类统计量作为判断的特征值。

4 存在载波偏差的MPSK信号以及16QAM信号的识别

上一节的分析中我们可以看到当信号具有载波偏差的时候,文献[2]定义的部分判决特征值将不适用。本文中根据信号的特点选择参数,以及信号本身的频谱关系来自动识别信号的调制方式。

1)BPSK信号的识别。

当信号是BPSK信号的时候,。由此可见BPSK信号的二次方频谱存在一个单频,而其他形式的PSK或者16QAM都不具备这样的性质,不同调制方式的二次方频谱如图3所示。

a

b

c

d

图3 的频率谱,a:BPSK,b:QPSK,c:8PSK,d:16QAM.SNR=10dB,载波偏出为0.01

从图中可以看出,无论是否存在载波偏差,BPSK信号都会有一个单频分量(没有载波偏差的时候,单频=0Hz),其他几种调制方式的频谱不具备单频的性质,因此检测信号的频谱的单频性质可以识别出BPSK信号。

为了识别出存在载波偏差的16QAM信号,定义判决特征值:,则不同调制方式的F值如下表2所示。

表2 不同调制方式的值

高阶累积量 F

16QAM 2.08E3 0.68E2 13.7594

QPSK 4E3 E2 16

8PSK 4E3 E2 16

我们可以看出16QAM的与QPSK以及8PSK的都不一样,因此计算信号的值可以识别出16QAM信号,图4为不同信噪比下的QPSK,8PSK以及16QAM的的值,其中设定判断阈值为15。

图4 不同信噪比下QPSK,8PSK,16QAM的的值

由于QPSK信号的平方也应该具有BPSK信号的特征, QPSK信号的四次方为:

从上式中可以看出,QPSK信号的四次方频谱也具有BPSK信号二次方频谱的特点,即具有单频分量,而8PSK信号却不具有这样的特点,因此从频谱的关系中我们可以识别出8PSK信号以及QPSK信号。图5所示为QPSK,8PSK信号的四次方频谱。

a QPSK

b 8PSK

图5 的频率谱, (SNR=10dB,载波偏出为0.01)

对于含载波偏差的MPSK和16QAM的识别过程,从以上的分析中可以得出含载波偏差的MPSK和16QAM的识别框图如图6所示,其中th(F)表示对判决的门限值,本文中th(F)=15,具体的步骤为:

1)检测的频谱,若存在单频,则原信号是BPSK,转入步骤4),否则转2)。

2)计算的值,如果

3)检测的频谱,若存在单频,则原信号是QPSK,否则为8PSK,转入步骤4)。

4)返回检测结果。

图6 存在载波偏差的MPSK及16QAM的识别过程

5 仿真结果

本文中分别对100个MPSK及16QAM信号在不同的信噪比条件下进行仿真,并令th(F)=15,仿真时的参数设置如表3所示,仿真结果显示在表4和表5以及图7中。

表3 仿真参数

参数名称 参数值 备 注

符号个数 1000

符号速率fb

(MBoud/s) 3

采样频率fs(MHz) 48 符合带通采样定理

载波频率fc(MHz) 6

过采样因子U 8

符号速率偏差 估计的符号速率 存在偏差

载波偏差 估计的频率 估计的频率都不是精确值,存在载波偏差

根升余弦滚降因子 0.35 成型、匹配滤波

信道信噪比Eb/N0(dB) [0:1:19] AWGN信道

表4 SNR=0dB时自动识别的结果(识别概率%)

输出输入 BPSK QPSK 8PSK 16QAM

BPSK 100 0 0 0

QPSK 0 98 1 1

8PSK 1 0 99 0

16QAM 0 2 6 92

表5 SNR=5dB时自动识别的结果(识别概率%)

输出输入 BPSK QPSK 8PSK 16QAM

BPSK 100 0 0 0

QPSK 0 100 0 0

8PSK 0 0 100 0

16QAM 0 0 0 100

图7 不同信噪比下各调制方式的识别率

从表4以及表5可以看出,在信噪比较低的时候,识别率仍然可以达到较好的效果,尤其是BPSK信号的识别率在低信噪比下仍可达到100%,当信噪比高于5dB的时候,16QAM信号的识别率也可以达到100%。

6 结论

本文通过高阶累积量的方法进行MPSK信号的调制方式识别的研究,进行了相应的信号模型的建立,提出了相应的实现方法,仿真结果表明,该方法是可行的的,可以应用到相应的系统设备中。

信号与通信论文篇(8)

一、引言

由于IEEE 802.11a的广泛应用,因此从国家信息安全和军事国防的高度来看,很有必要从电子对抗的角度去考虑如何对IEEE 802.11a通信进行干扰的问题。目前,人们对IEEE 802.1 1a的研究大多集中于其通信机理本身,少数从通信对抗角度进行研究的学者,也是主要针对于干扰信号对通信过程建立后的过程进行讨论。

然而经过研究发现,IEEE 802.11a的通信信号与其它很多数字通信体制一样,在通信过程建立之前,需要同步过程来协调各种参数指标,因而其同步过程也受各种干扰因素的影响,当干扰因素强度超过一定界限后,同步过程受到影响,从而使通信无法建立。而针对数字通信的同步进行干扰,其干扰效能往往要比干扰信号本身更为简便。因此本文的研究重点正是通过研究干扰信号对IEEE 802.11a的同步过程影响,来评估干扰对其通信的影响。

二、理论分析

2.1定时粗同步原理

定时粗同步是PLCP到达接收机后第一步操作。接收机同步通过两个宽度与短序列重复周期相同的判别窗,对接收到的短训练序列数据进行采集,而后进行三步操作:

首先,两个判别窗采集到的数据进行如式(1)的相关运算;(1)第二步,第二个判别窗中数据再进行一次自相关运算;(2)

最后,再由这两个数据进行比例运算,从而得到定时粗同步的判别电平。(3)

当判决电平为高电平时,接收机判定信号到达,并记录检测到高电平的位置;反之当判决电平为低电平时,则接收机判断信号没有到达,因而接收机并不进行后续的操作。

2.2干扰对同步的影响分析

当干扰信号与数据信号叠加后,干扰信号势必影响判决电平的数值大小,从而影响接收机对信号到达与否的判别。

设单音干扰影响下的接收信号为:

RM(n)=RB(n)+A'J(n) (4)

基带信号的离散形式为RB(n),干扰信号离散形式为,(n),A'为干扰信号的幅度系数。

从单音信号的自相关函数中可以得知,当延时τ=nT(n=0,1,2,3……)时,自相关函数为正最大值;当延时T=(n+0.5)T(n=0,1,2,3……)时,自相关函数为负最大值。

将此条件纳入式(1)与式(2)中分析,即可得到推论:当单音信号的周期T=D/(n+0.5)时,Cn为负最大值,而式Pn由于τ=0,因而为正最大值。在这种情况下Cn与Pn在整体上的数值差异最大,从而使最终的结果最小化。

当短序列重复周期D=16、单音信号周期T=16/5.5时,Mn的数值非常小且稳定,因此当周期T=D/(n+0.5)的单音干扰信号随短序列进入接收机时,很容易产生误判,从而造成对后续OFDM通信活动的阻隔和压制。

三、仿真程序介绍

本文的仿真程序除包含IEEE 802.11a协议所设计的从发射到接收过程中的一系列操作外,还重点针对训练序列同步的特点,对接收存储器和接收状态机进行仿真,以使仿真程序从同步成功与同步失败两个方面,反映干扰信号对IEEE802.11a训练序列同步过程的影响效能。

为了模拟干扰对整个IEEE 802.11a通信活动的影响,本文编写了相关仿真程序,整个仿真程序从结构上分为三个部分:发射机部分、信道与干扰信号产生部分与接收机部分。发射机部分的主要功能,是产生一串随机数据用以模拟要发送的有用数据,然后经过信道卷积、信道交织、QPSK调制、加入训练训练、插入导频、降PAPR转换、IFFY运算、插入循环前缀、滤波、数字上变频等一系列操作后,最终形成射频信号发送到信道部分。信道与干扰信号产生部分的功能有两方面,一是模拟信道中自然存在的高斯白噪声,二是产生干扰信号,并用过信号功率计算,得到需要的干扰信号功率比(JSR)。最终形成由信号、高斯白噪声与干扰信号三部分组成的混合信号。接收机部分结构相对比较复杂,进入接收机的混合信号先经过数字下变频与滤波器后,进入接收机的数据存储器,接收机的同步,就从存储器中调用数据。经过定时同步与频率同步后,进行FFT运算,而后经过降PAPR逆变换、相位补偿、QPSK解调、解交织、解编码等与发射机部分相对应的逆操作后,得到还原后的数据信息。

四、程序仿真与结果

本文在仿真程序中,将短序列重复周期设为16,因此为了验证之前的理论分析,应当设置一个周期T=16/(n+0.5)的基带单音干扰信号。然而,由于仿真程序接收机部分设计有低通滤波器,因此为避免信号经过滤波器时产生功率损失,本文在仿真时将n设置为0,即单音周期T=32,此干扰信号经过滤波、上变频后,在空间中与信号叠加,单音干扰与短序列信号叠加后的信号进入接收机进行解调,最终产生的误码率如下图1所示:

由仿真结果可以看到单音周期T=32时的干扰效果。当干扰信号功率比(JSR)为-3dB时,接收误码率就达到0.1,而同步失败率达到0.3左右。而使用噪声调幅干扰方式进行仿真,要达到同等误码率水平,则JSR需要达到7-8dB左右。

信号与通信论文篇(9)

引言

当机电设备出现故障时,通常伴随着非线性耦合现象的出现,且振动信号呈现出非高斯特性。高阶谱是分析非高斯信号的有力工具,它从更高的概率结构表征信号,弥补了二阶统计量(功率谱)。双谱是高阶谱中最常用的一种信号分析方法,传统双谱是以傅里叶变换为基础,然而傅里叶变换是建立在信号平稳性假设条件下的一种时域和频域的全局性变换,它对于非平稳信号则能力有限,不能很好地揭示非平稳信号的特征[1]。小波变换的优势在于分析非平稳信号时具有明显的时频局部化,可有效地增强隐藏在机械信号中的瞬态信息提取。将小波变换与双谱分析方法相结合,发挥小波变换与高阶统计量信号处理方法各自的特点,产生了小波双谱理论。小波双谱能够把时间平均减小到最低而检测出非线性耦合,而同时能满足对冲击脉冲、间歇性的信号的分辨能力,尤其适合对含有噪声信号的特征提取[2]。本文从传统双谱、小波变换理论出发,重点研究小波双谱理论方法,详细介绍小波双谱信号处理算法流程。

1.小波双谱方法理论

小波双谱方法思想源于传统双谱定义,以小波变换为基础,替代了传统双谱中以傅里叶变换为基础的定义。本文从理论上分析传统双谱、小波变换、小波双谱理论。

1.1 双谱基本理论:双谱是属于高阶谱范畴,双谱即为三阶谱。对于一个离散时间的确定性信号,双谱(bispectrum,BS)的定义[3]为:

(1)

是信号在处的傅里叶变换。是的共轭函数。双相干(bicoherence, BC)定义为:

(2)

其中是信号在处的功率谱密度函数。

1.2 连续小波变换理论:B.Ph.van Mil-ligent[6]指出小波双谱理论采用连续小波变换,本文选用morlet小波进行分析。

被认为是近年来在工具和方法上有重大突破的小波变换,为非平稳信号分析展示了美好的前景。由基本小波或母小波通过伸缩a和平移产生一个函数族称为小波,定义如下:

(3)

式中a是尺度因子,有;是时移因子。

函数f(t)的小波变换如下式:

(4)

由上式可知,小波变换是用小波基函数代替傅里叶变换中的基函数而进行的内积运算。在信号处理中,小波变换的实质是以基函数的形式对信号x(t)分解为不同频带的子信号。

本文选用morlet小波,其函数表示如下

(5)

式中fb表示带宽参数,fc表示小波中心频率。

1.3 小波双谱方法:类似于传统双谱的定义,小波双谱(wavelet bispcetrum ,WBS)定义为:

(6)

其中Wf表示对函数f(t)进行的小波变换,积分是在一定时间间隔上进行的。W*f是Wf的共轭函数。其中尺度a,a1,a2满足以下的关系式:

(7)

小波双谱计算的是在时间间隔T中函数f(t)的尺度a,a1,a2小波成分的相位耦合量。因为尺度a能解释成反频率,满足关系式,所以小波双谱也可理解为满足频率分辨率下小波频率之间的耦合量,即小波双谱用以检测信号中两个频率成分的二次相位耦合关系。其中二次相位耦合定义为在信号中的两个频率,,与它们的和(或差)同时存在,即(或),同时它们的相位和(或差)为常数,则称这种关系为二次相位耦合关系。

类似于BC的定义,小波双相干(wavelet bicoherence, WBC)的定义为:

(8)

小波双相干,即是归一化小波双谱,用以定量检测信号中存在的二次相位耦合关系,其中幅值在0到1之间取值。为了便于理解,小波双相干通常在平面内做图,而非在平面内做图。小波双相干的物理意义是:频率,二次相位耦合产生的能量在处总能量中所占的比例。

2.小波双谱算法

信号与通信论文篇(10)

关键词:信号与系统 理论与实践 优化整合

《信号与系统》无论是从教学内容还是从教学目的来看,都是一门理论性和实践性较强的课程【2】。教学效果的好坏在很大程度上取决于能否把理论和实践有机地结合起来。

一、《信号与系统》课程理论与实践环节优化整合的必要性

对理论性和实践性都较强的《信号与系统》课程来说,理论教学和实践环节就好比“一辆车的两个轮子”。理论教学培养学生的抽象思维能力,加强基础知识,提供分析问题和解决问题的方法和手段。就《信号与系统》课程而言,进行理论教学,可使学生对系统数学模型和分析方法有全面的了解和掌握,从而具备初步的系统分析和设计的能力。实践环节是对理论教学进行全面掌握和实施的过程,是一次再创造和深化的过程。通过实践可以提高学生的设计能力和实践认识能力,对彻底掌握《信号与系统》这门课程起着至关重要的作用。通过对《信号与系统》课程的理论与实践环节进行优化整合,教学过程中,把理论和实践有机地结合起来。不但能更有效地提高《信号与系统》课程的教学质量和效果,而且还能使学生在信号处理与分析方面具备较强的主动获取知识和独立解决问题的能力。

二、《信号与系统》课程理论与实践环节优化整合的方法和途径

1、板书与Flas的多媒体课件相结合教学

多媒体教学手段形象、生动、高效,但是完全采用多媒体教学手段,也存在着一些不足:信息滞留时间短,信息量过大,学生难以接受。因此,采用两者结合的方法较好,对于传统教学手段难于解决的某些知识点采用动画的形式展现,对于逻辑性较强的推导过程、例题的解答等内容则适合采用传统的板书方式。只有将两者有机的结合,才能收到事半功倍的教学效果。例如,抽样定理是该课程的一个重点,对于学生掌握也是一个难点。当一个带限信号的抽样频率慢慢变小,其频谱由不混叠到混叠的变化过程用Flas展现出来,学生就有一种恍然大悟的感觉,不但加深了印象,而且激发了兴趣,然后再用板书进行相关推导与例题的讲解。经过课堂应用,板书与Flas相结合的方法,获得了较好的教学效果。

2、工程应用教学,强化物理概念,淡化纯数学推导

在教学过程中要注意以工程为主线,强化物理概念,淡化纯数学的推导。在讲解时,要注意用物理语言解释数学语言,更要从简洁的数学语言中领会其背后的物理意义[4]。例如,在阐述脉冲展缩与频带关系的特性时,引入其在通信中的应用:为了提高信号的传输速度即每秒内传送的脉冲数,就要压缩信号脉冲的宽度,这样就会使信号的频带加宽[1];在讲述抽样定理时,可以电话通信的语音信号为例:语音信号通过滤波以后最高抽样,频率为3.4KHz,根据抽样定理抽样频率应满足fs6.8KHz,但实际采用的抽样频率是8KHz。在讲解的时候可先将应用数字系统处理模拟信号的总体框图给出,结合实际的语音进行举例,将失真以及取样定理的原理融入实际例子中,学生会理解的更透彻。

3、以启发式讲授法为主,辅以其他灵活多样的教学方法

与一般讲授法相比,在启发式讲授过程中,教师根据学生对理论的实际认识水平有目的性、有针对性的进行诱导、启发,刺激学生积极思考问题,让学生自己找到答案,这种“自觉内生”的知识一旦形成就不容易忘记。因此,任课教师在各方面条件允许的情况下,应尽量采用启发式的方法让学生多动脑、多思考。

4、重视实验教学,理论和实验相结合

在实验教学中,要达到理论与实验相结合,保证理论和实验进程同步,在学生学完知识点后马上验证所学知识的正确性,能加深学生对知识的理解。拿“信号的分解”来说,在讲“信号的分解”时,就是通过傅立叶级数把任何非正弦的周期信号分解成周期信号,书本上给出了分解的结果,可学生对于这样的分解内心无疑存在着困惑,实验中当学生在示波器上依次看到分解后的波形后,对书本上的理论理解进一步加深。

5、实验教学内容上,要验证性实验和创造性实验相结合

在实验教学内容上,要验证性实验和创造性实验相结合。按照“基础型、应用型、综合型、创造型”的分层次教学内容构建。一味的验证性实验会使学生对实验失去兴趣,在验证性实验过后增加一些创造性实验,能让学生通过自己已经掌握的知识点上进行一些扩展性实验,从而加强学生的创新能力。比如,尝试只给出实验题目和实验方法,给出一个简单的实验思路,不给出详细的实验步骤,剩下的具体实现由学生自己来完成。改进后的教学方法,提高了学生的学习兴趣和学习主动性,学生普遍反映良好,学生不但很好地掌握《信号与系统》的基本原理,而且理论知识应用能力都得到不同程度的提高。

三、结论

《信号与系统》这门课程是电子信息类专业的一门重要基础课程,教学质量的好坏,对学生课程的学习效果有重要影响。因此,本文从实际教学的角度出发,探讨了《信号与系统》课程理论与实践环节优化整合的必要性及其整合方法。采用板书+Flas的多媒体课件的教学手段,工程应用教学和启发式教学的方式和方法,提高课堂理论教学的效果和质量,并改变传统的实验教学手段,采用软硬结合的实验教学方式,来激发学生的学习兴趣、积极性、主动性,从而收到事半功倍之效。

参考文献:

[1]燕庆明.信号与系统[M].北京:高等教育出版社,2004.

上一篇: 团会心得体会 下一篇: 大学团员个人评议总结
相关精选
相关期刊