机械工程和机械电子汇总十篇

时间:2024-01-05 08:30:34

机械工程和机械电子

机械工程和机械电子篇(1)

中图分类号:TP39文献标识码A文章编号1006-0278(2015)07-156-01

与传统机械工程相比较而言,电子工程起步相对较晚,受生产力发展的需求,在二十世纪两者被逐渐的结合在一起。在最初,主要是采取块与块的分离模式或功能替代的模式将电子工程与传统机械工程结合在一起。随着信息科学技术的不断向前发展,传统机械工程把信息技术作为纽带桥梁与电子工程结合起来,也就形成了今天的机械电子工程。而人工智能作为当代信息网络技术的最高产物,随着它在机械电子工程行业的运用,使其由传统的能量、动量连接发展成为现在的信息连接,为机械电子工程发展注入了新的活力和源泉,极大的提高了机械电子工程的生产效率和发展水平,为其健康可持续发展做出了重大贡献。

一、机械电子工程的基本认识

从设计角度来说,机械电子工程与传统机械工程相比,它的跨学科性和综合性十分强,是涵盖了各类学科的精华部分而形成的一种学科。电子机械工程在进行设计环节时,依然是以机械工程为核心,同时有效结合计算机技术与电子工程两个方面,并根据配置系统和目标的不同需求综合其他学科与技术,如生产管理、制造加工等。设计工程师在进行设计时都会采取自上而下的设计策略将各个模块紧密结合起来,以便顺利完成所有的设计工作。从产品特征上来看,与传统机械工程相比,机械电子产品的外形构造更为简单,小巧玲珑,大大减小了物理体积,不再有传统笨重型机械的特征,但是内部组成更为复杂,而产品的性能却得到了很大的提高。

二、人工智能技术和机械电子工程的相关性

人类社会赖以发展的两大因素是物质和信息。在人类社会发展初期,由于社会生产力弱等原因的综合制约,人类社会把物质生产放在生存与发展的第一位,并采用如“结绳记事”这样的方法来达到信息交流的目的。但随着社会的不断向前发展,生产力水平得到了极大的改善与提高,人类的认知能力也得到了快速提升,信息在日常生活、生产中的重要性日益凸显出来,原有的信息传递方式已经不能够满流的需要。文字的出现和使用,使它的信息传递功能得到了充分的展现,并成为最为理想的传递模式。而后,科学技术的发展尤其是网络技术的普及给信息传递注入了新的活力和源泉,人类逐步的进入信息时代,而信息社会的运行是以人工智能为技术支撑的,包括机械电子工程领域,无论是模型的建立和控制还是故障诊断,都离不开人工智能的信息处理功能。

电子信息技术在推动机械工程发展方面是有目共睹的,具有不可替代的作用,但是它并不是十全十美的,自身也存在着一定的缺陷,稳定性能比较差,这就导致在对机械电子系统的输入与输出关系进行描述时就显得十分有难度。传统机械工程对二者的描述方法主要是运用推导法,对数学工程进行推导获得输入与输出的相关信息,此外建设规则库和学习并生成知识两种方法也运用的十分普遍。尽管传统的描述方法具有严密和精准的优势,但是只能处理线性定常这样比较简单的系统,而对于那些稍微复杂一点的系统就不能够运用数学解析式的方法了,只有对输入和输出的程序进行编程操作才能完成。在现代社会中,各个行业所需要的系统构成不再是单一的,往往呈现出复杂性,经常会出现对多种不同类型的信息进行同一时间处理的现象,如传感器的使用就会对数字信息和专家的语言信息进行解读、分析和处理。由此可以看出人工智能系统在进行信息处理时具有不确定性和复杂性,因此,以知识为基础的人工智能信息处理方式成为机械电子工程信息处理的首选方式。

神经网络系统和模糊推理系统是人工智能进行系统建立最为常见的两种方法,前者能够对人脑结构进行模拟,能够对所传达的数字信号进行分析并给出数据参考值,而后者则是根据人脑的功能对其进行模仿,从而对所传达的语言信号进行解读和分析。在对机械电子工程系统的输入与输出进行处理时,两者既具有相似性又具有不同点。相似点体现在都是以网络结构为平台选取任一精度形成一个连续函数;不同点主要表现在:1.在物理意义上,模糊推理系统比神经网络系统更具有明确性;2.映射方式上,前者采用的是点到点而后者采用的是面到面;3.在信息储存方式上,前者是分布式的,后者是规则式的。4.在神经元的联系上,神经网络系统内的每个神经元的联系都是相对固定的,因此在输入处理时就需要很大的计算量,而模糊推理系统正好与之相反;5.在输入输出的精度上,神经网络系统的精度较高,呈现出光滑曲面,而模糊推理系统较低,呈现出台阶状。

三、结语

机械电子工程产业作为我国经济发展的重要产业,它的每一次重大性变革都会给人们的生产与生活带来重大影响。随着信息网络技术的快速发展,人工智能作为一种高端技术已经越来越受到各个行业和领域的高度重视。为了与时俱进,满足社会发展需求,人工智能也被逐渐的应用到机械电子工程产业,它的到来弥补了传统机械电子系统无法解决的难题,二者的完美结合为该行业提供了一个更好的发展空间,使其能够在竞争激烈的市场经济中健康稳定发展。

机械工程和机械电子篇(2)

[中图分类号] G642.4 [文献标识码] A [文章编号] 2095-3437(2016)06-0110-02

近年来,国务院、教育部等主管部门在政策导向上,引导600余所地方本科高校向 “ 应用技术型高校 ”转型 ,推动建设“应用技术大学”, 我校也以“建设特色鲜明的现代应用技术大学”作为自己的奋斗目标。机械电子工程作为典型的工科专业,对学生的技术应用能力和实践能力的培养尤为重要。

一、“机械电子工程专业学生应用和实践平台”的提出

我校机械电子工程专业2011年开始招生,作为一个实践性很强的工科专业,机械电子工程专业教研室在培养学生的应用能力和创新能力方面做了一些探索和尝试。但是,目前机械电子工程专业还是以传统教学为主,实践教学环节主要以参观、验证性演示为主,学生动手的机会不多,自主设计实验则更少,导致动手能力培养不足。围绕“建设特色鲜明的现代应用技术大学”,培养应用型人才的目标,结合我校工程训练中心和实验室建设,机械电子工程专业教研室通过一系列调研,在现有条件的基础上,提出了“机械电子工程专业学生应用和实践平台”建设方案,它为技术技能应用型人才培养提供有力的支撑条件。

该方案与机械电子工程专业建设相结合,通过项目化教学和管理方法,拟解决以下方面问题。

1.通过组装及创新组合出各种典型机构和结构部件,加深对机械原理课程中所学知识的理解与运用,培养学生机构认知、选型、组合及创新的能力;2.培养学生综合运用机、电、液(气)一体化技术进行机械系统创新设计的能力;3.培养学生对各类传感器、单片机、PLC控制器的综合运用,加深对机电控制类课程中所学知识的理解与运用;4.培养学生的综合应用能力、创新思维能力和团队合作精神,提高学生的创造和动手能力。

二、“机械电子工程专业学生应用和实践平台”的实施方法

具体实施方法如下。

1.建立面向课程体系的创新实验支撑条件及关联实验系列。首先打通机械电子工程相关课程的实践环节,包括机械原理与机械设计、机电传动、机电控制工程、机电一体化设计等,完善创新实验条件,以一个机电产品为例开设贯穿课程体系的关联实践系列,如机械本体装配、传动机构分析、单片机与接口技术、等实验系列,使学生更主动地学习、更有效地掌握机电一体化技术的系统知识。

2.以“从做中学”为指导思想,围绕学生的创新设计项目来完成整个课程体系的教学和实验。从专业基础知识学习开始,给学生提出一个具体的机电产品设计项目,使学生能够带着问题来学习和实践,并从中初步掌握科学研究的基本过程和基本方法,养成良好的学习自主性和能动性,培养学生动手和自学能力、发现与解决问题能力、交流协作能力等,达到创新能力培养的目标。

3.结合毕业设计与学科赛事,利用此平台设计制作机电产品实物。利用此平台中提出的一些新颖且可实现的项目,可以逐步从设计到实物制作,参加高层次学科赛事。另外以这些项目为题材设计毕业设计课题,培养优秀毕业设计。利用CAD软件完成所有零件图、部件图和总装图设计,使学生对机电产品的结构和组成等获得较为丰富的感性认识,对机电产品的设计过程和设计要点有基本概念。在设计过程中,通过产品装配、控制编程运行,全面了解机电装备的控制、驱动、传动、测试等技术,并可以综合运用机械制造工艺和工装等知识。

三、“机械电子工程专业学生应用和实践平台”教学成果

为了检验该教学平台建设的教学效果,机械电子工程专业的老师们在教学中组织学生进行了小范围的试验,取得了比较理想的成果,下面展示其中的一些成果。

1.大学生优秀科技作品――基于STM32单片机的三轴实验平台。图1所示为基于STM32单片机的三轴实验平台。根据实践教学需求,确定了该实验平台由机械本体、STM32控制系统和VB上位机操作软件组成,搭建了该实验平台的机械本体结构,完成了实验平台控制系统的硬件设计和软件设计,制作了三轴实验平台样机,并进行了运动功能试验。通过试验证明,所设计的三轴试验平台能够在有效工作范围内实现圆弧和直线插补,实现了设计要求。

2.江苏省大学生创新创业训练优秀项目――基于MCGS的PLC仿真实训系统。图2所示为基于MCGS的PLC仿真实训系统。该系统为提升 PLC课程实践教学效果,提出并实现了基于组态软件 MCGS的PLC仿真实训系统设计。仿真系统内嵌三个PLC经典控制子系统,各子系统均采用 MCGS 监控系统与西门子 200PLC 控制相结合的控制方案,由 PLC 实现子系统控制功能,由组态软件 MCGS 实现子系统工作过程的动态实时监控。

3.江苏省机器人大赛一等奖――可原地转向横向进出车位的新型机构。图3所示为可原地转向横向进出车位的新型机构。该新型机构针对目前私家车保有量大,道路狭窄,新手驾驶水平不高,机动车掉头和进出车位难度大等问题,设计了一种可原地转向、横向进出车位的传动机构,可以更加高效的利用有限的停车场资源,缓解停车位紧缺和驾驶人员技术不足的问题。通过实验,证明该机构可以实现原地掉头、横向进出车位,具有较高的创新性和实用价值。

4.南京理工大学泰州科技学院优秀毕业设计――剪式升降台液压系统智能测试平台。图4所示为剪式升降台液压系统智能测试平台。该课题针对剪式液压升降台,对升降成了机械分析,设计了实验油路并完成了仿真,设计出了基于PLC触摸屏一体机的控制系统,针对升降台油路中的液压缸建立了基于LabVIEW的检测平台,最后经过半实物实验系统仿真,能够实时反映出油路中的问题所在,降低了出错的几率。

四、结束语

通过对“机械电子工程专业学生应用和实践平台”建设方法的探索实践,证明该方法在培养机电专业学生的应用和实践能力方面较传统教学方法更具有优势。通过该方案的实施,能有效的培养和锻炼学生的应用和实践能力,学生能够更好的理解机械电子工程专业的课程体系,对专业知识的掌握和应用也有了质的提升,提高了机械电子工程专业学生的培养质量。

[ 参 考 文 献 ]

机械工程和机械电子篇(3)

1智能控制工程和机械电子工程概述

1.1智能控制工程

智能控制技术包含神经网络学、电子信息学和人文科学等学科内容。在机械电子工程中,智能控制技术融入了各类工程控制理论和计算机科学,利用计算机软件和生物学模仿人类的大脑和肢体功能,搭配先进的控制电子设备,可以顺利实现更加多元、智能化的操控,降低了对人力的依赖性。在实际应用中,智能控制工程以计算机技术和信息技术为基础,以控制理论为指导思想,实现对机械生产的自动化管理控制。智能控制技术一共经历了3个发展阶段,前期的技术应用效果并不明显,后来主要被应用到军事领域,直到21世纪才进一步扩展了该技术的应用范围。使得智能化控制技术和社会生产结合起来,并在大数据技术的支持下广泛应用人工智能技术,给人们的生产生活带来极大便利。随着控制理论及其技术的不断完善,控制技术的应用范围进一步拓宽,作用进一步强化,在许多大型机械制造过程中发挥着十分重要的作用,实现了自动化的操作控制和管理。智能控制工程和传统控制工程最大的区别是,其可采用智能化、自动化技术提高机械操作性和应用性。其次,智能控制技术的应用使得操作更加简便,能有效解决机械生产中出现的各种复杂问题,并通过全面综合的机械技术,结合现代控制理论解决许多线形和非线性的问题,尤其在机械工程活动中提供更加科学的技术支持。

1.2机械电子工程

机械电子工程的发展基础是机械工程,集合了计算机、机械和电子等学科技术。传统的机械生产由人工控制,生产效率不高,且容易在设计生产过程中出现异常问题而得不到及时有效解决,不但影响效率还可能会影响生产质量和生产安全。为此,随着信息技术的不断发展,在机械工程中转变传统机械生产模式,利用机械电子工程实现传统机械工程和电子信息技术的结合。加深电子、机械和信息之间的联系,在实际产品设计生产和经营管理中,机械电子工程结合机械理论、电子工程知识和计算机知识,完善产品设计方案。和传统机械工程相比,机械电子工程的设计更加精细化,产品结构变得更加简单和集成化,功能更加优越。通过科学的规划设计,促使机械制造水平进一步提升,满足现代化机械生产发展需要。机械电子工程也经历了多个发展阶段,前期主要采用人工操作的方式进行管控,生产质量和效率受到限制。机械加工技术的不断研究发展,推动了机械电子工程的发展,融入自动化技术,不断提升生产规模和效益。尤其在大数据时代,集合大数据、云计算和人工智能技术,拓宽了机械电子工程的应用范围,提高机械生产的效率和个性化,降低生产周期,使产品的性能不断完善。

2智能控制工程在机械电子工程中的应用优势

将智能化技术应用到机械电子工程,可简化操作流程,避免人为操作带来的失误,提高机械电子工程的运行效率和质量,使得机械电子工程运行变得稳定安全。同时还能提高整体控制能力,使机械电子工程各环节都得到强化。

2.1避免人为因素引起的操作不当

智能化技术灵活性较高,在机械电子工程设计施工中采用智能化控制技术可充分发挥其灵活性的优势,改正和优化传统机械电子工程设计施工中存在的问题。由于机械电子工程的设计与应用受到主客观因素影响,因此可利用智能化控制技术实现对系统设计施工的全方位实时监控。可以在很大程度上避免人为因素引起的风险问题,可以高效反应和判断具体问题并解决,确保机械电子系统正常稳定运行。同时,智能化技术的应用可以协调各个系统及其设备,对可控指标进行调整优化,可在整体上提升电气设计施工的质量和系统运行的水平。

2.2确保数据一致

机械电子工程设计施工的质量会受到技术、材料设备和人员、自然环境和施工条件等因素影响。尤其是设计方案存在的问题没有得到有效解决,导致施工中出现多次变更,影响到获得数据的完整性,增加数据分析结果偏差。为此必须提高数据的一致性,利用智能化控制技术可全方面收集相关数据信息,避免数据遗漏和错误。同时,可以提高数据处理的效率和准确性,可根据不同技术形式采用针对性的数据处理方法,有效提高机械电子设计的科学有效性,以及机械电子工程设计施工的质量。

2.3提升整体控制能力

结合智能化控制技术和机械电子工程,可及时反馈系统及其设备的数据。智能化控制器能保障生产正常进行,还能发挥自动化的技术优势,及时发现和解决存在的隐患,获得正确反馈信息。同时,可以远程控制生产设备,提升企业整体运行的控制能力。

2.4强化机械电子工程各模块,简化自动化模型控制

机械电子工程具有模块化的性质,在发展中涉及许多技术。这些技术的应用使得机械电子模块化发展成为必然趋势。在传统机械电子工程中,模块还不够完善且模型控制复杂。现阶段,在机械电子工程中,采用智能化控制技术进行系统数据整理和分析,可有效提升对整个系统的控制效果,强化系统生产运行的效率和质量,提高参数运行的准确性,还能防止设备和工艺运行出现故障。此外,可对机械电子工程系统模型控制进行简化,从根本上减少对模型的控制,提升整体工作效益。

3智能控制工程在机械电子工程中的具体应用分析

3.1模糊控制系统的应用

传统的机械生产加工工艺十分复杂且流程繁多,对技术要求高、工作量大,但是生产效率低,无法确保生产质量。采用人工控制的方式,不但会增加劳动量和劳动成本,而且还会因为人工操作失误影响系统实施效果。通过构建智能控制模型,采用模糊控制理论,不但提高了控制工作的精确性,加大了误差控制的范围,使控制工作在规定范围内开展。同时,减少了对人工的需要,有利于提升生产效率和质量,降低自动控制难度。在模糊控制实际应用中需要注意的是,应加大对生产误差控制范围的研究力度,提高模糊控制技术对机械电子工程控制的精确程度。3.2专家控制系统的应用专家控制系统和传统控制方式相比,对数学模型的依赖性大大减弱,不用受到受控对象因内外部环境改变而引起结构及其参数变化的影响。计算机系统在长期实践中通过模拟专家行为,利用智能化的方式进行操作和控制,可进一步提高控制系统的性能,提高生产精确度。例如,在高精度机床生产中,利用专家控制系统,可实现对机械加工全过程动态智能化的补偿控制,减少误差范围,有利于提升加工精确度。

3.3智能集成控制的应用

在机械电子工程中,集成自动化控制技术是较常见的技术工艺。在机械电子工程中的应用可促使控制系统得到全面升级优化。利用该技术,可以实现对生产环节及其各设备的统一化管理,能集中人力物力,提高监督管理的水平,促使机械电子工程有序协调发展,提高产品生产的效率和效益。此外,采用集成自动化控制技术,可全面监测多台设备的运行情况和生产数据指标,从而开展全方面的控制管理,及时分析处理异常情况,确保机械电子生产的有序性和高效率。

3.4神经网络控制的应用

神经网络系统是利用人脑的统一控制,实现对身体其他各个部位的控制。该技术根据这一理论设计出全新的智能控制系统,通过网络控制体系的不断完善,完成对机械电子设备的高效控制管理。不但提高了控制管理水平,有利于保障产品的质量,而且节约了人工控制的成本。通过对整个神经元的信息一体化整合、分析和反馈,利用神经元,实现对相关机械电子产品设计生产的指令或口令,促进了智能自动化控制的发展,也有利于机械电子工程行业的发展。

3.5鲁棒控制的应用

在现阶段机械电子工程生产研究中,鲁棒控制研究是指在设备受到外界干扰时,可以保持原来的控制系统性能,促使机械电子工程得以顺利开展。例如,在柔性臂轨迹制造中采用滑膜结构控制,并以此为基础研发鲁棒控制器,使得系统控制器在结构和性能方面得到优化。在实际操作时,利用补偿计算方法,使滑膜结构和鲁棒控制组合起来控制,确保控制系统在目标轨迹运行中发挥精确的控制功能。3.6预测控制技术的应用在机械电子工程中,采用预测控制技术是为了提前实现对设备运行的预测。将预测结果反馈给操作系统,实现对设备运行的良好控制,从而满足机械电子生产控制的需要。例如,在机械电子生产中,高速液压机转速和压力的增大,会使机械负载冲击作用加大,导致设备系统故障,影响运行精确度和安全性。利用预测控制技术,可以高速液压机实际运行情况为依据,建立科学的预测模型,控制设备运行速度和压力,实现对运行误差的精确预测和控制,有效消除运行中的速度和压力误差,提高设备运行的精确度和安全性。

4智能控制工程的发展前景

4.1高速度、高精度、高效化发展

促使智能化技术发展的主要指标是速度、精度和效率。在现代化机械电子工程中,采用自动化智能化技术,可实现手动控制无法实现的目标,不仅解放了劳动力,而且也有利于减少误差,提升生产精确度。在智能控制工程发展过程中,使用超精密磨削技术,可以提高机械电子产品生产的精确度。在一些尖端行业,例如,航天航空领域,未来将采用更加高效的自动化技术,促使机械电子工程朝着高速度、高精度和高效化的方向发展。

4.2柔性化控制发展

智能化控制技术在机械电子工程中的柔性化发展,一方面是机械电子自动化群控系统,另一方面是机械电子自动化数控系统。其中,群控系统主要是对信息流与物料流的动态调整,能够严格按照生产流程的要求开展工作。

4.3网络化机械制造模式

未来机械制造模型和模式会朝着网络的方向发展,产品生产中的设备和技术将进一步完善。微机技术和精密控制技术的应用将不断推动联网机械制造的发展,从而使机械电子制造朝着更加高质量和高水平的目标发展。

4.4模具成型技术

机械工程和机械电子篇(4)

关键词:机械电子工程;人工智能;关系

所谓的机械电子工程,集中了电子技术和机械工程,属于一种新型的工程技术,因而在机械工程应用中占据关键地位。在机械电子工程的作用下,将机械工程基本功能充分发挥出来,而且通过对电子技术的运用可以高质量地完成工作任务,所以具备了多元功能。长期以来,基于社会发展,对于与操作相关的功能都提出了更为智能化的要求,必须要实现人工智能化的变革。

1机械电子工程概述

机械电子工程将传统的机械工程和电子信息技术进行有机融合,使得电子、机械以及信息间的关系更为紧密,所以机械本身的精准度和操作可靠程度也更强大,在高新技术领域被广泛应用。现阶段,通过对计算机信息传输的合理运用,能够完美连接多样化的机械,以保证所有机械都能够将自身的功能发挥出来。而控制中枢则集中于主控系统当中,与生产多元化需求相吻合,产品性能也随之提高。通过对机械电子工程模块化的设计,能够简化其内部结果,不仅可以达到多元化生产的目标,还能够节省生产成本,所以未来发展空间较大。但是,机械电子工程产品通常都是由人工控制完成生产,即便可以达到性能和多元化生产的要求,但人工操作会直接影响实际的生产效率,使得资源和市场的需求难以保持一致。在这种情况下,机械电子工程发展遇到瓶颈,且生产灵活性以及高效性仍需不断增强。

2人工智能概述

以计算机技术为基础衍生的全新技术就是人工智能,其中包含了计算机操作系统和数据信息处理,同时实现了上述功能的具体化,可以有效地控制电子设备,并实现现代机械设备操作,对于人工操作的依赖性明显降低。其中,人工智能对计算机数据处理和信息传输功能进行了合理地运用,有效控制机械设备,所以,计算机对于人工智能来讲十分重要。在计算机技术发展的过程中,人工智能控制也更加准确与迅速。在人工智能理念被提出以后,相关研究人员开始深入研制这一技术,并且在智能机器当中有效地融入人自身的惯性思维以及流程,以保证机器可以对人的思维进行模拟,积极开展简单亦或是复杂活动。但是,由于人工智能和机械的契合度不高,始终无法实现完全人工智能。在实践过程中,人工智能在高新技术中的应用相对广泛,能够完成基本工作,所以在现实生产中的功能仍然有待完善与深入研究。现阶段,新人工智能的重点将放在和机械电子工程相互融合方面,而其发展的状态也同样对机械电子工程技术的智能化发展产生了积极的影响。

3机械电子工程和人工智能关系研究

通过以上对机械电子工程和人工智能的相关研究可以发现,两者都具有自身独特的优势,但是在实践应用过程中也同样存在缺陷与不足。在这种情况下,深入探讨两者间存在的关系能够为机械电子工程和人工智能的有效融合提供有力的保障。

(1)机械电子工程应用人工智能具有依赖性。对于机械电子工程而言,引进并应用人工智能需要将电子工程的计算机网络系统作为重要基础,所以,人工智能的应用条件也更高。在这种情况下,就必须要将高新技术作为核心,在网络命令和计算机信息传输的作用下转变人工化指令,对机械生产以及运作进行正确地指导。所以,如果机械电子工程网络系统的数据不正确亦或是分析有偏差,都会直接导致机械动作的错误,甚至还会致使以人工智能为基础的机械电子工程自动化操作系统完全瘫痪,而电子机械工程功能也难以得到发挥。近年来,在科学技术发展的过程中,工业生产领域对于系统要求逐渐提高,其中涉及到诸多类型的数据处理问题,因而人工智能必须要保证系统工作正常才能够将功能充分发挥出来,所以系统的依赖性相对较强。

(2)人工智能有效补充机械电子工程。对于传统机械电子工程来讲,采用的是模块化设计方式,因而在功能方面表现出多元性、固定性以及生产方式单一性等特点,也同样对机械工程多元延伸带来了不利的影响。在这种情况下,为了实现机械电子工程综合功能的发挥,必须要对人工智能模型推理系统进行合理地运用,辅助实现目标。现阶段,机械电子工程模型推理系统自身已经具备了相对较高的智能化水平,而且基本能够完成整套生产过程操作。需要注意的是,系统对人体神经网络进行了模拟,进而在计算机内部构建出智能神经网络系统,一定程度上提高了人工智能水平,而且对于人工操作的依赖性减少,达到了机械工程自动化运作的目标,将模块控制完整功能充分发挥出来,并且在工业生产中有效连接。

(3)人工智能强化了机械电子工程的稳定程度。不管是操作系统亦或是信息传输系统,机械电子工程的稳定性都相对薄弱,而且在设计初期,控制操作稳定且不发生改变,始终根据设计程序固定,对机械设备进行控制并完成操作。由此可见,系统本身较为死板且不具备灵活性,如果计算机操作系统数据传输不正确亦或是分析出现错误,就会将错误指令发送出来,导致机械动作不正确,严重影响了模块机械功能发挥的效果。但是,若在机械电子工程中融入人工智能,通过灵活处理手段的应用与人思维惯性的模型,可以及时处理计算机操作系统不正确之处,进一步提高数据准确程度,确保所发出的操作指令是正确的,进而补偿机械电子功能缺陷。在实践过程中,人工智能可以对机械电子工程数据输入、处理以及输出等多项工作进行合理地控制,并且保证数据处理的准确性与高效性,有效提升机械电子设备的稳定性。

(4)人工智能提高了机械电子系统的精准度。对于机械电子工程模块设计而言,对数据控制主要是以精确状态存在。但是,在系统功能实现的过程中,客观数据会发生改变,所以,必须要合理调整系统功能当中的数据,只有这样才能够确保系统稳定地运作,同时增强系统精度控制的准确性。如果机械电子工程面对这一需求,难以自动处理,那么人工神经模式对于系统精度的控制将产生积极的现实意义。

4结语

综上所述,机械电子工程的智能化特征是传统机械电子工程难以比拟的,因而也逐渐成为工业制造的重要发展方向。基于科技的全面发展,各学科也随之细化与深化,学科交叉现象更加频繁,同样实现了知识的延展,进一步推动了科技的多元化发展。而智能化机械电子工程能够进一步增强实际的生产效率,尽可能节省生产制造行业人力成本。由此可见,机械电子工程和人工智能之间存在紧密的联系,相辅相成,共同进步,而深入研究两者的关系也更具现实意义。

参考文献

机械工程和机械电子篇(5)

本研究根据机械电子工程的特点,从学科、技术、工程、市场、实践等多个角度对日新月异的机械电子工程进行归纳、概括和总结,可为相关研究提供参考。

1机械电子工程的概念

机械电子的概念源于日本的“Mechatronics,’一词,曰本机械振兴协会对其解释为“在机械的主动功能、信息处理功能和控制功能上引入电子技术,并将机械装置和电子设备以及软件等有机结合起来构成的产品或系统”。美国学者V.DanielHunt&]将其概括为‘‘有计划地应用和有效地把机械与电子结合起来,以创造最优产品”。欧洲IRDAC(TheIndustrialResearchandDevelopmentAdvisoryCommittee)认为机械电子工程是“机械工程、电气控制工程以及系统总体技术在产品设计和生产过程中的结合”。在我国,大多学者称之为“机电一体化”。

1.1机械电子工程学科的知识体系

机械电子工程的知识体系来源于学科间的交叉融合。它是机械、电子、控制、信息、计算机、人工智能、管理等诸多理论体系的集合。其特点是知识结构庞大、理论丰富、应用范围广泛。

现如今,国内外许多大学的机械电子专业课程主要是由机械工程、电子工程、计算机科学以及控制工程中的部分课程整合而成。这对本专业所培养的学生而言,是具有一定难度的。故机械电子工程所要求的人才及人才知识结构、技术素养等明显不同于传统的机械工程人员。国外一些企业也开始认为,机电人才对它们的吸引力更大M。

1.2机械电子工程的核心技术

1.2.1机械技术

作为机械电子工程的支撑学科与关键技术,机械制造技术是其最为重要的影响元素。可以说,它是一个载体或“母体”。机械电子工程可看做是多种技术向机械技术渗透的结果。但是,机械电子产品及系统的设计思维、设计理念、设计方法与机械制造技术有很大区别。所以,对于机电行业人员来说,从传统的机械思维模式向机电思维模式的转变是尤为重要的。

1.2.2电子技术

电子技术根据系统要求,应用电子学理论,运用电子器件与机械元件,采用某种控制策略,设计和制造出

满足需求并实现特定功能的电路或电子系统,从而投入到机械电子系统或产品之中。

1.2.3自动控制技术

当代的自动控制技术应用于生产、生活、军事、管理、教育等各个领域。自动控制技术就好比一颗粒子,附到某种物质上,它就具有某种物质特定的性质。在机械电子工程中,自动控制技术是控制理论的实践应用,其通过系统已存在的硬件设备和软件系统,结合多种技术,选择控制方式来完成某种控制任务,保证某个过程按照预想进行,或者实现某个预设的目标。

1.2.4检测传感技术

检测是指在各类生产、科研、实验等领域,为及时获得被测、被控对象的有关信息而实时地对一些参量进行定性检查和定量测量。检测传感技术的曰益发展提升了机械电子工程的智能化水平,它的精度将直接影响系统的响应特性。

1.2.5信息处理技术

为了更进一步地发展机械电子工程,必须提高信息处理设备的可靠性、加快处理速度,并解决抗干扰及标准化问题M。

1.2.6伺服驱动技术

要实现机械电子工程全面、高速、准确地发展,毋庸置疑,伺服驱动技术具有很重要的地位。近年来,随着工业自动化的飞速发展,伺服驱动技术也在朝着变频化和交流化迈进17]。伺服驱动技术直接决定了机电系统的准确性、快速性以及灵活性。

1.2.7系统总体技术

系统总体技术是一种运用宏观方法和思路,从整体目标出发,对系统总体进行研究的综合应用技术。系统总体技术加强了机械电子系统的宏观性,增加了机电产品的稳定性。

1.3机械电子工程及其相关技术的联系与区别

1.3.1机械电子工程与人工智能

人工智能是一门综合了控制论、信息论、计算机科学、神经生理学、心理学、语言学、哲学等多门学科的边缘性学科。人工智能就是研究如何使得计算机或者机器设备具有人类的某些特定的功能M"23。从广义角度来看,机械电子工程与人工智能的结合是双向的,机械电子工程可以给人工智能提供一个强大的平台;而人工智能则可以使得机电产品和机电系统向着高级化、人性化和智能化发展。例如在描述机械电子系统的输入输出关系上,人工智能就能给机械电子工程很大程度的帮助。

1.3.2机械电子工程与机器人技术

机器人技术一直以来都是人们所最为关注的科学技术之一。随着科技的不断发展,机器人技术也逐渐走向成熟,其种类曰趋增多、性能持续提高。

工程机械等诸多传统学科面临很多发展问题,其解决的途径就是实现不同程度机械电子化或机器人化124"23。因此,机器人技术与机械电子工程的紧密结合终将能够彻底实现机器人融入人类生活,与人类一起协同工作,并且能够从事人类无法进行的工作,以更大的灵活性给人类社会带来更多的价值。

1.3.3机械电子工程与电子机械工程

电子机械工程主要研究电子组装、电子设备的标准化、电子设备能量传递的媒介、电子系统与机械结构的研究等等。

机械电子工程与电子机械工程的联系较为紧密,可相互借鉴,在某些领域中甚至可以相互取代。但它们是两个不同的学科,机械电子工程是机械的电子化,就是以机械为基础而引入电子,而电子机械工程则相反;它们的产生背景也不同,电子机械工程是二次世界大战以后,有人提出雷达和通信中的机械工程这个名字,苏联称之为无线电设备的结构与工艺,在我国有关院校中曾建立过同名专业M。

1.3.4机械电子工程与电子信息工程

电子信息工程主要研究信息的获取与处理,电子设备与信息系统的设计、开发、应用和集成等。电子信息工程的主要研究方向偏向于电子电路,以及信息系统在电子电路上的应用。与之相比,机械电子工程的综合性更强。

1.4机械电子工程的实践应用

简单地说,机械电子工程的应用大到国家的航空航天领域,例如运载火箭的动力系统、航空发动机等;小到人们所必不可少的生活用品,例如电话、空调、手机等等。

详细地讲,其实际应用将会在两个方面产生影响:

(1)产品。产品是技术的载体和体现者。机电产品的结构更合理、性能更优越、用途更广泛,已明显区别于传统机械、电子等产品。如新型机械加工中心,拥有车、磨、洗、刨、镗、钻等多种功能。

(2)系统。它能增强机电系统的控制精度、简化系统结构、提高系统可靠性。如大型重载混合动力汽车系统,可在刹车以及起动等进程中进行多位调整,还可以对不同路况的汽车动力使用情况进行检测,等等。

2机械电子工程的产生及现状

2.1机械电子工程的产生和发展

机械电子工程的产生和发展大致可分为3个阶

第1阶段。要追溯至20世纪60年代以前,第三次工业革命时期。由于这一时期各国生产力已经得到了极大的提升,急需与高速发展的生产力相适应的科学技术。在此背景之下,新兴的电子技术与传统的机械技术实现了初步融合。这不仅完善了机械产品的性能,同时也推动了当时各国科技和经济的发展。但是,由于这一阶段各国人力资源的匮乏,再加上电子技术的水平还不够高,科学技术也不能够为其提供足够的理论支持,从而导致机、电的融合度比较低,还不能大量应用于工业生产之中,更加不能满足广泛与深入发足之需要。

第2阶段。是在随后的30~40年,随着和平时代和科技时代的到来,机械电子工程也迎来了其高速发展时期。在该阶段,由于计算机技术和控制技术的迅猛发展,为机械电子提供了大量的技术支持;与此同时,大规模集成电路以及微机技术的出现,给机械电子提供了丰富的物质支持,这使得机械电子得到了进一步的发展,并且以一定规模地应用于工业领域。机械技术在与电子技术更进一步融合的基础上,也开始加入了计算机、控制技术等等,初步形成了其综合性。

第3阶段。主要指的是20世纪末叶及21世纪的初期。在该阶段,机械电子工程与其相关技术的结合更为紧密,从总体上形成了其知识体系结构并且开始进入产业阶段。在这一过程中,由于生产流程包括设备本身都体现出了对自动化、智能化的需要,推动了机械电子工程向着这些最新型技术领域的迈进,这也体现了机械电子工程发展的多元化。

2.2国内外现状

日本从上世纪70年代开始就一直大力发展机械电子产业,到上世纪80年代初,日本就已经有了无人化示范工厂。现如今,日本的机械电子技术已逐渐成熟,处于世界领先地位。相比较日本而言,美国的机械电子产业起步较晚,美国自然科学基金委员会1985才开始投资兴建国家工程实验室。但美国的微电子技术十分发达,所以带动机械电子的发展比较迅速。1985~1995年这10年来美国的军用机器人和智能机器人开发经费从1.86亿美元增至9.75亿美元。欧洲许多发达国家也基本在同一时期竞相发展机械电子工程,英国剑桥大学在1985年开设了机械电子学工程硕士学位课,德国于1984~1988年提供5.3亿马克用于扩大工业机器人、软件操作系统等项目。与此同时,世界各国的大学相继开设机械电子工程学科,例如新西兰Auckland大学,莫斯科大学等等。到2008年4月,土耳其国内的98所大学之中的46所都已经开设了机电工程系。

我国于1989年将‘‘机械电子工程专业”列为试办专业,1993年成为正式专业。在此期间,国务院也成立机械电子领导小组并列为我国的“863计划”。当前,机械电子工程是我国一级学科机械工程下设的二级学科,有多个研究方向,例如机电控制及其自动化、机电一体化与机器人、现代应用机电技术与系统、计算机集成制造与敏捷制造、虚拟机电仪器与虚拟测试技术等。

2.3我国机械电子工程现状分析

从市场的角度来看,由于我国机械电子工程的发展历史不长、程度不深,在很多方面与日本以及欧美等国家有一定的差距。许多产品的品种、数量、档次、质量都不能满足要求,进口量较大。例如我国的数控机床在机床总数的占有率仍然较少,而国外的数控机床已占其总数的30%~80%;美、日等发达国家工业系统中CAD应用率已超过85%,而我国CAD应用率和覆盖率还比较低。

从学科的角度来看,当下我国的机械电子工程处于快速发展阶段,主要特点就是更新速度快、与其他学科融合快、涉及的科学范围大。

(1)机械电子工程是与相关科学技术相结合而成的新的理论体系,所以在很多方面更新速度较快,从业者和学习者要不断更新理论知识,充分了解现阶段机械电子的发展趋势。我国很多高校在对机械电子工程专业的教学内容和教学方法上不断创新[43-45],教学内容更加多元化、系统化,教学方法更加实践化。并且,适应机械电子工程专业人才培养的教学运行机制也在不断地更新[46-7],更为注重人才的综合性、设计性和创新性。

(2)机械电子工程与其他领域的结合日益紧密,结合速度快,深化程度高。例如,机械电子与现代光学、现代医学、现代生物技术、组合学等的结合。它们的高度融合将给这一产业带来历史性的变革和巨大的经济效益。更为重要的是,它实现了学科之间互补关系,为边缘性学科和综合性学科的发展奠定了基础。

(3)机械电子工程涉及的学科范围大,知识体系丰富,应用性强。例如在现代微特电机的设计中,不仅需要设计者机械、电子以及控制等多领域的基础理论知识,而且需要各领域技术的相互配合与协调,才能够设计和制造出合理的产品。

从工程的角度来看,各工程领域对自动控制性、高级智能性、稳定性的要求较高。目前我国的机械电子技术还不能够完全满足其需要,仍需借助传统的机械技术、控制技术等来完成。从这一点来说,机械电子工程还具有很大的发展空间,各层次的知识结构也需要进行面向工程实践的转变。可以认为,机械电子工程的发展正在带动着整个工程领域的深度变化。

3机械电子工程的发展趋势

机械电子工程不断向着智能化、模块化、网络化、微型化、绿色化等方向发展。随着科技的进步,机械电子工程所涉及的领域将持续扩大,理论和方法将更加完备,技术将更加精湛,多元化程度将越来越高。

(1)智能化。智能化是当今科学技术发展的主要潮流之一。在各科学领域实现人工智能控制将会给人类带来前所未有的便利。机械电子的智能化是对机电设备或机电系统行为的描述。在很多领域中,当机械电子工程联系了智能化,就会为系统和设备增添控制中枢,使之拥有更强大的实用能力。例如,智能机器人处理系统。在超市、垃圾站等地点,机器人可以用来智能地进行判断是哪一类商品或者垃圾,从而可按要求分类。这不仅节省了劳动力,更加大了工作效率,从根本上体现了智能机电系统的优越性。

(2)模块化。由于机械电子工程是一门综合性学科,其知识架构庞大,内容繁多,模块化是其发展的必然趋势。模块化就是将机械电子工程中的各个单元进行分别整理和研制M。它能够简化系统结构,更具有可读性和可操作性,进一步方便了与其他领域信息的交互和移植。例如港珠澳大桥的修建就体现了模块化的应用价值,从总体上将工程分为桥梁、海中隧道以及海中人工岛3大部分。各部分分时同步进行,既能够保证工程的进度,也能够确保工程质量。

(3)网络化。随着当代计算机技术的迅猛发展,各专业与计算机技术的结合度日益密切。网络化能够大大提升信息的输入、变换、和输出。对于机械电子工程而言,网路化能够增强系统的可控性,提高工作效率。例如新型智能空调,可以通过蓝牙、GPRS、手机信号等网络手段对其实施随时随地的控制。人们可以在工作或外出时通过网络信号提前设定空调的温度及开关时间等。

(4)微型化。近年来,各科学技术纷纷向着微型化领域迈进,出现了微型车、特微型计算机、微型传感器甚至微型企业等等一系列新兴概念。机械电子产品也迅速向着小型化和微型化发展,并以大爆炸的形式进入人们的生活。例如手机马达、微型芯片等等。机械电子的微型化不仅使得机械电子产品的结构更加紧凑、能源分配更加合理,同时也加强了机械系统的逻辑性。可以预见,微型化的发展必将引领机械电子工程进入“纳米级”时代。

(5)绿色化。绿色化发展已然是当今全球科技发展的主题。绿色化发展是建立在资源承载力的条件下,将科技的发展提升至环境保护的发展模式。绿色化发展对于机械电子产品的设计和开发具有很重要的意义。

机械工程和机械电子篇(6)

关键词:机械电子工程;人工智能;关系

机械工程的每一次发展都带动了工业生产水平的显著提升,机械电子工程通过融入电子技术,使其突破了机械工程的局限性,能够完成传统机械工程难以完成的复杂工作任务,同时也降低了对人员操作的依赖性。随着机械电子工程的不断成熟以及人工智能的快速发展,两者的结合应用得到了广泛重视,机械电子工程的智能化方向发展,将使其技术水平得到进一步提升,满足工业生产对机械设备的多元化需求。

1机械电子工程的发展过程及技术特点

1.1发展历程

机械电子工程在其发展的最初阶段,没有受到相关产业的高度重视,由于缺乏资源支持,技术水平提升缓慢,许多机械电子产品都需要通过手工制作,使其发展受到较大限制。随着机械电子工程的工业化水平不断提升,其技术价值逐渐显露出来,通过机械技术与电子技术的相互结合,能够有效提升传统机械产品的功能和性能。因此机械电子工程逐渐开始受到重视,并实现了流水线生产。但从目前生产规模和生产水平来看,虽然我国引进了国外标准生产线,但生产能力与市场需求相比还较为落后。

1.2技术特点

机械电子工程的主要特点是综合性强,具有跨学科性,涉及到机械、电子技术等多个领域,虽然在设计环节仍以机械为主,但电子技术和信息技术发挥出了越来越重要的作用。还需要根据系统配置需求和生产目标,综合利用其它科学技术。因此,在机械电子工程的设计过程中,通常采用从上至下的设计策略,将不同领域的技术模块相互结合,实现设计中产品的功能和性能要求。相比于传统机械产品,应用多门先进技术的机械电子产品在外观结构上更加小巧、精致,内部结构更加复杂,产品功能和性能都得到了极大提升。

2人工智能的三个发展阶段及发展前景

2.1三个发展阶段

截止到目前为止,人工智能历经了三个发展阶段,在其技术萌芽阶段,人工智能发展缓慢,但是在这一阶段为人工智能的后续发展积累了大量的宝贵经验。第一台超级计算机的诞生加快了人工智能的发展速度,但是在该阶段的研究仍未取得实质性进展。从1956年开始,随着人工智能命题的首次提出,人工智能进入第一个发展阶段,其基本原理和博弈原理得到证明,解放了技术思想,为人工智能的后续发展提供了强有力的理论支持。1977年,第五届人工智能会议的成功召开使人工智能进入第二发展阶段,其技术应用得到快速发展,并与实际生产相结合,取得了重要的实际应用价值。近年来,人工智能的发展受到了越来越多的关注,具有良好的发展前景。

2.2发展前景

人工智能以计算机为依托,不断延伸自身的智能性,深度挖掘计算机功能的各种可能,是21世纪以来最具有发展前景的学科之一。人工智能学科以计算机技术为基础,立足于心理学、信息论等多个领域知识,吸收了许多其他学科的特点,同时也推动了其他学科的更好发展,是一门极具发展潜力的前沿学科。人工智能技术在机械电子工程领域的应用,将弥补机械电子工程的不足,促进机械电子工程的更好发展。

3机械电子工程与人工智能的关系探究

3.1应用差异性

人工智能的应用需要以计算机网络系统为依托,因此无法通过其他途径在机械电子工程中得到应用只有对网络系统进行人工的指令转变,才能在机械电子工程中实现智能化控制。而计算机网络系统的运行是以数据分析和计算为基础的,一旦在数据处理过程中出现问题,就会导致人工智能控制失误,进而导致机械电子工程的网络系统发生崩溃。因此,人工智能在机械电子工程中具有一定的应用差异性。

3.2综合性补充

机械电子工程采用模块化设计方式,每个模块的功能特点较为固定,而现代机械电子工程对其功能的多元化需求不断提高,一些综合需要人工智能提供支持。因此,人工智能技术可以对机械电子工程进行综合性补充,通过其自身的综合操作功能,为机械电子工程的多元化工程实现提供辅助。比如目前较为成熟的模型推理系统就是两者相互结合的典型例子,也是人工智能技术在机械电子工程中应用的正确方法。目前人工智能中神经网络系统通过对人体神经进行模仿,使其技术水平更进一步,在机械电子工程中的应用,可以实现对机械电子工程各个功能模块的完整控制,使二者更加完美的结合。

3.3不稳定性处理及精度控制

不稳定性是机械电子工程存在的主要缺陷之一,其系统本质以及输入、输出关系决定了机械电子工程的不稳定性,对其各项功能的实现及正常使用产生较大的负面影响。在传统的机械电子工程中,主要采用解析法对系统的不稳定性进行调节控制,但这种控制方法无法做到精确控制,因此对不稳定性的调节能力有限。人工智能技术以计算机技术为基础,能够实现对数据的准确、高效处理,可以很好的弥补机械电子工程的这一缺陷。可以采用人工职能的神经模式对机械电子系统进行精确化控制,为系统的稳定运行提供保障。

4结束语

综上所述,机械电子工程与人工智能都经历了较为漫长的发展过程,都整合了大量相关学科,具有较强的综合性。针对于电子机械工程目前存在的功能多元化需求和系统不稳定性缺陷,人工智能技术可以对其进行有效弥补,促进机械电子工程的更好发展。因此,应加大力度促进机械电子工程与人工智能的相互融合,使人工智能技术在机械电子工程领域得到更加广泛的应用。

参考文献

[1]吴昊年,杨文.刍议机械电子工程与人工智能之间的关系[J].电子技术与软件工程,2015(15):130.

[2]王一楠.试论机械电子工程与人工智能的整合思路构建[J].科技风,2015(21):154.

[3]温伟华.人工智能技术在机械电子工程领域的应用[J].自动化与仪器仪表,2016(02):96-97.

机械工程和机械电子篇(7)

DOI:10.16640/ki.37-1222/t.2016.14.130

传统的机械工程包括机械设备动力与制造工艺的研究,通过运用机械运动原理实现机械设备的正常运行。而机械电子工程重视实现传统机械系统能量的连接,信息连接是信息连接的重点。随着机械工程与电子工程的融合度越来越高,机械电子工程的智能化会成为未来的发展趋势。

1 机械电子工程概述

1.1 机械电子工程的定义

机械电子工程与其他相关学科之间有着紧密的联系,结合了各学科的优点,是一门比较复杂的综合性学科。机械电子工程以电子、机械、计算机技术为核心,通过科学合理的设计将各个模块优点发挥到最大。虽然机械电子技术需要运用各方面知识,但是机械电子产品的内部结构并不复杂,只需要将一些简单的机械电子元件按照规划进行科学的组合,就可以最大限度的提高产品的性能,减少成本的投入,在提高产品质量的同时提高企业的经济效益。

1.2 机械电子工程的发展

在机械电子工程发展的初期,人们并没有认识到机械电子工程的广阔的发展前景,由于缺乏必要的资源支持,机械电子工程的技术水平也极低,机械电子产品主要以手工制作为主,其工业化水平十分低下,机械电子工程的发展受到了极大的限制。随着机械电子工程的重要性日益凸显和其市场需求的扩大,人们开始重视对机械电子工程技术的开发,为了进一步提高其生产效率,机械电子工程逐渐实现在机械工业中的应用,并获得了飞速的发展。随着机械电子工程与机械工业的结合,实现了机械电子产品的流水线的生产,促进了生产水平的提高,提高了生产效率,可以实现机械电子产品可以在短时间内投入市场。但是目前我国主要引进国外的标准生产线,产品的生产模式与我国实际的生产需求差距很多,生产线本身的灵活性极弱,生产出的产品并不能够满足国内市场的需求。为了促进机械电子工程的进一步发展,需要结合我国国内市场的实际需求,将机械电子工程与人工智能相结合,充分发挥机械电子工程的优点,逐步实现其产业化与智能化。

2 人工智能概述

2.1 人工智能的学科定义

人工智能通过计算机的使用极大的延伸了自身的智能,主要通过对计算机功能的深入研究得到的一门学科,这门学科具有极大的发展前景,是21世纪的最重要的学科之一。计算机技术的发展是人工智能学科得以发展的关键,因此计算机技术是人工智能学科的基础。但是人工智能学科并不是单一涉及到一门学科,此外还与信息论、心理学、控制论等多个学科存在着交叉关系,因此,人工智能学科吸收了其他各个学科的优点,具有极强的发展潜力。

2.2 人工智能的发展阶段

2.2.1 萌芽阶段

随着世界第一台计算器的诞生标志着人工智能研究之路的开始,但是这个阶段的发展十分缓慢,但是这个阶段为人工智能的研究积累了大量的经验。直到世界第一台计算机诞生之后,加快了人工智能研究的角度,依旧没有取得实质性进展。所以这个阶段属于经验积累阶段,为之后发展奠定基础。

2.2.2 第一个发展阶段

1956年“人工智能”命题的提出标志着人工智能的发展进入了第一个高峰期。这个阶段主要是博弈、和基本原理的证明,这个阶段最大的贡献大大解放了人们的思想,为之后的发展提供了理论支持。

2.2.3 第二个发展阶段

人工智能第二个发展阶段的标志是1977年全球第五届人工智能会议的召开,经过这个会议逐渐促使了人工智能与实际生产的结合,使人工智能获得了一个巨大的飞跃,使其进入了知识层面的发展。

3 机械电子工程与人工智能的关系

随着社会信息化的进一步推进,为机械电子工程技术的发展带来了契机,人工智能的加入为了机械电子工程的发展开拓了巨大的发展空间。传统的机械电子系统,缺乏必要的稳定性,面对逐渐增多的信息量,单纯通过人工的方式进行处理显得力不从心,急需要一种可以处理多种不同类别信息的技术。在这种情况下人工智能的加入为机械电子工程的发展提供了巨大支持。人工智能通过建立相关模型、控制模型,实现对信息的处理,最终根据处理的信息能够很好的完成故障的诊断。除此之外人工智能使用模糊推力系统和神经网络系统这两种方法实现了对系统的数据信息进行全面的描述,最终实现对机械电子系统的科学合理的控制。

在人工智能漫长的发展过程中,每个阶段的发展都十分缓慢,并没有实现人工智能的实质性的变革。但是随着人工智能与机械电子工程逐渐结合之后,形成了由量变到质变的巨大飞跃,使世界进入了机械电子工程时代。随着人工智能在机械电子工程领域的广泛应用,人工智能逐渐形成了神经网络系统和模糊逻辑系统,通过这两个系统对人类的思维模式进行模拟来解决多变的工程应用问题。人工智能在机械电子工程中的广泛应用过程中逐步完善了自身的缺陷,为自身的发展提供了一个新的发展路径。

从以上可以看出发展过程机械电子工程与人工智能二者具有密不可分的联系。一方面在机械电子工程的发展过程中正是由于人工智能的加入是机械电子工程的发展带来新的契机。另一方面,人工智能通过在机械工程领域的应用,为自身的发展提供了一个新的路径。

4 总结

综合来看机械电子工程与人工智能二者是相辅相成密不可分的关系,正是由于二者的密切融合形成了一个具有广阔发展空间的新兴产业。因此在接下来的发展过程中要充分认识到进行二者有效融合的重要性,通过进一步研究实现技术上的突破,最终达到提高企业经济效益的目的。

机械工程和机械电子篇(8)

中图分类号:G642.0 文献标识码:A 文章编号:1673-9795(2014)03(b)-0133-02

机械电子工程简称机电一体化,表示机械学和电子学两门学科的综合。机械电子工程以机电设备为研究对象,从系统的角度出发,应用机械技术、电子技术、控制技术和计算机技术等先进技术,实现设备功能最佳化[1]。高校机械电子工程专业若要培养优秀的机电一体化应用型人才并且能持续生存和发展,就必须积极探索和实践机械电子工程专业应用型人才的培养模式,培养适应时展需要的从事生产一线的机电一体化的高级应用型人才[2]。

1 机械电子工程专业应用型本科人才培养的目标

高等院校在学生的培养过程中侧重于理论课程体系的改革和部分实践教学的强化,没能以系统化的角度去注重学生实践能力的培养,致使毕业生在人才市场上没有竞争优势[3]。结果造成这个新兴专业失去应有的特色,达不到培养的预期目标[4]。

机械电子工程本科专业人才的教育,在培养规格方面,以培养具有一定创新和实践能力的、具有工程师基本技术素质的应用型人才为目标;在培养模式方面,以社会需求为目标,以培养工程技术应用能力为主线,优化能够体高学生知识、能力、素质的培养方案,以“工程应用”为特征和主旨构建课程体系,重视学生的理论知识和工程技术应用能力的培养。

2 机械电子工程专业应用型本科人才培养的课程构建

机械电子工程专业应用型人才培养课程构建应围绕两个点、四个方向。两个点是专业基础课和专业技术课,四个方向是数控、工业机器人、流控和测控。课程包括机、电、液(气)、控、算等方向的相关课程。机械电子工程专业课程构建定位在机械工程领域,突出各学科方向的有机融合,主要对机械设计、自动控制、设备故障诊断及状态检测等方面开展研究和设计。

2.1 机械电子工程专业教学体系

机械电子工程专业中,机为基础。机指机械专业的基础知识,包括机械制图、工程力学、金属工艺学、工程材料及热处理、互换性与测量技术、机械制造工艺、机械原理、机械设计等课程以及与课程相关的实践。学生在学习机械类课程的同时加强计算机技术、自动化技术、接口技术等课程。合理调整机和电的关系,采用机电并重的培养原则,对原有覆盖较广的课程精简、优化,建立学生能够学好并掌握的课程体系,重点是将机械、控制、电子以及计算机等相关领域的技术应用于机电系统和产品制造过程。

2.2 机械电子工程专业整体课程设置

课程设置是一项系统工程,课程设置不仅要考虑到学科、专业之间的相互交叉、相互渗透,还要考虑行业对知识、能力的要求。在课程设置上,主要分为机械设计、机械制造、电工电子、流体控制、机械控制和计算机控制六大部分。

机械设计包括机械制图及CAD、工程力学、机械原理、机械设计等专业基础课程。这些课程为学生掌握机械设计的基础知识,并为机械制造系列课程的学习打下基础。

机械制造包括金属工艺学、工程材料及热处理、互换性与测量技术基础、机械制造工艺学等。这些课程为学生打下机械制造的基础知识,并通过金工实习和课程设计使学生受到良好的实践训练,从而能进行机械零部件的结构设计和工艺设计。

电工电子包括电工、模拟电路、数字电路、微机原理与接口技术、电力拖动等课程,强调电工电子技术和计算机在机械设备中的应用,为学生进行机电一体化设备设计打下基础。

流体控制包括流体力学、液压(启动)原理、液压控制系统等课程。

机械控制包括机械工程导论、机械振动学、机械控制工程基础、机械测试技术等课程。

计算机控制包括VB、C语言、VC++等课程。

在培养应用型人才的工程能力、技术能力和创造能力的课程组中,强调课程设置的系统性和整体性,以使单项技术或综合能力的培养不断得到强化,减少课程内容上的重复,在有限的时间内获得良好的教学效果。

2.3 加强专业基础课程教学

专业基础课的教学在高校培养人才中占的比重较大,教学重点在于理论,这些理论是专业知识体系的根本,内容已经经过实践验证和沉淀,是学好其它专业技术课必需掌握的知识。机械电子工程专业应用型人才的工程实践能力、创新能力也是建立在必备的专业基础课之上的。因此,在设置专业基础课时,要充分了解人才市场要求的专业知识并考虑学生今后的专业拓展能力。

2.4 加强培养创新能力的实践教学

机械电子工程培养方案加大了实践教学在整个教学环节中的比重,实践教学必修学分约占该专业毕业最低学分要求的35%。根据学生的专业知识结构与水平,对实践教学体系进行分类别、分层次、分模块的创新性设计。在人才培养活动中,创新能力的培养应占有较大的比重。如产品生产过程机电一化设备设计、数控加工、系统故障分析与排除等。“以学生为中心”、“以问题和课题为核心”,进行以启发性和创新性实验的研究性学习,逐步使学生树立创新意识,激发学生的创新个性,培养创新思维,不断提高创新能力。创新能力的培养以课程设计、工艺实习、工程教育实习、生产实习、毕业实习、毕业设计等实践环节作为载体,并尽量选择实际课题,以强化创新能力训练的力度,同时在这一系列的实践环节中培养学生良好的职业习惯和职业精神。

3 加强实践教学平台建设

加强实验室建设,整合共享实验资源,避免重复建设。在原有硬件设施基础上,分层次、分模块地逐步改善实验教学条件。引进实验室管理系统,完善实验室开放管理制度;建立与完善校内实训中心和校外实训基地,使其成为学生理论联系实际、获取实践经验、形成应用能力的基地。紧密依托行业、企业,加强校企之间、校与校之间、学校与科研单位之间的联合,从校外实习基地聘请兼职教授、高工,定期举办学术报告、讲座以及指导学生实习、指导毕业设计等工作,积极开展合作培养,构建稳定的实习基地建设和发展的长效机制。

4 结论

我国正在由制造大国转向制造强国发展,只有培养出熟悉机电一体化设备的设计、制造、维护,并且熟悉控制技术、检测及监测技术、编程技术的专业技术人员才能在企业生产过程中发挥更大的作用。高等院校机械电子工程专业应用型人才培养应转变观念,不断探索适合于应用型机械电子工程专业人才的培养模式,以适应时展的需要。

参考文献

[1] 黄筱调,吴玉国.机械电子工程专业课程结构的探索[J].中国冶金教育,1997(4):31-33.

机械工程和机械电子篇(9)

传统的机械工程和机械电子工程之间有着非常大的差异,机械电子工程不仅是电子技术和机械工程结合的产物,它还将两者的用于和作用充分的发挥了出来,与此同时,还将电子技术和机械工程两者各自具备的功能先联系在了一起,并增添了与信息的联系,正是因为添加的信息,才机械电子工程逐渐的转变为智能化的机械电子工程。

一、概述

1、人工智能。人工智能是在信息技术的背景下诞生的一种具有综合性的学科,它不仅具有信息技术和计算机技术的基础功能,还能够将其结合各种机械设备、电子设备等的操控进行功能的发挥,从而实现真正意义上的人工智能。人工智能的发展阶段是17~19世纪,其发展的速度非常的慢,但正是因为其发展的速度慢,才使得其经验越来越丰富,使得为未来的人工智能的发展等奠定了非常坚实的基础,以及为技术革新做好了准备。

2、机械电子工程。它是机械工程和电子技术两者相结合的综合性的学科,因为它与电子、机械和信息技术等方面有着密切的关系,所以,机械电子工程的应用领域基本上也是电子、机械和信息技术等方面。而且现在的机械电子工程中,将每一个功能都形成了其自己的模块并发挥其作用。简单来说,现在人们所需求的机械电子产品的内部结构不需要非常的复杂,是需要其具有多元化的产品功能即可。

二、机械电子工程与人工智能的关系

1、人工智能应用的差异性。人工智能的应用主要体现在机械电子工程的网络系统上,着就决定了人工智能是无法通过一般的应用方式实现应用的,只有通过网络系统进行的人工化指令才能够转变,才能够实现智能控制。因此,当机械电子工程中的数据分析等出现问题时,人工智能的控制也会受到一定程度的影响,再加上人工智能技术是建立在机械电子工程上的,其网络系统会发生崩溃,直接导致电子工程的功能发挥受到影响,所以,人工智能在机械电子工程中的应用是具有差异性的。

2、综合性的补充。机械电子工程本身就将机械、电子和信息技术结合在一起并且将其分为单独的模块,因此,机械电子工程的功能具有固定的特点。所以,要想实现机械电子设备的综合,就必须要将人工智能技术的综合发挥出来,让其对机械电子工程的综合起到辅助的作用。目前,我国已经建立出的模型推理系统就是其中一种形式的体现,除此之外,还有神经网络中对人体的神经模仿,也促使了人工智能的水平发展到了更高的一个层面,将这两种人工智能的模式适当的运用到机械电子工程的控制中,才能够将其对模块的控制的完整充分的发挥出来,实现机械电子工程和人工智能的完美融合。

3、不稳定性。机械电子工程本身就具有不稳定性,而且非常的明显。这种不稳定性会对机械电子工程的设备功能产生非常直接的影响。如果说使用传统的方式对其进行调整或者控制,是没有办法将其每一项系统进行准确的精准的控制的。由此可见,机械电子工程的不稳定性会对其设备的作用发挥有着多么重大的影响,但是其不稳定性能够利用人工智能来进行补充,因为人工智能对各种数据有着非常高效和准确的处理技术,因此,机械电子工程能够通过人工智能技术来将其不稳定性进行补充改善。

4、精度控制,机械电子这一类的工程对数据等的控制都具有精确化的特点,但是,当这个系统功能实现的时候,要对系统功能中的数据进行合理的调整才能够在保证整个体统的稳定运行的前提下,满足客观数据的变化要求,以及其系统进度控制能够能加的准确。所以,当机械电子工程无法通过自身的处理来满足这种需求时,就需要依靠人工智能的神经模式来对系统进度进行控制,并且实现和满足这种需求。

总结:机械电子工程的产物在人类的日常生活中已被广泛的使用了,但是,科学技术在不断的发展,使人工智能化的物品的需求量也越来越高,因此,我国将人工智能技术和机械电子工程两者进行了结合,通过人工智能技术的影响,机械电子工程再一次得到了快速的发展,虽然说,现阶段其本身的技术水平还不够高,但其本身存在的某些缺陷和问题都通过人工智能的技术得到了补充和改善,从而保证了机械电子工程的功能能够更充分的发挥出来,并且还将其功能进行了完善和强大,使得我国机械电子工程的发展越来越好。

参 考 文 献

[1]郑福奎. 机械电子工程与人工智能的关系探究[J]. 科技创业家,2012,22:108.

[2]余秋兰. 浅谈机械电子工程与人工智能的关系[J]. 山东工业技术,2015,18:143.

机械工程和机械电子篇(10)

1机械电子工程的相关概念及发展历程

1.1相关概念机械电子工程与传统机械工程的研究方向不同,机械电子工程更侧重于运用信息实现机械系统能量的连接和与其他学科之间的交融。具体地说,机械电子工程的核心理论依然是传统机械工程中所讲述的定理和概念,但是也更注重与电子信息科学、计算机科学与技术以及人工智能等学科的联系,是一门跨学科发展的新兴学科。基于其跨学科多、综合性强的内涵,机械电子工程这一学科衍生了以下特点:(1)机械电子工程的产品设计依据也和传统的机械工程不同,机械电子工程除了依托机械原理外,还依据电子工程方面的知识设计产品,而传统机械工程设计依据仅仅是机械结构以及理论力学、流体力学等与机械相关的知识。(2)机械电子工程生产产品的设计思想与传统的机械工程有着本质区别。由于其是一门跨专业强的学科,所以在设计产品时,必然要考虑到不同学科原理的运用,在设计时融入其他学科的理论指导。尤其是在当前信息化高速发展的时代,机械电子工程融合了计算机科学与人工智能学科的相关知识,所以机械电子工程在产品设计时,会考虑更多的问题,设计思想会更加全面和完善。(3)机械电子工程生产出来的产品与传统机械工程不同,由于封装理论的运用,其生产出来的产品一般较小,结构清晰而简单。但每一个模块都由复杂的机械工艺制造而成,所以对设备的精度以及生产者的技术要求较高。1.2发展历程机械电子工程的发展大体上经历了手工加工、流水线生产以及集成生产三个阶段。手工加工阶段,在这一阶段,由于机械工具的制约,人们主要靠纯手工进行生产活动,工业化水平十分落后,人力成本也限制着整个行业的发展,同时这些不利条件也刺激了人们追求更有效率的机械生产的心情,为机械电子工程的出现埋下了伏笔。流水线生产阶段,这一阶段将人力极大地解放出来,通过流水线的运作,可以大规模地生产出标准统一的产品,但是随之而来的不足是,流水线生产模式相同,生产出来的产品差异性不大,不能提供个性化的产品。集成生产阶段,这一阶段运用了大量的机械电子工程的技术,由于制造工艺的提高,这一阶段除了能够大规模地生产产品之外,还能够实现产品的差异化,有效地提高了产品的质量。

2人工智能的相关概念及发展历程

2.1相关概念人工智能是信息科技高度发展的时代产物,它依托计算机网络技术的发展,融合了电子信息科学、生物学、神经行为学以及心理学等多门学科,也是一门跨专业度较大的新兴学科。较为官方的定义是,人工智能是指利用计算机技术以及生物学知识搭建的人工智能系统,实现对人类行为的模仿或者研究的科学。人工智能有两个十分明显的特点,一方面,由于这一学科的综合性,决定了其复杂性和专业性,需要依靠较为专业的技术才能保证其有良好的发展;另一方面,学科的专业性也决定了人工智能人才的专业性,专业知识过硬、对其余学科有包容性、目光较为长远的人,更适合从事与人工智能相关的工作。2.2发展历程人工智能虽然是一门新兴学科,出现的时间较晚,但由于其特点较为明显且迭代速度较快,人工智能发展到今天已经经历了五个阶段:第一阶段是人工智能的萌芽阶段。20世纪中期,这一领域的相关学者一起开展了关于机器模拟人工智能的研究,并形成了人工智能最初的模型,这一历史事件标志着人工智能的正式诞生。第二阶段被称为人工智能的“第一发展期”,这一时期研究的主要任务是机器语言的编译,这一工作为人工智能的大规模发展奠定了基础。第三阶段是人工智能发展的瓶颈期,虽然已有前两阶段的理论成果,但是人工智能是一个复杂的话题,学者发现通过前两个阶段的积累还不能给人工智能得到自动化发展,理论的实施还有很多困难。第四阶段是人工智能的“第二发展期”,此时通过对理论知识的仔细研究以及其他学科知识的灵活运用,人工智能已经可以用于商业并生产出具有商业价值的产品。第五阶段是人工智能的平稳发展阶段,这一阶段,人工智能虽然没有取得突破性进展,但一直在小步快跑,并形成分布式主体的新的发展模式。

3机械电子工程与人工智能的关系

随着各学科之间不断融合交互,机械电子工程作为一门跨专业的新兴学科,也受到了人工智能的影响,并得到良好发展,具体表现在以下两个方面:3.1人工智能改变了机械电子工程复杂的计算过程机械电子工程在设计到生产的过程中,要经历“建模-论证-生产”这三个阶段,前两个阶段要进行大量计算,过程比较繁琐。在人工智能出现之后,由于其与计算机科学之间的紧密联系,可以快速进行大量计算并得出精确结果,将其运用于机械电子工程,则会节省大量计算时间,提升效率。3.2人工智能可以排除机械电子工程生产过程中的诸多故障上文已经提到,机械电子工程的生产需要经过大量计算及论证,这一过程如果只靠人工进行,很容易造成计算错误导致建模失败,从而给整个生产过程带来不良影响。人工智能通过对信息的处理及整合,将信息分门别类地归纳和整理,会将计算的错误率大幅度降低,也就避免了后续环节错误和故障的生成。总的来说,机械电子工程与人工智能有着密不可分的联系,通过人工智能的运用,机械电子工程完善了自身的系统、提高了自身的生产效率;而人工智能也借助机械电子工程得到了更好的发展,引起更大的关注,两者在相辅相成的过程中都实现了良性发展。

参考文献

[1]张伟.浅析机械电子工程与人工智能的关系[J].山东工业技术.2016(21004):135.

上一篇: 化学与能源的关系 下一篇: 温室效应形成的原理
相关精选
相关期刊