航天概论论文汇总十篇

时间:2023-08-10 17:12:47

航天概论论文

航天概论论文篇(1)

中图分类号: U661.313 文献标识码:A

Abstract: Generally, river passenger ship has relatively small size, high center of gravity and large wind area, thus their stability margin is low. Meanwhile, the ships are often overloaded and easily overturn if they collide with a bridge. In order to increase the ships’ navigation safety and decrease the probability that disastrous accidents happen when the ships hit the bridge, it’s necessary to apply the risk assessment and demonstration method during the design of the ships’ principal dimensions. Based on model AASHTO, this paper deduces the probability calculation model and disaster risk assessment method of the ships’ hitting bridges during fixed-course vessel’s operation period and applies it to the demonstration of principal dimensions of the Qingyuan North River passenger ship.

Key words: Model AASHTO;Risk assessment;Ship principal dimensions

1 前言

2015年6月1日,“东方之星”号旅游观光船在长江大马洲水道因突发罕见的强对流天气翻沉,造成442人死亡的特大灾难性事件。2016年6月4日,四川广元白龙湖景区“双龙号”旅游观光船因突遇强烈阵风翻沉,造成15人遇难的重大灾难性事件。内河旅游观光船主尺度较小、重心较高、受风面积较大、稳性储备少,容易发生翻沉事故。

随着我国经济建设和交通运输业发展的需要,内河航道桥梁的数量越来越多。桥梁作为跨越航道的建筑物,Υ舶航行安全影响较大。据统计,从1960 年至 2013 年,我国平均每年发生 8 起重大船撞桥事故[1]。其中 2005 ~2009 年发生 102 起船撞桥事故[2]。

墨菲法则认为:风险是系统本身的复杂性、关联性和不确定性所决定的,不管常规的技术安全措施多么有效,该发生的事故依然会发生。人们在风险面前也并不是无能为力、无所作为的,在科学的分析和评估基础上进行风险预报,可在风险和收益中取得最佳平衡[3]。随着船舶大型化发展和通航密度不断增大,船撞桥事故导致人员伤亡和环境灾难性破坏的风险越来越高。在船舶初步设计阶段,采用基于船撞桥风险评价方法确定船舶主尺度,可将船撞桥风险水平和等级控制在可接受的范围内。

2 基于AASHTO模型船撞桥风险评价方法的基本理论

2.1 船撞桥风险评价的概率模型

AASHTO[4]船撞桥概率模型可操作性较强,被广泛采用。AASHTO 模型采用基于碰撞概率分析方法,假设船舶在行驶时有预定航路,航路与桥梁之间有足够的安全距离。船舶在航行过程中,由于某些原因进入到可能与桥梁产生碰撞的区域,若此时船舶失去了控制,将导致船撞桥事故发生。AASHTO 模型船撞桥概率包括船舶进入可能产生碰撞的航路区域的概率和船舶失去控制的概率。

船舶进入可能碰撞航路区域的概率称为几何概率pG,船舶失去控制的概率称为偏航概率pA,则船撞桥概率p为:

偏航概率pA代表船舶由于人、机、环境因素等导致船舶偏离正常航路的统计概率。AASHTO模型采用正态分布来模拟靠近桥墩的偏航船舶的航路,见图1。假定正态分布标准差σ为船舶总长,图1中阴影面积即为几何概率 pG。

2.2 单航次船舶撞桥概率

船舶从A港航行到B港共通过n座桥,船舶与每座桥的桥墩碰撞概率分别为。船舶与第i座桥的桥墩不碰撞的概率为:

2.3 定航线船舶撞桥概率

船舶从A港航行到B港共需通过n座桥,船舶在一年内共从A港和B港之间航行x航次,共营运y年,其船撞桥的概率P。因为每次航行都是独立的,每航次从A港到B港中通过n座桥也是独立的,所以问题可转化为求船舶通过1桥xy次,i桥xy次,n桥xy次碰撞桥墩的概率。

因此,定航线船舶y年营运期内与桥发生碰撞的概率P为:

2.4 风险评价及风险决策方法

船撞桥的风险R是船撞桥的概率p及其造成的损失c的某种函数形式,其表达式如下:

基本流程包括风险定义、风险识别、风险估计、风险评价等环节。根据事故的后果将风险严重程度分成若干等级,并考虑各种灾害发生的概率水平,将各种灾害下的事故后果和灾害发生的概率水平结合起来,定出风险决策准则。

首先,根据事故的后果将风险严重程度分成四个等级,见表1;其次,划分各种灾害发生的概率水平,见表2;第三,将各种灾害下的事故后果和灾害发生的概率水平结合起来决定风险等级,见表3;最后,确定风险决策准则,见表4。

3 基于AASHTO模型风险评价的船舶主尺度论证的应用

3.1 客船主尺度论证背景及桥梁参数

清远北江观光休闲游线路为从市区到飞来峡沿岸水上观光旅游航线,属于广东省重点监管水域,航线大约25 km,单航次航行时间大约2.5小时。据统计,2012年北江旅游观光的游客量达250万人次,有约200艘旅游船在景区营运。根据清远市发展规划,预测到2020年清远北江旅游观光游客为350万人次,2030年达到650万人次。

为了满足旅游市场的发展需求,必须开发新船型。清远北江旅游项目从市区到飞来峡沿岸水上观光旅游航线,船舶航行需通过6座桥梁,桥梁的主要通航参数见表5。因为客船发生碰撞桥墩事故可能导致大量乘客伤亡,事故风险后果属于灾难性的,所以在船型主尺度的论证中进行了船撞桥风险评价。

3.2 船撞桥造成船舶倾覆风险分析

桥墩承台与船舶发生碰撞时,船舶承受的撞击力可按下式计算[6]:

3.3 客船碰撞桥墩风险评估及决策

采用AASHTO模型对船型1-10进行概率计算和风险评估。

根据调查统计数据,旅游船每年约营运180天,每天通常航行2个航次,航速为20 km/h;普通船舶单航次偏航概率约为0.6×10-4。船型1-10在漂角β为0、1°和2°下碰撞桥墩的概率水平、灾害风险评估和风险决策准则如表6。根据风险评价结果,船型1-4的灾害风险为中风险,属于可接受船型,要重点安全检查和管理。目痛碰撞桥梁可接受灾害风险看,建议选取编号1-4船型作为清远北江旅游船主力发展船型。

4 结论

跨越航道的桥梁对船舶航行安全的影响较大,为了控制船撞桥事故的灾害风险水平,采用基于AASHTO模型的船撞桥风险评价方法是可行的,在船舶初步设计阶段,可采用这种风险评价方法进行风险评估,给出决策意见和建议。

参考文献

[1] 国际船桥相撞及其防护学术研讨会论文集[C].:中国铁道出版社,2014.

[2] 谭志荣. 长江干线船撞桥事件机理及风险评估方法集成研究[D]:[博士学位论文].武汉理工大学, 2011.

[3] 张圣坤 白勇 唐文勇. 船舶与海洋工程风险评估[M].:国防工业出版

[4] AASHTO LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials, Washington D. C., 2010.

航天概论论文篇(2)

关键词: 航空产品返修;流程;GERT网络

Key words: repair of aviation products;process;GERT network

中图分类号:TH17 文献标识码:A文章编号:1006-4311(2010)32-0171-02

0引言

随着现代科学技术在航空产品中的广泛运用,航空产品的性能要求与结构复杂程度不断提高,这一新的发展对航空产品从设计、制造、使用、维护等各个方面提出了更高的要求。其中,航空产品故障件返修作为保障航空产品使用可靠性、重复性、经济性的重要环节,在整个航空产品生命周期中占有十分显著的地位。然而,航空产品故障件的返修流程中存在着大量的不确定因素,如航空产品故障产生原因的不确定,航空产品返修工艺的不确定以及航空产品返修成功概率的不确定性等等。在面临各种不确定因素的情况下,如何定量预测和估算航空产品故障件返修流程的概率和时间周期成为急需解决的重要问题。

本文利用随机网络理论,对航空产品故障件返修流程进行深入分析,确定返修流程的各个环节和活动,构建了航空产品故障件返修流程的GERT(Graphical Evaluation and Review Technique,即图示评审技术)模型,并举例求出了返修成功概率和流程平均时间周期的解析解,从而为航空产品故障件的返修流程提供了实际的数据支撑,对企业决策者制定返修计划和实施返修决策都具有一定的实用价值。

1航空产品故障件返修流程GERT模型构建及求解

1.1 航空产品故障件返修流程分析航空产品故障件返修主要分为五个阶段,包括:故障分析阶段、原因分析阶段、维修分析阶段、维修实施阶段和信息反馈阶段。如图1所示。具体来说航空产品故障件返厂后,由质量管理部门通知用户代表,并召集设计师、工艺师等相关技术人员共同确认故障现象、分析故障原因,并通知责任部门对故障原因确认。故障原因明确后,由有关产品工艺员编制返修工艺,按返修工艺组织返修。在返修过程中如有报废,则由检验开具报废单,责任部门签字。产品返修完成后,提交厂检,检验人员按返修工艺要求进行检验验收,合格后作好返修记录。厂检合格后,通知用户代表对返修产品验收,验收合格后在由操作工、检验员、用户代表签字认可,办理发货手续。同时责任部门需填写纠正/预防措施单等信息反馈表。

1.2 故障件返修流程GERT模型构建GERT网络技术是网络理论、概率论、模拟技术和信号流图的结合,是一种新型的广义随机网络技术,又被称为决策网络技术。它使用带概率的有向网络图进行分析,可以用来分析研制性和情况复杂多变的项目计划与控制问题。

依据航空产品故障件返修流程的分析结合GERT网络技术,对于航空产品故障件返修流程而言,它的每一步都可以视为整个故障件返修系统状态之间的概率转移过程。我们用节点表示系统状态,用连接各节点之间的箭线表示各状态之间的概率转移关系。该“返修流程”的GERT网络模型如图2所示,图2中各流程活动的含义如表1所示。

1.3 故障件返修流程GERT模型求解根据梅森公式:W(s)=W(s)•H,式中H为GERT网络的特征式。在此网络中,共有一阶环三个,二阶环两个。

由梅森公式可得,返修合格时:

W(s)=(1)

其中:

H=1-(W•W+W•W+W•W•W)+(W•W•W•W+W•W•W•W•W)(2)

由式1、2可得:

返修合格概率:p=W(0)(3)

返修不合格概率:p=1-W(0)(4)

返修流程时间周期:E[t]==(5)

返修流程时间周期方差:V[t]=E[t]-(E[t])=-(6)

2案例研究

本文以某航空产品生产企业接收外场航空产品故障件返修为例,依据航空产品故障件返修流程GERT模型,对模型中的各节点和活动进行分析,最终求解该航空产品故障件返修的合格概率和相关时间周期。其中活动分布类型、相关参数及实现的概率, 有历史资料的由资料进行统计和分析后获得,属开创性作业而无历史资料的由相关专业的专家进行主观估计后加权获得。模型中各活动参数如表2所示。

将各参数代入求解模型中,经过计算可得:

返修合格概率:p=W(0)=0.7910;

返修不合格概率:p=1-W(0)=0.2090;

返修流程时间周期:E[t]==11.76(天);

返修流程时间周期方差:V[t]=E[t]-(E[t])=1.40(天2);

返修流程时间周期标准差:σ==1.18(天)。

3航空产品故障件返修流程分析

3.1 由返修流程GERT模型及案例分析可知,航空产品故障件返修流程各个阶段的关系可以进一步总结为一个概率转移模型。从案例结果而言,该流程的返修合格概率仅为0.7910,即从概率上来说将有21.9%的故障件将由于返修不合格报废,这一报废概率相对较大。产生这一结果的原因主要是在返修流程GERT网络中有可能产生报废结果的活动较多,包括活动5-12、8-12、9-12。其中活动5-12是由于故障件返修前自身性质决定的,其发生的概率p512可称为固有报废概率;活动8-12、9-12是由于返修过程中由于返修能力等决定的,其发生的概率p812、p912可称为能力报废概率。

返修流程中系统最终产品报废的概率是由本系统固有报废概率和能力报废概率这两个方面因素共同决定的,因此应在提高产品质量、降低系统固有报废概率以及提升返修能力、降低能力报废概率这两个方面入手,最终提高航空产品故障件返修的合格概率。

3.2 该返修流程GERT模型中,造成项目完成平均时间周期较长的主要原因在于很多活动需要多部门、多人员确认,最为明显的是活动2-3和3-4,其中活动2-3为产品故障分析,需要主管分析师和主管设计师共同分析故障件的故障原因,活动3-4为产品故障确认,需要用户、质量技术员和产品责任部门最终共同确认故障件的故障原因。多部门多人员的分析确认形式大大增加了产品返修平均周期,因此,应从提高部门人员工作效率及建立健全故障分析确认机制入手,建立统一的交叉职能小组,明确人员及分工,以此优化返修流程的平均周期。

3.3 在案例中该项目完成的平均时间周期为11.76天,标准差为1.18天,该项目完成的时间最大值与最小值之间相差为2.36天,相对于复杂的返修流程及大量的不确定条件来说时间周期相差的幅度不大,这说明该航空产品故障件返修流程受各种随机因素的影响较小,流程稳定性较高。实际中的项目管理者通常更关心新产品研发项目能否按期完成,就案例本身而言,将故障件返修计划完成时间定为13天,那么该返修流程延期的可能性几乎不存在。

4结论

本文运用随机网络理论对航空产品故障件返修流程进行研究。首先明确了航空产品故障件返修流程,指出返修流程中多种不确定因素。其次运用随机网络理论,构建了航空产品故障件返修流程GERT网络模型,给出模型求解方法。然后结合某航空产品返修流程,得到产品返修合格概率,产品返修周期及方差,为领导层决策提供了科学依据。在此基础上,进一步对航空产品故障件返修流程进行了剖析,明确了产品返修流程合格率较低、平均周期较长的原因,相应提出了解决和巩固的措施;同时指出该航空产品故障件返修流程较为稳定的特点,为流程优化提供了明确的方向和有效的方法。

参考文献:

[1]冯允成,吕春莲等编.随机网络及其应用[M].北京: 北京航空学院出版社,1987.

[2]方志耕,龚正,黄西林.公路军事交通运输勤务综合演习项目GERT网络模型研究与分析[J].系统工程理论与实践,2000,(4):132-135.

[3]方志耕,龚正,黄西林.基于图示评审技术GERT的高科技产品开发研究[J].系统工程,2005,23(11):112-115.

[4]屈保社,张卫星.GERT在科研课题研究管理中的应用[J].系统工程,1999,17(1):69-75.

[5]何正文,徐渝,朱少英,张静文.新产品研发项目GERT 模型及其模拟求解[J].数学的实践与认识,2003,33(11):45-50.

[6]Kenzo Kurihara, Nobuyuki Nishiuchi. Efficient Monte Carlo simulation Method of GERT-type network for project management[J]. Computer & Industrial Engineering, 2002, 42: 521-531.

航天概论论文篇(3)

中图分类号:G642 文献标识码:A 文章编号:1672-3791(2015)01(b)-0000-00

作者简介:鄢建国(1980-),男,湖北仙桃人,副教授,研究方向为卫星大地测量。

《卫星导航定位技术》是面向地理信息系统、遥感专业研究生的一门专业选修课。该课程内容覆盖面广,授课内容包括卫星导航定位系统发展现状与趋势、卫星导航定位基本原理与算法、时间与坐标系统基本理论、导航定位误差源、周跳与整周模糊度解算,以及测量数据模型及其组合。卫星技术应用广泛且发展迅速,考虑到学生的专业背景以及知识需求,对课程的教学模式进行了深入思考,以区别于常规的逐课讲授,达到最佳的教学效果。

1 课程的教学目的

该课程的主要授课对象为地理信息系统和遥感专业的研究生,学习该课程的目的是加强对卫星导航定位系统的了解与认识,为研究工作中涉及到的导航定位技术问题提供基础。基于这一考虑,授课中以基本概念、基本原理为重点,介绍卫星导航定位系统的研究现状与趋势,以及与相关学科的结合。在这一课程的讲述中,以最成熟的全球定位系统(GPS, Global Positioning System)为例进行了讲解。

2课程的主要内容

卫星导航定位系统内容庞大,涉及到了大量的几何大地测量和天文学的基本概念,非大地测量专业的学生在学习过程中有一定困难。为了使学生能较好地掌握授课内容,在教学上依照“以点带面、前后呼应”的原则。依照这一原则,将授课内容分为以下几个部分:

1. 卫星导航定位系统发展现状与趋势。该授课内容为一综述性质,目的是扩展学生的知识面,同时激发学生对这一领域的兴趣与爱好。在讲解是,重点讲述了卫星导航定位系统在导航和定位两个领域中的应用。导航针对的用户为低精度用户,在不同的载荷平台,比如手机、车辆、无人机等有广泛的应用。以手机用户为例,通过实时定位,可以和电子地图结合起来进行导航,这与地理信息系统专业的学生研究方向较为吻合。对于定位则主要给出了国家陆太网络、三峡大坝形变监测、地震监测等例子,突出了导航定位系统在当今地球科学中的广泛应用和重要地位。最后对GPS之外的卫星导航系统,包括俄罗斯的GLONASS系统,欧洲的GALILEO系统和我国的北斗系统进行了较为详细的介绍,让学生对当前的卫星导航系统有更为深刻的认识;

2. 时间与坐标系统。这一部分是大地测量学科和天文学的基本理论知识,具有重要的地位。对这一部分的讲解主要是弥补非大地测量专业学生在该知识点上的不足。对于大部分地理信息系统和遥感专业的学生来说,接触到的时间系统局限于北京时,坐标则为我国北京54或西安80坐标系统。在授课中,对时间系统进行了系统的描述,以恒星时和太阳时进行了分类,给出了平时间系统和瞬时时间系统的转换关系,以及基于天文观测的时间系统和原子时标的融合。通过这一部分的介绍,学生能对时间系统建立较为系统的认识。对坐标系统的讲解类似,在讲解中,同时贯穿描述坐标系统转换中需要的转换参数的求解,以及卫星导航定位系统在其中起到的作用,以加强学生对导航定位系统科学应用的感性认识;

3. 测量模型与观测值组合。以卫星导航系统发射的载波和伪距信号为例,讲解了卫星导航定位的基本工作原理,让学生建立基于卫星开展导航定位的基本算法模型。通过伪距给出的简单定位模型,引入载波相位的测量模型。结合无线电信号的传播特征,给出了周跳和整周模糊度的概念,让学生明确了卫星导航定位的优势,以及需要客服的难点。基于单个卫星和测站测量模式的介绍,推广给出了卫星和测站之间的差分组合测量模式,建立了不同组合模式具有的优缺点。同时,给出了不同频率和不同测量类型(伪距测量和相位测量)之间的组合。通过这一部分的讲解,可以让学生建立清晰的定位的概念,同时引出问题,为后续授课做好铺垫;

4. 误差模型修正以及周跳和整周模糊度解算。在前面授课的基础上,针对高精度导航定位,给出了不同类型的误差,以及相应的模型修正。卫星导航定位中最主要的误差源包括接收机、卫星钟差和传播路径时延。结合信号传播特征,给出了电离层和对流层的误差影响特征以及模型修正公式,同时呼应测量值组合中消除电离层的内容,通过这种前后呼应的授课模式,加强学生对授课内容的理解和掌握。针对高精度卫星导航定位数据处理中的核心问题,周跳探测与整周模糊度修复,进行了较为细致的讲解。考虑到学生的背景,侧重讲解了解算方法的原理和实现方式,弱化了复杂的数学理论部分。

除了以上四个核心部分之外,还穿插安排了讲座报告,进一步拓展学生的视野。教学实践表明,基于“一点带面、前后呼应”的原则,在授课中通过给出一个关键的知识要点,在此基础上进行拓展,同时在不同授课内容中前后呼应,实现了学生对该课程的基本概念、基本原理的顺利掌握,对卫星导航系统有一清晰的认识,达到了较好的教学效果。

3 授课模式改进

对非大地测量专业的学生而言,单纯的基础理论授课显得较为枯燥,对于知

识的接受和掌握会带来困扰。基于这一考虑,我们在授课中采用了以下两个方式来激发学生的学习兴趣,以进一步提高教学质量。

1. 结合授课内容和学生专业背景,邀请领域专家做报告

通过邀请领域专家做专题报告,是激发学生的学习兴趣,了解该领域最前沿的研究问题和研究热点的重要途径。考虑到卫星导航定位系统在不同领域中的广泛应用,我们邀请了研究南极动力学的专家,做卫星导航定位系统在南极科学中的应用的报告。该报告给出了GPS在南极Dome A地形测量和冰流速测量中的应用,以及取得的重要成果,同时给出了GPS在南极气象、电离层、遥感影像等中的应用,有效地激发了学生的兴趣。

2. 根据学生自己的专业特点,进行课题讨论和讲解

除了正常的授课,针对学生的兴趣与关注点,在课堂上针对不同的知识点,开展了广泛的讨论。针对一个学生从事无人机影像获取的研究课题,开展讨论了卫星导航定位在无人机中的使用,以及如何提高其定位精度,以降低对地面控制点数目的需求。通过这一案例讨论,加强了学生对卫星导航定位里面高精度数据处理方式和算法的认识,进一步巩固了课堂上所学的知识点。类似的讨论还包括资源三号卫星姿态的处理,该问题不直接涉及到导航定位,但卫星定姿问题以用经典的大地测量和天文测量手段予以解决。通过这一问题的讨论,可以加强对恒星历表、坐标系旋转等课题讲述中涉及到的概念的深化理解。

参考文献

航天概论论文篇(4)

二、国外航天领域风险管理的发展情况

(一)美国国家航空航天局(NASA)的风险管理20世纪50年代,美国国家航空航天局(NASA)开始采用概率计算的方法来对航天器的可靠性进行分析,同时应用故障树方法对导弹的可靠性进行了定性分析。60年代美国开始对大型航天项目进行风险管理,主要手段是失效模式及其影响分析(FMEA)和关键相关项目表(CIL),同时NASA开始将风险分析工作制度化。到70年代,为了提高核反应堆的安全性,研究者在故障树理论的基础上开发出了故障树分析(FTA)方法,使风险分析更加量化。80年代概率风险评价(PRA)法作为一种新的定量风险分析方法被用于核工业和化学工业,但并没有引起NASA的重视和应用。但随着1986年挑战者号航天飞机发生爆炸事故造成重大损失,NASA开始采用PRA方法对航天飞机的飞行过程进行全面的风险分析。1988年2月NASA了管理条例8070.4“载人飞行项目中的风险管理政策”,正式将风险分析工作制度化。1998年4月,NASA的程序和指南NPG7120.5A“型号计划和项目的管理过程与要求”中规定计划或项目的主管人员应将风险管理作为决策工具来保证在计划和技术上的成功,将风险管理和资源管理、性能管理、采购管理、安全和任务成功、环境管理并列,并在该文件的4.2节中对风险管理的目的、要求和方法做出了详细的规定。2002年4月,NASA又颁布了NPG8000.4“风险管理程序和指南”,其中详细规定了整个风险管理过程的实施要求,这充分体现了NASA对风险管理工作的重视程度。(二)欧洲空间局(ESA)的风险管理欧洲空间局(ESA)成立的时间相对较晚,但也对风险管理工作十分重视,风险分析贯穿在其航天项目的各个阶段,但各阶段的侧重点有所不同。ESA在风险管理上主要借鉴了美国的概率风险分析技术,并根据实际情况进行了改进。欧洲空间标准化合作组织(ECSS)也制定了风险管理标准ECSS-M-00-03A,这说明风险管理在欧洲也已经制度化和标准化,成为航天工程中的一项重要工作。

三、主要风险分析及管理方法

(一)专家评估专家评估法是通过咨询本领域或相关领域的专家,依靠专家丰富的知识和实践经验,对项目中可能出现的风险进行识别、预测和分析,并对风险控制措施提出建议的一种方法。专家评估一般是与评审活动同时进行的,在根据专家意见进行风险评估时可以根据专家的水平对其评估的权重加以调整,通过综合考量多个专家的评估意见形成项目风险识别和分析结果或补充。(二)风险矩阵(RiskMatrixMethod,RMM)风险矩阵法是一种定性和定量相结合的风险分析方法,最早由美国空军电子系统中心于20世纪90年代提出,并在美国军方的项目风险管理中得到了广泛的应用。风险矩阵法的基本思路是将风险的两个要素(发生概率和影响)划分为若干等级,然后分别作为矩阵表的行和列,交叉后的结果就是对风险水平的综合考量结果,根据风险水平高低对风险事件进行相应的处理。(三)故障树分析((FaultTreeAnalysis,FTA)故障树分析技术是美国贝尔电报公司的电话实验室于1962年开发的,其主要思路是把所关注的系统风险事件作为分析的目标(即“顶事件”),然后逐级寻找直接导致风险事件发生的“中间事件”和无法或不需再深入研究的“底事件”,再用适当的逻辑关系把这些事件联系起来从而形成“故障树”,这样就能表明系统的风险事件和引发风险的众多因素之间的逻辑关系。故障树分析法可用于对风险定性分析,这时可通过故障树的生成和分析找到对风险事件出现起主要作用的底事件,然后采取相应的控制措施。故障树分析法还可以结合布尔运算对具有逻辑关系的故障树进行详细的风险定量分析。(四)失效模式及影响分析(FailureModeandEffectsAnalysis,FMEA)失效模式及影响分析是一种由底至顶的分析方法,是在产品的策划设计阶段,对构成产品的各子系统、零部件逐一分析,找出潜在失效模式,分析其可能的后果,从而预先采取措施以提高产品的质量的一种系统化的活动。这种方法的工作原理为:①明确潜在的失效模式,并对失效产生的后果进行评分;②客观评估各种失效原因出现的可能性;③对产品潜在的失效情况进行排序;④采取措施消除产品存在的问题。(五)概率风险评价(ProbabilisticRiskAssessment,PRA)概率风险评价是一种用于辨识与评估复杂系统风险的结构化、集成化的逻辑分析方法。它综合了系统工程、概率论、可靠性工程及决策理论等学科的知识,主要用于分析那些发生概率低、后果严重但统计数据比较有限的事件。PRA方法通过系统地构建事件链并对其进行量化分析来研究系统风险,事件链由一系列事件组成,这些事件孤立地看可能不严重或不重要,但如果组合在一起却可能引起严重的后果。PRA实施过程包括:定义目标与系统分析、识别初因事件、事件链建模、确定故障模式、数据收集和分析、模型量化和集成、不确定性与敏感性分析、评价结果与分析等步骤。

四、结语

本文介绍了风险管理在国外航天领域的发展历史,并给出了几种航天工程中常用的风险分析和管理方法。为保证航天任务的成功,除了提高相关的科学技术水平之外,风险管理水平也要同步提高,这样才能有效地控制风险,减少事故或问题出现的概率或减弱其影响。

作者:胡青 单位:上海交通大学船舶海洋与建筑工程学院

参考文献:

[1]金恂叔.航天器的风险管理及其在环境试验中的应用[J].航天器环境工程,2002,19(3):1-9.

[2]邱菀华,沈建明.现代项目风险管理导论[M].北京:电子工业出版社,2002.

[3]史国栋,翟源景.航天试验任务风险管理研究现状分析[A].科技信息,2012(35):81.

航天概论论文篇(5)

近年来国内发生了较多的船舶碰撞桥梁事故造成了巨大的人命财产损失,2006年杭州湾大桥被一走锚失控船舶撞击,大桥多处局部破损,造成经济损失1000余万元;2007年广东九江大桥被砂石船舶碰撞致倒塌造成8人死亡,损失约1.4亿元人民币;2008年浙江宁波金塘大桥被一艘货轮撞击,桥面箱梁塌落,4人死亡;而在长江干线上,从1957年首个有记载的桥梁被船碰撞的事故以来,已发生的船舶撞桥事故超过300起,其中武汉长江大桥被撞次数最多,已被撞击100余次,虽未造成桥梁倒塌事故,但每一次撞击都会牵动亿万人民的心。因此,开展船舶碰撞桥梁概率研究,为船舶通航安全、桥梁设计、建设与管理提供技术支撑依据非常有必要。

目前,在桥梁防撞设计中,应用较多的船桥碰撞概率计算模型有AASHTO规范模型、拉森(IABSE)模型、欧洲规范模型、昆兹(Kunz)模型和黄平明直航路模型等,不同的模型各有不同侧重和特点。相比较而言,AASHTO模型虽然是依照美国和欧洲的船舶碰撞资料统计而设计出来的,但因其思路清晰、方法完善、实用性强,是目前应用最为广泛的船桥碰撞概率模型,该规范将船撞桥事件视为风险事件,根据可接受风险的水平指导桥梁的防撞设计,已经形成了系统的思想。

AASHTO模型在长江上应用存在的问题

在该模型中船舶碰撞几何概率以航道中心线为对称轴,船舶的横向分布用正态分布描述,期望为0,即船舶出现的峰值在桥墩之间航道的中间位置。该模型适用于长江上单孔单向通航的桥梁,但长江干线上90%以上的桥梁实行的是单孔双向通航,且长江干线界石盘以下河段均实行了船舶定线制或船舶分道航行规则,船舶在通过单孔双向通航的桥孔时各自靠一边行驶,其中定线制水域还设有分隔带,因此从理论上分析船舶在航道上的几何分布应成“双峰”或“多峰”分布,而非正太分布。为了验证这个想法和进一步研究长江上船舶碰撞桥梁的几何概率,本文对长江上两座典型桥梁下航道内船舶航行轨迹进行了分析。

长江干线上船舶过桥轨迹分布情况统计

目前长江干线上游(李渡至界石盘)、中游(宜昌至武汉)和下游(武汉到安庆)实行分道航行规则,航路设置的原则基本一致,上行走缓流或航道一侧,下行走主流或航道中间。长江三峡库区和安徽段、江苏段水域实行船舶定线制,航路设置原则为各自靠右航行,航道中心线为上、下行船舶通航分道的分隔线,其中,江苏段上下行通航分道及分隔带的宽度分别为航标标示航道宽度的五分之二、五分之二、五分之一。

本文分别选取实行下游分道航行规则的武汉天兴洲长江大桥和实行江苏段船舶定线制规定的苏通长江大桥为代表桥型,统计桥区航道内船舶的轨迹分布情况。

长江下游苏通长江大桥主跨1088m,长江下游武汉天兴洲长江大桥主跨504m,两座桥梁主跨内均是双向通航,两座桥梁的航路布置图见图2和图3。

利用江苏海事局和长江海事局AIS船舶监控系统,通过轨迹回放统计了2015年3月30日00时至31日00时船舶通过两座大桥时的航道内船位分布情况,见图4和图5。

经统计,轨迹回放时间内通过苏通桥船舶数量为724艘次,其中上行船舶共408艘次,下行船舶共计316艘次。该桥桥墩之间航道宽度约1000m,为了便于分析,以航道中点为原点,50m距离为间隔,统计船舶轨迹出现在每个区段的次数(见表1)。

轨迹回放时间内过天兴洲桥船舶数量为299艘次,其中上行船舶共144艘次,下行船舶共计155艘次。该桥桥墩之间航道宽度约480m,为了便于分析,以航道中点为原点,20m距离为间隔,统计船舶轨迹出现在每个区段的次数(见表2)。

利用excel软件进行数据分析画出直方图见图6和图7。

长江干线船舶碰撞桥梁的几何概率修正

从图6和图7中可以看出,长江干线上船舶受定线制、分道航行规则等的影响,船舶在通过桥梁时在航道上呈“双峰”分布,从统计数据分析和直方图形状来看,该双峰分布可近似的看成由两个正太分布混合而成的分布。由于长江干线上多数情况下,桥区航道走向与桥梁轴线法线方向并不重合而是呈一定的交角,因此船舶碰撞桥墩的几何概率如下图所示。

问题与展望

AASHTO概率计算模型是由美国国家公路和运输协会根据美国水道上船舶偏航情况统计研究确定,用正太分布模拟航道上船舶位置分布,假定期望为船长,方差为0。在我国长江上船舶通过桥梁时的船位分布受通航道内航行规则以及桥区水域风、流等自然条件影响较大,根据不同的航路布置情况船舶分布和相关参数将随之发生变化。

本文仅讨论了长江干线上最普遍的单孔双向通航情况,根据统计分析船舶通过单孔双向通航的桥梁时船位沿桥轴线方向成“双峰”分布,该双峰分布可近似的看成由两个正太分布混合而成,本文据此对AASHTO模型中碰撞几何概率参数进行了修正,该修正模型适用的前提条件是桥墩附近的水深大于船舶吃水,即船舶能够到达桥墩位置。

目前,长江干线上桥梁通航孔内航路的设置除了常见的单孔单向和本文讨论的单孔双向通航情况以外,还有部分桥梁水域船舶是三线或四线通航,通过该类桥梁的船舶沿桥轴线方向将呈“多峰”分布,对于这类桥梁船舶碰撞几何概率需要进一步研究分析。

参考文献:

【1】姜 华,王君杰.美国公路桥梁风险法确定设防船撞力评述[ J]. 世界桥梁, 2008, ( 4) : 64- 67.

【2】李 冰. 内河水域船舶失控撞桥概率研究:[硕士论文].武汉理工大学,2010年

【3】徐鑫 郭民之 石峰利,双峰数据分布的模拟[J]. 云南师范大学学报(自然科学版), 2013年3月

航天概论论文篇(6)

2现代科学技术概论的教学内容与体系

根据上述三原则,笔者认为,思想政治教育专业现代科学技术概论课程的内容与体系可做如下安排。导言。概要介绍现代科学技术及其理论基础、前沿阵地、中心内容和综合体现。

第一章,现代物理学革命及其影响。介绍现代科学技术的理论基础———相对论和量子力学。引言,概述近代物理学的辉煌成就及其所遇到的“两朵乌云”。第一节,相对论的建立。根据逻辑与历史相统一的原则,具体讲授伽利略变换和力学相对性原理,迈克尔逊—莫雷实验,洛伦兹变换的提出,爱因斯坦的狭义相对论及其主要结论,广义相对论及其验证。第二节,量子力学的建立和发展。一、量子力学产生的历史背景,概要介绍黑体辐射理论和紫外灾难。二、量子力学的建立与发展,具体讲述普朗克的量子假说,爱因斯坦的光量子理论,玻尔对原子结构的量子解释,德布罗意的物质波,薛定谔的波动方程,海森伯的矩阵力学。第三节,现代化学理论的发展。主要讲授元素周期理论的新发展和现代化学键理论。

第二章,原子物理学的开发研究及应用。主要讲授从物质结构的研究到原子能的开发和应用。第一节,对微观世界的探索和认识。一、物质结构初探,复习回忆德谟克利特的原子论,道尔顿的原子说,门捷列夫的元素周期律。二、向原子世界的进军,主要讲授X射线、放射性元素及电子的发现,原子结构模型及其实验和发现,原子核结构模型及其实验和发现,对基本粒子家族的认识。第二节,原子能的开发研究及应用。一、原子能的开发研究:重点介绍原子能开发研究中的三大发现,即慢中子效应的发现、核裂变的发现和链式反应的发现。二、原子能的应用,包括能源方面的应用和放射性同位素的应用。能源方面的应用包括两个方面:一是军用三弹即原子弹、氢弹和中子弹的研制;二是核电站的发展,主要介绍从慢中子反应堆到快中子增殖堆再到核聚变反应堆的历史发展。放射性同位素的应用可概要介绍在生产、生活、科研、军事上的应用及其成果。

第三章,生物学与生物工程技术。生物学是研究生命的科学;生物工程技术是用人工的方法创造生命的技术。生命科学是现代科学的三大前沿阵地之一;生物工程技术是现代科学技术的主要内容。第一节,生命的起源和生物的进化。一、生命起源的化学进化历程:从无机小分子物质生成有机小分子物质;从有机小分子物质形成有机高分子物质;从有机高分子物质形成有机多分子体系;从有机多分子体系演化成原始生命物质。二、生物进化论,主要介绍拉马克的生物进化学说和达尔文的生物进化论。第二节,现代遗传学和分子生物学。一、遗传学:主要讲授孟德尔的豌豆实验及其遗传学说;摩尔根的果蝇实验及其遗传学说。二、分子生物学:重点介绍蛋白质的性质、结构和功能;核酸的性质、结构和功能。第三节,生物工程技术。生物工程包括酶工程、发酵工程、细胞工程和基因工程四个部分的内容。因学时限制,可重点介绍细胞工程和基因工程两个部分。一、细胞工程,应首先讲授细胞的全能性,然后在细胞全能性的基础上具体介绍植物组织培养技术、细胞融合技术、细胞折合和胚胎移植技术、克隆技术等内容。二、基因工程:(1)基因工程的基础研究,主要介绍限制性内切酶、连接酶和基因载体的发现和研制。(2)基因工程的基本程序和方法,包括获取目的基因DNA、获取载体基因DNA、目的基因DNA与载体基因DNA的重组、把重组的DNA转入受体细胞进行增殖和筛选转基因生物体五个步骤及方法。三、生物技术的应用前景。主要介绍生物医药的研制及应用、生化工业的迅速发展、转基因动植物的大量出现,人类基因组计划(HGP)及其广阔的应用前景。

第四章,天文学和天体演化学说。天体演化学说是现代科学的三大前沿阵地之一,本章在重点讲述天体演化学说之前,先把天文学的相关知识作一简单介绍。第一节,天文学及其产生和发展。一、概要介绍天文学的研究对象和分类;二、重点讲授天文学的产生和发展:具体介绍古代天文学、近代经典天文学和现代天文学的发展情况。第二节,获取天体信息的渠道和手段;可分三个大问题来讲述。一、获取天体信息的渠道,主要介绍电磁辐射、宇宙线和中微子三条途径;二、获取天体信息的物质手段和仪器设备,主要介绍人眼的构造和功能、光学望远镜、射电望远镜和天体摄谱仪;三、天文观测发展简史:依次介绍光学天文学、射电天文学和空间天文学。第三节,天体的起源和演化。一、宇宙的起源和演化:主要介绍牛顿“无限无边”宇宙模型及其疑难、爱因斯坦“有限无边静态”宇宙模型及其疑难、哈勃定律与大爆炸宇宙模型;二、星系的形成和演化:先对星系及其类型作一简单的介绍,然后在此基础上介绍星系的形成和演化;三、恒星的形成和演化:具体介绍恒星的形成,表征恒星演化过程的赫罗图,恒星演化过程的三阶段,即主序星阶段、红巨星阶段和恒星的三种归宿(白矮星、中子星和黑洞);四、太阳系的形成和演化:主要介绍太阳系的基本情况和太阳系的形成和演化两部分内容;五、地球的构造和演化:包括地球概况、地球的圈层构造和地球的形成和演化。

航天概论论文篇(7)

中图分类号:G642;TK0-4 文献标识码:A 文章编号:1672-3791(2015)11(b)-0171-03

Talking About Professional Introduction Course of Energy and Power Engineering

Li Jianzhong1 Yuan Li2 He Xiaomin1 Mao Junkui1 Zhang Jingyu1 Shi Bo1

(1.Nanjing University of Aeronautics and Astronautics, Jiangsu Province Key Laboratory of Aerospace Power System,Nanjing Jiangsu,210016,China;2.PLA University of Science and Technology, School of National Defense Engineering,Nanjing Jiangsu,210007,China)

Abstract:Based on training of professional talents and demand for talents of energy and power engineering,and also in view of school-running characteristics (aviation,aerospace,civil aviation) of Nanjing University of Aeronautics and Astronautics and course highlights of energy and power engineering,professional characteristics and training objectives of energy and power engineering were introduced and the necessity of establishing professional introduction course was analysed.The teaching methods of theory and practice for professional introduction course of energy and power engineering were discussed.

Key Words:Energy and power engineering;Professional introduction;Teaching method;Professional characteristic

高等学校是培养专业型人才的摇篮和基地,制定合理的培养方案、设置具有综合体系的专业课程、配套相应的实践教学平台、改进教学方法、提高教师水平等是实现循序渐进地引导学生快乐学习、轻松了解和掌握专业技能及成为高技能专业型科技人才的保证。专业课程设置关系到如何让学生“喜欢学”、如何让学生知道“学什么”、及如何让学生掌握“如何学”。专业导论课,是进行系统专业学习的先导和铺垫,是引导学生了解所学专业和相关专业的入门课程,有利于帮助大学生尽早了解所学专业性质、培养专业兴趣、掌握专业学习方法、规划自身发展,能够起到重要的导航作用[1]。

1 专业特色及培养目标

国家即将启动以航空发动机/地面燃气轮机为核心的高效动力装置重大科技工程专项,明确提出要突破高性能动力装置的核心关键技术,提升我国各类核心装备、重大机械设备动力系统的自主保障能力。我国能源供需矛盾尖锐,结构不合理,能源利用效率低,一次能源消费以煤为主,化石能源的大量消费造成严重的大气污染,雾霾天气不断,严重影响人类的健康。如何满足持续快速增长的能源需求和能源的清洁高效利用,对能源科技发展提出重大挑战。国家正在推进清洁能源开发与高效利用技术、节能减排技术、高效动力技术等为主的多项计划,作为涵盖能源、动力及环境领域的核心学科之一,能源与动力工程学科必将在新能源开发与综合利用、高效低污染排放动力技术、节能减排技术等领域发挥关键的科学与技术支撑作用,为我国早日实现节能减排的宏伟目标提供强有力的技术保障,发展前景广阔。国家重大计划和实施纲要为能源与动力工程专业的发展提供了广阔和美好地前景,该专业迎来了历史性的发展机遇,同时也带了巨大地挑战,尤其在综合素质高、创新能力强的能源与动力工程专业人才培养方面,对如何进一步办好能源与动力工程专业、提高本科和研究生教学水平、做好高水平人才培育基地提出了更高地要求。

大部分刚踏入大学校门的新生对自己专业认知及毕业后从事工作岗位了解甚少,对大学生活和专业学习既好奇又迷茫,同时,中学阶段被动式学习和吸收,学习时间紧,作业量大,承受具大考试压力,而进入大学以后,很多学生像脱缰的野马,摆脱了家长和老师的束缚,学生的自主学习、独立学习积极性降低,失去学习目标。鉴于此,一般高校在大一期间都设置了专业导论课,不仅要指导学生解除在该专业一些问题上的困惑,还要能引导学生更好地适应大学生活,帮助学生领会大学的学习方法及提升自主学习能力,消除学生的不适应性以提升学生自立、自主学习的能力,帮助学生更好地规划学习,实现学习目标。专业导论课教学内容一般包括:(1)介绍专业背景和专业特色。(2)专业人才培养方案的课程体系及相互逻辑关系。(3)涉及的基本专业知识、专业拓展及交叉学科。(4)本科和研究生学科的对接关系。开设专业导论课可以帮助学生了解未来的就业和发展趋势,增强专业学习兴趣,为顺利完成大学学业奠定基础。高中生进入大学后,常常因为不适应大学学习生活环境、不明确自己努力的方向而迷茫、放松自我约束,不能快速顺利地完成由高中生向大学生的角色过渡,造成学习成绩和思想滑坡。教学实践表明,开设专业导论课程有利于学生了解专业,激发学生学习专业课的兴趣,对以后学习专业及专业基础课具有良好的导向作用。探索在本科低年级阶段开设专业导论课程对教学质量的提高、学生素质培养具有重要意义[2]。高校应该在更新教育观念、加强教学管理、集中优势师资、编写特色教材等环节着手进行改革,全面推进专业导论课的开设,切实提高人才培养质量[3]。

南京航空航天大学能源和动力工程专业传承了本校的航空、航天和民航特色,长期致力于动力领域的基础研究及相关技术,形成了高效燃烧组织、强化换热理论及应用、复杂流动仿真与控制、新概念动力装置设计等多个优势明显的特色方向。能源与动力工程专业紧密结合国家和江苏省工业和国民经济发展,以科学技术转化生产力为目标,为国家和地方经济发展提供重要技术支撑和人才储备。南京航空航天大学的能源与动力工程专业在多年的专业建设和发展过程中,始终弘扬学校“负重奋进、献身国防,唯实创新、志在超越”的办学精神,把人才培养放在首要位置,研究能力持续攀升,产学研效果突出,素质教育特色出众,创新型优秀人才培养成效突出,教学改革、课程群建设及国际交流不断完善和进步。因此,南京航空航天大学的能源与动力工程专业以素质教育为导向的人才培养体系特色突出,国防特色鲜明,基础研究能力和服务地方经济发展能力出众,师资力量雄厚、专业综合实力强,具备了非常广阔地发展前景。

专业课程群是优化学生知识结构、培养学生创新能力、提高学生工程技术能力的基础,直接影响实验实践教学体系和师资队伍的建设。借鉴国外著名大学中相关专业的培养方案及课程体系设立模式,在充分考虑南京航空航天大学能源与动力工程专业特色的现有培养方案基础上,增加了实践性教学环节在专业教学计划中的比重,强调学生的应用知识和实施能力。该专业发展核心专业课程体系的核心指导思想为完善基础类课程体系、优化课件,建立了开放式虚拟热工基础试验系统,提升教学效果;建设了燃气轮机动力系统、节能减排、新能源利用3个核心课程群,理顺各门课程知识领域的相互关系,遵循教育教学规律,突出特色,逐步完善该专业的课程知识体系,以流体力学、热工学为理论基础,辅助以机电、计算机和控制等学科的理论知识,培养具有高尚人格品行和社会责任感,具备扎实的理论基础和专业水平,熟悉能源利用、转化及动力系统原理、应用技术的专业人才,可以从事能源动力、环境保护、新能源研究开发、动力系统设计、制造、控制和管理等的工作。

2 专业导论课的教学方法

专业导论课作为学科启蒙课程之一,旨在促进低年级学生在较短时间内概略了解自己所学专业的概念、内涵、地位、作用、专业现状、应用前景,增强新生学习目的性,激发学习兴趣和动力,引导学生对该专业的人才培养计划和培养目标、课程体系等了解,提高学生对所学专业的认知度,培养学生专业感情,有助于学生确立专业学习目标,促进学生以积极的心态投入未来的学习生活[4-6]。专业导论课从培养方案讨论开始,让学生总体了解大学的培养模式,了解课程设置的特点,了解每门课的作用以及各课程之间的关系等,帮助学生认识到其在低年级所学在高年级有所用。不仅有助于学生提高学习兴趣,更有助于学生制定中长期学习计划。

南京航空航天大学能源与动力工程专业导论课采取理论教学和实践教学相结合的方式,培养学生对所学专业从宏观上了解该专业的课程体系和课程结构。理论教学环节,专业导论课的授课采用多位教师和专家联合授课的方式,通过专业负责人对能源与动力专业培养方案解读和相关专业老师以航空、航天、民航及相关领域为背景进行具体的专业介绍,让学生对所学专业有更深地了解。重点强调普适性教学,授课内容不包含具体方法、原理等,专业内容选择上应全面,表现形式应具启发性,且新颖、形象,具有一定的综述性,深浅适当。课堂上创设更加宽松的学习氛围,多些特色、多些思考、多些讨论、多些实践。专业导论课的教学目标设计成具有引导学生认识专业、了解专业,促使学生热爱专业、明确个人发展规划。实践教学环节,安排现场参观、实验演示等,对提升学生的学习兴趣、调动学生学习积极性具有作用积极。学生组队专题讨论,就某个同该专业领域相关专题开展调研和论述,合作撰写论述报告,小组成员上台讲述并分别回答如下问题:选题同该专业有何联系?目前发展状态?未来发展趋势?可能会涉及哪些知识?该专业哪些课程会涉及这些知识?该选题同哪些企业和研究机构相关等?南京航空航天大学能源与动力工程专业导论课以宽松、多样化的教学安排调动学生学习的积极性和提升学习效果。为了实现能源与动力工程专业导论课在有效教学中的作用及其实施对策,在本科专业建设项目“能源与动力工程专业导论视频课”的支持下,拍摄并制作了八个单元的能源与动力工程专业导论课程视频,在学校网络教学平台上建成课程网站、上传主要课程PPT、课程视频、课程教学大纲等材料,学生可以更深入学习该课程和深入了解该专业。

3 结语

专业导论课是为大一新生能够初步了解专业知识、掌握学习方法、做好职业生涯规划的一门启蒙和科普课程,启发、调动大一新生的自主学习积极性,引导新生熟悉能源利用、转化及动力系统原理、应用技术等知识,了解能源与动力工程专业涉及能源动力、环境保护、新能源研究开发、动力系统设计、制造、控制和管理等行业,引导学生热爱所学专业、进行大学成长规划及职业生涯规划及实施,逐渐提高自主学习能力,有计划地进行自我培养。能源与动力工程专业导论课教学模式是采用专业组长和同行专业教授配合理论教学和实践教学的灵活性和多元化教学方法,使得专业导论课程能够很好地激发学生的参与意识和学习兴趣,帮助学生掌握专业学习方法,为高效地学习后续专业知识打下了坚实的基础。专业导论课是引领大学生建立专业自信心和专业归属感、走入专业领域的向导,在大学一年级新生在大学的学习和成长过程中,具有重要的领航作用。

参考文献

[1] 杨善林,潘轶山.专业导论课―― 一种全新而有效的大学新生思想教育方法[J].合肥工业大学学报:社会科学版,2004(4):1-3.

[2] 刘光明,于斐,周雅,等.大学低年级课程中开设专业导论课的探索[J].高教论坛,2007(1):37-39.

[3] 杨晓东,崔亚新,刘贵富.试论高等学校专业导论课的开设[J].黑龙江高教研究,2010(7):147-149.

航天概论论文篇(8)

作者简介:陆必应(1976-),男,安徽舒城人,国防科学技术大学电子科学与工程学院,副教授;王建(1981-),男,湖北宜城人,国防科学技术大学电子科学与工程学院,讲师。(湖南 长沙 410073)

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)25-0141-02

“航天测控”是国防科学技术大学电子工程专业本科生的一门专业必修课程,同时也是通信工程和信息工程专业本科生的选修课程。课程重点讲述基于无线电的航天测控系统的概念、体制、组成和工作原理,引导学生了解现代航天测控技术的发展动态和方向。[1,2]作为一门专业课,一方面要传授学生航天测控系统的专业知识,另一方面要培养学生对复杂电子系统的分析能力并掌握设计方法,加强学生的工程素养。航天技术的发展及其在军事和国民经济中日益广泛的应用,特别是我国载人航天技术的跨越式发展,激发了学生学习本课程的热情,同时对课程的教学也提出了越来越高的要求。[3]本文先分析“航天测控”课程特点和教学中存在的问题,随后介绍以教学内容、教学方法、教学实践环节相配套的教学改革探索和实践,以实现专业知识学习和工程能力培养兼顾的教学目标。

一、课程特点与教学现状

“航天测控”课程教学具有如下特点:一是基本概念多,涉及领域广 。包括天文学基础、航天器轨道运行基本原理、无线电测距定位原理、高速无线数据传输原理等。二是基本原理复杂,涉及的理论基础宽,包括随机信号分析、信号与系统、雷达原理、通信原理等。三是系统复杂,安排实践环节困难。航天测控系统是复杂的电子系统,而先修课程偏重基础知识的学习,对电子系统的介绍偏少,学生很难通过一两个简单的实验课达到理解和掌握复杂航天系统的目标。以上特点决定采用传统的方法进行教学时,教师讲授难度大,学生学习理解困难,学习效果差。

该课程教学现状与存在的主要问题有:

1.教学内容多,课时少

本课程内容包括航天测控的基本原理、统一载波测控系统、跟踪与数据中继卫星系统、全球定位系统及其在航天测控中的应用四大部分,仅统一载波测控系统就包括跟踪测轨分系统、遥测分系统、遥控分系统。上述每一门技术都具有相对的独立性,涉及的理论、方法和系统都有其独特的内容。国防科学技术大学(以下简称“我校”)电子科学与工程学院早期设有航天测控专业,上述内容安排80~120课时讲授,现行的教学大纲仅安排了40课时,教学内容却没有减少,要完成教学任务,学生学习上存在较大困难。

2.教材相对陈旧,新技术介绍少

本课程的教材编写于1998年,内容上继承了航天测控专业所用内部教材的精华,重点内容为统一载波测控系统的原理、系统分析和系统设计。其优点是基本概念清楚,理论推导详实,系统分析深入,但也存在如下几个问题:一是内容过多,部分内容分析得过于深入,基础稍差的学生掌握起来有困难;二是近年来航天测控技术进步迅速,不断涌现出新概念、新方法和新技术,航天测控体制也从传统的统一载波测控体制加速向以跟踪与数据中继卫星系统为代表的天基测控体制发展,而教材没有充分反映航天测控技术的新发展。

3.教学手段单调,实践环节不足

原先的课程教学以教师板书讲授为主,配合以少量的幻灯片和课后习题作为辅助手段;学生的学习停留在阅读教材和参考书目、做课后习题上,缺少必要的实践环节。这种以讲授为主的教学模式无法充分调动学生的学习兴趣和积极性,缺少必要的实践环节,学生对理论和技术的理解无法深化,学生的主观能动性没有充分发挥,分析问题、解决问题的能力和工程素养得不到提高。

二、教学改革探索与实践

1.突出教学重点,合理选择教学内容

综合考虑航天测控技术的发展现状,并结合电子工程专业本科生的预修课程以及学时数,对教学内容进行了重新安排,修订了教材。将教学内容根据测控体制划分为统一载波测控系统、跟踪与数据中继卫星系统、全球定位系统的原理及其在航天测控中的应用三个部分。对统一载波测控系统部分内容进行了三个方面的删减:一是与先修课程内容有重复或雷同的,如跟踪测轨技术中的角度测量技术,在先修课程“雷达原理”中已有讲述,直接删除;二是要求具备比较专业的预修知识而学生又不具备的,如遥控编码体制,对电子工程专业的本科生来说由于不具备相应的预修课程,理解存在较大的困难,进行了删减,并提供相关的参考书籍供有兴趣的学生参考;三是难度太大的内容,如测控信道的设计,这部分内容要求学生在理解信号调制理论的基础上,结合特定工程实际设计出最佳波形,对大部分学生来说要求过高,也进行了删减。根据航天测控技术的发展趋势,对跟踪与数据中继卫星系统的组成、工作原理以及采用的新技术等部分内容进行了扩充。调整后的教学内容,既重视基本原理的教学,也重视测控系统的分析,还涉及测控新技术的介绍。

2.采用多种模式教学方法,提高教学效率

对课程的总体教学目标和教学所包含的知识点进行了分析,并对教学方法和教学过程进行精心设计。针对不同的教学内容,采取多种形式的教学方法,包括课堂理论教学、比较教学、案例教学、讨论教学等,并有机地结合起来。

基本原理如测控信号基本理论、测距原理、GPS工作原理等内容采用课堂理论教学,开发了多媒体教学课件,除传统的公式推导和文字描述外,配以适当的图片、动画,直观地说明理论分析结果,使学生对一些重要的结论留下深刻的印象,强化教学效果。

航天测控系统的教学若采用简单的讲授教学,由于学生工程实践经验少,往往不能深刻领会系统的内涵,抓不住重点,因此采用案例教学法与比较教学法相结合的教学方法。选择航天测控系统中较为简单但具有代表性的“单通道锁相接收机”作为教学案例,先对系统作简单介绍,使得大家对航天测控系统有一个感性认识,然后提出问题,供同学们分组分析、讨论。如跟踪测轨系统锁相接收机与一般雷达系统接收机进行比较,通过比较启发学生思考二者结构上的根本区别是什么,工作原理有什么不同,航天测控系统采用这种特殊类型接收机的原因是什么。通过比较学生较易理解航天测控跟踪测轨系统与一般雷达系统的异同,达到触类旁通的效果。通过开设讨论环节,营造生动、活跃的课堂气氛,培养学生思考问题、解决问题的能力,变被动接受为主动思考。最后以科研成果进课堂的形式对案例进行总结,同时引导学生了解航天测控系统设计基本方法。将教学团队在航天测控接收机领域所作的科研成果——某改进型航天测控接收机实物搬进课堂,分析传统接收机存在的缺陷,改进型接收机性能有哪些改善,从哪几个方面着手进行改善,如何进行改进等。通过这一具体案例,充分激发了学生的积极性,对航天测控系统设计方法这一难点也有了初步的认识。

在教学手段上,除采用计算机辅助教学外,还充分利用校园网资源,开展网络教学。编制适合网络教学的课件,提倡学生网上提问,进行网上答疑,对课外拓展性的内容提供更多的学习资料和参考文献。此外,利用网络教学可部分缓解教学内容多而课时少的矛盾。

3.重视实践环节,提高学生工程素养

“航天测控”是一门理论较深、实践性强的课程,提高学生的工程素质也是本专业课的一个重要学习目标。航天无线电测控系统是一个复杂庞大的系统,没有条件开展针对整个系统的实践性教学,但在基本原理和分系统教学过程中增加了实践性环节,如简单的实验设计、开放式研究性习题设计等。另外,对深空测控、小卫星测控、星座测控等测控领域的新课题、新技术、新发展,根据情况开设一两个专题讲座,使学生了解航天测控技术的最新发展,提升学生应用能力。

4.加强教学团队建设

作为一门专业课,虽然面向的专业范围窄,学生层次相对统一,只要一两名老师就可完成课程的教学任务,但不能因此就忽视教学团队的建设。作为教学活动中的关键要素之一和教学活动的具体实施者,教师本身的专业理论知识、实践能力、教学能力、科研能力对课程的教学效果有决定性的影响。因此,我校建立了一个由教授、副教授、讲师等不同层次教师组成的教学团队。团队中所有成员都从事航天测控领域的科研工作,由同时具有丰富科研经验和教学经验的副教授担任主讲老师,由教授开展航天测控领域新技术、新发展专题讲座,其他成员的科研成果为教学案例提供支撑。同时通过“跟、帮、带”,促进年青教师的成长,保证教学团队教学水平的稳步提高。

三、结束语

随着航天技术在国防、国民经济中日益广泛的应用,航天测控技术也获得了快速发展和广泛重视,对“航天测控”课程教学提出了越来越高的要求。本文对“航天测控”课程存在的问题进行了分析并提出了切实可行的改进措施,通过教学内容、教学方法、教学过程和师资队伍建设的改革,精简了教学内容,采用了以比较教学法和案例教学法为主导的多样化教学方法,充分调动了学生的学习积极性和主动性,培养了学生自主学习能力、分析解决问题能力,达到了专业知识学习和专业技能培养并举的目标。

参考文献:

航天概论论文篇(9)

1 概念介绍

传统导航是指航空器依靠地面导航设施(如VOR、NDB、VOR/DME等)所发射的信号进行引导和定位,通过向背台航迹指引进行飞行的一种导航方式。在这种导航方式下,航空器沿固定的航路飞行(因为传统的航路正是基于地面导航设施位置、逐个连接各导航台点而成的),受地面导航台布局与导航设施性能的制约,传统导航呈现出飞行航迹的精度不高、约束性和局限性日益彰显的现实情况。

基于性能导航(PBN-Performance Based Navigation)是国际民航组织(ICAO)建立在区域导航(RNAV)与所需导航性能(RNP)的基础概念之上,以新航行系统(CNS/ATM)为基本架构,并且参考整合了空域概念后所提出的一种航空运行概念。

区域导航(RNAV)是一种导航方法,允许航空器在相关导航设施的信号覆盖范围内、或在机载自主领航设备能力限度内、或在二者结合下沿所需航路飞行。从理论上来讲,实行区域导航的航空器,只要能在导航信号覆盖范围内,可以沿任意期望的航迹飞行。

所需导航性能(RNP)的定义为航空器在一个确定的空域、航路或终端区域内运行时所必需的导航性能精度。RNP不仅对航空器机载导航设备(如FMS)有运行方面的相关要求,还对支持相应RNP类型空域的导航系统(如GPS)也有相应的要求。在ICAO对RNAV与RNP概念的整合管理之后,我们可以这样来理解:RNP除了具备RNAV的能力外,还增加了自主监视与告警功能。

2 两种导航方式之间的比较

传统导航方式在中国民航发展历史上留下了浓墨重彩的一笔,即使到今天,想要新建一个机场、或者是对现有机场进行改造升级乃至搬迁,传统导航方式下的传统飞行程序都是机场最终能够开航运行所必不可少的关键要素。由此可见,传统导航方式在我国发展至今,其依托的导航设施的覆盖性、稳定性、安全性以及经验积累已经到达了一个非常完善与合理的高度,并且在中国民航传统导航的发展过程中,培养了一批理论扎实、经验丰富的基于传统导航方式下的飞行程序设计人员,本人也是一名新进飞行程序设计人员,通过一段时间的了解和学习,更深刻地体会到了传统导航方式的重要性,而许多飞行人员也对传统导航拥有许多自己的习惯和经验。因此本人个人的理解是:传统导航是中国民航导航技术发展的根基与依托,也是我们向新航行技术发展过程中的一个重要的过渡手段,我国民航局目前对传统导航与PBN的方针政策也是并行发展、互为备份。在对传统导航的叙述后,我们接下来再看看PBN对民航发展的重要意义。

PBN是一个经ICAO整合过后的概念,有RNAV和RNP两个分支,这在之前的概念里有过介绍。在这里简单介绍一下PBN的发展历史:最早区域导航(RNAV)概念的提出是为了解决传统导航设施布局局限性的问题,早期的区域导航系统采用与传统的陆基航路和程序相似的方式,通过分析和飞行测试确定所需的区域导航系统及性能,可以使航空器在陆基导航设施覆盖范围内,优化航路航线,对于陆地区域导航运行,最初的系统采用V0R和DME来进行定位,而对于洋区运行,则广泛采用惯性导航系统。而我国正是在这样的国际环境下,于1998年在ICAO新航行系统发展规划指导下,抓住西部地区开辟欧亚新航路的战略机遇,启动了第一条区域导航航路(L888航路)建设,并于2001年1月正式投入运行。国际民航组织ICAO在附件1l《空中交服务》和《航空器运行手册》(DOC 8168)中提出了部分区域导航设计和应用的标准和建议。美国和欧洲等航空发达国家和地区已经积累了丰富的区域导航应用经验,但由于缺乏统一的标准和指导手册,各地区采用的区域导航命名规则、技术标准和运行要求并不一致。国际民航组织ICAO之后正式基于性能导航手册(PERFORMANCE BASED NAVIGATION MANUAL),用以规范区域导航的命名、技术标准,并指导各国实施该新技术。至此PBN概念正式产生。

与传统导航相比,PBN运行具备诸多优势,导航源的选择和导航精度的提高可以在保证民航安全运行的前提下大大增加空域容量和运行效率,有利于航空承运人增加业载、减少航班延误、改善全天候运行的安全性和可靠性、降低运营成本等等。当然,在诸多优势的背后,PBN在中国民航的发展依旧存在硬伤:导航源的选择。众所周知,目前我国PBN导航源主要依赖GPS(全球卫星系统),虽然GPS是由美国政府承诺免费对全球进行开放使用的,但不可回避的一点是,当战争或是一些不可预测不可抗拒的情况发生时,GPS可能会出现无法达到民航可用的精度要求甚至无法使用的情况,因此我们不能一味地依赖GPS系统,毕竟那是美国人的产品。在这种情况下,我国从1983年开始筹划建设独立自主的卫星导航定位系统:Compass系统(北斗卫星系统)。“北斗”不但兼容其他全球导航卫星,还可以提供更多可观测的在轨卫星、增强GNSS的导航准确性、完好性、连续性和可用性等。PBN的启用,已经在我国许多复杂地区诸如高高原机场、山区机场发挥了重要作用,比如玉树、林芝机场以及九寨、黄山机场等,接下来我将针对个别机场进行传统与PBN导航飞行程序分析和讨论。

3 结论

综上所述,PBN在我国民航技术发展还有很长的路要走,我们将在很长一段时间内继续实施PBN与传统程序混合运行的方针政策。我国第一条区域导航航路L888的建立,预示着中国民航向着以PBN为代表的新航行技术迈进。经过数十年的经验积累,我们可以预期,随着PBN在中国的不断发展,中国民航的安全水平将大幅提高、机场终端区和航路容量将大幅提升、航班正常率将有较大提高、复杂地形机场航班运营效益将显著改善、新建机场地面导航设施的建设费用将迅速减少以及航空器燃油将更加节约,当PBN运行结合了我国自主的“北斗”导航系统、再辅以正在西南地区实施的ADS-B监视系统,相信在不久的将来,中国民航将真正迈入民航强国的行列。

参考文献

[1]黄卫芳.浅谈基于性能导航(PBN)[J].空中交通管理,2007,7.

[2]曹洪涛.机载导航性能评估系统的设计与实现[J].南开大学,2009.

航天概论论文篇(10)

工程教育认证标准一般由八个指标构成,分别是学生、专业教育目标、学生成果、持续改进、课程体系、师资力量、教学设施、学校支持等。其中工程教育专业认证中的课程设置,为了能支持毕业要求的达成,课程体系设计有企业或行业专家参与。我国各高校在启动工程教育专业认证工作过程中,发现课程体系设置是否科学、合理、会规直接影响到毕业生的工程实践能力与创新能力,进而影响专业培养目标、毕业要求的可达性。因此各高校针对工程教育专业认证标准和要求,提出了各个专业课程体系改革的思路、做法和经验。西北工业大学的张清江等通过调研我国工程教育与专业认证发展历程,对我国航空航天专业与其他已获得资格专业进行对比分析。并结合国际航空航天质量体系认证中的要求,从航空航天工程教育专业认证的必要性、专业特点、航空航天工程教育现状等角度出发进行研究。结合现代中国工程教育存在的普遍问题,提出针对航空航天类专业认证的新方式、新方法,并对航空航天工程教育专业认证需要注意的特性进行讨论。辽宁石油化工大学马会强等依据工程教育专业认证标准,以辽宁石油化工大学环境工程专业为例,通过明确培养目标,解析培养要求,从课程设置、实践环节、毕业设计等方面进行了课程体系改革探索。广东石油化工学院任红卫等分析了我国工程教育的现状,并探讨了在工程教育专业背景下电气专业的教学改革方法,从而提高学生的工程实践能力。浙江工业大学姜理英等人基于对工程教育专业论证的国际比较,结合环境工程教育专业认证的必要性,从培养计划的调整、课程体系的优化、实践教学的强化和师资队伍的提升四个方面,综合系统地提出了对环境工程专业教学内容进行全面优化和提升的路径。张秋根等人根据环境工程专业规范和认证标准要求,以南昌航空大学环境工程专业为例,对其核心课程体系设置和教学内容两方面进行了优化与规范的探讨。为了重视国际认证的引领作用,加强专业办学品牌建设,突出南京航空航天大学能动专业的航空航天办学特色,紧跟国内能动专业人才需要,提升其人才培养质量与专业竞争力,从而拓宽自身生存发展空间,因此需要开展基于工程教育专业认证的能动专业课程体系改革。

2基于工程教育专业认证标准下南航能动专业课程体系优化

通过对国内外本科院校工程教育专业认证的分析与研究,利用对中国近几年的专业认证与评估成果的调查与研究,对其进行梳理,依据工程教育专业认证中课程设置要求,依据南京航空航天大学能源与动力学院能动专业建设相关内容与特色,以培养具有航空航天特色的工程教育专业人才为目标,对南京航空航天大学能动专业课程体系进行优化。以培养要求为基准,着手对课程体系进行优化,并对本科培养大纲进行相应的修订,从而实现培养目标。确定能源与动力专业学生在校期间应修总学分数不能少于180学分。

2.1数学与自然科学类课程能源与动力专业数学与自然科学类课程是指该专业学生必须掌握的基础课程,主要包括高等数学(11学分)、大学物理(6.5学分)、大学英语模块(10学分)、C++语言程序设计(3学分)等方面共六门课程,总共30.5个学分。因此能源与动力专业数学与自然科学类课程占总学分的比例约为17%,达到了工程教育专业认证标准中至少占总学分的15%的要求。

2.2工程基础类课程、专业基础类课程与专业类课程工程基础类课程和专业基础类课程主要体现数学和自然科学在该专业应用能力培养,而专业类课程主要体现系统设计和实现能力的培养。其中工程基础类课程主要包括电子电工技术(5学分)、理论力学(3学分)、材料力学(3学分)、工程图学(4.5学分)以及机械设计基础(3学分)等课程,总共为18.5个学分;专业基础类课程主要包括工程流体力学(3学分)、工程热力学(3学分)、传热学(3学分)和化学反应动力学基础(2学分)等课程,总共为11个学分。因此工程基础类课程和专业基础类课程必须要修满至少29.5个学分。对于专业类课程,由于能源与动力专业具体有两个培养方向:方向一为热能动力方向,主要陪养就业方向为航空发动机、地面燃气轮机等相关单位;方向二为能源利用方向,主要培养的就业方向为电厂、新能源以及制冷等相关单位。因此其专业类课程既有相同的专业课程,也有自身特色的课程。其中燃烧原理(2.5学分)、燃气轮机原理与构造(3学分)、热能综合利用(2学分)、热交换器原理与设计(2.5学分)以及热工测量原理与方法(2学分)等,总共12个学分,这些课程为能源与动力专业两个培养方向都必须学习的专业类课程。另外每个培养方向又有其特定的专业类课程必须选修,其中热能动力方向专业类课程包括叶轮机原理(2.5学分)、燃气轮机控制原理及应用(2学分)、燃烧技术与分析(2学分)、内燃机原理与构造(2学分)、工程传质与应用(2学分)等共9门课程;能源利用方向专业类课程包括泵与风机(2学分)、供热工程(2学分)、锅炉原理(2学分)、制冷原理与技术(2学分)、可再生能源利用技术(2学分)以及热力发电技术概论(2学分)等共10门课程。无论学生学习哪个方向,共同学习的专业类课程与特定选修的专业课程之和必须要修满至少28个学分。因此,工程基础类课程、专业基础类课程与专业类课程必须要修满的学分数为:29.5+28=57.5学分,因此该类课程学分占总学分的比例约为32%,达到了工程教育专业认证标准中至少占总学分的30%的要求。

2.3工程实践与毕业设计能源与动力专业设计完善的实践教学体系,主要包括以下几个方面:(1)军事训练,培养学生的吃苦耐力与过硬的身体素质;(2)各种课程的课程设计,如:机械设计基础课程设计、电工与电子技术课程设计、C++语言课程设计等,主要培养学生对各门基础课、专业基础课的实际应用能力;(3)工程训练,主要包括机械加工方面的车、磨、铣、刨、铸造以及焊接等金工实习,锻炼学生的动手能力;(4)下厂实习,大三暑假期间,在指导老师带领下去中航工业集团下属的企业或电厂进行为期一个月的下厂实习,锻炼学生把理论知识应用于工程实际中的能力;(5)毕业设计,指导老师开设的毕业设计题目一般都来源于实际工程问题,学生在老师的指导下,在大四下半年开展为期半年的本科毕业实际,培养学生的工程意识、协作精神以及综合应用所学知识解决实际问题的能力。能源与动力专业要求学生在实践能力与毕业设计方面修读的总学分不低于42.5,占总学分的23.6%,达到了工程教育专业认证标准中至少占总学分的20%的要求。

2.4人文社会科学类通识教育课程能源与动力专业在人文社会科学类通适教育课程方面主要包括以下几个模块:(1)通适基础教育平台,主要包括形式政策教育、思想道德修养与法律基础、安全教育、大学生心理健康教育等课程,共19.5个学分;(2)国防军事模块,包括航空航天概论、军事高技术概论等,至少修满1.5个学分;(3)文化素质模块,主要包括文化历史、艺术鉴赏、科技基础、哲学社会等课程,至少要修满6个学分;(4)创新创业类模块,主要包括大学生职业生涯发展与规划、创业基础以及经济管理等课程,共5.5个学分。人文社会科学类通识教育课程总共需修满32.5个学分,占总学分的18%,达到了工程教育专业认证标准中至少占总学分的15%的要求,使学生在从事工程设计时能够考虑经济、环境、法律、伦理等各种制约因素。

2.5航空航天特色类课程的设置为了突出南京航空航天大学能源与动力专业的航空航天特色,在开设的课程中,如国防军事模块、专业类课程以及工程实践与毕业设计中,课程教学内容包含浓郁的航空航天特色,由于指导老师所从事的科研项目都是来自于国防工业集团,具有丰富的研究经验,因此在专业基础课和专业课的讲课过程中,所列举的实例都是以航空航天为背景的工程问题,特别是毕业设计和下厂实习,因此在能源与动力专业课程优化过程中,充分突出了南京航空航天大学的航空航天特色。

2.6注重科技创新能力培养学生创新素质的培养直观重要的是培养学生的创新意识,因此积极创造条件让学生能够在大学期间积极的参与科技创新活动。主要包括:(1)鼓励学生积极参加各种科技类竞赛,如:流体力学大赛、节能减排大赛、开设卓越班等,并且科技竞赛获得奖励的同学在保研方面给予政策上的倾斜;(2)安排学生参与教师的科学研究工作,让学生在参与科研过程中更好的掌握好该专业的理论知识,加强学生的动手能力,拓展学生的科研视野。

2.7学习进程大学生本科期间的各门课程是相互衔接的,因此需要考虑课程之间的匹配与衔接,如图1所示。学习进程主要分成了三部分:一是基础课程,包括高等数学、大学物理、计算机等;二是学科基础,包括结构和流体力学、热学和电学方面的课程;三是专业课程,主要包括了热能动力和能源综合利用两个方向的相关课程。整个课程体系分为三条线:第一是流体和热学相关的课程,如流体力学、工程热力学、传热学、燃烧学等;第二是结构力学方面,包括理论力学、材料力学等;第三是计算机语言方面的课程。因此在安排各门课程的学期上需要考虑上述课程衔接问题,从而最终制定出合理的能源与动力工程专业教学计划表。

上一篇: 景观规划策略 下一篇: 网络视频的特点
相关精选
相关期刊