变频技术论文汇总十篇

时间:2023-03-13 11:02:22

变频技术论文

变频技术论文篇(1)

2变频器过热

这几台使用不到一年的变频器,复位开车后还是可以正常的运行,只不过几个小时候又发生同样的故障,检查电动机没有发现问题,但注意到变频器的通风口风量很小,于是把变频器拆开检查,发现这几台变频器有的因为散热风扇烧坏,有的因为风扇保险烧坏,更换风机后,此类情况就没有在出现。4)过压和欠压。一台施耐德的变频器出现过压,总是在停机时跳“OU”,这个时候我们可以重点检查制动回路,测量放电电阻没有问题,测量制动管被击穿,把制动管换掉之后,便没有出现这个问题。出现欠压情况的DANFOSS变频器,在加负载后出现“DCLINKUNDERVOLT”,经过仔细检查问题不是特别的复杂,应该重点检查整流桥,经过检查整流桥发现有一路桥壁开路,更换后问题解决。

3故障出现的原因和应对方法

3.1不能调高频率的变频器

分析原因后得出结论,是因为电动机安装在外面,现场对于电动机保护不当,下雨时不能对电动机及时防雨,造成了电动机受潮,雨后也未能对电动机烘干,造成了电动机内部局部发生短路现象。这样的情况比较容易解决,只要做好对电动机的保护工作,增加电动机防雨系统,及时检查电动机,如有受潮的情况及时烘干。

3.2变频器频率上不去

变频器调频,发现频率调不上去时,首先看各项参数是否正常,如果参数问题排除,可以检查给定方式,如果都排除了,那么就知道是模拟量输出电路出现了问题,仔细检查模拟量输出电路,找出问题所在,排除问题。

3.3变频器过热

这个问题最终很显然是因为变频器的通风排热系统出现问题,散热风扇的质量过于粗制劣造,造成不必要的麻烦。应该选用正规厂家合格的有质量保证的变频器,及时的跟变频器厂家沟通散热排风扇的质量问题。

3.4过压和欠压

变频器过压和欠压是两个不同的故障,所以有不同的原因和应对方法。变频器过压报警,主要原因是因为减速的时间太短,或者制动单元出现了问题。变频器在减速的时候,电动机转子绕组切割旋转磁场的速度加快,转子的电流增大,电机从而处于发电的状态。这个时候,我们就要认真检查制动回路,发现问题,然后换掉出现问题的部分。欠压报警主要原因在于整流桥某一个部位的损坏,刚才也已经举了一个例子,是整流桥有一路桥臂开路。出现变频器欠压的问题,就要仔细检查整流桥,查看问题的部位并撤换掉。

3.5变频器的运行环境

在一些工厂内,空气中的粉尘和蒸汽含量很高,所以变频器一半在现场的控制柜中保护,为了更好的散热,就在控制柜上安装了冷却风扇[3]。变频器的各个部分的电缆都从控制柜的底部连接变频器,导致控制柜封闭不严,粉尘和蒸汽可以通过控制柜的底部进去到控制柜影响变频器。

4针对变频器出现故障的原因提出对策和建议

1)变频器的控制柜。建议把变频器的控制柜移到室内,把变频器的防护等级提高到IP54,防止粉尘和蒸汽进入到变频器内。2)变频器的选择。根据不同的负载选择恰当的变频器,保证变频器的正常运行。3)变频器电源柜的改变。可以把供电给变频器的电源柜改为馈电柜,从而可以避免操作人员对变频器进行多次强制复位,保护变频器不受人为破坏。4)关于长期不用的变频器和变频器电容器。长期用不到的变频器,要定期进行带电运行,这样可以对变频器内件进行充电式的保护。如果有时间和条件,对使用多年的变频器的电容器进行测试。

变频技术论文篇(2)

引言

随着电力电子、计算机技术的迅速发展,交流调速取代直流调速已成为发展趋势。变频调速以其优异的调速和启、制动性能被国内外公认为是最有发展前途的调速方式。变频技术是交流调速的核心技术,电力电子和计算机技术又是变频技术的核心,而电力电子器件是电力电子技术的基础。电力电子技术是近几年迅速发展的一种高新技术,广泛应用于机电一体化、电机传动、航空航天等领域,现已成为各国竞相发展的一种高新技术。专家预言,在21世纪高度发展的自动控制领域内,计算机技术与电力电子技术是两项最重要的技术。

一、电力电子器件的发展过程

上世纪50年代末晶闸管在美国问世,标志着电力电子技术就此诞生。第一代电力电子器件主要是可控硅整流器(SCR),我国70年代将其列为节能技术在全国推广。然而,SCR毕竟是一种只能控制其导通而不能控制关断的半控型开关器件,在交流传动和变频电源的应用中受到限制。70年代以后陆续发明的功率晶体管(GTR)、门极可关断晶闸管(GTO)、功率MOS场效应管(PowerMOSFET)、绝缘栅晶体管(IGBT)、静电感应晶体管(SIT)和静电感应晶闸管(SITH)等,它们的共同特点是既控制其导通,又能控制其关断,是全控型开关器件,由于不需要换流电路,故体积、重量较之SCR有大幅度下降。当前,IGBT以其优异的特性已成为主流器件,容量大的GTO也有一定地位[1][2][3]。

许多国家都在努力开发大容量器件,国外已生产6000V的IGBT。IEGT(injectionenhancedgatethyristor)是一种将IGBT和GTO的优点结合起来的新型器件,已有1000A/4500V的样品问世。IGCT(integratedgateeommutatedthyristor)在GTO基础上采用缓冲层和透明发射极,它开通时相当于晶闸管,关断时相当于晶体管,从而有效地协调了通态电压和阻断电压的矛盾,工作频率可达几千赫兹[2][3]。瑞士ABB公司已经推出的IGCT可达4500一6000V,3000一3500A。MCT因进展不大而引退而IGCT的发展使其在电力电子器件的新格局中占有重要的地位。与发达国家相比,我国在器件制造方面比在应用方面有更大的差距。高功率沟栅结构IGBT模块、IEGT、MOS门控晶闸管、高压砷化稼高频整流二极管、碳化硅(SIC)等新型功率器件在国外有了最新发展。可以相信,采用GaAs、SiC等新型半导体材料制成功率器件,实现人们对“理想器件”的追求,将是21世纪电力电子器件发展的主要趋势。

高可靠性的电力电子积木(PEBB)和集成电力电子模块(IPEM)是近期美国电力电子技术发展新热点。GTO和IGCT,IGCT和高压IGBT等电力电子新器件之间的激烈竞争,必将为21世纪世界电力电子新技术和变频技术的发展带来更多的机遇和挑战。

二、变频技术的发展过程

变频技术是应交流电机无级调速的需要而诞生的。电力电子器件的更新促使电力变换

技术的不断发展。起初,变频技术只局限于变频不能变压。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,如:调制波纵向分割法、同相位载波PWM技术、移相载波PWM技术、载波调制波同时移相PWM技术等。

VVVF变频器的控制相对简单,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较小,受定子电阻压降的影响比较显著,故造成输出最大转矩减小。

矢量控制变频调速的做法是:将异步电动机在三相坐标系下的定子交流电流Ia、Ib、Ic通过三相——二相变换,等效成同步旋转坐标系下的直流电流Iml、Itl,然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。

直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机化成等效直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。

VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流回路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交—交变频应运而生。

三、变频技术与家用电器

20世纪70年代,家用电器开始逐步变频化,出现了电磁烹任器、变频照明器具、变频空调、变频微波炉、变频电冰箱、IH(感应加热)饭堡、变频洗衣机等[4]。

20世纪末期期,家用电器则依托变频技术,主要瞄准高功能和省电。

首先是电冰箱,由于它处于全天工作,采用变频制冷后,压缩机始终处在低速运行状态,可以彻底消除因压缩机起动引的噪声,节能效果更加明显。其次,空调器使用变频后,扩大了压缩机的工作范围,不需要压缩机在断续状态下运行就可实现冷、暖控制,达到降低电力消耗,消除由于温度变动而引起的不适感。近年来,新式的变频冷藏库不但耗电量减少、实现静音化,而且利用高速运行能实现快速冷冻。

在洗衣机方面,过去使用变频实现可变速控制,提高洗净性能,新流行的洗衣机除了节能和静音化外,还在确保衣物柔和洗涤等方面推出新的控制内容;电磁烹任器利用高频感应加热使锅子直接发热,没有燃气和电加热的炽热部分,因此不但安全,还大幅度提高加热效率,其工作频率高于听觉之上,从而消除了饭锅振动引起的噪声。

四、电力电子装置带来的危害及对策

电力电子装置中的相控整流和不可控二极管整流使输入电流波形发生严重畸变,不但大大降低了系统的功率因数,还引起了严重的谐波污染。

另外,硬件电路中电压和电流的急剧变化,使得电力电子器件承受很大的电应力,并给周围的电气设备及电波造成严重的电磁干扰(EM1),而且情况日趋严重。许多国家都已制定了限制谐波的国家标准,国际电气电子工程师协会(IEEE)、国际电工委员会(IEC)和国际大电网会议(CIGRE)纷纷推出了自己的谐波标准。我国政府也制定了限制谐波的有关规定[5]。

(一)谐波与电磁干扰的对策

1、谐波抑制

为了抑制电力电子装置产生的谐波,一种方法是进行谐波补偿,即设置谐波补偿装置,使输入电流成为正弦波[3]。

传统的谐波补偿装置是采用IC调谐滤波器,它既可补偿谐波,又可补偿无功功率。其缺点是,补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐振,导致谐波放大,使LC滤波器过载甚至烧毁。此外,它只能补偿固定频率的谐波,效果也不够理想。

电力电子器件普及应用之后,运用有源电力滤波器进行谐波补偿成为重要方向。其原理是,从补偿对象中检测出谐波电流,然后产生一个与该谐波电流大小相等极性相反的补偿电流,从而使电网电流只含有基波分量。这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响。

大容量变流器减少谐波的主要方法是采用多重化技术:将多个方波叠加以消除次数较低的谐波,从而得到接近正弦的阶梯波。重数越多,波形越接近正弦,但电路结构越复杂。小容量变流器为了实现低谐波和高功率因数,一般采用二极管整流加PWM斩波,常称之为功率因数校正(PEC)。典型的电路有升压型、降压型、升降压型等。

2、电磁干扰抑制

解决EMI的措施是克服开关器件导通和关断时出现过大的电流上升率di/dt和电压上升率du/dt,目前比较引入注目的是零电流开关(ZCS)和零电压开关(ZVS)电路。方法是:

(1)开关器件上串联电感,这样可抑制开关器件导通时的di/dt,使器件上不存在电压、电流重叠区,减少了正关损耗;

(2)开关器件上并联电容,当器件关断后抑制du/dt上升,器件上不存在电压、电流重叠区,减少了开关损耗;

(3)器件上反并联二极管,在二极管导通期间,开关器件呈零电压、零电流状态,此时驱动器件导通或关断能实现ZVS、ZCS动作。

目前较常用的软件开关技术有部分谐振PWM和无损耗缓冲电路。

(二)功率因数补偿

早期的方法是采用同步调相机,它是专门用来产生无功功率的同步电机,利用过励磁和欠励磁分别发出不同大小的容性或感性无功功率。然而,由于它是旋转电机,噪声和损耗都较大,运行维护也复杂,响应速度慢。因此,在很多情况下已无法适应快速无功功率补偿的要求。

另一种方法是采用饱和电抗器的静止无功补偿装置。它具有静止型和响应速度快的优点,但由于其铁心需磁化到饱和状态,损耗和噪声都很大,而且存在非线性电路的一些特殊问题,又不能分相调节以补偿负载的不平衡,所以未能占据静止无功补偿装置的主流。

随着电力电子技术的不断发展,使用SCR、GTO和IGBT等的静止无功补偿装置得到了长足发展,其中以静止无功发生器最为优越。它具有调节速度快、运行范围宽的优点,而且在采取多重化、多电平或PWM技术等措施后,可大大减少补偿电流中谐波含量。更重要的是,静止无功发生器使用的抗器和电容元件小,大大缩小装置的体积和成本。静止无功发生器代表着动态无功补偿装置的发展方向。

五、结束语

我们相信,电力电子技术将成为21世纪重要的支柱技术之一,变频技术在电力电子技术领域中占有重要的地位,近年来在中压变频调速和电力牵引领域中的发展引人注目。随着全球经济一体化及我国加人世界贸易组织,我国电力电子技术及变频技术产业将出现前所未有的发展机遇。

参考文献:

[1]周明宝.电力电子技术[M].北京:机制工业出版社,1985.

[2]陈坚.电力电子学-电力电子变换和控制技术.北京:高等教育出版社,2002.

变频技术论文篇(3)

露天矿山是以大型设备为主要特点,要求优良的电气传动系统,以保证这些大型设备的高效率运行。露天矿山的这些大型设备包括用于穿孔的牙轮钻机,用于装载矿、岩石的电铲(挖掘机),用于运输矿、岩石的大型汽车等。它们都要求电气传动系统具有良好的调速性能,目前这些大型设备大多采用直流调速传动系统。

地下矿山的生产较露天矿山复杂。由于井下生产的空间窄小,使生产设备环境潮湿、阴暗,粉尘大、噪音大、振动大、并有塌方的危险,工作条件十分恶劣。因此,井下生产设备的体积受限,这些设备以小型化为主,体积小、重量轻,对电气传动的要求不高。但提升、排水、通风、压气等固定设备是地下矿山的要害部门,也是耗电大户,因此,这些设备的安全运行和节能就显得至关重要。

根据我们多年来从事矿山电气传动的经验及在矿山进行变频调速的应用实践,我认为,在矿山应用变频调速技术对于提高矿山生产设备的效率,节约电能都是至关重要的。但遗憾的是在矿山应用变频调速技术还很不普遍,除了因变频器的投资问题外,与人们对变频器的认识不夠有关,也与不能正确了解矿山设备对变频器的特殊要求、不能正确地应用变频器、因此所带来的负面影响有很大关系。

本文主要介绍目前矿山应用变频器的状况,矿山设备对电气传动的特殊要求,以及如何正确地选用变频器等。

2变频器在露天矿山设备中的应用

2.1电铲

电铲用于装载矿岩,其工作条件非常恶劣,特别是在爆破不好的情况下挖根底作业,经常出现过大的冲击载荷,甚至堵转。因此,电铲对电气传动系统就有较高的要求:要求电气传动系统的机械特性曲线的包络面积大,有足够的有用功率;要求有良好的调速性能,能四象限运行,能快速地进行加、减速和反转,动态响应速度快;要求系统制动性能好,并能回收能量;要求系统运行可靠,维修方便等。由于电铲对电气传动系统的这些特殊要求,所以,我国电铲目前应用的电气传动系统主要还是直流传动系统。例如:WK-4M、WK10、WD-1200和195-B等型号的电铲都是采用直流发电机-直流电动机系统(简称机组系统);从美国Harnischfeger公司引进制造的P&H-2300XP和P&H-2800XP型电铲则是采用晶闸管变流器-直流电动机系统(简称晶闸管直流系统)。虽然后者比前者技术先进,效率也有所提高,但这两种系统都还存在直流电机的固有的缺点,即维修工作量大、效率较低等。

自上世纪90年代后期,我国有个别矿山从美国B-E公司引进了变频器-鼠笼型电动机系统(简称交流变频调速系统),这是全交流化的电铲电气传动系统。例如:385-B、295-BⅡ、290-BⅢ型电铲就是全交流化电铲,变频调速由德国SIEMENS公司开发、提供的电压型变频器。现以395-B电铲为例作一简要说明:高压交流电由电缆经集电环引入电铲,由1600kVA主变压器将6kV变为575V,由1950A的整流器将交流变为直流,经滤波后送入公共直流母线。在直流母线上有4台容量为750kVA的逆变器,其中2台并联供电给1台容量为1066kW的提升电动机;第三台逆变器供电两台容量各为243kW的回转电动机;第四台逆变器供电给容量为294kW推压电动机。当某工作机构处于再生制动工作时,逆变器将再生制动能量反馈到公共直流母线上,可供其它工作机构使用,使能量得到充分利用。使用不完的制动能量,可以通过制动电阻消耗掉。

实践证明,交流变频调速电铲和前两种直流调速电铲相比,具有节约电能、调速性能好、可靠性高、维护量小、生产效率高、功率因数高(0.95以上)等优点,是公认的电铲电气传动系统的发展方向。

2.2变频器在牙轮钻机中的应用

牙轮钻机是露天矿山、尤其是大型露天矿山的主要穿孔设备。为使牙轮钻机在不同的岩层中都能保持较佳的钻进状态,要求钻机的回转机构能根据岩层的性质进行无级调速。钻机的提升/行走机构也需要无级调速。目前,牙轮钻机的回转机构和提升/行走机构一般都是直流电动机传动。主要有三种调速装置:(1)采用晶闸管直流调速装置的牙轮钻机有:YZ-55,YZ-35和YZ-12型;(2)采用大功率磁放大器调速装置的有KY-250型牙轮钻机和从美国进口的45R型牙轮钻机;(3)采用直流发电机组调速装置的有从美国进口的60R型牙轮钻机。

牙轮钻机上应用变频调速技术不仅是为了节能,更重要的是为了提高钻机的生产效率,降低维修工作量。回转机构电动机安装在钻杆的顶端,工作条件异常恶劣,以往使用的直流电动机经常损坏,维修工作量大,影响牙轮钻机的正常作业和效率的提高。因此采用坚固耐用的交流鼠笼型电动机代替直流电动机,用变频调速装置代替直流调速装置,就成为人们公认的牙轮钻机电气传动的发展方向。在牙轮钻机上应用变频调速技术的难点在于:钻机的转机构等对调速装的性能要求高,因为由于岩层地质条件的不同,钻机在钻进工作时有可能被卡钻,使回转机构堵转,这就要求调速装置的机械特性曲线具有挖土机特性,并具有立即反转和立即重新起动、钻进功能;牙轮钻机振动大,对调速设备的防振要求高。变频调速在牙轮钻机中的应用首先是由美国B-E公司在55R型牙轮钻机上应用。我国矿山的牙轮钻机的变频调速还在开发试验之中,尚未在推广应用。

2.3电动轮汽车的电气传动

目前,大型露天矿山的运输主要是采用无轨运输,而主要运输设备是大型汽车,特别是电动轮汽车成为了大型露天矿山的主要运输设备。这是因为电气传动比机械传动有更多的优点。如调速性能好,响应速度快,调速平滑无冲击;可实现恒功率调节,能充分利用柴油发动机的功率,耗油少;制动安全,牵引特性好等。目前,世界各国大型露天矿,包括我国的大型露天矿都普遍采用电动轮汽车。我国自1975年以来,引进了不少电动轮汽车,并成功研制开发了SF3102型100t和LN-3100型108t电动轮汽车,与美国UnitRig公司合作制造了MARK-36型154t电动轮汽车。

电动轮汽车的电气传动系统主要有柴油发动机带动的直流发电机-直流电动机系统和柴油发动机带动的交流发电机-交流电动机系统,它通过控制发电机的励磁来控制电动机的转速。随着变频调速技术的发展,人们也在探讨将变频调速技术应用于电动轮汽车电气传动的可能性。但目前尚未见到成功的先例。不过,作为大型露天矿山的主要运输设备的电动轮汽车,人们会继续努力,研究将变频调速技术应用于电动轮汽车,以进一步改善其调速性能,提高其运输能力。

3变频器在地下矿山中的应用

3.1变频调速技术在矿井提升机中的应用

矿井提升机是地下矿山运输的主要设备。它是用一定的装备沿井筒运出矿石、废石、升降人员及材料、设备等运输环节。矿井提升设备按井筒倾角可分为竖井提升设备和斜井提升设备;按提升容器可分为罐笼提升机和箕斗提升机等;按提用途可分为主提升机(专们或主性提升矿石,一般称为主井提升机),副井提升机(提升废石、升降人员、运送材料和设备等,一般称为副井提升机)和辅助提升机(如天井电梯、检修提升等)。

矿井提升是地下矿山生产的咽喉,所以,无论哪种提升机,对电气传动的要求都很高,因为电气传动系统性能的优劣,可靠性的高低,都直接关系到矿山生产的效率和矿山生产的正常进行。对矿井提升机电气传动系统的要求是:有良好的调速性能,调速精度高,四象限运行,能快速进行正、反转运行,动态响应速度快,有准确的制动和定位功能,可靠性要求高等。

目前,我国地下矿山矿井提升机的电气传动系统主要有:对于大型矿井提升机,主要采用直流传动系统,有采用直流电动机-直流发电机系统和晶闸管变流器-直流电动机系统;这两种系统都存在着直流电动机固有的缺点,如效率不高,维修工作量较大等。对于中、小型提升机,则多采用交流电气传动系统,如采用交流绕线式电动机,使用电机转子切换电阻调速,这种电气传动系统虽然设备简单,但它是有级调速,调速性能差,效率低,大量的电能消耗在电动机转子电阻上,而且可靠性也差。

将变频调速技术应用于矿井提升机是矿井提升机电气传动系统的发展方向。我国已有几台大型矿井提升机采用交-交变频调速系统,取得了很好的效果,但其缺点是功率因数不高,谐波大,需加谐波和功率因数补偿装置。随着变频调速技术的发展,交-直-交电压型变频调速技术已开始在矿井提升机中应用。例如国外已有矿山将有源前端三电平变频器应用于矿井提升机上,据介绍,采用这种变频调速的交流提升机可以克服直流调速系统和交-交变频调速系统的缺点,是提升机电气传动的发展方向。对于小型交流提升机已有成功应用变频器的实例,如山东风光电子有限公司和东营市东萃科技有限公司合作开发的变频器,成功地应用于山东宁阳县华宁煤矿的380V,180kw的交流提升机上。

3.2变频调速技术在空压机中的应用

空气压缩机是地下矿山生产的重要设备之一,它生产压缩空气,用以带动风动凿岩机、风动装岩机等设备以及其它风动工具,其耗电量在矿山总耗电量中占有相当大的比重。深入分析空气压缩机的电能消耗情况,找出节能潜力,实现空气压缩机的节能运行,将会降低矿山生产成本,提高其经济效益。现以凡口铅锌矿为例说明:

凡口铅锌矿坑口空压机站共有6台空气压缩机,其中4台为日本日立空气压缩机。4台日立压缩机型号:BTD2,排气压力7kg/cm2,排气量103m3/min属两级压缩活塞式压缩机,其拖动电机型号EFOU,额定功率450kW,额定电压380V,额定电流892A,采用Y/Δ降压起动方式;2台国产空气压缩机(活塞式空气压缩机),其拖动电机为高压(6kV)同步电动机。6台空气压缩机采用并联运行方式。一般情况下,只运行2~3台(其中一台国产空气压缩机)其余的空气压缩机作为备用。空气压缩机站的容量是按最大排气量并考虑备用来确定的,然而在实际的使用过程中,用气设备的耗气量是经常变化的,当耗气量小于压缩空气站的排气量时,便需对空气压缩机进行控制,以减少排气量使之适应耗气量的变化,否则空气压缩机排气系统的压力会升至不能允许的数值,使空气压缩机和用气设备的零部件负载过大,并有发生爆炸的危险。凡口铅锌矿4台日本日立空压机采用的是多级压力节流进气控制方式:即当压力低于6.2Mpa时,打开全部进气阀,压缩机组以100%负荷率状态运行;当压力达到6.2~6.5Mpa时关闭隙阀,压缩机组以75%负荷率运行;当压力达到6.8~7Mpa时,关闭一个进气阀,压缩机组以50%负荷率运行,当压力达到7Mpa时关闭所有进气阀,压缩机组进入空载运行状态.由于活塞式空气压缩机的起、停有着严格而复杂的规程,不允许频繁起停。为了满足井下用气量的变化,一般由调度人员根据井下用气量的时间变化特点,把一天分为几个时段,每一个时段需要开的空压机台数由该时段内最大用气量决定。在该时段内,空压机不允许增开或停开(特殊情况除外)。地下矿金属矿山的空压机站多采用这种方式,但这种控制方式很显然存在一些比较大的缺点:

(1)据统计,压缩机组75%负荷运行率为41%,50%负荷运行率为14%。无论空气压缩机是处于75%、50%还是空载运转状态,管网压力较正常供气压力要高,井下用气量很显然要小于供气量,而这时各台空气压缩机仍然全速生产压缩空气,带来了不必要的电能浪费。

(2)节精度低,在某一进风量工作状态下压力波动大,特别在生产用风量变化频繁时期内(用风量大且变化频繁),不能稳定风压;

(3)阀门动作值在一次整定后经常会变,有时会使整个压风系统工作压力偏高,增大了单位压风量的功耗;

(4)当空压机运行在75%、50%进气量的工作状态下,进气流速增大,造成进气过程压风量的损失,降低了压风机的效率。

因此有必要对现有的调节方式进行改进,以节约电能,提高空压机的运行效率。我院和凡口铅锌矿合作,用变频调速对其空压机站进行技术改造。

空压机恒压自动控制变频调速系统结构如图1所示:

图1空气压缩机恒压控制变频调速系统框图

空压机恒压自动控制变频调速系统可实现对5#空压机和6#空压机的轮换控制。5#空压机和6#空压机均可由新老两套系统拖动,这样做有两个目的:伒5#空压机出现故障需要检修时,新系统可迅速切换到6#机,以提高恒压控制变频调速系统的利用率;当新系统出现故障需要停车检修时,能够很快地投入老系统运行,不致于影响正常生产;当管网压力超出恒压调节范围时,系统发出增开或者减开一台空压机。

系统于1999年4月2日在凡口铅锌矿通过了验收,正式移交生产使用,系统运行十分正常,满足了生产的需要,达到了预期的目的。本系统的目的是为了节能,根据广州金粤节能服务站对本系统做的节能测试:采用本空气压缩机恒压控制变频调速系统平均每天节电量2226kWh。按照年工作日330天计,则采用恒压控制变频调速系统每年可节电734629kWh,按照凡口铅锌矿现行电价0.7元/kWh计,每年可节约电费51.42万元。本系统总共投资98万元,两年内即可收回全部投资。本系统应用的成功为活塞式空气压缩机的节能运行提供了重要的新手段,对于企业节能降耗,提高企业经济效益有重要意义,有广阔的推广应用前景。

3.3变频调速技术在矿井通风机中的应用

矿井通风机是地下矿山生产的主要用电设备之一,其节能运行在矿山节电中占有重要的地位。矿井通风机一般采用异步电机或同步电机拖动,恒速运转,一般容量大,电机供电电压高(6kV或10kV)。

矿山建设的特点是:巷道逐年加深,产量逐年增加,所需的通风量逐年上升。但矿井通风机在设计选型时,往往是按最大开采量时所需的风量为依据的,一般都留有余量,因此矿井在投产后几年甚至十几年内,矿井通风机都是处在低负载下运行。此外,通常矿山井下作业不均衡,一般夜班工作人员少,所需风量也小,在节假日时,可能只有泵房等固定的井下场所的值班人员工作。尽管井下人员少,但也得照常向井下送风,矿井通风机一般不调节风量,若要调节风量时,传统的方法是调节档板。这种办法虽然简单,但从节能的观点看,是很不经济的。图2所示为几种调节风量的方法节电比较。

图2不同风量调节方法功率消耗曲线

图2中:1—挡板法;2—前导器法;3—液力耦合器;4—绕线电动机切换转子电阻调速法;5—变频调速法。

由图2可见,变频调速法在各种风量调节方法中是最理想、最有效、最节能的调节方法。有关变频调速技术在矿井通风机中的应用,仍以凡口铅锌矿为例说明。

该矿的矿井通风机都采用高压电机传动,有高压同步电机和高压异步电机两大类。由于矿井通风机是矿山的耗电大户,节电潜力很大,但它又是高压电机传动,实现变频调速有一定困难。于是,长沙矿山研究院与凡口铅锌矿、冶金自动化研究院等单位合作,以老南风井的6kV,800kW同步电机传动的矿井通风机为对象,研制开发了同步电机直接高压变频器。1997年8月投入运行,并于1998年4月28日通过了中国有色金属工业总公司的技术鉴定,获得了部级科技进步二等奖。这是国内第一台同步电机直接高压变频器,节电效果十分显著。新南风井的矿井通风机采用6kV,880KW高压异步电机传动,高压变频器采用SIEMENS公司的SIMOVERTMV型三电平高压变频器。于2002年9月投入运行,节电效果也是十分显著的。下面分别简要介绍这两种高压变频器。

(1)同步电机直接高压变频器

同步电机高压变频器主要有两类,即他控式变频调速系统和自控式变频调速系统。他控式变频调速系统所用的变频装置是独立的,其输出频率直接由速度给定信号决定,属速度开环控制。自控式变频调速系统可以使同步电机不存在失步和振荡等问题,所以一般都采用自控式运行。

我们与有关单位合作研制开发的这种同步电机直接高压变频调速装置是采用交-直-交电流型变频调速系统,属自控式变频调速系统,它由变频器、同步电机、转子位置检测器以及控制系统组成。变频器主电路采用晶闸管串联组成的高压阀串作为功率元件,它是利用同步电机的反电势来关断逆变器的晶闸管,它没有强迫换流电路,因而主电路结构简单。变频器的框图如图3所示。

图3同步电机变频调速系统原理框图

图3中,硬件全套设备由高压开关切换柜(图中未表示出)、整流柜、逆变柜、励磁柜、控制柜、操作台及交流进线电抗器、直流平波电抗器、转子位置检测器、光电编码器等到部分组成。

根据凡口矿生产的情况需要,本高压变频器按周期性的固定频率运行,早班(7:00~16:00)变频装置运行在40Hz,中班(16:00~19:00)运行在35Hz,在19:00~20:00期间为放炮时间,变频器运行于40Hz,20:00~23:00运行在35Hz,23:00~24:00期间为放炮时间,变频器运行于40Hz,0:00~3:00井下作业人员很少运行于28Hz,3:00~4:00期间为放炮时间,变频器运行于40Hz,4:00~7:00运行于28Hz。

经广州金粤节能服务站的节能测试及能量平衡测试,以及凡口矿老南风井的实际记录,在正常生产期间,节电率达42%;节假日时变频器运行于28Hz,节电率达73%。年节电为192.3万kWh,在不到一年的时间内,就由节电费用收回到了高压变频器的全部投资,经济效益十分显著。

(2)异步电机三电平高压变频器

在成功研制开发了老南风井同步电机直接高压变频器的基础上,根据深部开采的需要,对新南风井的矿井通风机进行改造,我院和有关单位合作,经过论证,最终决定采用引进WOODS轴流式风机和Siemens公司的SIMOVERTMV三电平高压变频器。该变频器的原理图如图4所示。

图4三电平变频器主电路原理图

但SIEMENS公司实际提供的这种三电平高压变频器的系统如图5的框图所示。

由图5可见,6kV高压电源经三绕组降压变压器降压,2组二次侧绕组(接法、Y),电压各为1.2kV,经各自的6脉冲整流桥整流成直流,直流电压为3240V(正负电压各为1620V)经三电平逆变器变频变压,可输出频率可变的0~2300V的三相交流电压;经滤波器滤波后,再经升压变压器升压至6kV,供给6kV高压电动机调速。

图5新南风井高压变频器系统框图

新南风井高压变频器原订为直接高压变频器,但由图5可见,这实质上是一台高低高式高压变频器,因为它不仅有降压变压器,而且也有升压变压器。不过经我们对其进行了计算机仿真,其结果表明,尽管它是高-低-高式高压变频器,但并不影响它在生产中的应用。

根据凡口矿目前的生产情况,高压变频器的运行情况是:白班和中班,高压变频器运行于40Hz,在晚班,由于井作业人员很少,高压变频器则运行于30Hz,在节假日,则运行于更低的频率。据此,计算出节电效果,年平均节电为56%,年节电357.9万kWh,节电效果显著达到了原计划的节电目标。

3.4关于球磨机、井下排水泵等是否可用变频调速的问题

球磨机、井下排水泵等设备容量大,都是矿山的高耗能设备。对于这些设备是否可以采用变频调速来实现节能运行呢?我认为,在这些设备上采用变频调速是达不到节能目的的。

我们应某金矿的委托,采用变频器对球磨机进行调速节能试验。当变频器的输出频率调整到48Hz和45Hz时,球磨机的电能消耗虽有所降低,但磨矿质量有很大降低,此时球磨机的出矿粒度由原来不调速时的300目粒度占99%,分别下降到90%和58%。可见这种工艺、设备条件下,不宜采用变频调速节能运行。

另外,我看到有的文章说,变频器用于井下排水泵站的节能[3]。我认为,这是不现实的。因为任何矿山为排出井下的涌水,都在井底设有水仓。值班工人根据水仓水位确定开仃水泵及开仃几台水泵,因此它不需进行流量的调节。所以,它不需要采用变频器。对于地面生活供水或工业供水的泵站,由于需要根据用水量的多少来调节供水量,在这种情况下,采用变频调速以调节流量,可达到节能的目的。

在矿山中,还有一些小型设备可以采用变频调速节能,如螺旋给料机、沙泵等,在此就不一一介绍了。

4选择变频器应注意的事项

变频器,特别是高压变频器价格昂贵,如选择不当,达不到节电和提高生产效率的目的,以致造成浪费和不必要的麻烦和损失。在这里,提供一些选择变频器的意见,供参考。

4.1根据工艺要求选择变频器

(1)电机调速虽是风机、水泵节能的有效途径,但并非凡是风机、水泵都能采用调速节电。对于工艺参数基本稳定,不需要调速的风机、水泵可以采用高效节能电机和高效节能风机,以提高系统效率。对于已建成而配置不合理的风机可以通过采用更换电机,调节叶片角度等方法达到节电的目的。选择调速节能时应注意:风机、水泵的转速变化范围不宜太大,通常最低转速不少于额定转速的50%,一般调速范围在100%~70%之间为宜,因为当转速低于额定转速的40%~50%时,风机、水泵本身的效率明显下降,是不经济的;调速范围确定时,应注意避开机组的机械临界共振转速,否则调速至该谐振频率时,将可能损坏机组。

(2)进行可行性分析

在选择要进行的变频调速的设备对象以后,应从提高效率或提高产品质量的需要情况,从节约电能的情况进行分析、计算,并与变频器的投资进行比较,计算出变频器的投资回收期。一般来说,如能从节约的电费或从提高产品质量、提高效率等方面所得的收益中,在两年内偿还变频器的投资,都应认为是可行的。同时还应分析外部条件是否满足变频器的使用要求。

(3)变频器的可靠性

变频器的可靠性如何,直接决定了变频器能否成功地应用于生产。这是选择哪种变频器的首要条件。有的矿山所购买的变频器可靠性不高,加之自身的维修技术力量不强,变频器出了故障,只好仃下,甚至弃用。造成损失,同时也为变频器的继续推广应用带来负面影响。

(4)根据生产厂家提供的技术规格和技术参数来选择变频器在按工艺要求、电源条件、场地及容量等选择了变频器方案后,再具体到选择哪个厂家的哪种高压变频器。在选择变频器时可以根据厂家提供的产品样本等技术资料及报价表来选择。

变频器的制造厂家和经销商都会向准备购买变频器的用户提供样本及报价。在样本中,厂家公开说明其产品种类、特性、技术指标和特点,用户在订货前通过对产品样本资料可以对其产品有大概了解。因此对产品样本的阅读和了解是比较各厂家变频器性能的重要依据。

4.2主要应考虑的技术规格和技术参数

(1)型号

各厂家生产的变频器的型号多是系列号和容量的组合,通过对型号和规格得了解,

可以确认该厂家生产的品种,对用户来说,不一定会使用到全系列的变频器,但可以从型号、规格、所采用的功率元件、控制技术等方面判断厂家的实力和生产态势,甚至可以从一个方面判断其产品质量。产品品种齐全,容量覆盖范围大,功率元件及控制技术先进的厂家,一般来说其实力强,生产态势好,产品质量一般来说也会有较好的保障。

(2)效率

变频器效率的高低,直接关系到变频器调速节能的多少,因为在变频器运行时,变频

器本体也要消耗一部分电能。一般来说直接高压变频器的效率都可达到0.97~0.98,而高-低-高式高压变频器由于多一个变压器的损耗,使其系统效率有所降低。

(3)功率因数

在整个调速范围内,功率因数的变化是一项重要指标。最好是在整个调速范围内功率因数都保持在0.95以上,以使其符合国家标准GB3485-83的标准,这只有电压型变频器和IGBT单相变频器串联的高压变频器能够满足此项规定。而电流型变频器较难满足这项要求。

(4)谐波

国家对电网谐波有严格要求。限制用户非线性谐波设备注入电网的谐波电流,是限制电网电压正弦波畸变的关键。所用的高压变频器的谐波(即装置对电网产生的谐波)必须符合国标GB/T14549-93“电能质量、公用电网谐波”的规定,在国际上要符合IEEE-519标准的规定。对于电流型变频器如采用六脉冲整流,则5次、7次谐波都超过了这个标准,应采用12脉冲整流或附加谐波补偿措施。

(5)输出容量和额定输出电流

变频器输出容量以kVA或kW表示,它代表可以供给电动机的输出功率。用kW表示时,一般以四极标准电机为基础考虑;用kVA表示,需进行核算。额定输出电流是在额定电压下变频器能够连续输出的电流值。在以输出容量为标准选择了变频器以后,还应对额定输出电流进行核算,以使电动机的额定电流不要超过变频器的额定输出电流。

(6)率范围

由最低使用频率和最高频率定义调速范围。最低使用频率的意思与起动频率不同。起动频率很小时,并不一定能使电机从该频率起动。变频器要对最高频率设定,对风机、水泵的最高频率应设定(即箝位)在50Hz,所有的变频器都可满足这个要求,在选择变频器时可不作考虑,但使用中需注意此点。

(7)电源容量和允许电压变化范围

供给变频器的电源容量应足够大,电源电压变化范围应在变频器允许的范围。用户在选择变频器时应根据自己电网容量及电网电压的变化情况,对变频器进行选择。曾有一个矿山因电压波动范围超过了变频器的允许范围,而使变频器不能正常应用。

(8)保护功能

变频器样本中一般表明其保护功能,这是为了检测出变频器的异常情况和防止外部原因及内部异常对变频器造成损害,保护变频器正常运行和变频器安全可靠。因此保护种类是否齐全、完善,从一个方面反映变频器质量和运行的安全可靠性。

(9)价格

变频器价格是用户最关心的问题之一,用户应了解厂家或经销商所报出的价格的具体含义和具体内容,及服务内容,以及任选件价格等。还应与其它厂家的变频器进行综合比较。

5结束语

《中华人民共和国节约能源法》第39条,已将变频调速技术列为通用节能技术加以推广。在矿山推广应用变频器节能是重要目的之一,如风机、水泵;同时也有提高生产效率、降低维修工作量、提高产品质量等目的,如电铲、牙轮钻机、矿井提升机等。在矿山应用变频器和其它工业部门有相同之处,也有不同之处,如电铲、牙轮钻机、矿井提升机等设备应用变频器有一豺特殊要求,所用的变频器还有一些技术开发工作要做。建议有关科研院所、变频器生产厂家和矿山用户共同合作,开发我国矿山设备使用的变频器。

本文的目的在于抛砖引玉。由于作者的水平有限,资料不够,经验不足,所述内容错误之处在所难免,所论观点也属一孔之见,欢迎读者和朋友们批评指正。

参考文献

变频技术论文篇(4)

一、引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

二、能耗制动

利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动。

其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。

一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。

三、回馈制动

实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。四、新型制动方式(电容反馈制动)

1、主回路原理

整流部分采用普通的不可控整流桥进行整流,滤波回路采用通用的电解电容,延时回路采用接触器或可控硅都行。充电、反馈回路由功率模块IGBT、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成。保护回路,由IGBT、功率电阻组成。

(1)电动机发电运行状态

CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。

(2)电动机电动运行状态

当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。

2、系统难点

(1)电抗器的选取

(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。

(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。所以笔者建议充电、反馈回路各采用一个电抗器。

(2)控制上的难点

(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。

(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。

3、主要应用场合及应用实例

正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列。

变频技术论文篇(5)

中图分类号: TN773 文献标识码:A 

1 PowerFlex 400P变频器中Modbus的应用 

1.1通信设置 

硬件连接好后,要激活变频器与外部设备之间的Modbus通信,需要设置如下参数(见表1)。 

1.2 技术参数 

2 S7-300 PLC中Modbus的应用 

S7-300PLC本身不支持RS485通信,需要通过串行通讯模板CP341来实现。 

2.1 Step7组态设置 

进入硬件配置画面,双击CP341模板,点击Parameter…配置参数,在Protocol选型中选择MODBUS Master,参照变频器设置波特率、数据位、停止位、奇偶校验等内容,设置好后需要通过Load Drivers装载到PLC中。 

2.2 程序设计 

变频技术论文篇(6)

 

在生产企业中,风机、泵类设备应用范围广泛;其电能消耗和诸如阀门、挡板相关设备的节流损失以及维护、维修费用占到生产成本的7%~25%,是一笔不小的生产费用开支。随着经济改革的不断深入,市场竞争的不断加剧;节能降耗业已成为降低生产成本、提高产品质量的重要手段之一.而八十年代初发展起来的变频调速技术,正是顺应了工业生产自动化发展的要求,开创了一个全新的智能电机时代。一改普通电动机只能以定速方式运行的陈旧模式,使得电动机及其拖动负载在无须任何改动的情况下即可以按照生产工艺要求调整转速输出期刊网,从而降低电机功耗达到系统高效运行的目的。八十年代末,该技术引入我国并得到推广。现已在电力、冶金、石油、化工、造纸、食品、纺织等多种行业的电机传动设备中得到实际应用。目前,变频调速技术已经成为现代电力传动技术的一个主要发展方向。卓越的调速性能、显著的节电效果,改善现有设备的运行工况,提高系统的安全可靠性和设备利用率,延长设备使用寿命等优点随着应用领域的不断扩大而得到充分的体现。

二、综述

通常在工业生产、产品加工制造业中风机设备主要用于锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。而最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了。在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。泵类设备在生产领域同样有着广阔的应用空间,提水泵站、水池储罐给排系统、工业水(油)循环系统、热交换系统均使用离心泵、轴流泵、齿轮泵、柱塞泵等设备。而且期刊网,根据不同的生产需求往往采用调整阀、回流阀、截止阀等节流设备进行流量、压力、水位等信号的控制。这样,不仅造成大量的能源浪费,管路、阀门等密封性能的破坏;还加速了泵腔、阀体的磨损和汽蚀,严重时损坏设备、影响生产、危及产品质量。风机、泵类设备多数采用异步电动机直接驱动的方式运行,存在启动电流大、机械冲击、电气保护特性差等缺点。不仅影响设备使用寿命,而且当负载出现机械故障时不能瞬间动作保护设备,时常出现泵损坏同时电机也被烧毁的现象。近年来,出于节能的迫切需要和对产品质量不断提高的要求,加之采用变频调速器(简称变频器)易操作、免维护、控制精度高,并可以实现高功能化等特点;因而采用变频器驱动的方案开始逐步取代风门、挡板、阀门的控制方案。变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:n=60f(1-s)/p,(式中n、f、s、p分别表示转速、输入频率、电机转差率、电机磁极对数);通过改变电动机工作电源频率达到改变电机转速的目的。变频器就是基于上述原理采用交-直-交电源变换技术,电力电子、微电脑控制等技术于一身的综合性电气产品。

三、节能分析

变频技术论文篇(7)

2变频调速技术的应用

使用PID控制器和可编程控制器(PLC)控制技术来控制变频器,反向,速度,加速,减速时间,实现各种复杂的控制,为适应煤矿提升,压风,排水,电牵引采煤机设备的要求。提升机PLC,PID变频控制技术更为复杂,这里不介绍了。压风机为例,对变频调速控制技术和功能的应用,证明变频调速技术的优越性和经济效益的描述。在正常操作压力风机,当罐内压力达到规定的压力,通过压力调节器处于闲置状态,风机的压力,为了降低储罐压力,当气体储罐压力低于规定压力,机器正常使用工作。但空气压缩机输出压力波动较大,不能达到理想的空气压力,直接影响到气动工具的正常运行。在变频技术的使用,确保空气压缩机输出压力保持不变,总是让空气压缩机输出压力保持在正常的工作压力水平,大大提高煤炭生产效率。与传统的PID控制对比,检测信号反馈给变频器控制量,以控制变量的目标信号进行比较,以确定它是否是预定的控制目标,根据二者之间的差异进行调整,达到控制目的。如储气罐压力超过目标值(气舱压力给定值),应调节压缩空气同气舱压力值近视平衡。相反,如储气罐压力低于目标,应调节储气罐压力同目标压力近视平衡。通过对变频调速技术在压风机上的应用,可以达到空气压缩机输出压力基本上保持恒定的生产价值的需要,空气压缩机输出压力始终保持在最佳状态下生产。

变频技术论文篇(8)

二、变频技术的应用

(一)变频技术的具体方法

科学家在实践中总结,变频技术有利于充分利用资源,与传统的技术相比,变频技术在实践中取得重大效果,不但有效减少资源的浪费,而且利于我国科学研究。变频技术在人们日常生活中非常常见,变频技术广泛应用于电力行业、机械行业和其他多个行业。在生产中,变频技术有显著的节能效果,因此受到各个业界的广泛应用。变频技术在矿产开发的过程中,节能效果更为显著。在矿产开发过程中良好利用变频技术,利于资源合理开发,从而为资源的可持续利用做出贡献。

(二)变频技术应用的必要性

我国矿产资源在世界排名居先,但人口压力过大,人均矿产资源占有量排名落后,因此只有合理的矿产资源才能适应我国国情。近年来,矿产资源过度开采,致使矿产资源的总量飞速减少[2]。我国经济飞速发展,使用矿产资源的公司日益加大,企业间的竞争激烈,对矿产资源的开发力度加大,但企业在开发过程中忽视资源的合理开发,造成资源浪费。变频技术能实现节能,在矿产资源开发过程中使用变频技术,从而实现对矿产资源有效节约。变频技术还可以降低矿产开采时造成的污染,这不但为我国环保事业做出贡献,更利于企业可持续发展。

(三)变频技术的使用意义

矿产资源在开发过程中的资源浪费是最严重的开采问题之一,资源浪费影响矿业发展,对能源可持续利用和企业发展造成严重危害,威胁国民经济发展,矿产资源开采主要问题是资源浪费,通过变频技术降低矿产开发时造成的矿产资源浪费,保证开发生产的顺利进行,提高了矿业生产效率,促进国民经济增长,合理的矿业开发也有效提高开发质量,避免资源浪费。我国作为人口大国,资源的合理利用非常关键。人是推动社会发展的核心,在生产和生活中只有提高人的主观能动性,才能为企业带来利润。科学的变频技术增强员工对矿产资源开发的热情,员工对工作的内容有认同感,提高员工工作积极性,有效提高生产力。矿产资源的是我国经济发展命脉,只有良好合理的矿产开发才能推动经济发展[3]。

变频技术论文篇(9)

2短路法和低频加热技术

2.1短路法加热

由于工频电源的易于获得,工频短路法加热变压器绕组的方法最先被采用[2]。短路法的基本原理是将换流变压器一侧绕组(通常为阀侧绕组)短路,从另一侧绕组(通常为网侧绕组)施加交流电压,使绕组内部流过电流(应控制不超过其额定电流),使绕组内部发热,从内部将变压器器身绝缘均匀加热到指定温度,再经过抽真空和热油循环处理,带出绝缘内的潮气,从而达到干燥的效果。短路法是绕组从器身内部加热,能大大提高效率,缩短加热时间,器身的干燥效果优于普通的热油循环效果。其使用的设备及接线完全与变压器负载试验相同。但是工频短路法有诸多缺点难以在现场实施。工频短路法需要用到调压器、升压变、补偿装置等大型设备,设备布置和接线工作量大;试验电压为变压器阻抗电压,高达几十kV,且试验占地面积大,进行短路法加热干燥时需要大量的人员长时间值班看守,现场安全难以把控。因此,工频短路现场加热干燥方法补偿电容器组容量大,使用的调压器、中间变压器均为体积大、重量重的大型设备,不便现场应用。实现整体加热装置的小型化,在保证加热能力的同时满足移动方便的要求,是研制现场短路法加热装置的难点。当换流变压器电压等级升高、容量增大时,利用这种基于调压器的短路法进行变压器现场加热更为困难。

2.2低频加热的电压及容量

工频短路加热存在的局限性,可以通过降低频率的方法进行克服,也即低频加热技术。变压器的短路状态下的等效电路如图1所示,其阻抗为Z=R+jωL。在工频状态下,jωLR,因此减小频率ω可以显著减小阻抗电压。当然在频率减小到一定程度后,R的大小不再可以忽略不计,进一步减小ω不会引起阻抗电压的降低。当频率足够低时,jωLR,变压器阻抗电压主要有变压器的直流电阻决定。图2显示了阻抗电压及无功容量与频率的关系。从图中可以明显地看出,阻抗电压总体上与频率成正比,当频率接近零时,阻抗电压趋近于常数,该常数即为变压器直流电阻与短路电流的乘积。无功容量与频率成正比。因此通过降低频率不单降低了阻抗电压,还降低了无功容量,提高了加热电源的功率因数,避免了用大容量的补偿装置。相比于工频短路加热,低频加热技术明显地能够克服其局限性。对于特高压换流变压器,频率低至1Hz以下时,其阻抗电压低于1kV,通过简单的绝缘措施就可以保证安全,避免大量的安全监护人员长时间值守。同时升压装置和补偿装置都可以省略,大大减少了设备占地面积,减少了现场工作量,提高了工作效率。

2.3低频加热电源干燥效果的仿真

采用基菲克第二定律描述电力变压器干燥处理的水分扩散模型,建立有限元模型进行模拟对比低频加热和传统的热油循环干燥处理效果。低频加热和热油循环组合使用时会是干燥处理效果得到明显改善。模拟考虑了5mm的绝缘纸片,原始水分含量为5%。模拟干燥时间为7天。干燥方式分为油循环干燥方式及加低频加热,热油循环温度为60℃和80℃两种油温条件,有低频加热时将油温度分别加热到80℃,95℃和110℃等三种情况。图3可以观察到热油循环在60℃时(没有低频加热)的干燥过程,以及同样的油温下采用低频加热温度为80℃,95℃和110℃的情况。当热油加热没有低频加热时,曲线的坡度是平的,因此干燥过程非常慢。这是因为在60℃时,绝缘材料的水分扩散系数很低,绝缘纸中的水分迁移速度很慢。根据模拟,在这种情况下,干燥7天之后,水分含量降低到2.4%。而降到2%的水分含量(按照IEEEStd62-1995的规定)需要的处理时间则长达255h。如果采用低频加热的方式,完成干燥处理会更快。使含水量降低到2%所需要的干燥时间会随着绝缘材料温度的增加而减少,低频加热80℃所需时间为64.5h,95℃为25.5h,110℃为10.7h。低频加热7天,三个加热温度下最终的纸板含水量将分别达到1.4%,1.3%和1.2%.当在热油循环80℃的油温下采用低频加热,获得的模拟结果如图4所示。在这种情况下,不同温度的最终含水量彼此很接近。然而当采用低频加热时,在开始处理的几个小时之内就可以达到最终含水量。这种方式的干燥处理节约大量的处理时间和电力,是非常经济的。然而以上模拟结果以及讨论均是基于模型的Foss扩散系数进行推论的,然而实际的试验数据则显示该模型的扩散系数太过乐观了,实际的干燥时间会比这个模型估计的干燥时间要长。即使如此,以上的讨论和研究也是很有价值的,例如通过模拟推论的结论在趋势上是正确的。

3低频加热电源的研制

3.1电源容量

按照现场应用经验,发热电源的发热功率(有功)达到换流变负载损耗的60%左右即可满足现场加热的需要。(6)式中:cosφ是功率因数,采用基于方波调制的交交变频技术方案功率因数接近1,此处取0.98;η是电源效率,该方案电源自身损耗较小,效率是较高的,可以取90%。最大加热容量为819.7kW,因此根据上式加热电源功率应为P=930kV•A,则能满足大部分场合需求。

3.2电压与电流

考虑到施工现场电源接线的方便和安全性,加热电源输入电压选择380V,输入电流1413A。由于直接由380V整流后的直流电压最高仅537V,对于部分变压器该电压即使在直流情况下也无法达到额定电流相当的加热电流,因此需要配备升压变压器提高整流桥电压。设升压后线电压为U,则直流电压近似为槡2U。

3.3整流桥与驱动电路

3.3.1晶闸管的选型变频技术电源工作电压为700V,工作电流为1200A。晶闸管的最大电流与电源的工作额定电流相等,最大电压为相间电压的一半。为了整个系统的安全可靠,根据晶闸管选用惯例,晶闸管电压选为大于其最大承受电压的2倍以上,额定电流为工作最大承受电流的3倍以上。因此晶闸管最终选型为南车公司的1000V/46000A晶闸管。

3.3.2整流桥的控制方式

不同的被加热换流变压器具有不同等效直流电阻,一定的加热电流情况下,变频电源的工作电压是不同的。为了较好地调节低频加热电源的工作电压,交-交变频技术法的低频加热电源应采用可控整流的方式,通过控制导通角来调节电压。同时,为避免两个反向整流桥同时导通造成电源的短路,应首先将前一个工作整流桥关闭触发脉冲,等全部整流桥中的晶闸管自然关断后再启动另一个整流桥,实现电流的极性发转。

3.4测量和控制系统

整流桥工作在全波整流工作状态,可以用电平触发的方式进行控制,为了避免两个反向的整流桥同时导通导致电源短路,开通一整流桥之前必须确认对侧整流桥已经全部关断。检测方法是通过检测负载电流过零比较结果与方波输出相。若需要调节导通角α,则不能采用电平触发,而用脉冲触发。以AC相线电压为参考电压,当线电压正向过零时延时180°-α角度后给晶闸管1发出触发脉冲,其余各晶闸管的触发脉冲依次再延迟60°角触发。但是触发脉冲的可靠性不好,因此不建议调节导通角,本方案仍采用电平触发的方式。作为加热电源,需要有调节输出电流的机制。根据式(13),输出电流与频率有关,通过控制频率可以比较方便地控制输出电流。式(13)仅是电流波形的近似计算公式,当频率较高时,电感未充电完成即撤去整流桥触发电平,负载电流就会进一步减小,电流波形如图5虚线所示。可见进一步提高调制频率,可以继续减小负载电流,直至减小到接近于零。所以通过控制调制频率完全能够实现加热电流的零起上升。

4低频加热电源的现场应用

4.1加热对象

加热对象为哈密换流站低端换流变压器极IIYDB相,变压器的主要参数如下:额定容量405.2MV•A;额定电压530/槡3+23-5×1.25%/171.9kV;额定电流1324.2A/2357.2A;阻抗电压19.71%;直流电阻(20℃)网侧0.16131Ω,阀侧0.05492Ω;生产厂家为特变电工沈阳变压器集团有限公司。

4.2试验接线

低频加热电源从400V低压配电室获取电源点,单相输出线连接到换流变压器网侧套管和中性点端子上,阀侧两套管短路线连接。连接图如图6所示。

4.3加热结果

该换流变油重138t,为其加热的两台滤油机加热功率共为120kW×2=240kW。由于现场环境温度较低,采用传统工艺完全利用滤油机工作,滤油机出口油温保持70℃情况下,经过48h换流变下层油温达到35℃后,随后增长缓慢,安装人员经验时间为3~5d才能到达需要保持的油温60℃。当晚20:33至第二日凌晨6:30,采用湖北电科院设计的低频加热电源,结合滤油机,仅用了10h就将换流变下层提升了近50℃,之后利用滤油机使油温达到安装要求。

变频技术论文篇(10)

2榨季后期

当没法通过频率调整来降低蔗渣转光度和蔗渣水分时,我们结合调整榨机前后辊尺寸和调整频率的试验。先通过中期湿榨试验(五),得出以下结果,见表5。从湿榨试验(五)结果分析:第一,第一座收回率不算高,还有提升空间,可再调整。第二,第五座纤维分比第四座低,违反各座榨机纤维分应有规律地上升这一规律,说明这座效能低。第三,各座榨机经过长时间运行,前、后辊及顶辊都出现磨损,应进行调整,同时榨机负荷轻,应结合调整。根据以上分析作出以下调整:第一,第一座收前辊调整螺栓使入口缩小2.4mm、后辊调整螺栓使出口缩小1.6mm,榨机频率调整为45Hz,油压为18MPa。第二,第二座收前辊调整螺栓使入口缩小1.6mm、后辊调整螺栓使出口缩小2.4mm,榨机频率调整为40Hz,油压为18MPa。第三,第三座收前辊调整螺栓使入口缩小1.6mm、后辊调整螺栓使出口缩小2.4mm,榨机频率调整为40Hz,油压为18MPa。第四,第四座收前辊调整螺栓使入口缩小1.6mm、后辊调整螺栓使出口缩小2.4mm,榨机频率调整为40Hz,油压为18MPa。第五,第五座收前辊调整螺栓使入口缩小2.4mm、后辊调整螺栓使出口缩小2.4mm,榨机频率调整为38Hz,油压为20MPa。经调整后运行正常,没有出现电机发热现象,蔗渣转光度和蔗渣水分明显降低。查定得出以下结果,见表6。经过上述调整,榨机在运行过程中根据化验室给出的数据,结合榨机电机电流,我们及时调整各座榨机的频率,使蔗渣转光度稳定在2.0%以下和蔗渣水分控制在50%以内。各座榨机的频率最低可调整至第一座40Hz、第二座32Hz、第三座33Hz、第四座35Hz、第五座35Hz。

3下雨天或甘蔗砍运接不上日榨2000吨甘蔗的变频调速应用和研究

在我们这里离城市很近,附近又是工业园,砍蔗民工很缺,甘蔗经常接不上,特别是下雨天,就要通过减少日榨量来配合,以避免断槽。象这样的情况,以前我们单靠调整榨机出入口是没法降低蔗渣转光度和蔗渣水分,抽出率很低。而且甘蔗一接上又要提高榨量调整榨机,很麻烦且容易出现调整错误,损坏榨机。为此,我们进行了试验。下面是我们在榨机没有变频调速时湿榨试验(七)得出的结果,见表7。从湿榨试验(七)结果分析:第一,第一座收回率太低,影响到全机列的收回率,应作为重点调整。第二,第五座蔗渣纤维分比第四座蔗渣纤维分虽然有提高,但提高很少,效能不高,应调整。第三,各座榨机蔗渣水分偏高,影响收回率,应调整。第四,各座榨机蔗渣转光度偏高,影响收回率,应调整。第五,各座榨机负荷很轻,应进行调整。根据以上分析作出以下调整:第一,第一座榨机频率调整为35Hz,油压为20MPa。第二,第二座榨机频率调整为31Hz,油压为20MPa。第三,第三座榨机频率调整为31Hz,油压为20MPa。第四,第四座榨机频率调整为33Hz,油压为20MPa。第五,第五座榨机频率调整为35Hz,油压为20MPa。经调整后运行正常,没有出现电机发热现象,蔗渣转光度和蔗渣水分明显降低。查定得出以下结果,见表8。

4产生的效果和效益

通过榨机变频调速技术我们发现榨季停榨后榨机磨损很小且安全率高,运行平稳,同时解决了常见的塞辘问题。根据有关资料:蔗渣转光度每降低0.1%,压榨收回率提高0.2%。蔗渣水分降低1%,压榨收回率提高0.08%。而压榨收回率提高1%,产糖率可提高0.116%,我们公司这些榨季通过榨机变频调速技术,抽出率明显提高且稳定在96.5%。产糖率由11%提高到上榨季的12.04%,预计2014/2015榨季可达12.3%以上。

上一篇: 生产采购明年工作计划 下一篇: 一天工作总结
相关精选
相关期刊