勘察工程论文汇总十篇

时间:2023-03-03 15:44:35

勘察工程论文

勘察工程论文篇(1)

对于旧有道路改造的项目,原有的地形地貌与目前是否一致,是要考虑道路建设对原有地形地貌的影响。因为拟建道路的勘察是在道路未建的情况下进行的,当道路建设后,除该地方平坦,道路建设没有挖方和填方外,地形地貌都会有不同程度的变化。但是对于地质构造,在道路使用寿命期的十几年,即便是几十年里,也基本不会有变化。因此对于以前的详细勘察资料应参考采用,同时结合现场情况对地形地貌做适当的调整。

1.2场地地层和水文地质条件

根据地质条件演变规律,道路场地地层是不会有变化的,但不可忽略人为改造的可能。主要通过查找原设计和施工记录,结合现场调查了解是否存在大的挖方和填方问题,特别是高边坡工程的影响,特别注意的是路基和路面的改变,在道路建设过程中,往往会清除表层的杂填土,对于路基部分则通过分层碾压,保证路基的压实度。对于深层地层,如果不存在挖方和填方的,地层是不会有变化的。近些年来,地区气候发生变化,地区降水各年度有所不同,因而地下水位会改变。另外也要调查道路沿线地下水的开采情况,以及影响地下水的补给和排泄条件的变化。应查明地下水变化的原因,预测道路使用期地下水位对拟建道路的影响。除此之外,也应考虑道路沿线工业建设对地下水的污染情况,查看道路结构的腐蚀性情况,分析地下水对道路结构的腐蚀性。

1.3场地岩土物理力学性质

场地岩土物理力学性质是否变化则比较复杂,道路建设之前,道路地层受到外界的影响较小,场地岩土物理力学性质各年变化不大。但在道路建设之后,过往车辆的碾压,改变了岩土力学性质,对于一般的粘土强度状态变硬,对于砂土则变密实,对于软土,由于车辆碾压作用,状态则可能会变的更软。一般情况下,道路建设后,沿线地层3m以内会有不同程度的变化。深层则变化较小,针对这一点,本文将结合工程实例,进一步分析。对于岩土含水量的变化则与地下水位的变化有关,一般地下水位升高,由原来的地下水位以上变为地下水位以下,含水量会增加,反之,含水量会降低。对于粘土处于毛细水能达到的地层,也会有不同程度的变化。

1.4场地稳定性评价和地震效应

对于道路项目,除非道路经过的地方存在地下工程,场地稳定性一般不会有变化。对于一些特殊地区,如存在地下采矿区,会影响地基的稳定性,应重新评定场地的稳定性。在确定场地稳定性之前,应在查看拟建期勘察报告的基础上,对道路沿线进行调查。对于场地的地震效应,应在查看拟建期勘察报告中的测试资料的基础上,调查道路运营期沿线区域是否存在地震液化,发生地震时的不利情况。另外也要考虑拟建建(构)筑物对道路的影响。

1.5岩土工程重点分析评价内容

重视踏勘和资料的收集工作,对所有的岩土工程勘察都非常重要。获取资料能够帮助我们了解现场的实际情况,准确客观的分析和评价。结合现行市政勘察规范可知,道路工程详细勘察阶段重点分析评价的内容包括10条,对于特殊岩土包括6条内容。对于道路路基干湿类型划分发生了变化,评价过程中,在充分考虑表层土含水量变化的基础上,注意两规范的区别。道路工程勘察报告评价应全面,评价结果应合理。岩土工程评价还包括对于岩土分布特征、提供道路设计所需的岩土参数,以及地下水和地表水对工程的不利影响,不良地质作用的分布及其对工程的影响,分析评价高路堤的地基承载力、稳定性,评价挖方路堑段岩土条件、地下水对支护结构的影响等等。对于特殊性岩土,还要根据规范,进行一些特殊的分析评价。对如湿陷性土路基,还应评价路基的湿陷程度;对冻土路基,分析评价融沉(融陷)对道路工程的不利影响;对膨胀土路基,评价膨胀岩土地基的变形特点;对软土路基,预测路基沉降量,分析沉降与时间的关系;对厚层填土路基,评价地基承载力,提供路基沉降计算参数;对于盐渍土,评价其地基的变形特点和对路基、路面、边坡的危害程度,评价盐渍土对工程材料的腐蚀性,提出病害防治措施的建议。这些特殊土,在道路运营期会产生不同程度的变化,如湿陷性土路基经过浸泡后失去湿陷性,软土路基失水后硬化,盐渍土经过改良而失去盐渍性。因此,在评价之前,应在查看拟建期勘察资料的基础上,现场取样和原位测试相结合进行分析。

2勘察工作量

2.1勘察点布置

市政道路一般位于城市区域、为线状勘察范围,其地质勘察的手段、方法与其他建(构)筑物工程勘察有较大区别,因此在确定工作量的时候,应充分考虑工程特点。市政工程勘察规范2012版对勘探点的布设进行了细化,分初步勘察和详细勘察2部分。通过对原94版市政工程勘察规范和2012版规范进行对比,就详细勘察孔的布设情况,分析相同点和不同点。相同点包括:(1)勘探点沿道路中线布置;(2)公交站场和城市的道路与地面可按方格网布置勘探点;(3)每个地貌单元和不同地貌单元交界部位均应布置勘探孔,同时,在微地貌和地层变化较大的地段予以加密。不同点包括:(1)对于沿线的布设,新规范增加一般路基的道路宽度>50m、其他路基形式的道路宽度>30m时,宜在道路两侧交错布置勘探点,当路基岩土条件特别复杂时,应布置横剖面;(2)广场、停车场的勘探孔布设,新规范增加勘探点间距50~100m;(3)详细勘察阶段道路勘探点的间距可根据道路分类、场地和岩土条件的复杂程度确定;(4)增加路堑、陡坡路堤及支挡工程的勘察要求;(5)增加线路通过填埋的沟坑和暗藏的古河道、沟、浜等地段时的勘察要求。从以上对新旧规范勘探点布置要求分析结果可知,在利用旧有勘察资料的时候,应结合新的标准,当确认原有的勘察孔可以利用时,应结合新的标准增加适当的工作量。

2.2勘察点深度确定

了解工程勘察点的深度,首先对新旧市政工程勘察规范进行比较,分析它们之间的相同点和不同点。经过认真比较,新旧规范勘探孔深度的要求相同点包括:(1)对于场地分布有填土、软土和可液化土等不良土层,应适当增加勘探孔深度;(2)勘探孔应钻(挖)入基岩一定深度,查明基岩风化特征;(3)对于高陡坡、高填方路堤,勘察孔深度应满足稳定性和变形评价及地基处理的要求。新旧规范勘探孔深度的要求不同点包括:(1)对于一般路基,旧规范要求达到原地面以下2~3m,而新规范要求达到地面以下5.0m;(2)对于挖方路段,旧规范规定应达到路面设计标高以下2~3m,而新规范规定宜达到路面设计标高以下4m;(3)对陡坡路堤、路堑、支挡工程,新规范的要求更加严格。因此,在了解拟建勘察资料的基础上,结合现场情况确定勘察孔位置和孔深度。

2.3取土(水)样和原位测试

取土样和水样及原位测试的内容为勘察的主要内容,应按照行业规范的要求布置工作量。研究拟建期勘察的时效性,应重点了解这部分内容,当然也是要考虑新旧规范相同点和不同点。经过综合分析和比较,相同点包括:(1)采取土样的竖向间距应按地基的均匀性和代表性确定,在原地面或路面设计标高以下1.5m内,取样间距为0.5m,其下深度可适当放宽;(2)划分路基土类别和路基干湿类型,应进行颗粒分析、天然含水量、液限、塑限试验;(3)对高填路堤和陡坡路堤,需要时对筑填土料进行击实试验。不同点包括:(1)新规范增加软土地区高路堤宜进行固结试验(提供Cv、Ch)、现场十字板剪切试验或室内不固结不排水试验及无侧限抗压强度试验的内容;(2)新规范由“全部勘探点均应采取土试样”改为“一般路基的钻孔均应采取土样,髙路堤、陡坡路堤、路堑、支挡结构采用土试样和进行原位测试勘探孔的数量不应少于勘探孔总数的1/2,控制性勘探孔的比例不应少于勘探孔总数的1/3”;(3)新规范更加细化和明确,避免引起歧义的内容,执行更方便。在了解新旧规范差别的基础上,分析土试样和水试验测试结果可能产生的差异,重点在通过目前的采样试验结果与以前进行对比。对于原位测试的内容,从理论上分析,如果是浅层岩土,会有一定程度的变化,深层岩土则变化不大,应通过试验结果进行比较。在进行原位测试时,应严格按操作规程执行,同时应分析现场可能影响结果的因素。

3工程实例分析

3.1工程概况

某县城城区道路改造工程,现场查看表明,道路破坏严重,50%的路基已经出现翻浆,其余为网裂、沉陷和变形破坏等多种病害。已经严重影响正常的交通运行,因此该县城道路主管部门拟对该道路进行改造建设。因该工程存在路基破坏现象,因此需要进行道路工程勘察。

3.2勘察方法

在研究拟建期的勘察报告之后,我们组织有关勘察技术人员对该工程进行了充分的讨论,同时征求道路设计工程师的意见。大家一致认为对道路路基破坏的部分应重点勘察,而对于路面网裂为主的道路部分,则利用拟建期勘察资料,采用现场调查为主、钻探为辅的方法。查阅拟建期勘察报告,资料显示该场地路基以下的地层为:①粉质粘土层,厚度为1.2~2.1m;②中粗砂层,层厚为1.8~2.6m;③砾砂层,最大揭露厚度5.0m。从测试结果看,②层中粗砂为松散~稍密状态,③层砾砂以中密状态为主。从道路影响深度范围来看,理论分析主要为①层粘土、②层中粗砂,而对于③层砾砂层,对道路运营影响则不大。对于该项目,进行现场标贯测试,共进行24次标贯试验。从试验结果看,②层中粗砂为稍密~中密状态,③层砾砂层为中密状态。中粗砂层的密实性提高,砾砂层提高则不明显。从地层深度范围来看,4.0m以内为主要影响深度范围。对于①层粉质粘土,以路基破坏为主的路段,性质变化较大;而以网裂破坏为主的路段,性质变化不大。因粘性土的影响因素较多,除受到上部荷载的影响外,还受到地下水位、降水以及季节气候影响等等。粘性土性质变化相对复杂,因此需要对大量的试验资料进行分析研究。

勘察工程论文篇(2)

另一方面,在软件正版化的今天,国产CAD软件的需求在不断增加,很多岩土工程勘察软件在正版化进程中存在一定危机。

为了解决以上问题,本文探讨了采用VC++开发语言,采用面向对象的技术,分别实现图形类库、岩土工程数据类库,将岩土数据管理和图形操作紧密结合,更为重要的是开发出的软件具有自主知识版权。

2总体设计

分析岩土工程勘察软件的社会需求,软件功能可以分为两个部分:一是岩土工程勘察数据的管理,包括数据输入、编辑、导出、数据分析计算等;二是绘图功能,包括绘制平面图、剖面图、柱状图等。

根据以上分析,采用面向对象的技术,分别建立岩土工程数据类(Geo类)和绘图类(CMap类)。

Geo类功能:工程概况数据、场地地层数据、原位测试数据(静力动探数据、动力触探数据、波速试验数据、标准贯入数据等)、勘探点数据、土工试验数据、取土数据等。分别建立类,各类间层次关系如下:

CProject岩土工程类

CDksj勘探点类

CTysj取土类

CDtsjN63.5数据类

CBgsj标准贯入数据类

……

CDcsj场地地层类

图1工厂概况数据输入

图2勘探点数据输入

图3土工试验数据输入

CFcDtsj分层统计数据类

CFcBgsj分层统计数据类

CFcN10sj分层统计数据类

CFcN120sj分层统计数据类

CTongji数理统计类

CMap类功能:绘制各种图形元素,包括点、直线、多段线、椭圆、园、圆弧、矩形、多边形等。实现图元的编辑、修改、信息查询等功能。

CGraph图形类

CDraw图形元素的基类

CPint点类

CLine直线类

CCircle园类

CArc圆弧类

CRectang矩形类

……

图1工厂概况数据输入

图2勘探点数据输入

图3土工试验数据输入

3系统功能

在栅格图形和矢量图形下,可以方便地交互,布置勘探点、输入地物数据等操作,具有可视化程度高的突出特点。主要数据输入界面见图1、图2和图3。

3.2统计分析

图4统计数据的交互取舍

图5数理统计结果

于各种分层统计数据,进行可视化的人工取舍,人工交互舍弃统计数据、统计结果等见图4、图5。

3.3绘图

钻孔柱状图、工程地质剖面图、勘探点平面布置图等,见图6和图7。

图6绘制钻孔柱状图

3.4勘察报告

采用COM技术,引入MicrosoftWord类库,自动生成Word格式的报告,方便快捷、报告格式标准、实用,节省大量报告编制时间。实现步骤:首先建立勘察报告模板,将岩土工程相关数据、统计结果、软件自动生成的相关表格等作为书签插入文档模板中,形成最终的勘察报告。

4结论建议

(1)采用面向对象技术,降低了软件开发的难度,对今后软件功能进一步扩充打下了坚实的基础。

勘察工程论文篇(3)

一、工程勘察中水文地质工作内容

根据以往的经验和教训,对水文地质勘察工作主要有以下几方面内容:

1、查明地层的分布特征,尤其是砂岩类(含水层)和泥岩类(相对隔水层)的分布、厚度、裂隙发育程度以及泉点的分布,以此分析地下水的补给、径流与排泄特征。对地下水作水质成果分析时,注意同一含水层或不同含水层各种阴阳离子的含量变化与对比,根据结果作出定性分析变化较大产生的原因。查明有关水文地质问题,提供选型所需的水文地质资料,并预测可能产生的岩土工程危害,提出防治措施。

2、从工程角度上分析,按地下水对工程的作用与影响,提出不同条件下应当着重评价的地质问题,如:

①对埋藏在地下水位以下的建筑物基础中水对砼及砼内钢筋的腐蚀性。

②对选用软质岩石、强风化岩、残积土、膨胀土等岩土体作为基础持力层的的建筑场地,应着重评价地下水活动对上述岩土体可能产生的软化、崩解、胀缩等作用。

③在地基基础压缩层范围内存在松散、饱和的粉细砂、粉土时,应预测产生潜蚀、流砂、管涌的可能性。

④当基础下部存在承压含水层,应对基坑开挖后承压水冲毁基坑底板的可能性进行计算和评价。

⑤在地下水位以下开挖基坑,应进行渗透性和富水性试验,并评价由于人工降水引起土体沉降、边坡失稳进而影响周围建筑物稳定性的可能性。

3、不仅要查明地下水的天然状态和天然条件下的影响,还要分析预测在人类工程活动中地下水的变化情况,及对岩土体和建筑物的反作用。

二、工程勘察中水文地质实践

以某地考察为例,该工程地处低山区和丘陵地带,其主要地层为三叠系须家河组砂泥页岩互层,也属自贡主要含盐卤水区。砂岩多为含水层,而泥页岩为相对隔水层,独立含水层系统较多。因此,该地区水文地质勘察对于防渗论证具有重要意义。

1、工程地质概况

该工程处于高山背斜核部一带。高山山脊线呈北东东―南西西向延伸,与构造线基本一致,高山地形整体趋势为北东高而南西低,顺两翼地貌由低山逐渐过渡为丘陵。而工程头尾部分分别位于高山背斜北南两翼,其核部发育为F1高山断层(上游)、F2瓜瓢洞断层(下游),两断层互为对冲式。

区内地层共分为六段,第四段分三层,第三段共分七层。地表泉点分布于河床两岸,泉点多分布在砂岩与下部泥页岩分界面附近,为接触泉,长观资料表明,大多数泉点流量随季节降雨量变化较大。

区内地下水按其含水层性质和埋藏条件主要分为第四系松散堆积层孔隙潜水、基岩裂隙潜水、基岩裂隙承压水三种类型。孔隙潜水主要分布于河床、漫滩的松散堆积层中,且覆盖层较薄,水文地质意义不大,对工程影响甚微,故主要是讨论基岩裂隙潜水、承压水两种类型。

2、水文地质条件分析

2.1基岩裂隙潜水

基岩裂隙潜水主要分布在Ty4-3层和Ty4-1砂岩层中。Ty4-3层由于所处位置较高受风化卸荷影响,裂隙较发育,不利于地下水贮藏,仅砂岩层底部靠Ty4-2层局部有地下水出露,其水化学类型为重碳酸钙型水,矿化度为150~200mg/L。该泉点表明,该泉点流量随季节性变化明显,而其它该层中钻孔长观表明,水温及水位年变化较小。

Ty4-1层底板处于河床以下,由于河流切割,地下水埋藏于此层下部,水位略高于河水。地下水化学类型为重碳酸钙镁型、重碳酸钠型、氯重碳酸钠型水,矿化度为132~850mg/L。各钻孔终孔水位表明,该层地下水位线平缓。

2.2基岩裂隙承压水分析

基岩裂隙承压水主要分布在Ty3-5、Ty3-3、Ty2层砂岩中,其特征见表1。

表1承压含水层特征及涌水试验成果表

Ty3-5层含水层厚度约为20~28m,以Ty3-6、Ty3-4层为相对隔水顶底板。工程段初始水头较稳定,高程为348~350m,由于岩层倾向下游,倾角为10~12°,其实际水头为50~80m甚至更大。本层水化学类型为氯钠型水,矿化度为2000~10000mg/L。长观资料表明,其水化学动态稳定。在工程轴线上游分布一上升泉,出露高程也与钻孔揭示的初始水位基本一致。

Ty3-3层含水层厚度约为30m,以Ty3-6、Ty3-4层为相对隔水顶底板。工程段承压水头高程约为370m,高出含水层顶板约为100m。本层水化学类型为氯钠型水,矿化度为10000~12000mg/L。长观资料表明,其水化学动态稳定。

Ty2层含水层厚度约为70m,以Ty3-2、Ty3-1层为相对隔水顶板。据CK15、CK3钻孔表明,其水头地面超高分别为47.5m、55.22m。CK15钻孔涌水量较大,最达951.87m3/d,钻孔水化学类型为氯钠型水,矿化度为2650mg/L,其水化学动态稳定。

2.3岩体透水性特征

钻孔压水、抽水、涌水试验表明:工程段岩体透水性受岩层分布、风化卸荷、裂隙发育程度、连通性、以及软弱夹层的分布特征等控制。特征如下:

(1)Ty4-2、Ty3-6、Ty3-4等岩层主要为泥页岩,岩体透水率大多小于1lu,透水性微弱,可视为相对隔水层。

(2)Ty4地层两岸砂岩随着深度的增加,岩体透水性逐渐减弱,但受裂隙发育程度的影响,局部透水率较大,大于100lu,属强透水层,且其分布规律性不强。一般而言,钻孔深50~70m以下,岩体透水率小于3Lu。河床中Ty4-1砂岩含水层由于位于谷底,由于层面及构造裂隙发育,与地表水水力联系明显,单位涌水量多在1L/sm以上,且涌水量随降深增加不明显;抽水试验成果表明,Ty4-1河床砂岩渗透系数为4.58~14.28m/d,影响半径为68~166m;在斜硐Ty4-1砂岩中抽水时,地下水多沿层面及横向裂隙以股状呈悬挂式向汇点集中,随深度增加,出水点也向下迁移,证明其裂隙是普遍存在的,且周围的长观孔地下水位显著降低,形成降落漏斗,由于岩体渗透性差异,观测分析表明,降落漏斗影响范围向左岸约25~30m,而向右岸约85~90m。

(3)Ty3-5、Ty3-3、Ty2层涌水试验表明:Ty3-5、Ty3-3层水头较高而流量较小,单位涌水量多在0.1L/sm以下,其渗透系数分别为0.049~0.395 m/d、0.012~2.066 m/d,部分钻孔揭示该层未见有承压水或不明显,反映出岩体裂隙发育极不均匀,各向异性大。Ty2层水头大,为176.5m,涌水量大,但深埋地下,具有极大的非均匀性。

2.4地下水类型、补给与排泄及动态变化

高山背斜由北东向南西方向倾伏,地形整体也北东高南西低。地下水主要沿砂岩裂隙由北东向南西方向运动,呈层分布,工程为地下水的排汇和径流区。

综合分析之后,Ty4-3、Ty4-1地下水并非严格意义上的潜水,它们有各自独立的隔水顶、底板,远离工程一带,应具有(半)承压性质,只不过由于河流切割,在工区一带具有自己独立的自由水面,局部受大气降水影响明显,准确地说,应为(半)承压―潜水,Ty4-1层地下水类型较复杂主要也是这方面的原因。

Ty3-5、Ty3-3、Ty2层中承压水为自贡井盐区盐卤水的一种类型,俗称为黄卤。其补给范围主要为越溪河上游的荣县双古、威远复立一带,距工区约15km以上,为高山背斜核部,因沟谷切割侵蚀而使上述含水层有较大范围出露,该段最低高程为460m,因此工程段承压水头具有较高的特点。由于含水层的砂岩与泥页岩相间成层,使承压水表现较多的层次,也导致各含水层在水质、水量、水头等存在较大的差异。承压水循环径流途径长,交替缓慢,与岩石发生溶滤作用,导致地下水矿化度较高。Ty2比Ty3层水量较大、矿化度低的原因是由于该层厚度大,原生状水平裂隙发育,结构疏松,富水性能好,地下水交替相对较快。

3、工程防渗帷幕深度的确定

根据钻孔压水、抽水试验表明,工程基岩体中存在强~弱透水层,应进行帷幕防渗。左右岸存在明显的相对隔水层(透水率q

河床中存在多层含水层,砂岩类透水率变化较大,个别达65Lu,而泥岩类透水率小。工程属单斜构造,岩层产状倾向下游偏右岸,虽然Ty3-3、Ty3-5层砂岩透水率较大,但其上部的Ty3-6层泥岩厚度较大(10~15m)、稳定且往下游埋深逐渐增加,可作为河床工程基隔水层,防渗帷幕深入该层5~10m即可。由于在工程轴线上游局部Ty3-6泥岩薄(厚度2~3m),且有Ty3-5层出露的上升泉,蓄水后,库水势必与Ty3-5层地下水连通,水工计算考虑扬压力时,其承压水头高程就不应是350m,而是正常蓄水位431m。

4、F1、F2断层的渗漏评价

F1、F2断层为区域性断层,横穿整个库区,其渗透性对整个水库蓄水构成一定的影响。断层破碎带宽2~8m,主要由糜棱岩、断层泥、断层角砾等组成。根据钻孔压水试验,透水率q一般小于1Lu,为微透水层。但勘察时,有些同志对断层影响带的透水性提出了怀疑,事实上,承压水的分布就是一个很好的反证。在F1、F2之间在五六十年代有自流的盐井,其层位为Ty3-5,在F2上游上工程河床钻孔在Ty4-1层也发现了承压水,其承压水头为145m,地面超高为69m,流量为4.7L/s。地层分布表明,F1、F2上下游及其间的承压水含水层、隔水顶底板皆被F1、F2断层切断,若断层影响带是透水的,就不能形成层次多、高水头、矿化度差异大的承压水。所以,F1、F2断层其渗透性是很微弱的,具有较好的防渗性。

三、结束语

以往的工程勘察报告中,多数只是对天然状态下的水文地质条件作一般性评价,很少结合基础设计和施工的需要评价地下水对岩土工程的作用和危害。在一些水文地质条件比较复杂的地区,由于工程勘察中对水文地质问题调查研究不深人,设计中又忽视了水文地质问题,有时导致地下水引起的各种岩土工程危害。因此,工程勘察中要切实做好有关水文地质测试工作和地下水监测工作,为水文地质勘察和工程建设提供充分、可靠的依据。

参考文献

[1]地质勘查资质管理条例及工程地质勘察工作实用手册.中国矿业出版社.2008-3

勘察工程论文篇(4)

现阶段,随着国家经济的发展。各地开展的大型工程项目数量不断增加,这在很大程度上促进了地质勘探行业的发展。作为决定工程项目可行与否的关键因素之一,工程地质勘探需要考虑众多因素,水文地质勘察便是其中不可或缺的一部分,它能准确对地下水位的升降和移动变化进行掌握,进而确保工程安全性,因此水文地质勘察在工程地质勘探中发挥着重要的作用。

一、水文地质勘察的内容和影响因素

(一)水文地质勘察内容

从字面意义上来说,水文地质主要是指地下水规则或不规则运动变化,在工程项目中起着关键性地作用,并随着生产和发展的需要逐渐形成一门独立的水文地质学。水文地质勘察则是为了保证工程建筑物在规划设计、施工、使用等方面符合安全、经济和合理的标准,将基础设计和评价地下水对岩土工程作用及危害结合起来,强调勘察岩土的水理性质,并客观评价建筑工程施工地区水文地质问题。其中,岩土水理地质是岩土工程地质性质的重要标志之一,指的是岩土和地下水之间的相互作用引起的对岩土强度的影响,岩土水理地质在很大程度上会对建筑工程的稳定性产生直接影响。另外,从工程项目角度来说,水文地质勘察还强调在对地质问题进行深入分析,并结合当地不同的地质条件和环境做出科学合理地工程设计图。在进行水文地质勘察的过程中,还应对建筑物的地基类型进行深入分析,按照不同工程需求,对不同地质工程可能存在的水文地质问题进行预防性控制。但是,在以往的地质勘探任务中,勘探人员往往忽视水文地质勘察工作,将其流于形式,这极易导致其对岩土工程地质性质的评价存在片面性。

(二)影响水文地质勘察的因素

影响水文地质勘察工作的因素多样,主要有以下几个方面:首先,工程勘察场地的复杂程度。通常情况下,工程勘察场地主要包括简单场地、中等复杂场地、复杂场地三种类型。简单场地一般地形平坦,地貌单一,岩石和土性质单一,地质情况优良,地下水不会威胁到建筑的地基基础;中等复杂场地则是指地形起伏大,地貌单元多,岩石和土性质变化大,地下水埋藏浅,极易影响建筑地基的稳定性;复杂场地是地形起伏大、地貌单元多,岩石和土性质变化大。场地内存在震动敏感地带,地下水埋藏浅,威胁到建筑地基基础,且不良地质现象发育。其次,对建筑场地地质的研究程度。工程勘察之前,对建筑场地的地质研究深入程度直接影响着工程勘察工作量的高低,通常在对地质条件较少研究的建筑场地,基于勘察经验的缺失,往往需要增加勘察工作量。反之则少。再次,建筑物的等级程度。基于建筑基底荷载大小及地基损坏造成的危害性可将建筑等级分为三个层次:具有严重损坏后果的一级建筑物、基地荷载大破坏后果严重的二级建筑物、基地荷载不大损坏后果较轻的三级建筑物。

二、水文地质勘察在现代工程地质勘察中的重要性

水文地质勘察在现代工程地质勘探过程中有着至关重要的作用。首先,水文地质勘查工作有助于建筑工程的顺利施工。通常情况下,水文地质勘察包括揭示地质构成、提供土体的力学指标这两个方面。在决定基础处理方案的制定和选择中,地质构成直接发挥着关键性的作用,并且土体的力学指标对建筑工程的造价有着重要的影响。另外,值得注意的是,考虑到地下看得见、摸不着的特性,对地质结构的观察必须依靠钻探勘察之类的工作,再加上建筑工程所在的场地是独一无二的,这就使得工程地质勘探工作得出的勘察结果并没有可比性。所以,建设单位更需要在地质勘察单位的选择上进行综合考虑,选择专业技术性强、操作规范、并且能够为建筑工程的顺利进行提供较为完善合理的勘察成果的优质勘察单位,可以说,这对建筑工程的顺利施工是极其有利的。

其次,水文地质勘察工作能够促进建筑工程质量的提升。从客观上来说,现代工程地质勘探工作仍存在诸多亟待解决的问题。比如大多数水文地质勘察单位对建筑工程的概念认识不清,不明确地质勘探侧重点,整个水文地质勘察过程缺乏针对性,并且水文地质勘察手段和技术落后,造成勘察结果与实际情况存在较大误差。另外,在水文地质勘查中,对地质情况进行分析报告时,所使用的理论、方法、计算公式等较为落后或与实际情况不相符。在作出地质报告时,存在基本地质条件实况模糊不清,不明确主要工程地质问题的界定,以及部分关键问题遗漏现象。还有些水文地质报告没有地质结论,更有甚者,由勘测人员先行定下结论,然后才进行相应的地质勘察等。上述问题在现代地质勘探工作中普遍存在,这是造成阶段性工程审查无法一次通过的关键因素,导致建筑商开发时机延误,造成巨大损失。或者是通过审查,但却在建筑施工过程中留下较大隐患,严重威胁到工程质量和施工安全性。所以,在建筑工程中应该严格按照规范程序对建筑场地的水文地质情况进行科学合理地勘察,这样才能保证建筑工程质量的提升。

最后,水文地质勘察能保证建筑地质构成与施工相符合。在以往的众多工程地质勘探过程中,大多缺乏对勘察质量的监管。事实上,在工程实施前期,就应该经由专业的水文地质勘察单位对建筑工程地质情况进行科学勘察,但大多数建设单位缺乏此认识,忽视水文地质勘察工作的重要性,致使勘察结果与实际相悖。同时,考虑到水文地质勘察工作环境的特殊性,需要专业的地质勘察单位独立完成,若疏于监督,可能使勘察工作存在诸多漏洞,影响建筑质量。除此之外,对施工图和地质勘察结果的严格审查也必不可少,这样才能充分保证建筑场地地质构成与实际施工情况相符,从而更加准确地对力学指标进行判断。

三、总结

水文地质勘察工作作为工程地质勘察的重要组成部分,其勘察成果的科学合理性直接影响着建筑物的安全和造价,需要得到高度重视。而要想做好水文地质勘察工作,需要水文地质勘察人员拥有高度责任感和较强的专业技术,并积极进行先进科学技术等,充分发挥水文地质勘察在现代工程勘察中的作用。

参考文献:

[1] 韩爱臣.水文地质问题在工程地质勘察中的重要性[J].今日科苑,2009.

勘察工程论文篇(5)

杂填土按照成分可以分为建筑垃圾土、工业垃圾土以及生活垃圾土。杂填土是由于人们活动造成的无规律积累物形成的,它具有厚薄不一、成分多样、颗粒不均匀、孔隙较大松散的显著特点。膨胀土具有失去水后收缩、遇到水变膨胀的特性,属于黏土。具有高度的塑造性,是部分地质工程勘察中的地基方案选择。

1.2饱和粉土和饱和粉细砂

饱和粉土和饱和粉细砂的特点有:结构松散,在静载作用力下能够保持较高的强度,但是在地震力或是振动力的作用下超孔隙水压增大,颗粒之间的作用力降低,土中排水不畅时可以使土悬浮,产生液化沉陷导致土的承载能力下降或地基发生失稳状态。应对于饱和粉细砂以及饱和粉土的液化程度和液化层分布范围进行查明。

1.3软弱黏性土

软弱粘性土是湖沼相和相泄湖海相三角洲的结合沉淀物,它在第四纪后期形成的软弱性土具有孔隙比大天然含水量高压缩性高抗剪强度低承载力低渗透性弱以及沉降稳定时间长的显著特点。

2地基基础方案的选择

地基方案选择的主要目的是为了提高软弱地基的承载能力、消除地基土的振动液化沉陷影响、减轻膨胀土的胀缩性、消除黄土的湿陷性、防止沉降量过大及不均匀沉降的产生、防止剪切破坏使地基失稳、满足上部结构对地基的要求。

2.1杂填土和膨胀土

杂填土一般是由建筑垃圾、生活垃圾、原土压实。杂填土一般不宜采用天然地基,但在填筑年代超过5年后,性能稳定的工业垃圾和建筑垃圾均会达到一定的密实度。此类地基在采取上部结构刚度的措施和加强基础措施后,可作为一般建筑物的天然地基持力层,但其地基承载力应根据其它原位测试手段或载荷试验取得。对于局部厚度较小的杂填土,可采用表层压实法、重锤夯实法、换土垫层法或将填土挖除,将基础直接置于稳定的土层上。对于深度较大的杂填土,可采用复合地基处理或强夯法处理。对于有机质含量较多的生活垃圾当厚度不大时可挖除回填好土,对于厚度较大的生活垃圾不宜采用强夯法、表层压、换土垫层,应当采用桩基础。由于膨胀土质具有失去水后收缩,遇到水变膨胀的特性,因此影响膨胀土质的重要因素即是含水量。对于膨胀土质需要调查当地的区域水质条件和气候条件,分析土质的含水量不同压力作用下土质的自由膨胀率和土质的膨胀率,最后确定地基土的膨胀等级。根据当地的区域水质条件、气候条件的实际情况,处理地基的膨胀力,保持地基不受变形的影响。对需要处理的膨胀土,要考虑到地下水位以及湿陷程度对膨胀土的影响。在地下水位深、膨胀土较厚的情况下,可以利用地基土的上部,对基础进行浅埋工作,减小地基土的膨胀变形量。当膨胀土的厚度在2m~1m,膨胀土处于地表3m~2m之间时,可以采用全部挖出膨胀土的方法,挖出膨胀土后进行砂土或者灰土黏性土的替换。当膨胀土埋藏很深并且土质的承载能力不能满足高层建筑物的要求时,使用桩基础的方法解决。换土垫层方法用来处理膨胀土埋藏较浅并且土质厚度很大的情况。

2.2饱和粉细砂以及饱和粉土

当处理饱和粉细砂以及饱和粉土的液化地基土时,要根据饱和粉细砂以及饱和粉土的液化等级以及建筑物的特性进行综合确定分析,不能一接触液化场就消除液化沉陷的影响比如,可以不采取任何消除液化措施的是丁类建筑物的轻微液化场地和丁类建筑物的中等液化场地,对于丁类建筑物的严重液化场地需要进行上部结构和基础结构的处理,对于丙类建筑物的轻微液化场地和丁类建筑物的中等液化场地也需要进行加强上部结构和基础结构的处理,对于丙类建筑物的严重液化场地需要进行全部消除或部分消除液化沉陷的影响,此外也需要进行加强上部结构和基础结构的处理,对于乙类建筑物的轻微液化场地需要进行部分消除液化沉陷的影响或进行加强上部结构和基础结构的处理。对于那些全部需要消除液化沉陷的场地,在处理深度时要保持处理深度高于液化深度的下限,通过改善排水条件或增加土地的密实程度,可以有效的处理液化的地基对碎石桩进行振冲挤密或振冲置换时消除超孔隙水压以及增加土地密实程度的有力措施,还可以选用强夯法灌浆法对土地密实程度进行加大处理,在使用桩基础时可以将桩端降到液化程度以下来稳定土层。

2.3软弱黏性土

面积不大的或是埋藏不深的软弱粘性土可以进行挖掘处理或是采用基础加深的措施。对于厚度很大的软弱粘性土可以采用灰土桩垫层换土法,对于宽度小的基础可以选用条形地梁跨越。排水固结法可以作用于不含水砂层的软弱粘性土。

2.4天然地基

天然地基是地质工程建设中最优选用的地基种类。在地质工程建设中遇到天然地基时,需要结合基础形式以及地基的上部结构进行综合处理分析。天然地基的每层土层的地基承载能力以及物理力学指标有很大的差异,天然地基的土质都是经过沉积循环后成层出现的,首先要做到把上部承载能力强的土层当成天然地基的支持力层,然后对其下部卧层土层的承载能力进行验算,看看能否满足承载力的要求。当天然地基下部卧层土层的承载能力不能保证承载力的要求时,为了加大厚度,需要对基础进行浅埋处理,在这个过程中要保持冻土的深度小于支持力层土层的厚度。对基础进行加宽处理可减少上部结构的天然地基单位承载能力需求。地基的边坡稳定性、地基的变形程度、地基的承载能力是选择天然地基的三个必要条件。在地基土的质地比较均匀、地基土的压缩性小、地基土的承载能力高时,在保证地基承载能力的同时就可以保证地基的边坡稳定性以及地基的变形程度。

勘察工程论文篇(6)

一、有关岩土工程勘察

1.岩土工程勘察定义。岩土工程勘察,英语为geotechnicalinvesigation,就是根据建设工程的要求,查明、分析、评价建设场地的地质、环境特征和岩土工程条件,编制勘察文件的活动。

2.岩土工程勘察阶段。按其进行阶段可分为:预可行性阶段、工程可行性研究阶段、初步设计阶段、施工图设计阶段、补充勘察、施工勘察等。

3.岩土工程勘察对象。根据勘察对象的不同,可分为:水利水电工程(主要指水电站、水工构造物的勘察)、铁路工程、公路工程、港口码头、大型桥梁及工业、民用建筑等。由于水利水电工程、铁路工程、公路工程、港口码头等工程一般比较重大、投资造价及重要性高,国家分别对这些类别的工程勘察进行了专门的分类,编制了相应的勘察规范、规程和技术标准等,通常这些工程的勘察称工程地质勘察。因此,通常所说的“岩土工程勘察”主要指工业、民用建筑工程的勘察,勘察对象主体主要包括房屋楼宇、工业厂房、学校楼舍、医院建筑、市政工程、管线及架空线路、岸边工程、边坡工程、基坑工程、地基处理等。

4.岩土工程勘察内容。岩土工程勘察的内容主要有:工程地质调查和测绘、勘探及采取土试样、原位测试、室内试验、现场检验和检测,最终根据以上几种或全部手段,对场地工程地质条件进行定性或定量分析评价,编制满足不同阶段所需的成果报告文件。

5.岩土工程勘察的方法与技术。岩土工程勘察的方法或技术手段,有以下几种:(1)工程地质测绘。工程地质测绘是岩土工程勘察的基础工作,一般在勘察的初期阶段进行。工程地质测绘是认识场地工程地质条件最经济、最有效的方法,高质量的测绘工作能相当准确地推断地下地质情况,起到有效地指导其他勘察方法的作用。(2)勘探与取样。勘探工作包括物探、钻探和坑探等各种方法。它是被用来调查地下地质情况的;并且可利用勘探工程取样进行原位测试和监测。应根据勘察目的及岩土的特性选用上述各种勘探方法。(3)原位测试与室内试验。原位测试与室内试验的主要目的,是为岩土工程问题分析评价提供所需的技术参数,包括岩土的物性指标、强度参数、固结变形特性参数、渗透性参数和应力、应变时间关系的参数等。原位测试一般都藉助于勘探工程进行,是详细勘察阶段主要的一种勘察方法。(4)现场检验与监测。现场检验的涵义,包括施工阶段对先前岩土工程勘察成果的验证核查以及岩土工程施工监理和质量控制。现场监测则主要包含施工作用和各类荷载对岩土反应性状的监测、施工和运营中的结构物监测和对环境影响的监测等方面。检验与监测所获取的资料,可以反求出某些工程技术参数,并以此为依据及时修正设计,使之在技术和经济方面优化。此项工作主要是在施工期间内进行,但对有特殊要求的工程以及一些对工程有重要影响的不良地质现象,应在建筑物竣工运营期间继续进行。超级秘书网

二、努力提高报告的编写能力

1.要具备牢固的地质地貌和工程理论地质基础理论方面,主要是岩石学、构造地质学、第四纪地质学和地貌学;工程地质方面,主要是土质学、土力学、工程地质分析、工程动力地质学、工程地质勘察。

2.要熟悉和把握有关的规范规程规范规程既是经验的总结,又是技术的指南,具有很强的勘察工作指导性。对于国家的、行业的、省和地方的有关规范规程,必须熟悉把握,并在具体勘察工作中认真执行。

3.要了解工作区的地质情况对于勘察地段的区域地质、水文地质、工程地质资料,应尽可能地搜集并熟悉。对于邻近地段已有的工程地质勘察资料,也要尽可能了解,以便在勘察工作中发挥其参考作用。

4.要把握工程设计的基本要求和基础施工的技术要点只要明确了工程设计的基本要求和基础施工方法,作出的工程地质评价才能有的放矢、正确客观,提出的建议才能合理适用。

5.要切实保证第一手资料的质量岩土工程勘察报告是工程地勘察的最终成果。一份高质量的勘察报告,必须来自于高质量的第一手原始资料。

6.提高综合知识方面的技能。如基本的数理统计知识、文字表达能力、编图技巧、综合分析能力。

三、确保岩土工程勘察质量

1.严格按基本建设程序办事,先进行地质勘察后设计。对无地质勘寒资料工程的设计应不予报建,对(未能按照相应的等级)降级进行地质勘察的工程不予报建。

2.提高地质勘察单位员工的质量意识,加强职业道德教育,健全岗位责任制度,培养良好的认真负责的工作作风,避免出现地质勘察资料的失误。

3.建立审查、复核制度,对室内室外技术资料要有资深的专业人员进行审查和复核,敢于对钻探、土工试验结果提出质疑,并通过对相近建筑物的钻探资料对照分析,确保资料的准确性。必要时可重探可疑探点、可重做相关试验。

4.要根据建筑物的安全等级与场地类别,并结合地质历史(注意收集相关资料)与地形特色进行探点的布设,并按规范进行相应比例和数量的取土探孔和原位测试探孔的布置,避免漏探特殊地质现象。

5.勘察布孔。勘察与设计的接口:收到设计人的勘察任务书后,应认真阅读,仔细分析,充分了解设计意图,不明白的地方及时与设计人沟通,存在疑虑的地方需向设计人提出。设计人往往有偏于保守的倾向,如对地基承载力要求过高、要求一桩一钻、对桩基承载力提出过高要求等。由于岩土体始终是一个灰箱,无法彻底查清岩土体的分布及其物理力学参数,在做与岩土相关的工程设计时固然要留有一定的安全富余度,但是必须在了解场地岩土条件的情况下才能准确把握安全的尺度,采用过于保守的岩土参数,过高的安全系数将不可避免的造成工程建设的极大浪费。做岩土工程勘察的人一般比做结构设计的人更清楚或者更容易把握场地的岩土条件情况,因此岩土工程师应当,也有必要提出意见供设计人参考。在勘察任务书与工程平面布置图确认无误后,勘察人员应到现场踏勘,了解场地情况,并提出勘察纲要供钻探等供外业使用。

勘察工程论文篇(7)

2岩土工程场地方域数字化—地理信息系统

岩土工程场地方域数字化也就是岩土工程项目地理信息系统,简称GIS,基于互联网技术的WebGIS具备分布式应用结构、广泛的访问范围、独立的平台和成本低的系统,这门系统涵盖了计算机信息科学技术、地理学等多门学科知识,主要是在计算机硬、软件和系统信息科学理论支持下,科学综合分析和规范管理空间物理力学信息的地理数据,从而为该工程项目决策规划和管理研究提供所需信息,这对各种野外场地工程勘察测量工作极为有利。虽然地理信息系统与岩土工程勘察设计一体化是不同领域,然而岩土工程力学信息里面包含了诸多地理信息,这些信息都与空间坐标相关,而后者工作必须在空间信息基础上进行设计分析、评估决策,也就是说岩土工程勘察设计需要全面地理信息的支持,而地理信息系统则就是有效采集、管理和分析各种空间信息的系统,因此将地理信息系统综合运用到岩土工程勘察设计工作中就能够充分借助GIS强大的数据采集、空间分析查询和管理效能来对岩土工程勘察设计、具体实施所需多种信息进行准确分析和高效管理,与传统勘察设计相比,地理信息技术应用优势十分明显:首先,地理信息系统采集处理数据快速且高效,其数据采集质量更高,数据来源更广;其次,岩土工程勘察设计数据内容复杂,形式多样,而地理信息数据库就能够准确描述表达空间实体,且其图形、图像和属性数据高度集成准确,从而为勘察设计信息、科学构建规范专业设计、分析评价和辅助决策模型提供了全面信息支持功能;然后,GIS中拓扑叠加、缓冲区、数字地形等空间分析功能也能够发挥其良好的分析效能;最后,GIS还具备高效的可视化操作效能,从而使得岩土工程勘察设计可视化操作平台成为可能。

3岩土工程场地物性数字化——地质统计学

所谓的地质统计学主要是基于区域化变量理论基础上发展起来的,通过变异函数来研究分析不同空间随机分布的结构性数据以及它们之间的空间格局变异状况,然后对这些数据进行专业评估分析或者模拟相关数据离散波动性,该学科包含了典统计学和空间统计学知识,主要就是针对地理地质的特征进行分析。在岩土工程勘察设计中,其勘察岩土性质与地质历史和应力等密切相关,尤其是岩土物性指标与其所处空间位置有很大联系,具备一定的空间相关性,而且这种相关性能够在土层随意两点中体现出来,且两点距离越大,其相关性会随之减少,反之则增加。一般描述岩土空间自然相关性主要借助随机场模型,利用方差折减系数来联系岩土物性中“点”与其所处空间的变异性来综合反映计算岩土物性相关距离,在分析岩土工程可靠性时就要依据该数据,这也是岩土工程可靠度研究的重要基础计算分析工作。岩土物性参数统计中,相关距离是其中重要的参数之一,一般土层剖面岩土物性完全相关距离以内,两点岩土物性完全相关,在限定相关距离意外,两点岩土物性相互独立,因此只要计算某工程特定土层岩土物性参数相关距离就能够直观了解该岩土地质物性状况,其相关距离计算方法主要有平均零跨法、相关函数法、递推平均法、回归模拟法等等,不同方法都有其相应的理论依据,其应用难易度和可靠度也都各有差异,各有其优势。

4岩土工程场地地层数字化——岩土工程建模

不同领域行业内都有其相应模型,如城市规划模型、机制模型、计算模型、演化模型等等,可以说所谓的模型就是依据数据实物、工程设计图纸与构思来按照其主要属性特性、比例和生态状况来构建相似物体图件,从而有效显示或揭示该类事物问题,而在岩土工程勘测工作中,其岩土工程地质模型就是利用工程性质将其工程岩土条件要上按照实际存在状况清晰简明表示在地图图形中,也就是能充分反映工程与地质条件相互联系依存的图示。借助该模型能够和那后拉近地质与岩土工程之间距离,有利于工程勘察设计人员深入掌握认识和准确应用岩土工程数据结果,能够使得岩土工程信息研究利用工作得到深化,使得工程岩土变形破坏等关键条件工作信息更准确,有效推动了地质工程结合后其岩土变形规律、物理效应等理论实用工作的快速进行,从而使得岩土工程信息研究工作方面得到更大的实质性进展。不同的岩土工程其构造规模、起因、形态结构都有一定差别,而这些地质构造基本都可以抽象认为是点线面体等元素的集合,所谓的点元素集合就是指测点、线元素集合就是指地质剖面线、面元素集合则是指人工填土厚面等、体元素集合就是地下岩体形状特征。不同地质对象都有一定空间位置范围,具备一定形态地质特征,且与其他地质对象有一定空间关系,因此地质对象主要特征就是空间、属性以及空间关系等特征。一般地质对象能够依据地质体形状产状来分析其表征,然后根据地质对象的年代、岩性、空隙渗透率、含水和力学等不同属性参数来分析其空间分布状况,一般岩体地质对象空间上主要表现邻接、包含相离等拓扑关系。因此构建岩土工程模型就要基于岩土工程空间特征、岩土工程属性等之间对照关系来进行,其构建模型依据就是利用人们对外界客观信息认知的精炼和图示,主要根据工程信息数据来源、质量来筛选已有资料,目前是预测某个或者多个工程地质变量的空间变化规律。岩土工程地质建模工作主要通过精确表示工程地质体外表来描述该地质对象的建模方法,也就是表面模型法。岩土工程地质建模有可视性和可修改性等特征。所谓可视性就是指对岩土工程地质模型进行可视化表述,能够利用三维景观模式、掀盖层三维景观模式、投影值线模式以及切面模式等来表达,可修改性就是指工程地质模型如果在勘探工作中获得了新的数据信息,必须要对原有地质模型进行细化,或者岩土工程项目研究人员在不断研究下对地质模型有了新的体会和领悟也需要修改模型。在应用岩土工程地质模型中,核心关键部分就是根据某组已知离散、分区数据按照相应数学逻辑关系推算其他位置点、区域数据的计算过程,也就是空间数据插值过程,其中样点范围包括局部拟合、整体拟合,空间数据插值则又趋势面法、按距离平方反比加权插值法。另外应用关键技术就是项目工程勘察参数结构设计和地层处理模拟,前者体现场地岩土物理空间拓扑关系,后者体现不同生成地层空间叠加分布。只要根据具体需求模拟研究区域某点虚拟钻孔土层状况和虚拟岩土工程剖面图和相关属性等值线,并完成所有等值线搜索即完成其相关应用。

5岩土工程数据库系统

构建全方位、多层次和多角度的岩土工程数据库系统,其勘察所获数据必须要包括以下几点信息:第一,所有建筑工程在其施工场地的地层信息,也就是地层年代、液化等级、沉积现象、特征周期以及液化指数;第二,岩土工程勘察地理范围内的所有地址勘察资料;第三,通过科学筛选、分析处理后的不同勘察点,也就是土层物理力学、地理物理力学以及环境物理力学等相关指标信息。只有基于这些信息才能构建科学、完整有效的数据库系统,其步骤如下:首先,设计数据库相关概念模型。在岩土工程勘察一体化中,数据库信息管理是其基础功能,鞥能够良好解决繁杂、多元数据库应用过程中的系列问题,因此就可以立足于数据库的良好应用上科学构建合理应用型数据库表结构,这样才能够有效获取能完整表达地层信息数据的概念数据模型。其次,构建相应数据库。岩土工程勘察数据库系统主要包括用户输入初始化数据、系统转化的中间数据以及转化后最终形成的数据。用户输入的初始化数据主要是通过观察勘察探测点所得的数据组合;中间数据则是经过系统处理转化的、与底层层面密切相关的剖面模型、等值线模型以及三维表面模型数据;而最终数据种类较多,基本都是结合用户需求转化的文档、图形等资料。

勘察工程论文篇(8)

在岩土工程勘察过程中,处于近地面位置的地质界面包括的类型较多,但在当前技术和手段下,对于这些界面还不能有效、快速地进行划分和识别,不能为民用建设工程的设计和施工提供充分的指导作用,这就给民用建筑工程的设计和施工带来了较大的影响。

1.2部分岩土参数不能确定

在勘察工作中,部分原状岩土在对其样品进行采取时具有较大的难度,无论利用室内试验或是室外试验等方法来对参数进行测定,都会导致这部分岩土的参数不能有效的确定下来,这也会对民用建筑工程设计带来一定的影响。

1.3部分勘察技术人员素质不高

勘察工作质量的好坏在很大程度上取决于勘察技术人员素质的高低。但在实际调查中发现,目前很大一部分勘察技术人员不仅理论知识较为缺乏,而且也不具有丰富的实践经验,这就导致因为自身知识广度和宽度的不足,在勘察过程中不能确保工作的高质量完成,不能更好地将岩土工程勘察技术在勘察工作中有效的进行应用。

2岩土工程勘察技术在民用建筑中的应用

2.1工程物探技术

2.1.1钻孔波速测试

为了能够更好地对各类岩体土体的各种波速进行有效的确定,可以利用单孔波速测试手段,这样还可以有效地对相关的岩土参数进行确定,从而可以科学对民用建筑场地类别进行判断。而且利用钻孔波速进行测试,可以有效判断和评价地基的振动特性,有利于对建筑的抗震设计进行有效的指导。在利用钻孔波速进行测试时,需要在民用建筑下布置波速测试钻孔,将三分量检波器固定在孔内预定深度内,同时要对测试的垂直间距进行严格的控制,使其保持在1m左右,在测试时按照从下到上的顺序逐点进行。

2.1.2场地微振动测试

为了能够更好地提高抗震设计的质量,可以对场地微震动进行测试,对脉动幅度值等参数进行确定,从而将场地内的地震区进行划分。另外,在室内外测试过程中,利用各种检测技术可以获取各种数据资料,通过对这些数据资料进行分析和研究,从而确保能够获得更加准确和可靠的岩土工程设计参数。

2.2地理信息系统

当前地理信息系统已经开始广泛应用在空间数据处理中,其主要是以地理坐标为主,通过勘察来获取某一区域内的数据资料,从而利用地理信息系统来有效管理岩土工程勘察信息。地理信息系统在应用过程中得以不断的完善,其功能也不断的增多,不仅具有输入、编辑、维护图形数据和属性数据的功能,同时对于文件型图形数据和关系型的属性数据还具有有效的连接功能,这样不仅有效确保了这两种不同的数据库能够互相进行访问,还可以对图形数据进行更好的分析。由于是完全面对用户进行界面设计,而且还能够提供相应的接口,这样可以有效确保二次开发的顺利进行。利用地理信息系统的空间信息处理能力,可以有效确保信息管理系统可视化功能的实现。当前地理信息系统技术和功能不断完善和发展,其应用领域也在不断的扩大。地理信息系统应用在民用建筑岩土工程勘察工作中,不仅可以将地质资料在工程中进行输入和查询,还可以使可视化综合动态查询和检索功能得以实现,有效确保了勘察信息的真实性和可靠性,这样就可以为勘察管理部门提供更真实的数据,确保其决策的科学性和合理性,有利于更好地指导岩土勘察工作的实施。

2.3遥感技术

利用遥感技术可以确保探测范围和信息量的进一步扩大,同时通过多种先进的技术手段,可以在短时间内即获取到相应的信息,可以实现动态的监测。而且利用遥感技术收集到信息后,可以对信息进行存贮、传输,这对于信息的进一步应用带来了较大的便利。在民用建筑岩土工程勘察中利用遥感技术,可以更好地显现出地域内的不同地貌特征,为工程建设方案的设计提供科学的依据,有利于更好地掌握复杂的地理环境。

勘察工程论文篇(9)

我国已建江河堤防工程总长20余万公里,98特大洪水后尚有大量堤防工程正在规划建设中。许多已建堤防工程过去基本上没有进行过真正工程意义上的工程地质勘察,更谈不上各大江河湖海堤防工程系统化规范性的地质资料的汇编与分析整理工作。正因为如此,许多堤防工程在98特大洪水期间险象环生,出险堤段堤基的地质条件没有足够的资料可供抢险分析,为确保万无一失,只能按最坏情况进行抢险,其人力物力的巨大付出实在是不得已而为之;洪水期间上至中央下到地方的各级领导以及全国人民的精神紧张程度和精力耗费更是无法用实物价值去衡量。如此被动局面,一方面是大自然教训人类的生动一课,另一方面则是祖先给我们留下的世纪难题。

建国以来,随着大规模工程建设的需要,工程地质专业从无到有,日益发展壮大,成为国家工程建设不可缺少的重要基础性专业。工程地质勘察的法规性准则也逐渐成熟与完善,与工程地质相关的规程规范相继出台,并结合工程实践的反馈信息进行修订修编。水利部1997年2月了行业标准《堤防工程地质勘察规程》(以下简称《规程》,编号SL/T188,同年5月1日起实施),这是我国堤防工程地质勘察的第一部法规性行业标准。而国家标准《堤防工程设计规范》(以下简称《规范》,编号为GB50286-98,自1998年10月15日起施行)则是98特大洪水之后出台的。特大洪水前后出台的这两部法定标准或许是历史的巧合,也许是历史的必然。巧合与必然都说明这样一个事实:工程地质是工程建设的基础和侦察兵,具有超前意识和预见性,信不信由你。

《规程》颁布前的堤防工程地质勘察工作基本上没有什么标准。《规程》颁布后,地质工作有规可循,有法可依。更为98特大洪水后大规模堤防建设奠定了基础。首次颁布此《规程》,与工程实际存在一些差异再所难免。《规程》实施三年多来,主要存在三方面的问题,一是《规程》本身的实践性与可操作性问题;二是地质师对《规程》的理解程度与把握尺度;三是人们对堤防工程地质勘察的认识程度与理解程度。近两年来,生产第一线的广大地质师对《规程》提出了许多好的意见和建议,我们在工程审查过程中,也在逐渐地深化对堤防工程和《规程》的理解,力求较准确地把握审查尺度,紧密地与工程实际相结合,避免教条和呆板地执行《规程》中明显与工程实际不相符合的条款,要求客观地、创造性地应用和执行《规程》,同时也强调执行《规程》的严肃性。

近年来,堤防工程地质勘察工作基本上可以满足堤防工程设计与施工的要求。随着工程实践经验的积累和对堤防工程深层次的认识与理解,一些具有全局性和普遍性的问题,迫切需要提出来进行讨论,以便引起足够的重视。

2堤防工程隐患与险情分类

2.1分类的意义与原则

堤防工程存在隐患出现险情,导致大洪水时十分紧张。大规模的堤防工程建设正是针对隐患和险情而提出来的“整险加固”或“除险加固”。显然,对隐患和险情实施科学分类,不仅是从实践上升到理论的成熟过程,也为堤防工程的勘测设计工作明确了任务,同时为“加固”工程指明方向,提供依据。

在分类之前,我们先给出险情和隐患的定义:

险情是指正在发生或发生过程中被抢险保住了的事故堤段,具有直观性,措施明确性等特点。针对险情,需要分析出险原因,界定险情性质,预测再次出险的可能性,落实工程措施,确保大堤安全。

隐患是指尚未发生或可能将要发生险情的事故堤段,具有隐伏性,随机性,再生性等特点,更需要技术人员的分析判断,以便对症下药,采取措施消除隐患。

险情与隐患有明显区别但又并没有严格的界线,往往在险情中存在着隐患,在隐患中孕育着险情。辩证地看,险情是隐患发展到一定程度后的质变或必然结果,隐患是潜藏着的险情。从过程时态来看,险情是现在进行时或过去完成时态;隐患是过去、现在和将来组成的全过程时态,或单个过程时态。

本文分类的原则主要体现在:水工建筑物(堤身、穿堤建筑物)与天然地质体(堤基)区别开来,出险堤段和存在隐患的堤段与非出险堤段和不存在隐患的堤段区别开来,再按险情和隐患的性质进一步细化,作为指导后续工作的纲要。

2.2堤防工程险情分类

按出险部位可分为堤基险情、崩岸险情、堤身险情和穿堤建筑物险情,这是出险时首先要明确的基本类型。前两类与地质条件直接有关,后两类与地质条件间接有关。可进一步划分如下:

(1)与地质条件与河势演变均有关系的险情:崩岸险情,具有可预见性、直观性、发展性和多变性特征。

崩岸类险情多发生在河流凹岸迎流顶冲或深弘逼岸区段,地质条件往往是抗冲刷能力较差的细砂类土或粘性土。由于河水位与河势流态的变化关系,有的崩岸险情并不发生在洪水期(高水位)而是在退水期(低水位),因此可以进一步将崩岸险情分为洪水期崩岸险情和枯水期崩岸险情,前者抢险紧张,后者可以从容对待。

(2)与地质条件直接有关的险情(主要为堤基险情,包括穿堤建筑物地基险情):堤基渗透破坏险情、堤基滑动破坏险情和堤基沉降破坏险情等。

堤基渗透破坏险情具有一定的隐伏性,往往不易准确判断,洪水期发生的渗透破坏实例与理论计算有较大出入。另外,还需注意将承压水性质的渗透破坏与堤基接触冲刷或砂性土堤基渗透破坏区别开来,因为渗透破坏机制不同,工程措施当然也不一样。

存在滑动或沉降破坏险情的堤段,堤基大多分布有软弱土层,土体抗剪强度低,压缩系数大;另一类滑动或沉降破坏是随着崩岸险情而产生的,此类险情危害最大,抢险最困难。此外,堤基内或堤基外可能存在陡坎或堤坡太陡,或堤身填筑施工速度太快,都可能出现类似破坏。

以上险情实际上也就是我们通常要求界定明确的堤防工程的三大主要工程地质问题:崩岸、渗透破坏、滑动或沉降破坏。

(3)与地质条件基本无关或关系不大的险情(主要为堤身险情):堤身渗透破坏险情(与堤身质量有关,如堤身土体的密实程度、填筑土体的渗透性质和堤身单薄等)、堤身滑动破坏险情和堤身沉降破坏险情等。

2.3堤防工程隐患分类

按隐患存在的部位可分为:堤身隐患、穿堤建筑物隐患和堤基隐患。

按隐患的性质可分为:常规患和特殊患。

常规患:堤身单薄,堤坡太陡,填筑质量差,填筑体中存在砂性土夹层,有明显的堤身裂缝等。与地质条件直接有关的主要为堤基类隐患(包括穿堤建筑物地基)。例如上覆粘性土层薄,或本身即为砂性土堤基(包括浅层砂性土透镜体),存在渗透破坏的可能性;堤基有软弱土层分布,存在滑动稳定问题。

常规患具有直观性和可检测性,隐患的分析和工程处理措施都较为明确,一般情况下可以通过常规性的堤防工程维修加固予以消除。

特殊患:进一步可分为随机患(堤身或堤基随机分布有生物洞穴、植物腐烂物等)、再生患(生物洞穴类隐患具有再生性)、人类活动留下的隐患(例如城市区与堤外江河相通的早已被废弃了的各类排泄管道,工程勘探留下的封堵不合格的钻孔等)以及地质条件不明的堤基隐患等等。

特殊患规律性差,检测困难,在洪水期一旦演变成险情,其突发性质增加了抢险难度。

2.4险情和隐患与堤型之间的关系

堤防工程的主体~防洪大堤,绝大多数为就地取材填筑的土堤类型,由于筑堤的历史条件、筑堤材料、自然环境等等因素复杂,为后人留下了长期隐患,洪水期险情不断,令人心惊。鉴于土堤存在的这些问题,近年来一些城市区的堤防工程比较倾向于改土堤为混凝土防洪墙(堤)。混凝土墙可以基本排除堤身隐患和险情,但却增加了堤基的出险负担。一是堤基的受力条件发生了较大变化,原来的土堤是大面积分布荷载,混凝土墙改为集中荷载;二是堤基较长渗径变为水头集中的较短渗径。混凝土墙显然对堤基地质条件提出了更高的要求,这是地质工作需要重视的。

另一方面,险情和隐患与堤防工程的挡水性质在很大关系。例如一些丘陵山区城市堤防工程,其挡水性质为暴涨暴落,远不能与长江中下游堤防工程高水位较长时间运行情况相提并论,其险情和隐患的性质也是有差别的,需要区别对待。而《规范》中只是对堤防工程的等级标准有所规定,并没有对反映出险情和隐患与等级标准之间的关系,需要由有经验的地质师和设计师根据具体情况去理解与把握。

3堤基工程地质分段

3.1堤基工程地质分段存在的问题

自然界的地质条件千差万别。堤防工程是长距离线状工程,跨越了不同的地质单元,不进行分段分类区别对待显然是不行的。堤基工程地质分段又称堤基工程地质分类。在实际工程中,一些勘测设计单位不进行工程地质分段,或分段不合理,或即便是进行了地质分段,但其岩土体的物理力学参数又不进行分段统计分析,工程地质条件明显不同的堤段没有区别开来。还有一些堤基工程地质分段的结果不同程度地存在自相矛盾性,对工程设计和工程措施的选定缺乏针对性。当然,更多的情况是工程地质分段的合理性与科学性不足。

例如某设计院参加过大量堤防工程地质勘察,有丰富的堤防工程地质勘察经验,他们进行堤基工程地质分段所考虑的因素有:上覆粘性土层的厚度、外滩宽度和历史险情等,将堤基分为工程地质条件好、较好、较差和差四个等级。如此分段其大原则没有什么问题,但对于一些特殊组合则不易明确。例如,某堤基段其上覆粘性土层足够厚,堤内也没有任何险情,但堤外无滩,受水流冲刷崩岸严重,是典型的险工险段。将这种堤段分成工程地质条件差或较差都不一定合适。因为出现的险情不是堤基本身的工程地质条件差,而是堤外脚受水流冲刷产生的崩塌或塌滑,且在不同水位条件下其险情不同,与江河水流及河势变化都有关系。显然,崩岸类险工险段在堤基工程地质分段时应结合河势水流特征单独进行分类,以便于有针对性考虑工程处理措施。例如对某一类崩岸问题,抛石护脚是有效的,而另一类崩岸问题或许要与“丁坝”挑流改变流态相结合才能从根本上解决问题,或者无建“丁堤”的条件,则需考虑“桩”、“笼”等工程措施。

另一方面,对于堤基工程地质条件用“好”与“差”来评价,其针对性不强。例如,存在渗透破坏的堤基划为工程地质条件差,而实际上可能此类堤基的承载能力和抗滑稳定性都是很好的,如砂性土堤基。又如淤泥质土类堤基,其承载能力和抗滑稳定性差些,但渗透系数却很小,抗渗条件是好的。如此等等,用常规的工程地质条件好或差来评价,都存在明显的矛盾。

目前各勘测单位自行制定的堤基工程地质分段原则,基本上是以工程地质条件为基础,再考虑一些自然因素和工程因素,笔者认为这种分段法的思路源自于常规的工程地质分类法,跳不出传统思维的约束,不能较好地适应堤防工程的实际,需要探索新路。

3.2堤基工程地质分段

我们在进行传统意义上的工程地质评价时,通常从工程地质条件出发,结合工程建筑物特点,界定出主要工程地质问题。在堤基工程地质分段中,我们不妨借用逆向思维的思想,以工程地质问题为主线,以工程地质条件为基础,再结合历史险情类型,争取探讨出一个符合工程实际的堤基工程地质分段法。

本文强调的是“工程地质”分段,因此主要是对堤基而言的。我们知道,无论堤基地质条件有多复杂,其主要工程地质问题则是明确的,归纳起来主要为三类(即三大主要工程地质问题):崩岸、渗透破坏、滑动与沉降变形。绝大多数堤基岩土体不外乎为:砂性土、粘性土和砂性土与粘性土的混合结构;城市区杂填土较为复杂,另当别论。

根据以上以工程地质问题为主线的分段原则,我们首先将堤基分为三大类:Ⅰ类(不存在问题的堤基)、Ⅱ类(可能存在问题的堤基)和Ⅲ类(存在问题的堤基)。对于Ⅱ类和Ⅲ类堤基,按其存在问题的性质可继续划分亚类。

(1)Ⅲ类(存在问题的堤基)

堤基发生过历史险情,尤其是一些每年汛期都要出险的部位,在汛期要投入大量的人力物力抢险才能保证大堤安全的堤段。按出除性质又分为两个亚类:Ⅲ-1和Ⅲ-2类。

Ⅲ-1类:主要指崩岸类,这是在堤基分段时对有问题的堤基段应首先分出来的一类。

Ⅲ-2类:除崩岸之外的一切堤基存在问题的堤段。按工程地质问题继续分出两个子类:

Ⅲ-2-1类:存在渗透破坏的堤基段。汛期出现过冒砂、涌混水等险情;堤基为砂性土,或表层粘性土较薄,或浅层有砂性土透境体分布,或堤身与堤基接触部位存在渗漏破坏问题。

Ⅲ-2-2类:存在滑动与沉降变形的堤基段。运行期或施工期发生过堤基土层滑动,或沉降过大导致堤身开裂;堤基有压缩性大、承载力和抗剪强度低的软弱土层分布,或堤基清基不彻底,导致堤身与堤基接触面存在滑动软弱带。

(2)Ⅱ类(可能存在问题的堤基段)

此类与前述的堤基隐患相对应。在汛期有一定渗水情况发生,但并未发展成为险情;或经地质勘察,地基中存在砂性土透镜体、软弱夹层等不利地质条件,经渗控或稳定性验算,安全系数达不到规范要求的堤基;或存在生物洞穴等其它隐患的堤基。

(3)Ⅰ类(不存在问题堤基段)

历史上无险情发生,堤基为厚度较大的粘性土或基岩,物性指标和力学指标均较好,不存在三大主要工程地质问题。

(4)结合工程实际进一步细分亚类的原则

以上分类法,从宏观上将堤基分为三大类别,但在具体实施过程中,还可以根据工程实际按不同工程地质条件和工程地质问题进一步细化。例如,对于Ⅱ类堤基段,可以按可能存在问题的性质进一步细化;对于Ⅲ类堤基段,也可以按存在问题的严重程度或岩土体的性质等进一步细化。堤基分段的科学性、合理性、实用性和可操作性,不但是地质师对堤防工程理解程度的反映,更是一项创造性的工作。本文所提出的分段原则和方法,尚有待工程实践去检验。

3.3堤基工程地质分段对勘测设计工作的指导作用

在进行工程地质勘察时,Ⅲ类是重点,应根据具体情况加密勘探点;Ⅱ类次之,实施常规性勘探即可;Ⅰ类基本上可以不考虑地质勘察。设计方面,Ⅲ类堤基必须考虑工程措施;Ⅱ类堤基应视具体情况而定,也可以通过进一步勘探和检测或监测结果来确定工程措施;Ⅰ类堤基则不需要采取工程措施,仅仅通过堤防工程的常规性维护即可。

4执行《堤防工程地质勘察规程》的基本原则

从《堤防工程地质勘察规程》颁布实施三年多来的实践可以看到,除了《规程》本身存在一些尚需修订的问题之外,能够将《规程》与工程实际相结合,创造性地执行和应用《规程》,准确地把握《规程》的原则性与灵活性,是对地质师综合素质的高标准要求。业务能力和创新意识,是检验和考察我们对堤防工程的认识深度与理解能力。笔者的理解主要反映在以下几个方面。

4.1勘测阶段

已建堤防除险加固工程可以一次进场,达到初设深度;新建堤防可按可研和初设两个阶段进行。其理由是:新建堤防存在线路比选问题,不可能将比选堤线的工程地质条件都按初设要求做到相同深度;已建堤防一般不存在线路比选问题,因此也就不存在多阶段多方案的反复比选问题。另外,新建堤防工程应该在规划阶段即开展工程地质工作,以便将规划线路从地质专业的角度先期界定其可行性。

4.2勘测深度及勘探工作量

在实际工作中,对于堤防工程勘测深度与勘探工作量问题,在理解和把握上有较大差异。有人喜欢严格按《规程》要求布置勘探工作量,而少在工程地质条件的查明与工程地质问题的分析方面下功夫。笔者强烈主张,一是将安全正常运行的堤段与险工险段区别开来,二是将堤身出险情况与堤基出险情况区别开来,分别对待。这也是本文费了较多笔墨进行险情隐患分类和堤基工程地质分段的目的之一。特别是经历了98特大洪水考验过的堤防工程,未出险的堤段完全没有必要“严格”按照《规程》要求的勘探工作量去实施地质勘探,即使按照《规程》中的上限要求,也是一种毫无意义的巨大浪费。而应在分析险工险段的具体问题之基础上明确勘察目的,研究和选择勘探方法,合理布置勘探工作量,重点在工程地质问题的分析上下功夫。如果认可本文提出的堤基分段原则和方法,地质勘探工作的布置则更为方向明确目标清楚。

4.3《规程》原则性与灵活性的准确把握

《规程》的原则性和严肃性是不可置疑的,这并不等于“死”规定。明显与工程实际不相符合的具体问题,需要由地质师的创造性劳动加以“灵活”处理。规程规范是指导技术工作的法规性文件,并不等同于为犯罪分子定罪的法律条款,因此执行规程规范是可以有“灵活”性的。灵活性的把握原则是:不应因忠实严格执行规程规范而遗漏重大工程地质问题,留下工程隐患造成工程事故;也不应造成不必要的浪费。例如,对于某些特殊的险工险段、Ⅲ类堤基、城市区规律性差的杂填土和人类活动留下的隐患管道等,《规程》规定的勘探工作量可能就不能满足要求;而对于安全正常运行多年的Ⅰ类堤基,按《规程》规定的勘探工作量又显得没有必要。总之,准确把握执行规程规范的原则性与灵活性,需要地质师的责任心、业务水平和创新意识,同时也体现出了工程地质专业的特殊性与复杂性。

5不同行业标准之间的关系

堤防工程地基多为土质地基,其工程地质评价的基本理论依据是土力学,因而容易与工民建基础设计相混淆。目前反映比较集中的是执行水利行业标准还是执行以工民建为主要对象的《岩土工程勘察规范》(国家标准GB50021—94简称《岩土规范》)。两个标准既有共同之处,又有一定的差异。我们认为应该以水利行业标准为主要依据,同时参照《岩土规范》。原因是:①《岩土规范》主要是针对一般性工民建地基勘察与评价,而水工建筑物与工民建有根本性的区别,前者地基所承受的荷载以垂直向为主,建筑物对地基的要求主要反映在承载力;后者的荷载是垂向与水平向的组合,地基岩土体处于复杂应力状态,特别是水荷载对地基岩土体的复杂作用,是水工建筑物与工民建的根本区别。②《岩土规范》在总则中表示该规范适用于除水利工程、……以外的工程建设岩土工程勘察。明确了不适用于水利工程。③《岩土规范》中对勘探量的安排和勘探工作的布置主要依照岩土工程勘察等级来制定,而堤防工程则主要从工程勘测设计的阶段来确定。

关于土的分类问题,也是近年来较为混乱的问题之一。1990年以前,土的分类主要以1962年版的《土工试验操作规程》为依据,采用土的分类三角坐标,这种分类法以颗分为基础,以砾石、砂粒和细粒的含量百分比来给细粒土定名。广大设计院应用这种分类方法比较成熟。1991年国标《土的分类标准》(GBJ145-90)颁布,此标准以颗分为基础,以塑性指数和液限为控制指标对土进行分类,1999年颁布的水利行业标准《土工试验规程》对土的分类也沿用此国标。我们认为,目前两种分类都有各自的特点,原则上应使用国标和最新的行业标准为主,现阶段也可以根据各单位对标准的理解和与工程相结合的具体情况,互相参照使用,只要能够客观地反映工程实际,满足为工程设计提供有关地质参数的要求即可。另一方面,我们也提倡和鼓励对此类问题深入探讨,为进一步统一标准进行实践和理论准备。

6堤防工程地质勘察的成果资料

堤防工程地质勘察所获得的基础性资料数据,具有种类繁多数量巨大的特点。这些资料数据的分析整理归纳汇总,要求标准化,计算机化,最后形成能够通过计算机综合管理的数字化的基础资料数据库系统,并与堤防工程的其它资料数据库系统集成,充分应用计算机网络技术,为堤防工程建设、管理和抗洪抢险提供使用方便功能强大的检索查询指挥调度系统。集成后的系统可在局域网、城域网、广域网和Internet/Intranet上运行。系统要求具有灵活的结构定义、多种存储方式、强大方便的查询定位功能、丰富的统计报表功能以及可靠的数据安全保证体系等;能够通过图示图表提供隐患预测、险情分析、抢险提示、决策支持、模拟溃堤和决口后洪水进堤的演变趋势。目前的基础性工作是制定目标,统一规划,结构设计,系统集成。

堤防工程数据库系统需要列为专题研究,力争全国统一,至少也应该全流域统一。各类资料数据的使用权限、归档管理、存储格式和形式、存储介质等等,都应该及早研究,统一规定。

7结语

98特大洪水期间,抗洪抢险场面之惊心动魄,至今仍然令人难以忘怀。大洪水给人以大启示。中国历史上前所未有的大规模堤防工程建设在98特大洪水之后迅速拉开序幕。经历了98特大洪水洗礼过的江河堤防工程,其工程隐患基本暴露无遗,认真研究堤防工程的出险机理,总结未出险工程的成功范例,吸取前人修建堤防工程的历史经验,做好堤防工程的勘测设计工作,是肩负着堤防工程建设的各级领导和工程技术人员的神圣职责。

近几年来我们参加了大量堤防工程审查,在向生产第一线的广大工程技术干部学习的同时,也对堤防工程地质勘察中普遍存在的一些问题进行了认真思考。本文对于执行《规程》的原则、勘探工作量的控制、勘测资料的整理等等问题表明了我们的观点;关于堤防工程险情和隐患分类,我们认为是实践上升到理论的必然过程;关于堤基分段分类的原则与方法,属于工程地质理论与实践相结合的探讨性课题,同时又是指导工程勘测设计的基础性工作。

本文观点供同行们参考,愿与大家共同讨论。

参考文献:

1韦港、冀建疆,关于《堤防工程地质勘察规程》中若干问题的探讨,《水利水电技术》,1999年第10期。

2韦港、冀建疆,堤防工程与环境地质问题,《水利规划设计》,水利部水利水电规划设计总院院刊,2000年第1期。

勘察工程论文篇(10)

一、水利水电工程建设与环境问题

1.1水利水电工程与地震问题水库等水利水电工程建筑物蓄水后,由于地应力的调整或水体下渗等原因,触发了地质断层的复活而诱发地震。研究表明,要触发一个比较大的地震需具备以下三个条件:①水库岩石比较破碎,且处理效果不十分理想;②存在有利于应力集中的地质环境条件;③水库水荷载所产生的超孔隙水压力足够大。关于水库诱发地震的事件国内外均有报道,一般而言,水库的坝址没有较大的断裂带存在,仅仅是水荷载引起的地应力,诱发地震的可能性是很小的。但如果诱发大的地震,那将是灾难性的。从1987年的资料至今,我国已建设的坝高在15米以上的水库共18000多座,已发现水库诱发地震的有13座。

1.2水利水电工程与水文问题水利水电工程建成后改变了下游河道的流量过程或周围环境水域的分布,从而对周围环境造成影响。例如:①大坝水库不仅存蓄了汛期洪水,而且还截流了非汛期的基流,往往会使下游河道水位大幅度下降甚至断流,并引起周围地下水位下降,从而带来一系列的环境生态问题;②下游天然湖泊或池塘因断绝水的来源而干涸;③下游地区的地下水位下降;④入海口因河水流量减少引起河口淤积,造成海水倒灌;⑤因河流流量减少,使得河流自净能力降低;⑥以发电为主的水库,多在电力系统中担任峰荷,下泄流量的日变化幅度较大,致使下游河道水位变化较大,对航运、灌溉引水和养鱼等均有较大影响;⑦当水库下游河道水位大幅度下降以至断流时,势必造成水质的恶化。由此可见,水利水电工程对水文的影响是不容忽视的一个重要问题。

1.3水利水电工程与气候问题一般情况下,区域性气候状况受大气环流和水体分布所控制。如果修建大、中型水库及灌溉工程后,当地水体的分布会发生较大的变化。如原先的陆地变成了水体或湿地。局部地表空气变得较以前更加湿润,形成新的小气候,对当地气候会产生一定的影响。主要表现在对降雨、气温、风和雾等气象因子的影响方面。

1.4水利水电工程与鱼类、生物物种问题①对鱼类的影响:切断了洄游性鱼类的洄游通道;水库深孔下泄的水温较低,影响下游鱼类的生长和繁殖;下泄清水,影响了下游鱼类的饵料,从而影响鱼类的产量;高坝溢流泄洪时,高速水流造成水中氮氧含量过于饱和,致使鱼类产生气泡病。②对植物和动物的影响:库区淹没和永久性的工程建筑物对植物和动物都会造成直接破坏;同时局部气候变化、土壤沼泽化、盐碱化等都会对动植物的种类、结构及生活环境等造成影响。

二、工程地质工作中存在的问题

2.1工程地质勘察的质量问题在工程地质勘察过程中,主要问题有以下几种:①工程概念不清,勘探侧重点不明确,针对性不强,方法不当,手段落后;②工程地质分析工作中所选择的理论、方法、计算公式等与实际情况有较大出入,其适应条件的物理意义混淆不清;③地质报告中基本地质条件不清楚。我们遇到的主要工程地质问题有:①界定不准确或论证不充分,有问题遗漏甚至结论性错误;②有些地质报告没有地质结论,也有些工程没有做多少地质工作就先下结论,极不严肃。此类问题产生往往造成阶段性工程审查不能一次性通过,可能延误开发时机;或者尽管通过了审查,但却给工程留下了隐患,这种情况的危险性极大。

2.2勘测周期不合理的问题从工程地质勘察到地质报告的提交需要一定的工作周期,这是再简单不过的道理,然而有些工程却没有进行基础性的前期投入。主要存在问题有以下几个方面:①一旦需要申报项目,立即就要求提交地质报告;②今天刚刚提交可研报告,明天就要求提交初设报告。此类情况多为地方性工程,一般国家投资的大型工程出现这种局面的不多。没有足够的勘测周期所造成的后果是严重的,由于地质条件不清楚,直接导致投资控制不住,施工后修改设计等情况。更可怕的是留下了工程隐患,可能造成重大的工程事故。

三、结语

工程地质学是20世纪才建立和发展起来的一门地球科学。水利水电工程地质勘察是所有行业中涉及面最广、问题最复杂、任务最艰巨、声望最高、最具权威性的龙头行业,它具有自身的特殊性与复杂性。水利水电工程建设与环境保护是一项长远的任务,是水利水电工程顺利进行的重要保证之一。保护和改善工程环境是保证人们身体健康的需要,是现代化大生产和保证工程质量的客观要求,是保证工程永久利益的必须条件。工程地质工作的质量,对工程方案的决策和工程建设的顺利进行至关重要。由于地质问题引起的工程事故时有发生,轻则修改设计延误工期,严重时造成工程失事,给人民生命财产带来重大损失。近年来。工程地质勘察质量有下滑趋势,工程地质分析不够深入,有时甚至出现工程地质评价结论性错误这样严重的问题。笔者认为,总结分析水利水电工程地质勘察过程中存在的问题,具有重要的现实意义。

参考文献:

[1]林妙月.区域构造稳定性及地震性危险评价问题[M].北京:地震出版社,2008:99-100.

上一篇: 对比教学法论文 下一篇: 虚拟化学论文
相关精选
相关期刊